On measuring social intelligence: experiments on competition and cooperation

Javier Insa Cabrera, José Hernández Orallo, José Luis Benacloch Ayuso {jinsa, jorallo}@dsic.upv.es

Departament de Sistemes Informàtics i Computació, Universitat Politècnica de València, Spain Introduction

Outline

Universal tests and social intelligence

Evaluation: Competition and Cooperation

Discussion

Introduction

Can we construct a 'universal' intelligence test?

Project: anYnt (Anytime Universal Intelligence)

http://users.dsic.upv.es/proy/anynt/

- Any kind of system (biological, non-biological, human).
- Any system now or in the future.
- Any moment in its development (child, adult).
- Any degree of intelligence.
- Any speed.
- Evaluation can be stopped at any time.

Introduction

- Intelligence as a cognitive ability:
 - General Intelligence: Capacity to perform well in any kind of environment.
 - Social Intelligence: Ability to perform well in an environment interacting with other agents.
- Objectives:
 - Create a universal test to evaluate general intelligence.
 - The test must be defined in a formal way.

Universal Intelligence (Legg and Hutter 2007).

- = performance over a universal distribution of environments.
- An intelligence test can be seen as a definition of intelligence.
 - Turing Test enhanced with compression (Dowe and Hajek 1997)
 - Intelligence tests based on Kolmogorov Complexity (Hernandez-Orallo 1998)
- But a definition of intelligence does not ensure an intelligence test.
 - Anytime Intelligence Test (Hernandez-Orallo and Dowe 2010).
 - An environment class Λ (Hernandez-Orallo 2010) (AGI-2010).

- Anytime Intelligence Test (Hernandez-Orallo and Dowe 2010).
 - An interactive setting following (Legg and Hutter 2007) which addresses:
 - Issues about the difficulty of environments.
 - The definition of discriminative environments.
 - Finite samples and (practical) finite interactions.
 - Time (speed) of agents and environments.
 - Reward aggregation, convergence issues.
 - Anytime and adaptive application.

- An environment class Λ (Hernandez-Orallo 2010) (AGI-2010).
 - Spaces are defined as fully connected graphs.
 - Actions are the arrows in the graphs.
 - Observations are the 'contents' of each edge/cell in the graph.

- Agents can perform actions inside the space.
- Rewards: Two special agents Good (⊕) and Evil (⊖), which are responsible for the rewards.

- Evaluate general intelligence of different systems.
 - Experiments concluded that the test prototype is not universal (Insa-Cabrera et al. 2011) (AGI-2011).
 - Environments rarely contain social behaviour. Environment distributions should be reconsidered: Darwin-Wallace distribution (Hernandez-Orallo et al. 2011) (AGI-2011).
- Goal: modify the setting to include some social behaviour.
 - Test whether social behaviour better discriminates between humans and machines.
 - Introduce simple agents in the environments.
 - Examine the impact of competitive and cooperative scenarios on the performance of the agents.

- Reinforcement Learning algorithms:
 - Q-learning
 - SARSA
 - QV-learning

- Simple algorithm
 - Random

Competition:

All the agents compete for rewards.

Cooperation:

The agents receive the average of obtained rewards.

Teams:

- Two teams (Qlearning vs SARSA) compete for rewards.
- Competition and cooperation.

- Complexity (Lempel-Ziv approximation):
 - The complexity of the environment (solely) barely affects the results.
 - The complexity of other agents makes the environment more difficult.

Discussion

- The inclusion of other agents (even random) make other agents perform worse.
 - RL algorithms increase their cost matrix.
 - Algorithms should learn to deal with 'noise'.

- Complexity increases with the inclusion of social behaviour.
 - The complexity of the environment is more related to the complexity of the other agents.
 - We need to calculate first the complexity (or intelligence) of the other agents included in the environment.

On measuring social intelligence: experiments on competition and cooperation

Javier Insa Cabrera, José Hernández Orallo, José Luis Benacloch Ayuso {jinsa, jorallo}@dsic.upv.es

Thank you!