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Abstract. The Turing Test, in its standard interpretation, has been
dismissed by many as a practical intelligence test. In fact, it is ques-
tionable that the imitation game was meant by Turing himself to be
used as a test for evaluating machines and measuring the progress
of artificial intelligence. In the past fifteen years or so, an alternative
approach to measuring machine intelligence has been consolidating.
The key concept for this alternative approach is not the Turing Test,
but the Turing machine, and some theories derived upon it, such as
Solomonoff’s theory of prediction, the MML principle, Kolmogorov
complexity and algorithmic information theory. This presents an an-
tagonistic view to the Turing test, where intelligence tests are based
on formal principles, are not anthropocentric, are meaningful com-
putationally and the abilities (or factors) which are evaluated can
be recognised and quantified. Recently, however, this computational
view has been touching upon issues which are somewhat related to
the Turing Test, namely that we may need other intelligent agents
in the tests. Motivated by these issues (and others), this paper links
these two antagonistic views by bringing some of the ideas around
the Turing Test to the realm of Turing machines.

Keywords: Turing Test, Turing machines, intelligence, learning,
imitation games, Solomonoff-Kolmogorov complexity.

1 INTRODUCTION

Humans have been evaluated by other humans in all periods of his-
tory. It was only in the 20th century, however, that psychometrics was
established as a scientific discipline. Other animals have also been
evaluated by humans, but certainly not in the context of psychome-
tric tests. Instead, comparative cognition is nowadays an important
area of research where non-human animals are evaluated and com-
pared. Machines —yet again differently— have also been evaluated
by humans. However, no scientific discipline has been established for
this.

The Turing Test [31] is still the most popular test for machine in-
telligence, at least for philosophical and scientific discussions. The
Turing Test, as a measurement instrument and not as a philosophical
argument, is very different to the instruments other disciplines use to
measure intelligence in a scientific way. The Turing Test resembles
a much more customary (and non-scientific) assessment, which hap-
pens when humans interview or evaluate other humans (for whatever
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jorallo@dsic.upv.es
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reason, including, e.g., personnel selection, sports1 or other compe-
titions). The most relevant (and controversial) feature of the Turing
Test is that it takes humans as a touchstone to which machines should
be compared. In fact, the comparison is not performed by an objec-
tive criterion, but assessed by human judges, which is not without
controversy. Another remarkable feature (and perhaps less contro-
versial) is that the Turing Test is set on an intentionally restrictive
interaction channel: a teletype conversation. Finally, there are some
features about the Turing Test which make it more general than other
kinds of intelligence tests. For instance, it is becoming increasingly
better known that programs can do well at human IQ tests [32][8],
because ordinary IQ tests only evaluate narrow abilities and assume
that narrow abilities accurately reflect human abilities across a broad
set of tasks, which may not hold for non-human populations. The
Turing test (and some formal intelligence measures we will review
in the following section) can test broad sets of tasks.

We must say that Turing cannot be blamed for all the controversy.
The purpose of Turing’s imitation game [37] was to show that intel-
ligence could be assessed and recognised in a behavioural way, with-
out the need for directly measuring or recognising some other physi-
cal or mental issues such as thinking, consciousness, etc. In Turing’s
view, intelligence can be just seen as a cognitive ability (or property)
that some machines might have and others might not. In fact, the
standard scientific view should converge to defining intelligence as
an ability that some systems: humans, non-human animals, machines
—and collectives thereof—, might or might not have, or, more pre-
cisely, might have to a larger or lesser degree. This view has clearly
been spread by the popularity of psychometrics and IQ tests.2

While there have been many variants and extensions of the Tur-
ing Test (see [33] or [31] for an account of these), none of them
(and none of the approaches in psychometrics and animal cognition,
either) have provided a formal, mathematical definition of what in-

1 In many sports, to see how good a player is, we want competent judges but
also appropriate team-mates and opponents. Good tournaments and com-
petitions are largely designed so as to return (near) maximal expected in-
formation.

2 In fact, the notion of consciousness and other phenomena is today better
separated from intelligence than it was sixty years ago. They are now seen
as related but different things. For instance, nobody doubts that a team of
people can score well in a single IQ test (working together). In fact, the
team, using a teletype communication as in the Turing Test, can dialogue,
write poetry, make jokes, do complex mathematics and all these human
things. They can even do these things continuously for days or weeks, while
some of the particular individuals rest, eat, go to sleep, die, etc. Despite
all of this happening on the other side of the teletype communication, the
system is just regarded as one subject. So the fact that we can effectively
measure the cognitive abilities of the team or even make the team pass the
Turing Test does not lead us directly to statements such as ‘the team has a
mind’ or ‘the team is conscious’. At most, we say this in a figurative sense,
as we use it for the collective consciousness of a company or country. In the
end, the ‘team of people’ is one of the best arguments against Searle’s Chi-
nese room and a good reference whenever we are thinking about evaluating
intelligence.



telligence is and how it can be measured.
A different approach is based on one of the things that the Tur-

ing Test is usually criticised for: learning3. This alternative ap-
proach requires a proper definition of learning, and actual mecha-
nisms for measuring learning ability. Interestingly, the answer to this
is given by notions devised from Turing machines. In the 1960s, Ray
Solomonoff ‘solved’ the problem of induction (and the related prob-
lems of prediction and learning) [36] by the use of Turing machines.
This, jointly with the theory of inductive inference given by the Min-
imum Message Length (MML) principle [39, 40, 38, 5], algorithmic
information theory [1], Kolmogorov complexity [25, 36] and com-
pression theory, paved the way in the 1990s for a new approach for
defining and measuring intelligence based on algorithmic informa-
tion theory. This approach will be summarised in the next section.

While initially there was some connection to the Turing Test, this
line of research has been evolving and consolidating in the past fif-
teen years (or more), cutting all the links to the Turing Test. This has
provided important insights into what intelligence is and how it can
be measured, and has given clues to the (re-)understanding of other
areas where intelligence is defined and measured, such as psycho-
metrics and animal cognition.

An important milestone of this journey has been the recent realisa-
tion in this context that (social) intelligence is the ability to perform
well in an environment full of other agents of similar intelligence.
This is a consequence of some experiments which show that when
performance is measured in environments where no other agents co-
exist, some important traits of intelligence are not fully recognised. A
solution for this has been formalised as the so-called Darwin-Wallace
distribution of environments (or tasks) [18]. The outcome of all this is
that it is increasingly an issue whether intelligence might be needed
to measure intelligence. But this is not because we might need intel-
ligent judges as in the Turing Test, but because we may need other
intelligent agents to become part of the exercises or tasks an intelli-
gence test should contain (as per footnote 1).

This seems to take us back to the Turing Test, a point some of us
deliberately abandoned more than fifteen years ago. Re-visiting the
Turing Test now is necessarily very different, because of the techni-
cal companions, knowledge and results we have gathered during this
journey (universal Turing machines, compression, universal distri-
butions, Solomonoff-Kolmogorov complexity, MML, reinforcement
learning, etc.).

The paper is organised as follows. Section 2 introduces a short ac-
count of the past fifteen years concerning definitions and tests of ma-
chine intelligence based on (algorithmic) information theory. It also
discusses some of the most recent outcomes and positions in this line,
which have led to the notion of Darwin-Wallace distribution and the
need for including other intelligent agents in the tests, suggesting an
inductive (or recursive, or iterative) test construction and definition.
This is linked to the notion of recursive Turing Test (see [32, sec.
5.1] for a first discussion on this). Section 3 analyses the base case
by proposing several schemata for evaluating systems that are able
to imitate Turing machines. Section 4 defines different ways of do-
ing the recursive step, inspired by the Darwin-Wallace distribution
and ideas for making this feasible. Section 5 briefly explores how all
this might develop, and touches upon concepts such as universality
in Turing machines and potential intelligence, as well as some sug-

3 This can be taken as further evidence for Turing not conceiving the imita-
tion test as an actual test for intelligence, because the issue about machines
being able to learn was seen as inherent to intelligence for Turing [37, sec-
tion 7], and yet the Turing Test is not especially good at detecting learning
ability during the test.

gestions as to how machine intelligence measurement might develop
in the future.

2 MACHINE INTELLIGENCE
MEASUREMENT USING TURING
MACHINES

There are, of course, many proposals for intelligence definitions and
tests for machines which are not based on the Turing Test. Some
of them are related to psychometrics, some others may be related
to other areas of cognitive science (including animal cognition) and
some others originate from artificial intelligence (e.g., some compe-
titions running on specific tasks such as planning, robotics, games,
reinforcement learning, . . . ). For an account of some of these, the
reader can find a good survey in [26]. In this section, we will focus
on approaches which use Turing machines (and hence computation)
as a basic component for the definition of intelligence and the deriva-
tion of tests for machine intelligence.

Most of the views of intelligence in computer science are sus-
tained over a notion of intelligence as a special kind of informa-
tion processing. The nature of information, its actual content and
the way in which patterns and structure can appear in it can only
be explained in terms of algorithmic information theory. The Min-
imum Message Length (MML) principle [39, 40] and Solomonoff-
Kolmogorov complexity [36, 25] capture the intuitive notion that
there is structure –or redundancy– in data if and only if it is com-
pressible, with the relationship between MML and (two-part) Kol-
mogorov complexity articulated in [40][38, chap. 2][5, sec. 6]. While
Kolmogorov [25] and Chaitin [1] were more concerned with the no-
tions of randomness and the implications of all this in mathematics
and computer science, Solomonoff [36] and Wallace [39] developed
the theory with the aim of explaining how learning, prediction and in-
ductive inference work. In fact, Solomonoff is said to have ‘solved’
the problem of induction [36] by the use of Turing machines. He was
also the first to introduce the notions of universal distribution (as the
distribution of strings given by a UTM from random input) and the
invariance theorem (which states that the Kolmogorov complexity of
a string calculated with two different reference machines only differs
by a constant which is independent of the string).

Chaitin briefly made mention in 1982 of the potential relationship
between algorithmic information theory and measuring intelligence
[2], but actual proposals in this line did not start until the late 1990s.
The first proposal was precisely introduced over a Turing Test and
as a response to Searle’s Chinese room [35], where the subject was
forced to learn. This induction-enhanced Turing Test [7][6] could
then evaluate a general inductive ability. The importance was not that
any kind of ability could be included in the Turing Test, but that this
ability could be formalised in terms of MML and related ideas, such
as (two-part) compression.

Independently and near-simultaneously, a new intelligence test
(C-test) [19] [12] was derived as sequence prediction problems
which were generated by a universal distribution [36]. The diffi-
culty of the exercises was mathematically derived from a variant of
Kolmogorov complexity, and only exercises with a certain degree of
difficulty were included and weighted accordingly. These exercises
were very similar to those found in some IQ tests, but here they were
created from computational principles. This work ‘solved’ the tradi-
tional subjectivity objection of the items in IQ tests, i.e., since the
continuation of each sequence was derived from its shortest expla-
nation. However, this test only measured one cognitive ability and
its presentation was too narrow to be a general test. Consequently,



these ideas were extended to other cognitive abilities in [14] by the
introduction of other ‘factors’, and the suggestion of using interac-
tive tasks where “rewards and penalties could be used instead”, as in
reinforcement learning [13].

Similar ideas followed relating compression and intelligence.
Compression tests were proposed as a test for artificial intelligence
[30], arguing that “optimal text compression is a harder problem than
artificial intelligence as defined by Turing’s”. Nonetheless, the fact
that there is a connection between compression and intelligence does
not mean that intelligence can be just defined as compression ability
(see, e.g., [9] for a full discussion on this).

Later, [27] would propose a notion which they referred to as a
“universal intelligence measure” —universal because of its proposed
use of a universal distribution for the weighting over environments.
The innovation was mainly their use of a reinforcement learning set-
ting, which implicitly accounted for the abilities not only of learning
and prediction, but also of planning. An interesting point for making
this proposal popular was its conceptual simplicity: intelligence was
just seen as average performance in a range of environments, where
the environments were just selected by a universal distribution.

While innovative, the universal intelligence measure [27] showed
several shortcomings stopping it from being a viable test. Some of
the problems are that it requires a summation over infinitely many
environments, it requires a summation over infinite time within each
environment, Kolmogorov complexity is typically not computable,
disproportionate weight is put on simple environments (e.g., with 1−
2−7 > 99% of weight put on environments of size less than 8, as also
pointed out by [21]), it is (static and) not adaptive, it does not account
for time or agent speed, etc

Hernandez-Orallo and Dowe [17] re-visited this to give an intelli-
gence test that does not have these abovementioned shortcomings.
This was presented as an anytime universal intelligence test. The
term universal here was used to designate that the test could be ap-
plied to any kind of subject: machine, human, non-human animal or
a community of these. The term anytime was used to indicate that
the test could evaluate any agent speed, it would adapt to the intelli-
gence of the examinee, and that it could be interrupted at any time to
give an intelligence score estimate. The longer the test runs, the more
reliable the estimate (the average reward [16]).

Preliminary tests have since been done [23, 24, 28] for comparing
human agents with non-human AI agents. These tests seem to suc-
ceed in bringing theory to practice quite seamlessly and are useful
to compare the abilities of systems of the same kind. However, there
are some problems when comparing systems of different kind, such
as human and AI algorithms, because the huge difference of both
(with current state-of-the-art technology) is not clearly appreciated.
One explanation for this is that (human) intelligence is the result of
the adaptation to environments where the probability of other agents
(of lower or similar intelligence) being around is very high. However,
the probability of having another agent of even a small degree of in-
telligence just by the use of a universal distribution is discouragingly
remote. Even in environments where other agents are included on
purpose [15], it is not clear that these agents properly represent a rich
‘social’ environment. In [18], the so-called Darwin-Wallace distribu-
tion is introduced where environments are generated using a univer-
sal distribution for multi-agent environments, and where a number of
agents that populate the environment are also generated by a univer-
sal distribution. The probability of having interesting environments
and agents is very low on this first ‘generation’. However, if an in-
telligence test is administered to this population and only those with
a certain level are preserved, we may get a second population whose

agents will have a slightly higher degree of intelligence. Iterating this
process we have different levels for the Darwin-Wallace distribution,
where evolution is solely driven (boosted) by a fitness function which
is just measured by intelligence tests.

3 THE BASE CASE: THE TURING TEST FOR
TURING MACHINES

A recursive approach can raise the odds for environments and tasks
of having a behaviour which is attributed to more intelligent agents.
This idea of recursive populations can be linked to the notion of re-
cursive Turing Test [32, sec. 5.1], where the agents which have suc-
ceeded at lower levels could be used to be compared at higher levels.
However, there are many interpretations of this informal notion of a
recursive Turing Test. The fundamental idea is to eliminate the hu-
man reference from the test using recursion —either as the subject
that has to be imitated or the judge which is used to tell between the
subjects.

Before giving some (more precise) interpretations of a recursive
version of the Turing Test, we need to start with the base case, as
follows (we use TM and UTM for Turing Machine and Universal
Turing Machine respectively):

Definition 1 The imitation game for Turing machines4 is defined as
a tuple 〈D,B,C, I〉

• The reference subject A is randomly taken as a TM using a distri-
bution D.

• Subject B (the evaluee) tries to emulate A.
• The similarity between A and B is ‘judged’ by a criterion or judge

C through some kind of interaction protocol I . The test returns this
similarity.

An instance of the previous schema requires us to determine the dis-
tribution D and the similarity criterion C and, most especially, how
the interaction I goes. In the classical Turing Test, we know that D is
the human population, C is given by a human judge, and the interac-
tion is an open teletype conversation5. Of course, other distributions
for D could lead to other tests, such as, e.g., a canine test, taking
D as a dog population, and judges as other dogs which have to tell
which is the member of the species or perhaps even how intelligent
it is (for whatever purpose —e.g., mating or idle curiosity).

More interestingly, one possible instance for Turing machines
could go as follows. We can just take D as a universal distribution
over a reference UTM U , so p(A) = 2−KU (A), where KU (A) is the
prefix-free Kolmogorov complexity of A relative to U . This means
that simple reference subjects have higher probability than complex
subjects. Interaction can go as follows. The ‘interview’ consists of
questions as random finite binary strings using a universal distribu-
tion s1, s2, ... over another reference UTM, V . The test starts by sub-
jects A and B receiving string s1 and giving two sequences a1 and b1
as respective answers. Agent B will also receive what A has output

4 The use of Turing machines for the reference subject is relevant and not
just a way to link two things by their name, Turing. Turing machines are
required because we need to define formal distributions on them, and this
cannot be done (at least theoretically) for humans, or animals or ‘agents’.

5 This free teletype conversation may be problematic in many ways. Typi-
cally, the judge C wishes to steer the conversation in directions which will
enable her to get (near-)maximal (expected) information (before the time-
limit deadline of the test) about whether or not the evaluee subject B is
or is not from D. One tactic for a subject which is not from D (and not a
good imitator either) is to distract the judge C and steer the conversation in
directions which will give judge C (near-) minimal (expected) information.



immediately after this. Judge C is just a very simple function which
compares whether a1 and b1 are equal. After one interation, the sys-
tem issues string s2. After several iterations, the score (similarity)
given to B is calculated as an aggregation of the times ai and bi have
been equal.

This can be seen as formalisation of the Turing Test where it is a
Turing machine that needs to be imitated, and the criterion for imi-
tation is the similarity between the answers given by A and B to the
same questions. If subject B cannot be told or instructed about the
goal of the test (imitating A) then we can use rewards after each step,
possibly concealing A’s outputs from B as well.

This test might seem ridiculous at first sight. Some might argue
that being able to imitate a randomly-chosen TM is not related to
intelligence. However, two issues are important here. First, agent B
does not know who A is in advance. Second, agent B tries to imitate
A solely from its behaviour.

This makes the previous version of the test very similar to the most
abstract setting used for analysing what learning is, how much com-
plexity it has and whether it can be solved. First, this is tantamount to
Gold’s language identification in the limit [11]. If subject B is able to
identify A at some point, then it will start to score perfectly from that
moment. While Gold was interested in whether this could be done in
general and for every possible A, here we are interested in how well
B does this on average for a randomly-chosen A from a distribution.
In fact, many simple TMs can be identified quite easily, such as those
simple TMs which output the same string independently of the input.
Second, and following this averaging approach, Solomonoff’s setting
is also very similar to this. Solomonoff proved that B could get the
best estimations for A if B used a mixture of all consistent models
inversely weighted by 2 to the power of their Kolmogorov complex-
ity. While this may give the best theoretical approach for prediction
and perhaps for “imitation”, it does not properly “identify” A. Iden-
tification can only be properly claimed if we have one single model
of A which is exactly as A. This distinction between one vs. multi-
ple models is explicit in the MML principle, which usually considers
just one single model, the one with the shortest two-part message
encoding of said model followed by the data given this model.

There is already an intelligence test which corresponds to the pre-
vious instance of definition 1, the C-test, mentioned above. The C-
test measures how well an agent B is able to identify the pattern
behind a series of sequences (each sequence is generated by a differ-
ent program, i.e., a different Turing machine). The C-test does not
use a query-answer setting, but the principles are the same.

We can develop a slight modification of definition 1 by consider-
ing that subject A also tries to imitate B. This might lead to easy
convergence in many cases (for relatively intelligent A and B) and
would not be very useful for comparing A and B effectively. A sig-
nificant step forward is when we consider that the goal of A is to
make outputs that cannot be imitated by B. While it is clearly dif-
ferent, this is related to some versions of Turing’s imitation game,
where one of the human subjects pretends to be a machine. While
there might be some variants here to explore, if we restrict the size of
the strings used for questions and answers to 1 (this makes agreeing
and disagreeing equally likely), this is tantamount to the game known
as ‘matching pennies’ (a binary version of rock-paper-scissors where
the first player has to match the head or tail of the second player, and
the second player has to disagree on the head or tail of the first). In-
terestingly, this game has also been proposed as an intelligence test
in the form of Adversarial Sequence Prediction [20][22] and is re-
lated to the “elusive model paradox” [3, footnote 211][4, p 455][5,
sec. 7.5].

This instance makes it more explicit that the distribution D over
the agents that the evaluee has to imitate or compete with is crucial.
In the case of imitation, however, there might be non-intelligent Tur-
ing machines which are more difficult to imitate/identify than many
intelligent Turing machines, and this difficulty seems to be related
to the Kolmogorov complexity of the Turing machine. And linking
difficulty to Kolmogorov complexity is what the C-test does. But bi-
ological intelligence is frequently biased to social environments, or
at least to environments where other agents can be around eventu-
ally. In fact, societies are usually built on common sense and com-
mon understanding, but in humans this might be an evolutionarily-
acquired ability to imitate other humans, but not other intelligent
beings in general. Some neurobiological structures, such as mirror
neurons have been found in primates and other species, which may
be responsible of understanding what other people do and will do,
and for learning new skills by imitation. Nonetheless, we must say
that human unpredictability is frequently impressive, and its relation
to intelligence is far from being understood. Interestingly, some of
the first analyses on this issue [34][29] linked the problem with the
competitive/adversarial scenario, which is equivalent to the match-
ing pennies problem, where the intelligence of the peer is the most
relevant feature (if not the only one) for assessing the difficulty of
the game, as happens in most games. In fact, matching pennies is
the purest and simplest game, since it reduces the complexity of the
‘environment’ (rules of the game) to a minimum.

4 RECURSIVE TURING TESTS FOR TURING
MACHINES

The previous section has shown that introducing agents (in this case,
agent A) in a test setting requires a clear assessment of the distribu-
tion which is used for introducing them. A general expression of how
to make a Turing Test for Turing machines recursive is as follows:

Definition 2 The recursive imitation game for Turing machines is
defined as a tuple 〈D,C, I〉 where tests and distributions are ob-
tained as follows:

1. Set D0 = D and i = 0.
2. For each agent B in a sufficiently large set of TMs
3. Apply a sufficiently large set of instances of definition 1 with

parameters 〈Di, B,C, I〉.
4. B’s intelligence at degree i is averaged from this sample of

imitation tests.
5. End for
6. Set i = i+ 1
7. Calculate a new distribution Di where each TM has a probability

which is directly related to its intelligence at level i− 1.
8. Go to 2

This gives a sequence of Di.
The previous approach is clearly uncomputable in general, and still
intractable even if reasonable samples, heuristics and step limitations
are used. A better approach to the problem would be some kind of
propagation system, such as Elo’s rating system of chess [10], which
has already been suggested in some works and competitions in ar-
tificial intelligence. A combination of a soft universal distribution,
where simple agents would have slightly higher probability, and a
one-vs-one credit propagation system such as Elo’s rating (or any
other mechanism which returns maximal expected information with
a minimum of pairings), could feasibly aim at having a reasonably



good estimate of the relative abilities of a big population of Turing
machines, including some AI algorithms amongst them.

What would this rating mean? If we are using the imitation game, a
high rating would show that the agent is able to imitate/identify other
agents of lower rating well and that it is a worse imitator/identifier
than other agents with higher rating. However, there is no reason to
think that the relations are transitive and anti-reflexive; e.g., it might
even happen that an agent with very low ranking would be able to
imitate an agent with very high ranking better than the other way
round.

One apparently good thing about this recursion and rating system
is that the start-up distribution can be very important from the point
of view of heuristics, but it might be less important for the final re-
sult. This is yet another way of escaping from the problems of using a
universal distribution for environments or agents, because very sim-
ple things take almost all the probability —as per section 2. Using
difficulty as in the C-test, making adaptive tests such as the anytime
test, setting a minimum complexity value [21] or using hierarchies
of environments [22] where “an agent’s intelligence is measured as
the ordinal of the most difficult set of environments it can pass” are
solutions for this. We have just seen another possible solution where
evaluees (or similar individuals) can take part in the tests.

5 DISCUSSION

The Turing test, in some of its formulations, is a game where an agent
tries to imitate another (or its species or population) which might
(or might not) be cheating. If both agents are fair, and we do not
consider any previous information about the agents (or their species
or populations), then we have an imitation test for Turing machines.
If one is cheating, we get closer to the adversarial case we have also
seen.

Instead of including agents arbitrarily or assuming that any agent
has a level of intelligence a priori, a recursive approach is necessary.
This is conceptually possible, as we have seen, although its feasible
implementation needs to be carefully considered, possibly in terms
of rankings after random 1-vs-1 comparisons.

This view of the (recursive) Turing test in terms of Turing ma-
chines has allowed us to connect the Turing test with fundamental is-
sues in computer science and artificial intelligence, such as the prob-
lem of learning (as identification), Solomonoff’s theory of prediction,
the MML principle, game theory, etc. These connections go beyond
to other disciplines such as (neuro-)biology, where the role of imi-
tation and adversarial prediction are fundamental, such as predator-
prey games, mirror neurons, common coding theory, etc. In addition,
this has shown that the line of research with intelligence tests derived
from algorithmic information theory and the recent Darwin-Wallace
distribution are also closely related to this as well. This (again) links
this line of research to the Turing test, where humans have been re-
placed by Turing machines.

This sets up many avenues for research and discussion. For in-
stance, the idea that the ability of imitating relates to intelligence can
be understood in terms of the universality of a Turing machine, i.e.
the ability of a Turing machine to emulate another. If a machine can
emulate another, it can acquire all the properties of the latter, includ-
ing intelligence. However, in this paper we have referred to the notion
of ‘imitation’, which is different to the concept of Universal Turing
machine, since a UTM is defined as a machine such that there is an
input that turns it into any other pre-specified Turing machine. A ma-
chine which is able to imitate well is a good learner, which can finally
identify any pattern on the input and use it to imitate the source. In

fact, a good imitator is, potentially, very intelligent, since it can, in
theory (and disregarding efficiency issues), act as any other very in-
telligent being by just observing its behaviour. Turing advocated for
learning machines in section 7 of the very same paper [37] where he
introduced the Turing Test. Solomonoff taught us what learning ma-
chines should look like. We are still struggling to make them work in
practice and preparing for assessing them.
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