Newton Trees

Fernando Martinez-Plumed, Vicent Estruch, Cesar Ferri, José
Hernéndez-Orallo, and Maria José Ramirez-Quintana

DSIC, Universitat Politécnica de Valeéncia, Cami de Vera s/n, 46022 Valéncia, Spain.
{fmartinez ,vestruch,cferri, jorallo ,mramirez}@dsic .upv.es

Abstract. This paper presents Newton trees, a redefinition of proba-
bility estimation trees (PET) based on a stochastic understanding of
decision trees that follows the principle of attraction (relating mass and
distance through the Inverse Square Law). The structure, application
and the graphical representation of Newton trees provide a way to make
their stochastically driven predictions compatible with user’s intelligi-
bility, so preserving one of the most desirable features of decision trees,
comprehensibility. Unlike almost all existing decision tree learning meth-
ods, which use different kinds of partitions depending on the attribute
datatype, the construction of prototypes and the derivation of probabili-
ties from distances are identical for every datatype (nominal and numer-
ical, but also structured). We present a way of graphically representing
the original stochastic probability estimation trees using a user-friendly
gravitation simile.We include experiments showing that Newton trees
outperform other PETSs in probability estimation and accuracy.

Keywords: Probability Estimation Trees, Decision Trees, Distance Meth-
ods, Inverse Square Law, Stochastic Decision Trees.

1 Introduction

Decision tree learning [20] is one of the most popular (and powerful) techniques
in machine learning and, very especially, in data mining. Two of the most im-
portant features of decision trees are their divide-and-conquer covering of the
problem space and the use of decisions defined over univariate conditions (al-
though multivariate variants exist). Decision tree learning has evolved through
the introduction of datatype-specific condition schemes, dozens of splitting cri-
teria, and many class assignment, pruning and stopping rules.

Probability Estimation Trees (PETs) [18][6], whose output is a probabili-
ty rather than a crisp decision, are heirs of this technology, and are generally
preferable over classical decision trees, whenever the goal is good rankings or
good probability estimation. Initially, PETs were improved by using smoothing
in the leaves [18] or through a pruning-smoothing [6]. The decision tree was
unaltered and the rules which were derived from it were consistent with its
predictions. However, many other recent extensions of PETs use the decision
tree as a skeleton upon which a complex decision making process takes place.

The way the decision tree looks and the way it must be used to obtain the
predictions are no longer easy to understand or even consistent.

In an effort of getting the most from decision tree learning for probability
estimation, in this paper we present a new Stochastic Probability Estimation
Tree learning technique. Splits are constructed by using attribute prototypes
which work as attractors, following an inverse square law using the distance to
the prototype and its mass, similar to other ‘gravitational” approaches in machine
learning [14][9][17]. We will present the details of Newton trees and we will show
that they introduce a series of new features and important contributions, namely:

— We use the notion of distance in a univariate way as a general way of treating
any kind of datatype (numerical, nominal, ordinal or structured).

— We construct the tree based on the principle of attraction and we derive the
probabilities, use and represent the tree using the same principle.

— We handle numerical, nominal and ordinal attributes in the same way. We
do not have to type attributes but just provide a distance for each datatype.

— We use medoids (prototypes from the set of attribute values) and not cen-
troids, so properly handling both continuous and discrete datatypes. For
continuous datatypes we only construct a cluster per attribute and class,
and not a cutpoint between each pair of values. So, we reduce the number
of partitions to evaluate (see Section 3.2).

— We provide a graphical representation of the trees to easily interpret them.

— We evaluate the trees using a qualitative measure of error (accuracy), a mea-
sure of ranking quality (AUC, Area Under the ROC Curve) and a measure
of calibration and refinement quality (MSE, Mean Squared Error).

The paper is organised as follows. Section 2 introduces notation and basic ter-
minology on decision tree learning and probability estimation trees, and also
reviews some related work. Section 3 introduces Newton Trees, by first descri-
bing the attraction function and then explaining how trees are learned and used
to obtain the probability estimations. It also introduces a user-friendly represen-
tation of Newton trees. Section 4 includes a set of experiments, which compare
Newton Trees with a common PET (C4.5 without pruning and Laplace estima-
tion). Finally, Section 5 presents the conclusions and the future work.

2 Notation and Previous Work

2.1 Notation

The set of all possible unlabelled examples E is composed of all the elements
e = {e1,€3, ...,) with m being the number of attributes. The attribute names
are denoted by (1, 2, ..., xm). A labelled dataset D is a set of pairs (e, i) where
e € F and i € C, where C is the set of classes. The number of classes, |C|, is de-
noted by c¢. We define a probability estimator as a set of ¢ functions p;ec : E — R
such that Vi € C,e € E : 0 < p;(e) < 1 and Ve € E : > picc(e) = 1. Deci-
sion trees are formed of nodes, splits and conditions. A condition is any Boolean

function g : E — {true, false}. A split or partition is a set of s conditions
gk 1 <k <s. A decision tree can be defined recursively as follows: (i) a node
with no associated split is a decision tree, called a leaf; (ii) a node with an asso-
ciated split gr : 1 < k < s and a set of s children t;, such that each condition is
associated with one and only one child, and each child ¢y is a decision tree, is also
a decision tree. Given a node v, Children(v) denotes the set of its children and
Parent(v) denotes its predecessor node. The special node where Parent(v) = ()
is called the root of the tree. After the training stage, the examples will have
been distributed among all the nodes in the tree, where the root node contains
all the examples and downward nodes contain the subset of examples that are
consistent with all its ancestors’ conditions. Therefore, every node has particular
absolute frequencies n1,ng, ..., n. for each class. The cardinality of the node is
given by > n;. A decision tree classifier is defined as a decision tree with an
associated labelling of the leaves with classes. A PET is a decision tree which
outputs a probability for each class.

2.2 Related Work

Existing Probability Estimation Trees output a probability but are not necessa-
rily probabilistic in nature. A first issue is that they typically use a divide-and-
conquer philosophy for constructing the tree but the same philosophy is used to
make a prediction. Given an example, a sequence of decisions will lead to a leaf
of the tree where a value is returned (a class in classification trees, a number
in regression trees, a probability in PETSs, etc.). The rest of the information of
the tree is wasted (although there are exceptions [4,6,15]). In decision theory,
though, this crisp view of decisions is awkward, since each decision can have an
associated probability, and the overall probability must be computed by consi-
dering the whole structure of the tree. This kind of tree are frequently (but not
always) called stochastic decision trees (e.g. [12]).

A second issue is that this use of all the paths in the tree can be made in
such a way that the probabilities of the tree are independent to the instance
which is being processed. In fact, this has been the approach in [15], by using
an ad-hoc parameter which is used to determine the probability of each child in
a partition. More recent approaches ([1], [2]) have made the probability depend
on the proximity to the cut-point for the attribute, by using Kernel Density
Estimates. In other words, a tree can be constructed by a classical algorithm
(such as C4.5 [19] or CART [3]) and its probabilistic or stochastic interpretation
can be inconsistent to the way the decision tree was constructed.

A third issue is how different datatypes are handled. Many of the previous
approaches only deal with numerical attributes ([1], [2]) or only with nominal
attributes. When handling both, the trees just preserve the very specific way
of handling numerical attributes with cutpoints and nominal attributes with
equalities, as C4.5 [19] or CART [3]. Even in the case of fuzzy decision trees
(which often provide a more integrated view of nominal and numerical attributes)
it is unclear how decision trees can be applied to problems where some attributes
are from other (structured) datatypes such as intervals, sequences or sets.

Having all the previous approaches to PETs, in this work we propose a new
decision tree learning method which has been designed from scratch with the
goals of being stochastic in nature, general and flexible in the way it handles
data attributes, and intelligible.

3 Stochastic Distance-based Probability Estimation Trees

In this section we define our Stochastic Probability Estimation Tree learning
technique which leads to Newton trees.

3.1 Gravitational Partitions

When constructing splits, decision trees typically generate conditions which are
then evaluated to see how well they separate the classes. Instead of that, we pro-
pose to define a node/cluster per class and then try to find the characterisation
of each node in terms of one attribute at a time (univariate).

Following this idea, one first approach is to use Kernel Density Estimation
[22] in order to derive a probability density function (pdf), from the examples
belonging to each class. However, many of these techniques will construct a
parametrised or composite pdf that will make partitions unintelligible, apart
from having the risk of overfitting. Another approach is to derive a prototype
for each node, and then, to derive a probability from the prototypes. In order
to treat discrete datatypes appropriately, we use a medoid (the element in each
cluster such that its average distance to the rest is the lowest). If we generate
prototypes, one possibility to derive probabilities from them is to assume some
probability distribution. For instance, if we consider a normal distribution for
each node with centre at the prototype and with standard deviation equal to the
mean of distances of the elements of the node, we have a pdf. Figure 1 (left) shows
the pdfusing a Gaussian with centres 3 and 8, with standard deviations 1 and 3.5
(respectively) and masses 20 and 100 (respectively). This can be converted into
conditional probabilities by mere normalisation, as shown in Figure 1 (right).

Fig. 1. (Left) Two normal distributions placed at centres 3 and 8, with standard de-
viations 1 and 3.5 (respectively) and masses 20 and 100 (respectively). (Right) The
conditional probabilities derived from the Gaussians.

The problem of the previous approach is that when masses are too disparate,
one distribution can cover the other, giving a plain partition where all the ele-
ments go to one prototype. One criterion to avoid this is to give extra importance

to distance, so that at distance 0 the probability is always 1. A way to do this
is to employ an inverse-square law such as in gravitation. Hence, we define the
following attraction function between an element e of mass m. (we will assume
m. = 1) and a prototype 7 of mass m, separated by a distance d(e,7) = d:
. MMy My
attraction(e,) = ——=5 = —
(e,) d(e,m)? d?
We are interested in deriving class probabilities by considering this attraction.
Figure 2 shows the attraction (left) and the probability (right) with the same
parameters as before (note that the standard deviation is no longer used).

20
0
L

15

10

5

Fig. 2. (Left) Two gravitational centres at 3 and 8 with masses 20 and 100 (respec-
tively). (Right) The probabilities derived from the gravitational centres.

An interesting property is that when the distance goes to infinity the probabi-
lities tend to converge to the mass proportion. For instance, if we have two centres
at 3 and 8, and 8 has much more mass (as in the previous example), it is easy
to see that the attraction to 8 will be higher than the attraction to 3 for a point
placed at —100.

Of course, the idea of using the gravitational law in machine learning is not
new at all, for instance in clustering [9] or classification [17]. The same Inverse
Square Law principle is presented in some variants of Kernel Density Estimation,
several classification techniques such as weighted kNN, where the weight is a
kernel which is simply defined as the inverse of the distance, or in some other
clustering algorithms. To our knowledge, its use for decision trees is new.

3.2 Tree Generation

Centre splitting [21] is a machine learning method which consists in dividing the
input space in different regions where each region is represented by a centre'. In
every iteration, a centre is calculated for every different class which is presented
in the area. Then, every example is associated to its nearest centre. This process
is repeated until the area is pure. One of the special features of this method is
that examples are managed as a whole.This appreciation leads us to propose
a decision tree inference strategy where centroids are computed by considering
only the values of one attribute, which allows us to join centre splitting and
decision tree learning techniques in an elegant way.

! The centre may match to an existing example or not

The detailed definition of the algorithm can be found in [16]. Here, we give a
more sketchy description: for each attribute z,. and for each class i, a prototype
7y is calculated as the attribute value with lowest mean distance to the elements
of the class. Once this process is finished, the splitting attribute is selected
according to one of the well-known splitting criteria (for instance, gain ratio [19]).
Then, the split proceeds by associating every instance to its closest attribute
prototype, which typically produces impure clusters?. Although the computation
of distances is quadratic on the number of instances, we can reduce it by using a
distance matrix per attribute (of size n,. x n,., where n, is the number of different
attribute values) prior to the algorithm execution. But, more importantly, if we
have m attributes and n, values per attribute, we only construct (and evaluate)
O(m) partitions and not O(n, x m), the typical order for classical decision tree
learning algorithms using midpoints for continuous attributes.

3.3 Stochastic Probability Calculation

Now, we illustrate how a Newton Tree is used to estimate probabilities in a
stochastic way. In what follows, ?(V, e) = (p1(v,e),...,pc(v,e)) denotes the
probability vector of example e at node v, where p;(v,) denotes the probability
that e belongs to class ¢ at node v. With p(v, e) we denote the probability that e

falls into node v (coming from its parent), which is derived from the attraction
attraction(e,v)
y attraction(e,un) "

that v exert over e, that is p(v,e) = DSy

Given a new example e and a Newton tree T, the objective is to calculate the
probability vector at the root of T, ?(root, e). Basically, the idea is to compute
downwards the probability of falling in each leaf, calculate the leaf probability
vector and then to propagate upwards the leaf probability vector to the root to
obtain the total class probability vector ?(root, e). The leaf probability vectors
can be obtained once the tree T has been built by applying Laplace correction
as has been shown in [18,6]. For each example, we calculate the probability of
choosing each child node p if placed at the parent node v using the attraction
(i.e., p(u, €)). This probability is multiplied by the probability vector of the child

(7 (. ¢)):

Definition 1. Stochastic Probability Vector Estimation
Given an erxample e and a Newton tree T, the probability vector 7(7‘00t,e) at
the root of T is estimated by applying

. _ Z;LEC}LildT‘@TL(V)ﬁ(M’ 6) ’ ?('U" 6) if v is not a leaf
YveT: 7(% e) = { (Laplace(1,v), ..., Laplace(c,v)) if v is a leaf

where Laplace(j, v) is the Laplace correction of the frequency of elements of class
j in node v.

2 Note that, during the splitting process, we apply the attraction function assuming
that the mass is the unit. This is due to the fact that the total mass of a node is not
known until all the instances have been associated to its prototype.

The stochastic calculation of the probabilities seen above may seem too cryp-
tic for a general use of these trees if intelligibility is a requirement. In order to
address this issue, we show a graphical representation of Newton trees, which
may help users understand how the stochastic probability assignment is made,
and to get insight from the tree.

Figure 3 (left) shows this user-friendly representation of a Newton Tree for the
Hepatitis dataset from the UCI repository [8]. Note that all partitions are binary
because this is a two-class problem, namely DIE and LIV E. The two first splits
are made over the numerical attributes PROTIMFE and ALK _PHOSPHATE,
respectively, and the other two splits are made over the nominal attributes SEX
and FATIGUE. The nodes are represented as balls of a size which is propor-
tional to the node mass (for instance, the node with a mass of 17 represents that
17 training examples fall into it). The ball also shows the proportion of examples
of each class in different colours. Additionally, the value for the attribute proto-
type is shown in the middle of each ball. Finally, the smoothed probabilities per
class at the leaves are also provided (in the figure, as a small table below each
leaf). In order to ease the understanding on how probabilities are derived, Figure
3 (right) shows the internal probabilities (vectors and node probabilities) and the
top vector probability for example (PROTIME = 40; ALK _PHOSPHATE =
120; SEX = FEMALE; FATIGUE = UNKNOW N), which is (0.7316,0.2684),
a relatively clear DIFE case. All these graphical elements in the Newton Trees
representation may help users understand the way in that probabilities are esti-
mated, making Newton trees less cryptic than other PET methods.

4 Experiments

The aim of this section is to compare Newton trees with a common implemen-
tation of Probability Estimation Trees, namely unpruned decision trees with
Laplace smoothing in the leaves as suggested by [18][6]. In particular, we chose
J48 (the variant of C45.) implemented in Weka [10]. We used Gain ratio as
splitting criterion for Newton trees and J48. The evaluation was performed over
30 datasets from the UCI repository [8], from which we removed instances with
missing values (see [16] for their characteristics). We set up a 20 x 5-fold cross val-
idation, making a total of 100 learning runs for each pair of dataset and method
(3,000 overall). As evaluation metrics we used ([7]): accuracy, as a qualitative
measure of error, AUC (Area Under the Curve) as a measure of ranking quality,
(using Hand & Till’s multiclass version [11]) and MSE (Mean Squared Error) as
a measure of calibration and refinement quality.

Table 1 shows the average accuracy, AUC and MSE obtained by the two
algorithms. At the bottom, we also show the mean values for all the datasets.
These means are just illustrative. To analyse whether the differences are sig-
nificant, we used the Wilcoxon signed-ranks test with a confidence level of «
= 0.05 and N = 30 data sets, as suggested in [5]. Significant differences are
shown in bold. Finally, in Table 2 we focus on these differences, showing an
entry w/t/l for each measure and dataset subset, which indicates that Newton

47,2

0=(0.04,0.96)

[(ote [e |

5 P=(0.17,0.83)
=(o.a,1337)

NO
Size=1
[0t [uve | P=(0.92,0.08) P=(0.33,0.67)

Fig. 3. (Left) Newton Tree for the hepatitis dataset. (Right) The node probability vec-
tors, children probabilities and global probability vector for example (PROTIME=40,
ALK _PH=120, SEX=FEMALE, FATIGUE= UNKNOWN)

trees win in w, tie in ¢, and lose in [datasets, compared to the J48 PETs. From
the tables, we see that Newton trees outperform J48 PETs in the three measures
(Accuracy, AUC and MSE), and with the means in Table 1, in any selection de-
pending on the type of dataset (multiclass/binary, nominal/numerical/mixed).
The strongest differences are found in AUC, which is the recommended measure
when evaluating PETs ([13]). If we look at the significance results in Table 2, we
have a similar picture. The exception is the result for nominal datasets. While
AUC is still much better, the results in MSE are worse (and as a result so is
accuracy). This indicates a bad calibration of the results for datasets with only
nominal partitions, which might be caused by the way discrete distances affect
on the attraction measure, although more research should be done to clarify this
(since there are only 7 datasets in this subset).

5 Conclusions and Future Work

This paper has presented a novel probability estimation tree learning method
which is based on computing prototypes and applying an Inverse Square Law
that uses the distance to the prototype and its mass, in order to derive an
attraction force which is then converted into a probability. The trees can be
graphically represented in such a way that their meaning and patterns can be

Name Classes Att Newton Trees Unpruned Laplace J48
Type| Acc. | AUC| MSE | Acc. | AUC| MSE
anneal 6 Mixed | 97.5110 |0.8943| 0.0119 |98.7800| 0.8890 | 0.0073
autos_5c¢ 5 Mixed.|79.5060|0.9043| 0.0825 | 77.7130 | 0.8827 | 0.0840
balance-scale 3 Num. {79.5520| 0.7962 | 0.1050 | 78.6880 |0.8199| 0.0998
breast-cancer 2 Nom. |73.0110{0.6436|0.1929| 67.9360 | 0.6084 | 0.2233
chess-kr-vs-kp 2 Nom. | 98.5050 | 0.9975 | 0.0135 |99.3050|0.9988| 0.0064
cme 3 Mixed.|50.1720|0.6739|0.2025| 49.1100 | 0.6658 | 0.2107
credit-a 2 Mixed.|84.9310|0.9107(0.1118| 82.7960 | 0.8982 | 0.1256
credit-g 2 Mixed.|70.3300|0.7202(0.1897| 68.2900 | 0.7016 | 0.2159
diabetes 2 Num. | 71.8630 | 0.7801 |0.1798|72.8070| 0.7772 | 0.1877
glass 7 Num. | 67.2940 | 0.7828 | 0.0901 | 67.0340 | 0.7895 | 0.0879
heart-statlog 2 Num. |78.0740|0.8626|0.1490| 76.1850 | 0.8398 | 0.1753
hepatitis 2 Mixed.|83.4370|0.7570(0.1143| 79.4370 | 0.6542 | 0.1498
ionosphere 2 Num. | 88.9160 | 0.9235 | 0.0916 | 88.8460 | 0.9195 | 0.0917
iris 3 Num. {94.7660|0.9938|0.0315| 94.0330 | 0.9710 | 0.0349
monks1W 2 Nom. | 93.5230 |0.9899| 0.0606 | 92.7690 | 0.9761 | 0.0519
monks2W 2 Nom. |85.8750(0.9378(0.1124| 61.3790 | 0.6456 | 0.2348
monks3W 2 Nom. | 98.6730 |0.9926| 0.0166 | 98.6370 | 0.9909 | 0.0135
mushroom 2 Nom. | 99.9910 | 0.9999 | 0.0193 |100.0000| 1.0000 | 0.0001
new-thyroid 3 Num. | 92.6970 |0.9854|0.0438| 92.3480 | 0.9237 | 0.0454
pimaW 2 Num. | 71.8630 | 0.7801 |0.1798|72.7750| 0.7772 | 0.1877
sonar 2 Num. |77.5990|0.8499|0.1538| 73.3710 | 0.7888 | 0.2162
soybean 19 Nom. | 89.2420 | 0.9771 | 0.0228 |91.2270| 0.9770 | 0.0183
spectf_train 2 Num. | 67.3120 | 0.7301 | 0.2097 |71.7500| 0.7365 | 0.2196
tae 3 Mixed.|58.7010|0.7398(0.1877| 54.1660 | 0.7078 | 0.1996
tic-tacW 3 Nom. | 78.1110 | 0.8526 | 0.1426 |79.3990|0.8699| 0.1393
vehicle3c 3 Num. | 72.1210 | 0.8441 | 0.1355 |73.0240|0.8807| 0.1251
vote 2 Nom. | 94.5020 |0.9892| 0.0383 |95.1370| 0.9827 | 0.0355
vowel 11 Mixed.| 75.3580 |0.9671| 0.0578 |79.5400| 0.9157 | 0.0447
wine 3 Num. |94.3840|0.9905|0.0408| 92.2070 | 0.9544 | 0.0471
700 7 Mixed.|94.9020|0.7243| 0.0252 | 93.1610 | 0.7147 | 0.0234
Mean (All) 82,0907 | 0,8664 | 0,1004 | 80,7283 | 0,8419| 0,1101
Mean (c = 2) 83,6503 | 0,8665 | 0,1146 | 81,3388 | 0,8310 | 0,1334
Mean (c > 2) 80,3084 | 0,8662 | 0,0843 | 80,0307 | 0,8544 | 0,0834
Mean (Nominal) 90,1592 | 0,9311 | 0,0688 | 87,3099 | 0,8944 | 0,0803
Mean (Numerical) 79,7034 | 0,8599 | 0,1175 | 79,4223 | 0,8482 | 0,1265
Mean (Mixed) 77,2053 | 0,8102 | 0,1093 | 75,8881 | 0,7811 | 0,1179

Table 1. Comparison between Newton trees and unpruned J48 with Laplace correction.

Unpruned Laplace J48
Acc. | AUC| MSE
Netwon Trees

Al 14/6/10[18/8/4[14/4/12
Nominal 2/3/1 [5/2/2] 2)0/7
Numerical 5/3/4 |5/5/2] 1/3/2
Mixed 7/0/2 [9/0/0] 5/1/3

Table 2. Aggregated results using the statistical tests

understood. The use of prototypes (mediods) instead of centroids allows for the
use of our trees for any kind of datatype (continuous or discrete), as long as we
provide a distance function for each datatype. Consequently, we can apply our
trees to structured datatypes, such as sequences, sets, ordinal data, intervals or
even images and texts. More importantly, we can use the tree with a mixture
of all these datatypes. If distance matrices are preprocessed (only once for each
attribute before start), the computation of the prototypes is much more efficient
than the split population schemes in traditional decision trees, since we group by
classes and then compute the mediod of each cluster. Consequently, the number
of different splits to evaluate at each node is equal to the number of attributes
and does not depend on midpoints or the size of the dataset.

There are many research lines to pursue. One is to use the mass also when
constructing the tree or using all the attribute values as possible clusters. How-

ever, these two modifications would entail extra computational cost and could
only be justified if there is a significant improvement in the results.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

I. Alvarez and S. Bernard. Ranking cases with decision trees: a geometric method
that preserves intelligibility. In IJCAI, pages 635-640, 2005.

I. Alvarez, S. Bernard, and G. Deffuant. Keep the decision tree and estimate the
class probabilities using its decision boundary. In IJCAI, pages 654-659, 2007.
Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and Charles J. Stone.
Classification and Regression Trees. Chapman & Hall, New York, NY, 1984.

W. Buntine. Learning classification trees. Stats. and Computing, 2(2):63-73, 1992.
J. Demsar. Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research, 7:1-30, January 2006.

C. Ferri, P. Flach, and J. Hernandez-Orallo. Improving the auc of probabilistic
estimation trees. In Proc. ECML, volume 2837 of LNCS, pages 121-132, 2003.

C. Ferri, J. Herndndez-Orallo, and R. Modroiu. An experimental comparison of
performance measures for classification. Pattern Recogn. Lett., 30(1):27-38, 2009.
A. Frank and A. Asuncion. UCI machine learning repository, 2010.

J. Gomez, D. Dasgupta, and O. Nasraoui. A new gravitational clustering algorithm.
In Int. Conf. on Data Mining, page 83. Society for Industrial & Applied, 2003.
M. Hall, Frank E.and G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten.
The weka data mining software. SIGKDD Ezplorations, 11(1):10-18, 2009.

D.J. Hand and R.J. Till. A simple generalisation of the area under the ROC curve
for multiple class classification problems. Machine Learning, 45(2):171-186, 2001.
R.F. Hespos and P.A. Strassmann. Stochastic decision trees for the analysis of
investment decisions. Management Science, 11(10):244-259, 1965.

Jin Huang and Charles X. Ling. Using auc and accuracy in evaluating learning
algorithms - appendices. IEEE Trans. Knowl. Data Eng., 17(3), 2005.

M. Indulska and ME Orlowska. Gravity based spatial clustering. In Proc. Int.
Sym. on Advances in geographic information systems, page 130, 2002.

C.X. Ling and R.J. Yan. Decision tree with better ranking. In International
Conference on Machine Learning, volume 20-2, page 480, 2003.

F. Martinez-Plumed, V. Estruch, C. Ferri, J. Herndndez-Orallo, and M. J. Ramirez-
Quintana. Newton trees. extended report. Technical report, DSIC, UPV,
http://www.dsic.upv.es/~flip/NewtonTR.pdf, 2010.

L. Peng, B. Yang, Y. Chen, and A. Abraham. Data gravitation based classification.
Information Sciences, 179(6):809-819, 2009.

Foster J. Provost and Pedro Domingos. Tree induction for probability-based rank-
ing. Machine Learning, 52(3):199-215, 2003.

J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San
Mateo, CA, 1993.

Lior Rokach and Oded Maimon. Data Mining with Decision Trees: Theory and
Applications. World Scientific, 2008.

C.J. Thornton. Truth from trash: how learning makes sense. The MIT Press, 2000.
Berwin A. Turlach. Bandwidth selection in kernel density estimation: A review.
In CORE and Institut de Statistique, 1993.

10

