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Towards a universal intelligence test

Evaluating intelligence. Some issues:

1. Harder the less we know about the 
examinee.

2. Harder if the examinee does not know it is 
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2. Harder if the examinee does not know it is 
a test.

3. Harder if evaluation is not interactive 
(static vs. dynamic).

4. Harder if examiner is not adaptive.



Towards a universal intelligence test

• IQ tests:
1. Human-specific tests. Natural language 

assumed.
2. The examinees know it is a test.
3. Generally non-interactive.
4. Generally non-adaptive (pre-designed 

• Turing test:
1. Held in a human natural language.
2. The examinees ‘know’ it is a test.
3. Interactive.
4. Adaptive.

• Other task-specific tests exist.

State of the art: different subjects, different tests.
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4. Generally non-adaptive (pre-designed 
set of exercises)

• Other tests exist (interviews, C.A.T.)

• Other task-specific tests exist.
• Robotics, games, machine learning.

• Children’s intelligence evaluation:
1. Perception and action abilities assumed.
2. The examinees do not know it is a test. 

Rewards are used.
3. Interactive.
4. Frequently non-adaptive (pre-designed 

set of exercises).

• Animal intelligence evaluation:
1. Perception and action abilities assumed.
2. The examinees do not know it is a test. 

Rewards are used.
3. Interactive.
4. Generally non-adaptive (pre-designed 

set of exercises).



Towards a universal intelligence test

Can we construct a test for all of them?
• Without knowledge about the examinee,

• Derived from computational principles,

• Non-biased (species, culture, language, etc.)

• No human intervention,
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• Producing a score,

• Meaningful,

• Practical, and

• Anytime.

Is this possible?
• No previous measurement or test of intelligence 

presented to date fulfils all of these requirements.



Towards a universal intelligence test

Project: anYnt (Anytime Universal Intelligence)
http://users.dsic.upv.es/proy/anynt/

• Any kind of system (biological, non-biological, human)
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• Any kind of system (biological, non-biological, human)
• Any system now or in the future.
• Any moment in its development (child, adult).
• Any degree of intelligence.
• Any speed.
• Evaluation can be stopped at any time.



� Turing Test (Turing 1950): anytime and adaptive. 

Precedents
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� It is a test of humanity, and needs human intervention.

� Not actually conceived to be a practical test to measure intelligence 
up to and beyond human intelligence.



� Tests based on Kolmogorov Complexity (compression-extended 
Turing Tests, Dowe 1998) (C-test, Hernandez-Orallo 1998). Very 
much like IQ tests, but formal and well-grounded. 
� Exercises (series) are not arbitrarily chosen.

� They are drawn and constructed from a universal distribution:

Precedents
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� However, some relatively simple agents can cheat on them (Sanghi 
and Dowe 2003) and they are static (no planning abilities are 
required).



� Captchas (von Ahn, Blum and Langford 2002): quick and practical, 
but strongly biased. They soon become obsolete.

Precedents
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� A strong impact in real applications and in the scientific community.

� But...
� They are not conceived to evaluate intelligence, but to tell humans and 

machines apart at the current state of AI technology.

� It is widely recognised that CAPTCHAs will not work in the future.



� Universal Intelligence (Legg and Hutter 2007): an interactive 
extension to C-tests from sequences to environments.

Precedents
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= performance over a universal distribution of environments.

� Obvious Problems:
� U is a choice which defines the environment class.

� The probability distribution is not computable.

� There are two infinite sums (number of environments and interactions).

� Time/speed is not considered for the environment or for the agent.

� Other less obvious problems.

ai



� A definition of intelligence does not ensure an intelligence test.

Precedents
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� The C-test used Solomonoff’s theory of inductive inference (predictive 
learning) to define an inductive inference test.

� Universal intelligence provides a definition which adds interaction and the 
notion of “planning” to the formula (so intelligence = learning + planning).
� For “Universal Intelligence” we will have to “redefine” it, and then to think about 

how to use it to construct a feasible test. 



� On the difficulty of environments:
� Very simple environments are given a very high probability

Addressing the problems of universal intelligence 
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� Most of the score will come from very simple environments.
� E.g. The 256 environments with K ≤ 8 accumulate a probability 

of 0.996 (and hence weight, i.e., score) in the definition.

� Since we don’t have any information about the examinee, 
we cannot set any limit (or soften the distribution).
� one solution is to make the test adaptive.



� Selecting discriminative environments:
� Many environments will be completely useless to evaluate 

intelligence, because:
� Rewards may be independent of agent actions.

� There must be sequences of actions that lead to unrecoverable 
“states”. We cannot assume environments to be ergodic.

Addressing the problems of universal intelligence 
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“states”. We cannot assume environments to be ergodic.

� Some environments may be highly benevolent (high expected 
rewards) and some others can be very malevolent (low 
expected rewards).

� We introduce two constraints on environments:
� Environments must be reward-sensitive: an agent must be able 

to influence rewards at any point.

� Environments must be balanced: a random agent must have an 
expected reward of 0 (with rewards ranging between -1 and 1).



� On practical interactions:
� We have to consider that environments should react almost 

immediately. We modify the universal distribution as follows:

Addressing the problems of universal intelligence 
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� The use of a parameter n makes the definition computable.

� From here, we re-define the distribution:

� And now:
� We create a finite sample of environments.

� We also use a limited number of interactions for each environment.



� Time and intelligence:
� We must consider fast but unintelligent agents as well as slow 

and intelligent ones.
� But we cannot make these two things independent.

�Otherwise, intelligence would be computationally easier than it is. 

� A way to do that is to set a finite period of time for each 

Addressing the problems of universal intelligence 
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� A way to do that is to set a finite period of time for each 
environment instead of a “number of interactions”.
�Speed will be important because it will increase both exploration 

and exploitation possibilities.

�In fact, agent’s speed will be very relevant.

�But, it is crucial to consider balanced environments.



� Reward aggregation:
� Can we use RL aggregation measures such as accumulated 

reward and general discounting?
� We show they present important caveats when measuring agents:

�with a finite (previously unknown) period of time,

�Why?

Addressing the problems of universal intelligence 
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�Why?

� Given an evaluation time ζ, a fast agent could act randomly and get a good 
accumulated score and then rest on its laurels.

� These are called “stopping” policies in games.

� We introduce [48] a new measure for aggregating rewards in a 
given time ζ, where “discounting” is made to be robust to 
delaying and stopping policies.



� Given all the previous constraints and modifications we 
can give a definition, which is useful for a test.

An anytime test
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� The definition is parameterised by the number of 
environments m and the time limit for each of them ζ.
� The higher m and ζ are, the better the assessment is expected 

to be.

� For a new (unknown) agent, it is difficult to tell the appropriate 
m and ζ.



An anytime test
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� Implementation of the anytime test requires:

� To define an environment class U (e.g., a Turing-complete machine), 
where all the environments are balanced and reward-sensitive (or 
define a computable, preferably efficient, sieve to select them).

� A complexity function (e.g., Ktmax)

� Several environment classes may determine general or specific 
performance tests:

Instances and implementation
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performance tests:

� In [53] we have presented a Turing-complete environment class Λ which 
is balanced and reward-sensitive .

� Other specific classes can be used to evaluate subfields of AI:
� If U is chosen to only comprise static environments, we can define a test to 

evaluate performance on sequence prediction (for machine learning).

� If U is chosen to be games (e.g. using the Game Description Language in the 
AAAI General Game Playing Competition), we have a test to evaluate 
performance on game playing.

� Similar things can be done with the reinforcement learning competition, maze 
learning, etc.



� Since the late 1990s, we have derived several general intelligence 
tests and definitions with a precise mathematical formulation. 
� Algorithmic Information theory (a.k.a. Kolmogorov complexity) is the key for 

doing that.

� The most important conclusions of this work are: 
� We have shaped the question of whether it is possible to construct an 

intelligence test which is universal, formal, meaningful and anytime.

Conclusions and future work
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intelligence test which is universal, formal, meaningful and anytime.

� We have identified the most important problems for such a test: 
� the notion of environment complexity and an appropriate distribution, 

� the issue that many environments may be useless for evaluation (not discriminative),

� a proper sample of environments and time slots for each environment,

� computability and efficiency,

� time and speed for both agent and environment, 

� evaluation (reward aggregation) in a finite period of time,

� the choice of an unbiased environment.



� This proposal can obviously be refined and improved: 
� The use of balanced environments and the character of the anytime test 

suggest that for many (Turing-complete) environment classes, the measure is 
convergent, but this should be shown theoretically or experimentally.

� Ktmax needs a parameter to be computable. Other variants might exist without 
parameters (e.g., using the speed prior).

� The probability of social environments (other intelligent agents inside) is 

Conclusions and future work
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� The probability of social environments (other intelligent agents inside) is 
almost 0. A complexity measure including other agents could be explored.

� Implementation:
� Currently implementing an approximation to the test using the environment 

class Λ.

� Also considering implementing an approximation using the GDL (Game 
Description Language) as environment class.

� Experimentation:
� On AI agents (e.g. RL Q learning, AIXI approximations, etc.), humans, non-

human animals, children.


