
Defining Inductive Operators using Distances over Lists ∗

V. Estruch C. Ferri J. Hernández-Orallo M.J. Ramı́rez-Quintana
DSIC, Univ. Politècnica de València

Cami de Vera s/n, 46020 València, Spain
{vestruch,cferri,jorallo,mramirez}@dsic.upv.es

Abstract
Instance-based learning is one of the most widely-used
paradigms in the field of automatic induction. Several rea-
sons back its popularity, among them, we must stand out its
capability to cope with different data representations: these
methods are designed on the basis of a similarity princi-
ple (similar examples should share similar properties) which
makes them easily adaptable to different datatypes via re-
defining the similarity (distance) function. In this sense,
multiple distances and similarity functions can be found in
the literature.

However, the most notorious downside when speaking
of distance-based or similarity-based methods concerns the
low expressivity of the models (if any) these methods learn.
Decisions are made from expressions such as “example x
is more similar or nearer to example y then” which results
in little practical knowledge, very specially when structured
data is involved. However, in many application areas we
require patterns to describe the similarities of the data.

In [Estruch 2008], we have addressed and formalised
the problem of turning distance-based methods outputs into
comprehensible and consistent patterns. In this work, we
first overview our framework and then instantiated it for the
case of data represented by lists of symbols.

Keywords inductive operators, induction with distances,
list-based representations

1. Introduction
Inductive Programming is concerned with the automated
construction of declarative programs from data. We can dis-
tinguish several approaches to this problem according to the
knowledge representation adopted. For instance, the field
known as Inductive Logic Programming (ILP) [Muggleton
1999] aims to induce consistent first order theories from data
represented as first order objects (atoms or clauses). A nat-
ural extension of this comes when we move to higher-order
logics [Bowers et al. 2000, Lloyd 2003]. The synthesis of

∗ This work was partially supported by the EU (FEDER) and the Span-
ish Government MEC/MICINN, under grant TIN 2007-68093-C02 and
the Spanish project ”Agreement Technologies”(CONSOLIDER-INGENIO
CSD2007-00022).

functional programs arises when the training data consists in
a sample of inputs and outputs of a evaluation function [Ols-
son 1995, Schmid 2003]. A more generic framework cor-
responds to the induction of functional-logic theories. This
paradigm centres on performing induction within a formal
context that combines the strengths of logic and functional
programming [Ferri et al. 2001].

Although declarative languages constitutes an elegant and
powerful framework for program synthesis, they show some
limitations when the semantic of the data representation
does not match the implicit semantic managed by these
declarative languages. An example of this is found when
working with lists or sequences1. From a declarative point of
view, lists are recursively defined in terms of a special item
(head) and a tail, which is another (sub)list. This perspective
makes difficult the search of patterns in data that does not
suit this definition. For instance, if we are given the lists
abaca and bc, it is not immediate to learn a pattern of the
form ∗b ∗ c∗ because of the simple fact that the heads of the
lists do not match.

Unfortunately, list-based representations appear in many
real-world domains, which might put some limits on the ap-
plicability of declarative tools. For instance, in bioinformat-
ics, compounds such as amino-acids have a direct represen-
tation as sequences of symbols. Furthermore, other much
more complex molecules can also be described in terms of
sequences by using the so-called 1-D or SMILE represen-
tation [Swamidass et al. 2005]. Another example is found
in text or web mining where documents are usually trans-
formed into sequences of words. Very common software
utilities such as command line completion or orthographic
correctors work on lists as well.

At this point, we could wonder if some of the tools em-
ployed in inductive programming (generalisation operators)
could be upgraded to deal with list-based representations in
a more satisfactory way and overcome this limitation. In
[Estruch et al. 2005, 2006], we consider the possibility by
analysing the relationship between distance and generalisa-
tion

1 In this section, the terms list and sequence will be used indistinctly.

Note that most of the applications that handle sequences
usually employ distances in order to find the most simi-
lar sequences in data. Distances (and consequently, metric
spaces) play an important role in many inductive techniques
that have been developed to date. Similarity offers a well-
founded inference principle for learning and reasoning since
it is commonly assumed that similar objects have similar
properties. Given the importance of lists as a datatype for
knowledge representation, several distances can be found in
the literature, being the edit distance [Levenshtein 1966] the
best-known. The drawback is that these methods do not infer
a model (or patterns) from data as declarative inductive (or
more general, symbolic) learners do.

Therefore, if we were able to find out a connection be-
tween distance and generalisation we could, on the one hand,
define more suitable generalisation operators to work with
structured data in general and with lists in particular; and on
the other hand, we could come up with induction techniques
capable of transforming distance-based method outputs into
symbolic models, and consequently, more comprehensible
explanations for the user.

Although, there might be many different ways to establish
a connection between distance and generalisation, ensuring
the consistency between them is compelling one. Note that if
the generalisation process is not driven by the distance, this
might result in patterns that does not capture the semantic
of the distance giving wrong explanations about why objects
are similar. Let us see an example of this. If we consider
the edit distance over the lists bbab, bab and aaba, we
see that the list ab is close to the previous lists (distances
are 2, 1, and 2 respectively). However, a typical pattern
that can be obtained by some model-based methods, *ba*,
does not cover the list ab. The pattern does cover the list
dededfafbakgagggeewdsc, which is at distance 20 from the
three original lists. The pattern and the distance are up to
some point inconsistent since those elements that are most
similar to the initial examples are excluded.

Although there are other important works on hybridisa-
tion, they tend to ignore the problem of consistency between
the semantic of the model learnt and the semantic of the un-
derlying distance. Basically, what we do is to define some
simple conditions that a generalisation operator should have
in order to behave in a consistent way wrt. a distance. These
operators are called distance-based generalisation operators.

In this paper, we address the problem of inducing patterns
from lists of symbols embedded in a metric space. In other
words, the work we present here can be seen as an instantia-
tion for lists of the general framework aforementioned. This
paper is organised as follows. Section 2 contains an overview
of our proposal. In Section 3, we analyse how our framework
could be used to learn symbolic patterns from lists. To this
end, we introduce two different pattern languagesL0 and an-
other more expressiveL1, and study how to define (minimal)

distance-based operators in all of them. Finally, conclusions
and future work are given in Section 4.

2. Setting
In this section we summarise the main concepts of our
framework which integrates distances and generalisation.
For a more detailed presentation of it we refer the reader to
[Estruch 2008].

The underlying idea in our proposal is that, in order to
have a true connection between distance and generalisation,
the generalisation process have to take the underlying dis-
tance into consideration (or at least the two must be consis-
tent). This special relation is formalised through three no-
tions: reachability, intrinsicality and minimality.

Reachability implies that the generalisation of two ele-
ments ought to include those paths (a sequence of elements
in the metric space) that allow us to reach both elements
from each other by making small “steps”. The concept of
short step must be understood in the sense of the distance.

The second property arises from the observation that the
distance between two elements is always given by the length
of the shortest paths. Thus, if we want our generalisation to
be compatible with the distance, we need the elements be-
longing to the shortest paths to be covered by the generali-
sation. This condition is called intrinsicality.

The two above properties have been defined for two el-
ements since they are established in terms of the distance
which is a binary function. But generalisation operators are
not binary, thus for more than two elements, the connection
between distance and generalisation turns a bit unclear. It
seems that the properties of reachability and intrinsicality
must be extended for this generic case. Distance-based algo-
rithms suggest that it would make sense to impose the notion
of intrinsicality for some pairs of elements. The pairs of el-
ements that will have to comply with the intrinsicality prop-
erty will be set by a path or connected graph which we will
call nerve. Furthermore, we obtain with this a more generic
notion of reachability since all the elements in the set are
reachable from any of them by moving from one element to
another through combinations of (intrinsical) paths.

In Figure 1, generalisationsG1 andG2 do not connect the
three elements to be generalised. Only the generalisations
G3 andG4 connect the three elements through combinations
of straight segments.

Finally, the last property concerns with the notion of
minimality, which is understood not only in terms of fitting
the set (i.e., semantic minimality) but also as the simplicity
of the pattern (i.e., syntactic minimality). In Figure 1, G3
is an example of a very specific and rather complicated
generalisation of A, B and C.

G2G1

A

B

C
A

B

C
A

B

C A

B

C

G4G3

Figure 1. Generalising the elements E = {A,B,C}. El-
ements in E are not reachable through a path of segments
in generalisations G1 and G2. For any two elements in E,
generalisations G3 and G4 include a path of segments con-
necting them.

2.1 Distance-based Inductive Operators
Next, we formally show how the three previous notions are
employed in order to define the so-called distance-based
generalisation operators.

A generalisation of a finite set of elements E ⊂ X could
be seen as any superset of E in X . Therefore, a generalisa-
tion operator (denoted by ∆) simply maps sets of elements
E into supersets. As known, this superset can be extension-
ally or intensionally defined, being the latter one more use-
ful from a predictive/explanatory point of view. Symbolic
patterns constitute a widely-spread manner of representing
intensional generalisations. For instance, the pattern a∗ de-
notes all the lists headed by the symbol a. We denote by L
the pattern language and by Set(p) the set of all the ele-
ments in X that the pattern p ∈ L represents. For instance,
Set(a∗) = {a, aa, ab, . . .}. If necessary, L expressiveness
can always be increased by combining patterns via logical
operators (e.g. pattern disjunction). In this work, disjunction
is denoted by the symbol + and the expression p1 + p2 rep-
resents the set Set(p1)∪Set(p2). For simplicity, the pattern
p = p1 + . . .+ pn will be expressed as p =

∑n
i=1 pi.

Now, we can already introduce the definition of binary
distance-based pattern and binary distance-based generali-
sation operator.

DEFINITION 1. (Binary distance-based pattern and binary
distance-based generalisation operator) Let (X, d) be a
metric space, L a pattern language, and a set of elements
E = {e1, e2} ⊂ X . We say that a pattern p ∈ L is a
binary distance-based (db) pattern of E if p covers all the
elements between e1 and e22. Additionally, we say that ∆
is a binary distance-based generalisation (dbg) operator if
∆(e1, e2) always computes a binary distance-based pattern.

As previously said, for the case of more than two elements
to be generalised, the concept of “nerve” of a set of elements
E is needed to define non-binary dbg operators. Informally,

2 Given a metric space (X, d) and two elements e1, e2 ∈ X , we say that an
element e3 ∈ X is between e1 and e2, or is an intermediate element wrt.
d, if d(e1, e2) = d(e1, e3) + d(e3, e2)

a nerve ofE is simply a connected3 graph whose vertices are
the elements belonging to E. Observe that if E = {e1, e2},
the only possible nerve is a one-edged graph. Formally,

DEFINITION 2. (Nerve function) Let (X, d) be a metric
space and let SG be the set of undirected and connected
graphs over subsets of X . A nerve function N : 2X → SG

maps every finite set E ⊂ 2X into a graph G ∈ SG, such
that each element e in E is inequivocally represented by a
vertex inG and vice versa. We say the obtained graphN(E)
is a nerve of E.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

����������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

����������
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�
�
�
�
�

�
�
�
�
�

���
���
���

���
���
���

���
���
���

���
���
���

e1 e2

e3 e4

e1

e2

e3 e4

E={e1, e2, e3, e4}

υ2υ1

Figure 2. Two nerves for the set E. (Left) ν1 is a complete
graph. (Right) ν2 is a 3-star graph.

Some typical nerve functions are the complete graph, and
a radial/star graph around a vertex (see Figure 2).

Recall that the nerve corresponds to the notion of reach-
ability and indicates which intermediate elements must be
covered by the generalisations. In a more precise way,

DEFINITION 3. (Skeleton) Let (X, d) be a metric space, L
a pattern language, a set E ⊆ X , and ν a nerve of E. Then,
the skeleton of E wrt. ν, denoted by skeleton(ν), is defined
as a set which only includes all the elements z ∈ X between
x and y, for every (x, y) ∈ ν.

Consequently, we look for generalisations that include the
skeleton. From here, we can define the notion of distance-
based pattern wrt. a nerve.

DEFINITION 4. (Distance-based pattern and distance-based
pattern wrt. a nerve ν) Let (X, d) be a metric space, L a
pattern language, E a finite set of examples. A pattern p is
a db pattern of E if there exists a nerve ν of E such that
skeleton(ν) ⊂ Set(p). If the nerve ν is known, then we will
say that p is a db pattern of E wrt. ν.

And, from here, we have:

DEFINITION 5. (Distance-based generalisation operator)
Let (X, d) be a metric space and L be a pattern language.
Given a generalisation operator ∆, we will say that ∆ is a
dbg operator if for every E ⊆ X , ∆(E) is a db pattern of
E.

The above definition can be characterised for one nerve
function in particular.

DEFINITION 6. (Distance-based generalisation operator
wrt. a nerve function) Let (X, d) be a metric space and

3 Here, the term connected refers to the well-known property for graphs.

L a pattern language. A generalisation operator ∆ is a dbg
operator wrt. a nerve function N if for every E ⊆ X then
∆(E) is a db pattern of E wrt. N(E).

In general it is quite hard to prove that a generalisation
operator is db wrt. any nerve function. Fortunately, for most
of the applications it is enough to exist a particular nerve
function wrt. ∆ is distance-based. If the nerve is known be-
forehand, we speak of distance-based generalisation opera-
tors wrt. a nerve function N .

PROPOSITION 1. LetL be a pattern language endowed with
the operation + and let ∆b be a binary dbg operator in L.
Given a finite set of elements E and a nerve function N ,
the generalisation operator ∆N defined as follows is a dbg
operator wrt. N .

∆N (E) =
∑

∀(e1,ej)∈N(E)

∆b(ei, ej)

PROOF 1. It follows from the definition of dbg operator.

2.2 Minimality
Given the definition of dbg operator in the previous section,
we can now guarantee that a pattern obtained by a dbg
operator from a set of elements ensures that all the original
elements are reachable inside the pattern through intrinsic
(direct) paths. However, the generalisation can contain many
other, even distant, elements.

An abstract, well-founded and widely-used principle that
connects the notions of fitness and simplicity is the well-
known MDL/MML principle [Rissanen 1999, Wallace
and Dowe 1999]. According to this principle, in our frame-
work, the optimality of a generalisation will be defined in
terms of a cost function, denoted by k(E, p), which consid-
ers both the complexity of the pattern p and how well the
pattern p fits E in terms of the underlying distance.

From a formal viewpoint, a cost function k : 2X × L →
R+ ∪ {0} is a mapping where we assume that E is always
finite, p is any pattern covering E and k(E, p) can only be
infinite when Set(p) = X .

As usual in MDL/MML approaches, most of the
k(E, p) functions will be expressed as the sum of a com-
plexity (syntactic) function c(p) (which measures how com-
plicated the pattern is) and a fitness function c(E|p) (which
measures how the pattern fits the data E). As said, the most
novel point here is that c(E|p) will be expressed in terms of
the distance employed.

As c(p) measures how complex a pattern is, this function
will strongly depend on the sort of data and the pattern space
L we are dealing with. For instance, if the generalisation of
two real numbers is a closed interval containing them, then
a simple choice for c(p) would be the length of the interval.

As c(E|p) must be based on the underlying distance, a
lot of definitions are based on or inspired by the well-known

concept of border of a set4. But as the concept of border of
a set is something intrinsic to metric spaces, several general
definitions of c(E|p) can be given independently from the
datatype as shown in Table 1.

L c(E|p)

1 Any
P
∀e∈E re

re = infr∈RB(e, re) 6⊂ Set(p)
2 Any

P
∀e∈E re

re = supr∈RB(e, re) ⊂ Set(p)
3 Any

P
∀e∈E mine′∈∂Set(p)d(e, e′)

4 Set(p) is a
P
∀e∈E mine′∈∂Set(p)d(e, e′)

bound set +maxe′′∈∂Set(p)d(e, e′′)

Table 1. Some definitions of the function c(E|p): 1-
Infimum of uncovered elements, 2-Supremum of covered
elements, 3-Minimum to the border, 4-Minimum and maxi-
mum to the border.

Now, we can introduce the definition of minimal distance-
based generalisation operator and minimal distance-based
generalisation operator relative to one nerve function.

DEFINITION 7. (Minimal distance-based generalisation
operator and minimal distance-based generalisation op-
erator relative to one nerve function N) Let (X, d) and N
be a metric space and a nerve function, and let ∆ be a dbg
operator wrt. N defined in X using a pattern language L.
Given a finite set of elements E ⊂ X and a cost function k,
we will say that ∆ is a minimal distance-based generalisa-
tion (mdbg) operator for k in L relative to N , if for every
dbg operator ∆′ wrt. N ,

k(E,∆(E)) ≤ k(E,∆′(E)), for every finite set E ⊂ X.
(1)

In similar terms, we say that a dbg operator ∆ wrt. a
nerve function N is a mdbg operator relative to N if the
expression (1) holds for every dbg operator ∆′ wrt. N .

The previous definition says nothing about how to compute
the mdbg operator, and as we will see later, this might
be difficult. A way to proceed is to first try to simplify
the optimisation problem as much as possible, as the next
definition shows:

DEFINITION 8. (Skeleton generalisation operator wrt. a
nerve function N) Let (X, d) be a metric space and N a
nerve function. The skeleton generalisation operator ∆̄N is
defined for every set E ⊂ X as follows:

∆̄N (E) = argmin∀p∈L:skeleton(N(E))=Set(p) k(E, p)

which means the simplest pattern that covers the skeleton of
the evidence (given a nerve) and nothing more. Clearly, it is
a dbg operator because it includes the skeleton, but it might
not exist because it cannot be expressed.

The following section is devoted to defining db andmdbg
operators for the list data type.

4 Intuitively, if a pattern p1 fits E better than a pattern p2, then the border
of p1 (∂p1) will somehow be nearer to E than the border of p2 (∂p2).

3. Inductive Operators for Lists
Lists or sequences is a widely-used datatype for data rep-
resentation in different fields of automatic induction such
as structured learning, bioinformatics or text mining. In this
section, we apply our framework to finite lists of symbols by
introducing two cost functions and two pattern languages for
this sort of data and studying different dbg and mdbg oper-
ators for each particular combination of language and cost
function. Due to space limitations as well as comprehen-
sibility’s sake, we sketch those proofs that are excessively
long and would make the reading unnecessarily difficult. If
needed, a complete detail of them can be found in [Estruch
2008].

3.1 Metric space, pattern languages and cost functions
Several distance functions for lists have been proposed in
the literature. For instance, the Hamming distance defined
for equally-length lists in [Hamming 1950], or the distance
in [Edgar 1990], defined for infinite-length lists but which
can easily be adapted for finite lists.

However, the most widely used distance function for lists
is the edit distance (or Levenshtein distance [Levenshtein
1966]), which is the one we are working with. Specifically,
we set the edit distance in such a way that only insertions
and deletions are allowed (a substitution can be viewed as a
deletion followed by an insertion or vice-versa).

Two different pattern languages L0 (single-list pattern
language) and L1 (multiple-list pattern language) will be in-
troduced in this section. The patterns in L0 are lists that are
built from the extended alphabet Σ′ = {λ} ∪ Σ ∪ V where
λ denotes the empty list, Σ = {a, b, c, . . .} is the alphabet
(also called ground symbols) from which the lists to be gen-
eralised are defined, and V = {V1, V2, . . .} is a set of vari-
ables. The same variable cannot appear twice in a pattern.
Each variable in a pattern represents a symbol from {λ}∪Σ.
Finally, the pattern languageL1 is defined fromL0 by means
of the operation + (see Subsection 2.1) and aims to improve
the expressiveness of L0. For instance, if we let Σ = {a, b},
then, the patterns p1 = aV1V2 and p2 = bV1V2b belong
to L0 where Set(p1) = {aaa, aab, aba, abb, aa, ab, a} and
Set(p2) = {baab, babb, bbab, bbbb, bab, bbb, bb}. In other
words, the pattern p1 denotes all those lists headed by the
symbol a whose length ranges between 1 and 3. In a similar
way, p2 contains all the lists headed and ended by b whose
length ranges between 2 and 4. Likewise, the pattern p3 =
p1 + p2 belongs to L1 and Set(p3) = Set(p1) ∪ Set(p2) =
{aaa, aab, aba, abb, aa, ab, a, baab, babb, bbab, bbbb, bab, bbb, bb}.

With regard to the cost function, it is convenient to dis-
cuss some issues about the computation of the semantic cost
function c(·|·) for this particular setting. We will do this
by means of an example. Suppose we are given the pattern
p = V1V2V3V4aV5V6V7V8 and the element e = ccabawhich
is covered by p. The computation of c(e|p) is equivalent to
find one of the nearest elements to e, namely e′, which is not

covered by p. Note that e′ is not covered by p when the sym-
bol a does not occur in e′ (e.g. e′ = ccb) or the number of
symbols before or after each occurrence of a in e′ is greater
than 4 (e.g. e′ = ccbbbaba). From this two possibilities, it is
clear in this case that e′ = ccb is the nearest element to e not
covered by p. This simple example allows us to affirm that
the calculus c(e|p) can be as complicated as determining the
number of times a sequence s1 occurs in a sequence s2. Gen-
erally speaking, if sp is the sequence of ground symbols in a
pattern p and e′ is the nearest element to e not covered by p,
then e′ will be a supersequence or a subsequence of e which
will be obtained by modifying all the occurrences of sp in
e. Of course, as for the general form c(E|p), this operation
must be repeated for all the elements in E.

Therefore, if the learning problem requires the use of a
cost function (e.g. because we are interested in minimal gen-
eralisations), it might be more convenient to approximate
c(E|p), instead of handling the original definition. For in-
stance, we propose a naive but intuitive approximation of c
inspired on the one we introduced in [Estruch 2008] for sets:

c′(E|p =
n∑

i=1

pi) =

 |E − E1|+ c(E1|pk),∃pk = V1 . . . Vj

and E1 = {e ∈ E : length of e ≤ j}
|E|, otherwise.

The justification is as follows. If there exists a pattern
pk = V1 . . . Vj in p, then it is immediate that for every
element e such that its length l is equal to or less than j,
its nearest element not covered by p is, at least, at a distance
j − l + 1, which is the value computed by c(e|V1 . . . Vj).
Otherwise, we assume that the nearest element of e is, at
least, at a distance of 1. Implicitly, we are assuming that the
nearest element to e can be obtained by removing (or adding)
one specific ground symbol from (to) e.

The simplicity of c′(·|·) will help us to study and compare
the computation of the mdbg in L0 and L1. As for L0, the
cost function is directly defined as k0(E, p) = c′(E|p) (that
is, the complexity of the pattern is disregarded). As for L1,
we use k1(E, p) = c1(p) + c′(E|p) where c1(p) measures
the complexity of a pattern p ∈ L1 by counting both the
ground and variable symbols in p.

3.2 Notation and previous definitions
The function Seq(·) defined over a pattern p ∈ L0 returns
the sequence of ground symbols in p. For example, setting
p = V1aaV2b, then Seq(p) = aab. The bar notation | · |
denotes the length of a sequence (here a sequence can be an
element, a pattern, etc.). For instance, in the previous case,
|p| = 5. The i-th symbol in a sequence p is denoted by
p(i). Following with the example, p(1) = V1, p(2) = a,
. . . , p(5) = b. Any sequence is indexed starting from 1.
The set of all the indices of p is denoted by I(p). Thus,
I(p) = {1, 2, 3, 4, 5}. We sometimes use superscript as
a shorthand notation to write sequences and patterns. For
instance, V 5a3V 2 is equivalent to V1 . . . V5aaaV6V7, and

V 2(ab)3c is the same as V1V2abababc. Finally, we will often
introduce mappings that are defined from one sequence to
another. By Dom(·) and Im(·) we denote the domain and
the image, respectively, of a mapping.

The first concept that is required is:

DEFINITION 9. (Maximum common subsequence) Given
a set of sequences E = {e1, . . . , en}, and according to
[T.H. Cormen and Stein 2000], the maximum common sub-
sequence (mcs, to abbreviate) is the longest (not necessarily
continuous) subsequence of all the sequences in E.

This concept is already widely used in pattern recognition.
Note that the mcs of a group of sequences is not necessarily
unique. The following definitions will let us work with the
concept of common subsequence in a more algebraic fash-
ion.

DEFINITION 10. (Alignment) Given two elements e1 and
e2, we say that the mapping Me1

e2
: I(e1) → I(e2) is an

alignment of e1 with e2 if:

i) ∀i ∈ Dom(Me1
e2

), e1(i) = e2(Me1
e2

(i))
ii) Me1

e2
is a strictly increasing function in Dom(Me1

e2
).

(Remark 1) If Dom(Me1
e2

) = ∅, we say that Me1
e2

is the
empty alignment of e1 with e2. Thus, for every pair of ele-
ments we can affirm that there is always at least one align-
ment between them.
(Remark 2) Note that the alignment definition does not ex-
clude the case e1 = e2.
(Remark 3) We call e1(i) = e2(Me1

e2
(i)) a (symbol) match-

ing. Thus, |Dom(Me1
e2

)| (or equivalently, |Im(Me1
e2

)|) is the
number of matchings between e1 and e2 captured by Me1

e2
,

and the subsequence obtained by considering the i-th sym-
bols of e1 where i ∈ Dom(Me1

e2
) is the sequence of match-

ings. For the sake of simplicity, we denote this sequence by
Seq(Me1

e2
).

DEFINITION 11. (Optimal alignment) Given two elements
e1 and e2, if Seq(Me1

e2
) is a mcs of e1 and e2, then we say

that Me1
e2

is an optimal alignment.

Since I(e1) and I(e2) are finite sets, an alignment Me1
e2

can
be written as a 2 × n matrix where n (which we denote as
Rang(Me1

e2
)) is the number of matchings. Hence,

Me1
e2

=
(
a11 . . . a1n

a21 . . . a2n

)
where e1(a1i) = e2(a2i) for all 1 ≤ i ≤ n (condition i)
from Definition 10) and a1i < a1(i+1) and a2i < a2(i+1) for
all 1 ≤ i ≤ (n − 1) (condition ii) from Definition 10). An
element of Me1

e2
placed at row i and column j is denoted by

(Me1
e2

)ij .
Let us illustrate all these ideas by means of an example.

EXAMPLE 1. Given the elements e1 = caabbc and e2 =
aacdwhere I(e1) = {1, 2, 3, 4, 5, 6} and I(e2) = {1, 2, 3, 4}.
An alignment Me1

e2
(M in short) is

M =
(

2 3 6
1 2 3

)
≡ c a a b b c

a a c d

Note that M satisfies both conditions from Definition 10.
Following with M , we have that Dom(M) = {2, 3, 6},
Im(M) = {1, 2, 3}, Rang(M) = 3 and Seq(M) = aac.
Finally, M is an optimal alignment.

Given that different optimal alignments can be defined over
two elements e1 and e2, we might be interested in obtaining
a concrete optimal alignment. To do this, we define a total
order over all of them which lets us formally specify which
optimal alignment we want.

DEFINITION 12. (Total order for optimal alignments) Given
two elements e1 and e2 and given the optimal alignments
Me1

e2
(M in short) and Ne1

e2
(N in short) defined as

M =
(
a11 . . . a1n

a21 . . . a2n

)
N =

(
b11 . . . b1n

b21 . . . b2n

)
we say that M < N iff (a11, . . . , a1n, a21, . . . , a2n) <LO

(b11, . . . , b1n, b21, . . . , b2n) where <LO is the Lexicograph-
ical Order for numerical tuples.

EXAMPLE 2. Given e1 = aab and e2 = ab, we define the
optimal alignments

Me1
e2

=
(

1 3
1 2

)
Ne1

e2
=
(

2 3
1 2

)
Then Me1

e2
< Ne1

e2
.

Every alignment between two elements e1 and e2 induces a
special pattern p which covers both e1 and e2. This pattern is
unique and we call it the pattern associated to an alignment.

DEFINITION 13. (Pattern associated to an alignment and
optimal alignment pattern) Let e1 and e2 be two elements
in Σ∗ and let Me1

e2
(M in short) be an alignment of e1 with

e2. We say that a pattern p ∈ L0 is a pattern associated to
the alignment M (denoted by pM), if
i) Seq(M) = Seq(p)
ii) the variable symbols in p are distributed as follows (let-
ting n = Rang(M), l1 = |e1|, l2 = |e2|):

• The number of variables in the pattern p before the first
ground symbol is equal to

((M)11 − 1) + ((M)21 − 1)

• The number of variables between whatever two ground
symbols p(i) and p(j) (i < j) in Seq(p) such that there
does not exists i < k < j where p(k) is a ground symbol,
is equal to

((M)1(i+1) − (M)1i − 1) + ((M)2(i+1) − (M)2i − 1)

• The number of variables after the last ground symbol in
p is equal to

(l1 − (M)1n) + (l2 − (M)2n)

If Me1
e2

is an optimal alignment of e1 with e2, we say that
pM

e1
e2

is an optimal alignment pattern.

For instance, the pattern associated to the alignment M in
Example 1 is pM = V1aaV2V3cV4, which is an optimal
alignment pattern because M is an optimal alignment. Note
that if M is the empty alignment then pM = V l1+l2 and
Seq(M) = λ.

The alignment and optimal alignment concepts (Defini-
tions 10 and 11) can be easily extended to cope with pat-
terns. Given two patterns p1 and p2, Mp1

p2
is an alignment of

p1 with p2 where only matchings between ground symbols
are taken into account, that is, ∀i ∈ Dom(Mp1

p2
), p1(i) =

p2(Mp1
p2

(i)), p(i) ∈ Σ and p2(Mp1
p2

(i)) ∈ Σ. Analogously,
Mp1

p2
is an optimal alignment if Seq(Mp1

p2
) is a msc of p1

and p2.
To conclude, we introduce a binary bottom-up general-

isation operator (called ↑-transformation) defined over L0,
which allows us to move through the pattern language.

DEFINITION 14. Given two patterns p1 and p2 in L0 we
define the binary mapping

↑ (·, ·) : L0 × L0 → L0

(p1, p2) → ↑ (p1, p2) = p, such that

1. LetMp1
p2

(M in short) be the minimum optimal alignment
of p1 with p2, then Seq(p) = Seq(M).

2. If Seq(M) = λ then p = V max{|p1|,|p2|}. Otherwise, the
distribution of the variables in p is:
• Before the first ground symbol in p, the number of

variable is equal to:

max{(M)11 − 1, (M)21 − 1}

• Between two consecutive ground symbols in p, the
number of variables is equal to:

max{(M)1(i+1)−(M)1i−1, (M)2(i+1)−(M)2i−1}

• After the last ground symbol in p, the number of vari-
ables is equal to (letting n = Rang(M), l1 = |p1|
and l2 = |p2|):

max{l1 − (M)1n, l2 − (M)2n}

EXAMPLE 3. Given the patterns p1 = abcV1, p2 = V1abcccV2

and p3 = dV1, then ↑ (p1, p2) = V abcV 3 and ↑ (p1, p3) =
V 4.

PROPOSITION 2. For every pair of patterns p1 and p2 in L0,
if p =↑ (p1, p2) then Set(p1) ⊂ (p) and Set(p2) ⊂ (p).

PROOF 2. It directly comes from the definition of the ↑-
transformation.

Next, we explain how to define dbg operators for the differ-
ent pattern languages, and we study the possibility of finding
mdbg operators for (L0, k0) and (L1, k1).

3.3 Single list pattern language (L0)
One would expect that if ∆(E) computes a pattern p such
that Seq(p) is a mcs of the lists in E, then ∆(·) is a dbg op-
erator. However, we find that this operator is not, in general,
distance-based. The following example illustrates this:

EXAMPLE 4. Let E = {e1, e2, e3} where e1 = c5a3b3,
e2 = c5a2d4 and e3 = a3b3d4c5 are the elements to be
generalised. Initially, we are going to fix a nerve for these
elements, namely, the complete nerve (see Figure 3).

e1=cccccaaabbb

e2=cccccaadddd e3=aaabbbddddccccc

Figure 3. A complete nerve ν for the evidence E =
{e1, e2, e3}.

The pattern p = V 10c5V 6 generalises E, and Seq(p) is
a mcs of the lists in E. However, this pattern is not a db
pattern of E since, for example, the element a3b3 (which is
between e1 and e3) and the element a2d4 (which is between
e2 and e3) are not covered by p. As a matter of fact, no
pattern containing the ground symbol c will be db and this
result is independent of the nerve chosen.

The explanation for this apparently counterintuitive result
is based on how the distance between the different pairs of
elements ei and ej is calculated. In fact, although all the lists
in E have subsequence c5 in common, this subsequence is
never taken into account to compute the distance d(ei, ej),
for any pair (ei, ej) in ν. Therefore, the operator definition
we propose next not only uses the concept of mcs but also
uses others such as the ↑-transformation and the concept of
nerve which ensures the condition of being db. First, we deal
with the binary generalisation operator, and then we extend
it for the n-ary case.

In the first stage, for any two elements e1 and e2 to be
generalised, we need to somehow find out which patterns in
L0 can cover those elements between e1 and e2.

PROPOSITION 3. Given the elements e1, e2 and e, if e is
between e1 and e2, then there exists an optimal alignment
pattern p associated to an optimal alignment of e1 and e2
such that e ∈ Set(p).

PROOF 3. (Sketch) Let Me1
e and Me

e2
be the optimal align-

ments of e1 with e and e with e2, respectively. We define
the mapping M between e1 and e2 as the composition of

Me1
e and Me

e2
. The goal is to prove first that M is an op-

timal alignment of e1 with e2 and then, see that the associ-
ated pattern p

M
covers e. For this last step we distinguish

two cases: i) M is the empty alignment and consequently
p

M
= V |e1|+|e2|. According to Proposition 21 in [Estruch

2008], if e is between e1 and e2, then |e| ≤ |e1|+ |e2|, hence
e ∈ Set(p

M
). ii) M is not empty and we aim to prove that

the variable symbols in M are distributed in such a way that
we can ensure that e ∈ Set(p

M
).

We will use the proposition above along with the ↑-transformation
to define binary db operators.

COROLLARY 1. Given the elements e1 and e2, if {pi}ni=1 is
the set of all the optimal alignment patterns of e1 and e2,
then the generalisation operator defined as follows is db.

∆b(e1, e2) =↑ (p1, ↑ (p2, . . . ↑ (pn−1, pn)) . . .)

PROOF 4. For every optimal alignment pattern, we know
from Proposition 2, that

Set(pi) ⊂ Set(∆b(e1, e2)) (2)

Then, from Proposition 3, we can write that

∀ element e between e1 and e2 ⇒ ∃pi : e ∈ Set(pi) (3)

Now, combining (2) and (3), we can affirm that

∀ element e between e1 and e2 ⇒ e ∈ Set(∆b(e1, e2))
(4)

Hence, the generalisation operator is distance-based.

Next, we extend Corollary 1 for an arbitrary number of
elements.

COROLLARY 2. Given a finite set of elements E ⊂ X and a
function nerve N , the generalisation operator ∆ defined in
Algorithm 1 (where ∆b is defined in Corollary 1) is db wrt.
N .

PROOF 5. For every (ei, ej) ∈ N(E), Set(∆b(ei, ej)) ⊂
Set(∆(E)) by the definition of the ↑-transformation. There-
fore, for every finite set E, ∆(E) is distance-based w.r.t.
N(E).

Algorithm 1 returns a pattern p such that Set(∆b(ei, ej)) ⊂
Set(p), for every pair of elements in N(E), by itera-
tively applying the ↑-transformation over all the patterns
∆b(ei, ej). The else-block is important since it ensures that
Seq(p) 6= λ, if all the sequences Seq(∆b(e1, ej)) have a
subsequence in common. Let us see an example of this.

EXAMPLE 5. Given E = {e1, e2, e3, e4} where e1 = abc,
e2 = cabcd, e3 = c, e4 = cab and the nerve N(E) =
{(e1, e2), (e2, e3), (e2, e4)}. The binary distance-based gen-
eralisations (lines 5-7 in the algorithm) are:

L[0] = ∆b(e1, e2) = V abcV
L[1] = ∆b(e2, e3) = V cabV
L[2] = ∆b(e2, e4) = V 3cV 4

Data: E = {e1, . . . , en}, ∆b (binary dbg operator) and
ν (a nerve of E)

Result: Distance-based pattern of E wrt. ν
begin1

k ← 0;2

L← []/ ∗ empty list ∗ /;3

for (ei, ej) ∈ N(E) do4

L[k]← ∆b(ei, ej);5

k ← k + 1;6

end7

S ← {ai ∈ Σ : ∀0 ≤ j ≤ k : ai ∈ Seq(L[j]);8

if S = ∅ then return V max{|L[j]|:∀0≤j≤k} ;9

else10

p← First(L);11

Remove(L, p);12

while L 6= ∅ do13

Find pi ∈ L: ∃aj ∈ S, aj ∈ Seq(↑ (p, pi));14

p←↑ (p, pi);15

Remove(L, pj);16

end17

return p;18

end19

end20

Algorithm 1: An algorithm to compute a db pattern of
a set of lists E wrt. a nerve ν.

If we applied the ↑-transformation in any arbitrary order
over the set of binary patterns, we could obtain for example:

p ← V abcV
p ← ↑ (p, V cabV) = V 2abV 2

p ← ↑ (p, V 3cV 4) = V 9

However, if the ↑-transformation is applied as the algorithm
indicates (lines 8-17), then S = {c} and the patterns would
be merged in the following order:

p ← ↑ V abcV
p ← ↑ (p, V 3cV 4) = V 3cV 4

p ← ↑ (p, V cabV) = V 3cV 4

With regard to the computation of mdbg operators in
(L0, k0), the algorithm above always return the mdbg. On
the one hand, if all the binary patterns have a subsequence in
common, the algorithm computes a distance-based pattern p
such that Seq(p) 6= λ and the function c′(E|p) = |E| which
attains a minimum value. On the other hand, the algorithm
returns a pattern with variable symbols only, and whose
length is the minimum length required to be distance-based.
Therefore, p is minimal as well.

3.4 Multiple list pattern language (L1)
We will define dbg operators in L1 via ∆N (Proposition 1).
The binary operator ∆b required by ∆N is the one intro-

duced in Corollary 1. An example of how this operator works
is shown below:

EXAMPLE 6. Given a finite set of elementsE = {e1, e2, e3, e4}
where e1 = a2b2d, e2 = da2c2, e3 = c2db2 and e4 = ad
and the nerve N(E) = {(e1, e2), (e1, e3), (e1, e4)}.

∆b(e1, e2) = p1 = V a2V 5

∆b(e1, e3) = p2 = V 5b2

∆b(e1, e4) = p3 = V aV 3d

Finally,

∆N (E) = V a2V 5 + V 5b2 + V aV 3d

Observe that the solution for this example in L0 is just a
pattern consisting of variable symbols only, which shows the
utility of L1. Next, let us see how to obtain mdbg operators
in L1.

Since the only way we know to define a distance-based
operator in L1 consists in fixing a nerve beforehand, it is
reasonable to study how to define mdbg operators relative
to a nerve function. However, the calculus of the mdbg
operator is not easy at all. Basically, the question is whether
the mdbg operators relative to a nerve function N can be
defined in terms of ∆N and the ↑-transformation. However,
this result seems hard to be established. On the one hand,
we ignore how to explicitly define most of the ∆b operators
(since Corollary 1 only establishes a sufficient condition)
and on the other hand, we must take into consideration some
inherent limitations of the ↑-transformation:

1. The mdb pattern might not be found by applying the
↑-transformation over ∆N if this one uses the binary
operator ∆b defined in Corollary 1: we will illustrate this
by means of an example.

EXAMPLE 7. Given the set E = {e1, e2, e3}, where
e1 = a1a2a3, e2 = a1a6a7 and e3 = a2a4a5, and
N(E) = {(e1, e2), (e1, e3)}. The optimal alignment pat-
terns which are associated to (e1, e2) and (e1, e3), re-
spectively, are a1V

4 and V a2V
3. Then a1V

4 is a db
pattern of (e1, e2) (since it is the only optimal alignment
pattern) and V a2V

3 is a db pattern of (e2, e3) (since it
is the only optimal alignment pattern). Hence, the pat-
tern p = a1V

4 + V a2V
3 is db w.r.t. N(E). However,

the pattern p′ = a1V
4 + a2V

3 is distance-based (the
only element between e1 and e2, which is not covered
by a2V

3, is a1a2a4a5 but this is covered by a1V
4) but

Set(p′) 6⊂ Set(p). The mdb pattern for E will have |p′|
or even fewer symbols and this will never be achieved
by the ↑-transformation over the optimal alignment pat-
terns.

Therefore, given that ∆b is defined from the concept of
optimal alignment patterns and ∆N is defined from ∆b,
it is not possible that the mdbg operator can be expressed
in terms of the ↑-transformation and ∆N .

2. The mdbg pattern might not be found by applying the
↑-transformation over skeleton(N(E)): from the previ-
ous point, we could think that the mdb pattern cannot be
found because the optimal alignment patterns are exces-
sively general. However, if it was so, it would mean that
starting the search from something extremely specific,
namely the skeleton, the mdb pattern should be found.
However, this is not true as the next example reveals:

EXAMPLE 8. Given E = {e1, e2, e3, e4, e5} where e1 =
ac3b2, e2 = ab2, e3 = ab2ce, e4 = d and e5 = fgh and
the nerve depicted below:

e1=acccbb e2=abb e3=abbce

dfgh
fdgh
fgdh
fghd

abdb
abbd

adbb
dabb

accbb

acbb abbc
abbe

e4=d e5=fgh

Figure 4. A naive generalisation of the setE w.r.t. the nerve
N(E). Circled elements are the intermediate elements.

If we group the elements according to its similarity and
then apply the ↑-transformation over the different groups,
the pattern obtained would attain a lower value for
k1(E, ·). Taking this strategy into account, we can distin-
guish several meaningful grouping criteria. For instance,
those elements which contain the subsequence abb (G1)
and those which do not (G2). That is,

G1 = {ac3b2, acb2, ac2b2, ab2, . . . , ab2d}
G2 = {dfgh, fdgh, fgdh, fghd}

In this particular case, it does not matter how the ele-
ments in the groups are ranked in order to apply the ↑-
transformation since the final result remains invariable.
Thus, we can write

p1 =↑ (G1)+ ↑ (G2) = V aV 3bV bV 2 + V fV gV hV

For any other binary splitting, we would have elements
having no subsequence in common in the same group
(e.g. abb and dfgh). The shortest patterns would be

p2 = aV 3b2V 2 + V 4

p3 = V 6

Using three groups, another interesting possibility can be
explored. For instance,G1 = {fgh}, those elements con-
taining the subsequence d (G2) and the remaining ones

(G3). Depending on the order of the elements in G2 we
could obtain by applying the uparrow-transformation.

p4 = V 5 + aV 3b2V 2

p5 = V 3dV 3 + aV 3b2V 2 + fgh

Finally, it is not worth using more than three groups
because of the excessive length of the pattern obtained.
Evaluating the different patterns, we have that:

k1(E, p1) = c(p1) + c′(E|p1) = 17 + 5 = 22
k1(E, p2) = c(p2) + c′(E|p2) = 12 + 10 = 22
k1(E, p3) = c(p3) + c′(E|p3) = 6 + 17 = 23
k1(E, p4) = c(p4) + c′(E|p4) = 13 + 13 = 26
k1(E, p5) = c(p5) + c′(E|p5) = 18 + 5 = 23

But the following patterns are also distance-based for E:

p6 = V 3cV 2 + V 4

p7 = aV 5 + V 4

where

k1(E, p6) = c(p6) + c′(E|p6) = 10 + 10 = 20
k1(E, p7) = c(p7) + c′(E|p7) = 10 + 10 = 20

However, neither p6 nor p7 can be derived from a ↑-
transformation since this tends to extract the longest
common subsequence. Observe that all the elements
which have the subsequence c or a also contain the sub-
sequence abb in common.

From this previous analysis, we can conclude that the ↑-
transformation is not enough in itself to explore the search
space. We need a generalisation tool which is not based on
the concept of the longest common subsequence. For this
purpose, we introduce the so-called inverse substitution.

DEFINITION 15. (Inverse substitution) Given a pattern p
in L0 or in L1 an inverse substitution σ−1 is a set of in-
dices where each index denotes a ground symbol in p to be
changed by a variable. Thus, pσ−1 represents the new pat-
tern which is obtained by applying σ−1 over p.

Basically, an inverse substitution just changes ground
symbols by variables. For example, given p = V aabV and
σ−1 = {2, 4} then pσ−1 = V 2aV 2. Now, we are in condi-
tions to introduce the next proposition:

PROPOSITION 4. Given a finite set of elementsE = {e1, . . . , en}
and a nerve functionN . If we set S = skeleton(N(E)) then
there exists a partition P of the set S and a collection of in-
verse substitutions {σ−1

1 , . . . , σ−1
n } such that the pattern

p =
∑

∀Pi={eki
}mi

ki=1∈P

↑ ({eki
σ−1

ki
}mi

ki=1)

is a mdb pattern of E relative to N(E).

PROOF 6. (Sketch). We can assume that there exists a pat-
tern p =

∑n
i=1 pi such that k(E, p) attains a minimum

value. The pattern p induces a partition of E = ∪Ei in such
a way that ei ∈ Ei iff ei ∈ Set(pi). Next, we remove re-
peated elements in the differentEi in order to make sure that
the subsetsEi are pairwise disjoints. Finally, the proposition
can be proved using the concepts of inverse substitution and
↑-transformation over the partition we have set.

This latter proposition leads to an exhaustive search algo-
rithm in order to compute thembdg operator. This algorithm
turns out to be useless in general due to the size of the search
space (the number of different possibilities for the partition
of skeleton(N(E)) and substitutions). In fact, for a partic-
ular version of L1, we have proved that this optimisation
problem is NP -Hard (see [Estruch 2008]).

Hence, the other option is to approximate the calculus of
the mdb patterns. To do this, we use a greedy search schema
driven by the cost function. That is, for each iteration, the
↑-transformation is applied over the pair of patterns that
reduces th cost function most. This idea is formalised in the
Algorithm 2 and illustrated in Example 9.

Input: E = {e1, . . . , en}, ∆b (binary dbg operator)
and N (nerve function)

Output: A pattern which approximates a mdb pattern
of E w.r.t. N(E)

∆̃N (E)1

begin2

k ← 1;3

for (ei, ej) ∈ N(E) do4

pk ← ∆b(ei, ej);5

k ← k + 1;6

end7

p =
∑n

k=1 pk;8

do9

kp ← k1(E, p);10

p′ ← argmin{k1(E, pij) : ∀1 ≤ i, j,≤11

n, pij =↑ ({pi, pj}) + (p− pi − pj)};
k′p ← k1(E, p′);12

if kp′ < kp then p← p′;13

while kp′ < kp14

return p;15

end16

//The notation p− pi − pj employed in the algorithm17

means all the patterns in p except pi and pj .;
Algorithm 2: A greedy algorithm which approximates
the mdbg operator.

EXAMPLE 9. Let E and N(E) be the set of examples and
the nerve employed in Example 6. Remember that,

p1 = ∆b(e1, e2) = V a2V 5

p2 = ∆b(e1, e3) = V 5b2

p3 = ∆b(e1, e4) = V aV 3d

and
p = V a2V 5 + V 5b2 + V aV 3d

see lines 4-8 in the algorithm. Next, we have to apply the ↑-
transformation over each pair of binary generalisations and
we choose the one which attains a lower value of k1(E, ·)
(see lines 9-14). In our case, we must consider two possibil-
ities:

p1 = ↑ (V a2V 5, V 5b2) + V aV 3d = V 8 + V aV 3d
= V 8

p2 = ↑ (V a2V 5, V aV 3d) + V 5b2 = V aV 6 + V 5b2

Since k1(E, p2) = 19 is less than k1(E, p1) = 27, we
choose the pattern p2. The process stops when the pattern
cannot be further improved. Note that the next iteration leads
to

↑ (V aV 6, V 5b2) = V 8

which performs worse than p2. Therefore, the algorithm
returns p2.

4. Conclusions and Future Work
This work is based in our approach for a correct integration
of distance-based methods with symbolic inductive learners
[Estruch et al. 2005, 2006]. This proposal relies on the novel
concept of (minimal) distance-based generalisation operator,
which aims to induce consistent (minimal) patterns from
data embedded in a metric space.

However, the main contribution that we present here, con-
sists in studying how to apply our framework in order to in-
fer consistent symbolic patterns from a particular structured
data type (lists) and a distance function (edit distance). More
concretely, we have seen how to define (minimal) distance-
based generalisation operators for this domain.

To do this, we have introduced two different pattern lan-
guages L0 and L1. The first language is made up of pat-
terns which consist of finite sequences of ground and vari-
able symbols. The language L1 extends L0 in that the dis-
junction of patterns is permitted. Additionally, we have de-
fined a cost function for each language in order to study the
minimality of the patterns we can obtain.

We have proved that for more than two sequences, the
widely-used concept of maximum common subsequence
does not necessarily lead to distance-based generalisation
operators. In order to obtain this sort of operators, we need
to introduce a new concept: namely, the concept of sequence
associated to an optimal alignment. This kind of sequences
leads to certain patterns that when combined, allows us to
define distance-based operators. As for the minimality of

these operators, we have shown this is a computational hard
problem in L1. For this reason, we have introduced a greedy
search algorithm which allows us to approximate minimal
generalisations.

Further work refers to the following questions. One is
about the computational complexity of the greedy search al-
gorithm which approximates minimal patterns. This has a
quadratic complexity with the number of subpatterns in the
pattern obtained by Proposition 1. Unfortunately, this oper-
ation still has a high cost, if we want to run our algorithm
over large data sets. Thus, it would be convenient to try other
heuristics with a lower complexity but that ensure a good ap-
proximation. Another one is devoted to the pattern languages
that have been investigated. Note that both L0 and L1 are
subfamilies of the regular languages. A very interesting line
of work would consist in extending all the results presented
in this paper in order to include pattern representations based
on other more expressive subfamilies of regular languages.
By doing this, we could obtain not only new grammar infer-
ence algorithms but also new grammar learners that would
ensure the consistency of the inferred model wrt. the un-
derlying distance, something which does not happen when
traditional grammar learners are applied.

References
A.F. Bowers, C. G. Giraud-Carrier, and J. W. Lloyd. Classification

of individuals with complex structure. In Proc. of the 17th In-
ternational Conference on Machine Learning (ICML’00), pages
81–88. Morgan Kaufmann, 2000.

G. A. Edgar. Measure, Topology and Fractal Geometry. Springer-
Verlag, 1990.

V. Estruch. Bridging the gap between distance and generalisation:
Symbolic learning in metric spaces. PhD Thesis, DSIC-UPV
http://www.dsic.upv.es/ vestruch/thesis.pdf, 2008.

V. Estruch, C. Ferri, J. Hernández-Orallo, and M. J. Ramı́rez-
Quintana. Distance based generalisation. In Proc. of the 15th
Int. Conf. on ILP, volume 3625 of LNCS, pages 87–102, 2005.

V. Estruch, C. Ferri, J. Hernández-Orallo, and M. J. Ramı́rez-
Quintana. Minimal distance-based generalisation operators for
first-order objects. In In Proc. of the 16th Int. Conf. on ILP,
pages 169–183, 2006.

C. Ferri, J. Hernández-Orallo, and M.J. Ramı́rez-Quintana. Incre-
mental learning of functional logic programs. In H. Kuchen
and K. Ueda, editors, FLOPS, volume 2024 of Lecture Notes
in Computer Science, pages 233–247. Springer, 2001. ISBN 3-
540-41739-7.

R. W. Hamming. Error detecting and error correcting codes. Bell
System Technical Journal., 26(2):147–160, 1950.

V. I. Levenshtein. Binary codes capable of correcting deletions,
insertions, and reversals. Soviet Physics Doklady., 10:707–710,
1966.

J. W. Lloyd. Learning comprehensible theories from structured
data. In Advanced lectures on machine learning, pages 203–225.
Springer-Verlag, 2003.

S. H. Muggleton. Inductive logic programming: Issues, results,
and the challenge of learning language in logic. Artificial Intel-
ligence, 114(1–2):283–296, 1999.

R. Olsson. Inductive functional programming using incremental
program transformation. Artifificial Intelligence, 74(1):55–81,
1995. ISSN 0004-3702. doi: http://dx.doi.org/10.1016/0004-
3702(94)00042-Y.

J. Rissanen. Hypothesis selection and testing by the MDL principle.
The Computer Journal, 42(4):260–269, 1999.

U. Schmid. Inductive synthesis of Functional Programs-Universal
Planning, Folding of Finite Programs, and Schema Abstraction
by Analogical Reasoning. Springer, 2003.

S.H. Swamidass, J. Chen, J. Bruand, P. Phung, L. Ralaivola, and
P. Baldi. Kernels for small molecules and the prediction of
mutagenecity, toxicity and anti-cancer activity. Bioinformatics,
21:359–368, 2005.

R. Rivest T.H. Cormen, C. Leiserson and C. Stein, editors. Intro-
duction to Algorithms. The MIT Press, 2000.

C. S. Wallace and D. L. Dowe. Minimum Message Length and
Kolmogorov Complexity. Computer Journal, 42(4):270–283,
1999.

