Comparing Humans and Al Agents

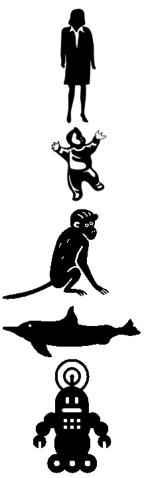
Javier Insa-Cabrera¹, David L. Dowe², Sergio España-Cubillo¹, M.Victoria Hernández-Lloreda³, José Hernández Orallo¹

- 1. Departament de Sistemes Informàtics i Computació, Universitat Politècnica de València, Spain.
- Computer Science & Software Engineering, Clayton School of I.T., Monash University, Clayton, Victoria, 3800, Australia.
- 3. Departamento de Metodología de las Ciencias del Comportamiento, Universidad Complutense de Madrid, Spain

- Measuring intelligence universally
- Precedents
- Test setting and administration
- Agents and interfaces
- Results
- Discussion

Outline

Measuring intelligence universally



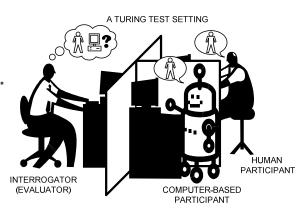
Can we construct a 'universal' intelligence test?

Project: anYnt (Anytime Universal Intelligence)

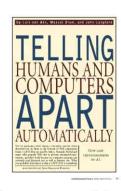
http://users.dsic.upv.es/proy/anynt/

- Any kind of system (biological, non-biological, human)
- Any system now or in the future.
- Any moment in its development (child, adult).
- Any degree of intelligence.
- Any speed.
- Evaluation can be stopped at any time.

- Imitation Game "Turing Test" (Turing 1950):
 - It is a test of *humanity*, and needs human intervention.
 - Not actually conceived to be a practical test for measuring intelligence up to and beyond human intelligence.



- CAPTCHAs (von Ahn, Blum and Langford 2002):
 - Quick and practical, but strongly biased.
 - They evaluate *specific* tasks.
 - They are not conceived to evaluate intelligence, but to tell humans and machines apart at the current state of AI technology.
 - It is widely recognised that CAPTCHAs will not work in the future (they soon become obsolete).



Type the characters you see in the picture below.

- ► Tests based on Kolmogorov Complexity (compression-extended Turing Tests, Dowe 1997a-b, 1998) (C-test, Hernandez-Orallo 1998).
 - Look like IQ tests, but formal and well-grounded.
 - Exercises (series) are not arbitrarily chosen.
 - They are drawn and constructed from a universal distribution, by setting several 'levels' for *k*:

```
k = 9 : a, d, g, j, ... Answer : m

k = 12 : a, a, z, c, y, e, x, ... Answer : g

k = 14 : c, a, b, d, b, c, c, e, c, d, ... Answer : d
```

- However...
 - Some relatively simple algorithms perform well in IQ-like tests (Sanghi and Dowe 2003).
 - They are static (no planning abilities are required).

Universal Intelligence (Legg and Hutter 2007): an interactive extension to C-tests from sequences to environments.

$$\Upsilon(\pi, U) := \sum_{\mu=i}^{\infty} p_U(\mu) \cdot V_{\mu}^{\pi} = \sum_{\mu=i}^{\infty} p_U(\mu) \cdot E\left(\sum_{i=1}^{\infty} r_i^{\mu, \pi}\right) \qquad \stackrel{\pi}{\longleftarrow} \begin{matrix} o_i \\ r_i \end{matrix}$$

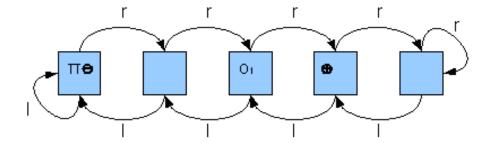
- = performance over a universal distribution of environments.
- Universal intelligence provides a definition which adds interaction and the notion of "planning" to the formula (so intelligence = learning + planning).
 - ▶ This makes this apparently different from an IQ (static) test.

- A definition of intelligence does not ensure an intelligence test.
- Anytime Intelligence Test (Hernandez-Orallo and Dowe 2010):
 - An interactive setting following (Legg and Hutter 2007) which addresses:
 - Issues about the difficulty of environments.
 - ☐ The definition of discriminative environments.
 - Finite samples and (practical) finite interactions.
 - □ Time (speed) of agents and environments.
 - Reward aggregation, convergence issues.
 - Anytime and adaptive application.
- An environment class Λ (Hernandez-Orallo 2010) (AGI-2010).

In this work we perform an implementation of the test and we evaluate humans and a reinforcement learning algorithm with it, as a proof of concept.

Test setting and administration

- Implementation of the environment class :
 - Spaces are defined as fully connected graphs.
- Actions are the arrows in the graphs.
- Observations are the 'contents' of each edge/cell in the graph.



- Agents can perform actions inside the space.
- Rewards:
- Two special agents $Good(\oplus)$ and $Evil(\ominus)$, which are responsible for the rewards. Symmetric behaviour, to ensure balancedness.

Test setting and administration

- We randomly generated only 7 environments for the test:
 - Different topologies and sizes for the patterns of the agents Good and Evil (which provide rewards).
 - Different lengths for each session (exercise) accordingly to the number of cells and the size of the patterns.

Env. #	No. cells (n_c)	No. steps (m)	p_{stop}
1	3	20	1/3
2	4	30	1/4
3	5	40	1/5
4	6	50	1/6
5	7	60	1/7
6	8	70	1/8
7	9	80	1/9
TOTAL	<u>uc</u> -	350	1 <u>1/22/11</u>

The goal was to allow for a feasible administration for humans in about 20-30 minutes.

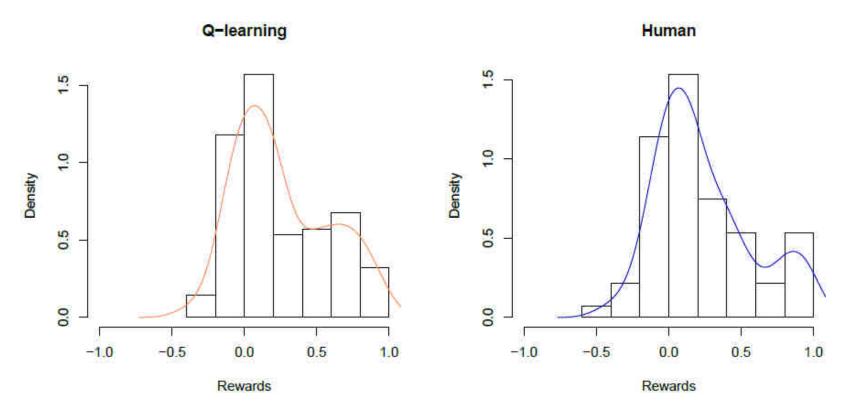
Agents and interfaces

- An Al agent: Q-learning
 - A simple choice. A well-known algorithm.
- A biological agent: humans
 - ▶ 20 humans were used in the experiment
 - A specific interface was developed for them, while the rest of the setting was equal for both types of agents.

http://users.dsic.upv.es/proy/anynt/human | /test.html

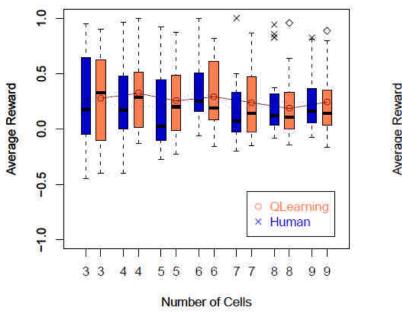
Results

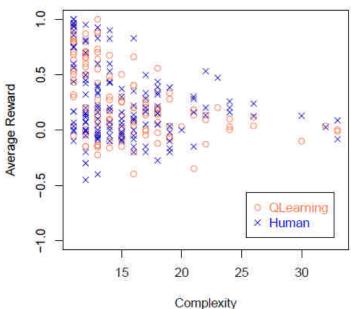
- Experiments were paired.
 - Results show that performance is fairly similar.



Results

- Analysis of the effect of complexity :
 - Complexity is approximated by using LZ (Lempel-Ziv) coding to the string which defines the environment.





- Lower variance for exercises with higher complexity.
- Slight inverse correlation with complexity (difficulty ↑, reward ↓).

Discussion

- Not many studies comparing human performance and machine performance on non-specific tasks.
 - The environment class here has not been designed to be anthropomorphic.
 - The AI agent (Q-learning) has not been designed to address this problem.

▶ The results are consistent with the C-test (Hernandez-Orallo 1998) and with the results in (Sanghi & Dowe 2003), where a simple algorithm is competitive in regular IQ tests.

Discussion

- The results show this is not a universal intelligence test.
 - The use of an interactive test has not changed the picture from the results in the C-test.
- What may be wrong?
 - A problem of the current implementation. Many simplifications made.
 - A problem of the environment class. Both this and the C-test used an inappropriate reference machine.
 - A problem of the environment distribution.
 - A problem with the interfaces, making the problem very difficult for humans.
 - A problem of the theory.
 - Intelligence cannot be measured universally.
 - Intelligence is factorial. Test must account for more factors.
 - Using algorithmic information theory to precisely define and evaluate intelligence may be insufficient.

Thank you!

Some pointers:

Project: anYnt (Anytime Universal Intelligence)

http://users.dsic.upv.es/proy/anynt/

Have fun with the test

http://users.dsic.upv.es/proy/anynt/human1/test.html