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Bioinformatics

Text mining

Command line completion 

Index of Contents
Lists are all round
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Command line completion 

Ortographic correctors



Introduction
Learning from lists

Distance-based 

• Inductive bias: near examples 
share similar properties

• How near? Distance function

PROS                             CONS

-Algorithms can be       -No or little expressive 
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Distance-based 
methods

• How near? Distance function

• Methods: k-NN, Fisher discri-
minant, hierarchical clustering, 
K-Means, etc.

-Algorithms can be       -No or little expressive 
adapted to any data      hypothesis 
representation
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Motivation

Could it be possible to transform 
distances into patterns?
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distances into patterns?



Motivation

Naive approach: db method + symbolic method (pattern)

DATA
lists

PATTERN

*c5*CLUSTER

DB METHOD

Hierarchical 
clustering

SYMBOLIC
METHOD

Longest com.
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lists *c *
clustering Longest com.

subsequence
e1=c5a3b3

e2=c5a2d4

e3=a3b3d4c5



Motivation

Little certainty about the consistency between 
the distance and the patterns.
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the distance and the patterns.
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Distance-based generalisation operators

– Distances count differences between objects

– Patterns drop differences between objects

– So, drop what you count !

Proposed approach:
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How can we formalise the relation of 
consistency between patterns and distances?

– It must be independent of the data/pattern 
language and the distance definition



e2

Intrinsic paths must be
covered (intermediate 
elements)

Projecting patterns in metric spaces
Making patterns and distance agree

Distance-based generalisation operators

1

e2

Near elements lying in 
smooth paths should be     
covered (ε-path)

e2

Near elements
should be covered
(closed balls)
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e1

2
3

e1e1

e2



Distance-based generalisation operators

Definition

Binary distance-based (db) pattern

Given E={e1, e2}, a pattern p is a binary db pattern of E, if

p covers all the intermediate elements of e1 and e2.  
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Binary distance-based generalisation (dbg) operator

Adittionally, ∆ is a binary dbg operator if, 

∆(e1,e2) is a binary db pattern, for every e1 and e2.
.

Definition



Distance-based generalisation operators

2

22

2

11 )()(),( yxyxyxd −+−=

e2(2,2)

Playing with patterns and distances
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e1(1,1)



Distance-based generalisation operators

2

22

2

11 )()(),( yxyxyxd −+−=

e2(2,2)

Playing with patterns and distances

e2(2,2)

||||),( 2211 yxyxyxd −+−=

e3
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e1(1,1) e1(1,1)

e3

d(e1,e3)+d(e3,e2) = 0.75 + 1.25 = 2 = d(e1,e2)

e3(1,1.75) is 
in between!



Distance-based generalisation operators
Moving to n-ary generalisations

1

e2 e2 e2

Generalisation can be an n-ary operator but distance 
is binary 
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2
3

e1 e3 e1 e3 e1 e3

Reachability through combinations of intrinsic paths



Distance-based generalisation operators

Nerve: undirected connected graph whose vertices correspond to examples

Moving to n-ary generalisations

Nerve function: from examples to nerves 

e1

e3

e2

e4

e1

e3

e2

e4

N2N1
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N3

Skeleton(Ni ): filling the nerve ))(  and between   is  if : ,),(( ijiiji NskeletoneeeeXeNee ∈⇒∈∀∈∀

2
1

3

e1

e3

e2

e4

Nerve function: from examples to nerves 
e1

e3

e2

e4

N(·)
e1

e3

e2

e4



Distance-based generalisation operators
Moving to n-ary generalisations

Definition

N-ary db pattern

Given a finite set of elements E, a pattern p is a n-ary db pattern of E, if 

there exists a nerve ν of E such that skeleton(ν)⊂ Set(p)

17

Definition

N-ary distance-based generalisation (dbg) operator

Adittionally, ∆ is a n-ary dbg operator, if 

∆(E) is a n-ary db pattern of E (for every E)



Distance-based generalisation operators
Moving to n-ary generalisations

Definition

N-ary db pattern relative to a nerve ν

Given a finite set of elements E, p is a n-ary db pattern of E relative to ν, if 

skeleton(ν) ⊂ Set(p)
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Definition

N-ary dbg operator relative to a nerve function N

Additionally, ∆ is a n-ary dbg operator relative to N, if 

∆(E) is a n-ary db pattern relative to N(E) (for every finite set E)



Distance-based generalisation operators
From binary to n-ary db generalisations

Proposition

Let L be a pattern language endowed with the operation + and let ∆b be a 
binary dbg operator in L. Given a finite set of elements E and a nerve 
function N,  then 

∑∆=∆ ),()( ji

b

N eeE
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is a dbg operator w.r.t. N.

∑
∈

∆=∆
)(),(

),()(
ENee

jiN

ji

eeE

e1

e3

e2

e4

e6

e5

∆N

e1

e3

e2

e4

e6

e5



Minimal dbg operators

How to organise the hypothesis 
space?
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space?



Minimal dbg operators

A db cost function is introduced (a db MML/MDL formulation)

Hypotheses are organised according to its fitness (in terms 
of the distance) and (if necessary) complexity

K(E,p)= c(E|p) + c(p)
Semantic cost function Syntactic cost function

21

e1

e3

e2

e4

e6

e5

k(E, p1)>k(E, p2)

p1

e1

e3

e2

e4

e6

e5

p2

of the distance) and (if necessary) complexity



Minimal dbg operators

L c(E|p) Description

Any Uncovered balls of infimum radius 

c(E|p) can be expressed as:

)(),(inf pSetreBr

r

Rr
e

e

⊄=
∈

∑

22

Any Covered balls of supremum radius

Sets with 
border

Minimum to the border

Set(p) is a 
bound set

Minimum and maximum to the 
border

)(),(inf pSetreBr
Rr
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eed

pSete

)(),(sup pSetreBr

r

Rr
e

e

⊂=
∈

∑

)'',(max)',(min
)('')('

eedeed
pSetepSete ∂∈∂∈

+∑



Sort of data L c(p) Example

Numerical Closed intervals Length of the interval c([a,b])=b-a

Finite lists over an Patterns built from 

Minimal dbg operators

c(p) can be expressed as:
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Finite lists over an 
alphabet of 

symbols

Patterns built from 
the alphabet and 
variable symbols

Number of symbols in the 
pattern

c(V0abV1V2)=5

First order atoms
Herbrand base with 

variables
Number of symbols c(q(a,X,X))=4

Any Any Constant function c(p)=constant



Minimal dbg operators

Definition

Minimal distance-based generalisation (mdbg) operators

Given a cost function k, ∆ is a mdbg operator, if

k(E, ∆(E)) ≤ k(E, ∆’(E)), for every E and dbg ∆’
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Definition

Mdbg operator relative to a nerve function N

Additionally, given a nerve function N, ∆ is a mdbg operator relative to N, if 

k(E, ∆(E)) ≤ k(E, ∆’(E)), for every E and dbg ∆’ relative to N
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– X = ∑* E.g. X = { a, aa,..., ab, abb, ...}
– d ≡ Edit distance where ins = del = 1

Dbg operators for lists

Metric space (X,d)

Preliminaries

↑-Transformation (binary operator)
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– p1 = V3bcV2

– p2 = V2caV3

– p3= ↑(p1,p2)= V4cV4

≤ (strategy to apply ↑(·,·) over an n-ary set of patterns)

– {pi}i=1..n, S={aj in ∑: aj in Seq(pi)1≤i≤n}

– ≤ ≡ Find pi, pj: exists ak in S and ak in Seq(↑(pi,pj))



Dbg operators for lists

Pattern language Cost Function

L0: lists with variables
p=a1a2V1V2V3

k0 (E,p) = c’(E|p)

Proposition

Setting 1
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Proposition

Let P be the set all of the optimal alignment patterns of the 
lists ei and ej. Given a nerve function N then 

)),((),( ≤=↑∆ Pee ji

b

)),)},(({)( )(, ≤∆=↑∆ ∈ ENeeji

b

ji
eeE

are mdbg operators relative to N.



Dbg operators for lists

An illustrative example

e1=c5a3b3

e2=c5a2d4 e3=a3b3d4c5

V5c5a2V9c5a2V7
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e2=c a d e3=a b d c

V5a2V3d4V5

↑({Patterns,≤}) = V10a2V12



Dbg operators for lists

Pattern language Cost Function

L1= (L0,+)
p= a1a2V1V2V3 + V1a3

k1 (E,p) = c(p)+ c’(E|p)

Setting 2
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∆~(E)=↑(∆N, ≤), where ≤: ↑ driven by k1

∆N=∑∆b(ei,ej)

The mdbg is not always obtained via ↑

NP-Hard for a version of L1
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Future work
Including other similarity functions
– Normalised distances (0≤d≤1)
– Pseudo-distances (weighted edition distance, kernel functions, 

etc.)

Making dbg operators more practical 
– Formalisation of the notion of weak dbg operator
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– Formalisation of the notion of weak dbg operator
– Further results about composability of dbg operators
– Overlapping control in cluster descriptions 

Exploring new pattern languages
– Regular languages.

Studying new cost functions 
– Improving the semantic cost function



Thanks for 
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your attention!



Semantic cost functions

C’(E|p) = 
|E|, otherwise

j-max{Length(e)}e in E, if p = Vj

L0 (single list pattern language)
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C’(E|p) = 
|E|, otherwise

|E-E1| + c(E1|pk), pk = Vj & E1={e in E: Length(e) ≤ j}

L1 (multiple list pattern language)
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Distance-based generalisation operators
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e1

e2

e3

e5

e1
e3

r

2
3
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Distance-based generalisation operators
Moving to n-ary generalisations

N(·)
e2

e1

e3 ν

skeleton(ν)
skeleton(ν)

Given N(·),  
e2

e1

e3
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e1(1,1)

e2(2,2)

e3(3,1.5)

(Euclidean distance)

skeleton(ν)
skeleton(ν)

e1(1,1)

e2(2,2)

e3(3,1.5)

(Manhattan distance)



Set(p2)

E.g.: Neither p1 is more general than p2 nor vice versa

Minimal dbg operators
Limitations of inclusion (⊂) 

Distance function is ignored (many patterns become 
incomparable)
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Set(p1)

Set(p2)

e1

e2



e2(3,4)p2
p1 e2(3,4) p3 e2(3,4)

Minimal dbg operators
Limitations of inclusion (⊂) 

The complexity of the pattern is ignored
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e1(1,1)e1(1,1) e1(1,1)

Least general generalisation 
might not exist!


