
1–8 ICML 2017 AutoML Workshop (Demo Track)

Domain specific induction for data wrangling automation
(Demo)

Lidia Contreras-Ochando liconoc@upv.es
Cèsar Ferri cferri@dsic.upv.es
José Hernández-Orallo jorallo@dsic.upv.es
Fernando Mart́ınez-Plumed fmartinez@dsic.upv.es
Maŕıa José Ramı́rez-Quintana mramirez@dsic.upv.es
DSIC, Universitat Politècnica de València, Spain

Susumu Katayama skata@cs.miyazaki-u.ac.jp

University of Miyazaki, Japan

Abstract

Increasingly often, the available data we are analysing is messy, diverse, unstructured and
incomplete, which makes its analysis more difficult. Thus, a data wrangling process is
usually needed before most machine learning applications can be applied. This process
aims at cleaning, transforming and combining data in order to render it in an appropriate
format. Unfortunately, this process is mostly a manual and very time-consuming. In
this paper we first present an approach to semi-automate some common transformations
that appear in the data wrangling process, which is based on a general purpose inductive
programming tool that is extended with domain-specific background knowledge. Next, we
illustrate a web-based tool that allows users to provide a set of inputs and one or more
examples of outputs, in such a way that a pattern is found that is applied to the rest of
examples automatically by the tool.

Keywords: Data Wrangling Automation, Inductive Programming, Machine Learning

1. Introduction

In data science and machine learning applications, data wrangling includes tasks such as
transforming data from one format to another with more structured and valuable form,
cleaning datasets or combining them to create new attributes. In order to be more precise,
we can think about datasets containing personal names with more than one surname, emails
with different domains or dates in different formats, as the example on Table 11. Normalising
these data or extracting patterns from them can be highly complicated. Most of the times
it is a manual, tedious, repetitive and boring process consuming up to 80% of the time in
data science projects (Steinberg, 2013). There are tools (Gulwani, 2011; Ham, 2013; Kandel
et al., 2011) or packages for different languages such as R (Boehmke, 2014; Wickham, 2016)
or Python (Kazil and Jarmul, 2016) that facilitate the resolution of different problems
related to data wrangling. Most of those data wrangling solutions are intended to be used
by data analysts. However, in a data science project people with many different profiles and
disciplines can take part and surely most of them have no programming skills. If we assume

1. Original dataset from: https://goo.gl/2BHoVS

c© L. Contreras-Ochando et al.

https://goo.gl/2BHoVS

Domain specific induction for data wrangling automation

that these transformations have to be solved only by programming, we are leaving out many
people able to work with the data. Automating the data wrangling process is essential to
reduce the time spent and the cost needed for the completion of data science projects,
especially taking into account that the amount of available data is constantly increasing.
Besides, making new intuitive and visual interfaces that are accessible to most of the people
can be useful to increase the number of people working in data science projects.

Row No. Borne sortie Date sortie Date retour Borne retour

1 001 03/10/2016 00:18:36 03/10/2016 00:32:12 004

2 001 03/10/2016 00:25:45 03/10/2016 00:38:07 006
...

69852 001 6-10-16 20:35 6-10-16 14:39 097

Table 1: Subset of a real dataset of routes with a bike sharing system where dates are
presented in two different formats. Borne/Date sortie represent the starting station
and time where a user rents a bike. Borne/Date retour represent the station and
time where the user returns that bike.

In this paper we present an approach to automate some transformation problems that
appear in the data wrangling process, helping and making accessible the data cleaning and
transformation steps by using inductive programming (Gulwani et al., 2015) and only few
examples.

The paper is organised as follows. Section 2 describes our approach and presents the
architecture of the demo tool. Section 3 shows results of several data wrangling problems
solved using our approach. Finally, Section 4 concludes the paper and proposes ideas for
future work.

2. Approach

This section briefly describes our approach. Instead of devising a new inductive, apropos,
inductive engine, we re-use a general inductive programming system, MagicHaskeller, mod-
ifying it to take a configurable function library, which can be adapted for different data
wrangling domains. Furthermore, and in order to illustrate how the approach works, we
introduce a web-based application with an intuitive visual interface that enables users to
solve several data wrangling problems for different data domains such as dates, emails,
names and other string-based transformations.

2.1. Domain Specific Induction

Inductive programming (IP) has recently shown a high potential for automating the data
wrangling process (Kitzelmann and Schmid, 2006; Gulwani et al., 2015). In contrast to
other machine learning branches, inductive programming addresses the problem of learning
small but complex programs from a very few representative examples generated when the
user transforms one or more instances in the data. Successful applications include FlashFill
(Gulwani, 2011), an Excel 2013 feature that automates repetitive string transformations
using examples, and variants for other data manipulation problems, such as FlashExtract
Le and Gulwani (2014) FlashRelate (Barowy et al., 2015) and BlinkFill (Singh, 2016)

However, these latter state-of-the-art IP systems are usually based on Domain Specific
Languages (DSL), that is, languages specifically defined for a particular domain, where a

2

Domain specific induction for data wrangling automation

change of the DSL to cover other domains cannot be done by the user and might require
a redesign of the system. Instead of this, and with the aim of increasing the range of ap-
plications, we propose the use of General Purpose Declarative Languages (GPDL) together
with inductive programming tools.

Inductive programming with GPDL is normally inefficient due to the high search space
required to find a solution. However, using a reduced set of functions for one specific domain
(Domain-Specific Background Knowledge, DSBK), the search space can be limited by the
number of functions. In this sense, our approach is based on MagicHaskeller (Katayama,
2012), a general-purpose inductive programming system for Haskell. MagicHaskeller learns
from pairs of input-output examples, returning a list of functions f valid for converting
f(input) to output. Roughly speaking, in order to automate data wrangling problems we
follow these steps:

1. We take a dataset of input-output pairs (Figure 1) or it is the user who, in the same
way, can provide a few examples.

2. These examples are used as input predicates for MagicHaskeller.

3. MagicHaskeller returns the resulting function f .

4. The function f is applied to the rest of the inputs, obtaining the new values for the
output column.

Although MagicHaskeller is very powerful, if we use the functions from the default
library and the input example provided is complex, the induced solution might require the
combination of many function symbols and MagicHaskeller may not find it. Aiming at
overcoming this problem, we may be tempted to add many powerful and abstract functions
to the library but, in this case, MagicHaskeller will have many primitives (functions) to
choose from, and may not find the right primitive. In order to make MagicHaskeller scale
up for a range of data wrangling problems, we have modified it to allow the system to
have different domain-specific background knowledge. The integrated system is now able
to switch the domain according to the problem. It should also be noticed that the core
of MagicHaskeller had to be modified to allow the system to enable and disable the use
of functions/primitives (for the different domains) at runtime, while keeping the general
heuristics working. For this demo we have generated four different DSBKs to deal with
four different types of data: dates, emails, names and strings in general. For each of these
domains, the system has a different and specialised set of Haskell functions. For instance,
related to the dates domain the tool has functions to change the punctuation mark within
a date, extract the day or convert the month to numeric format. Despite the fact that
we have taken into account only four domains for this version, our system can be easily
extended to other domains since the background knowledge is based on a general purpose
language (Haskell).

2.2. System Architecture and Functionality

As previously mentioned, in order to illustrate the main functionality of our approach, we
have developed a basic web application (Figure 1). Even though our approach can deal
with datasets including more than one input, in order to simplify the problem the main

3

Domain specific induction for data wrangling automation

Figure 1: System architecture.PHP-based web application which works dynamically
through AJAX requests (jQuery framework)

interface of this demo simulates a dataset table with text fields with only one input/output
in each row. In this interface, the input field is used as a way to provide the original value
for the attribute we want to transform (or clean), and the output field is the result we
want to obtain. The input fields can be filled manually or automatically by means of using
one of the example datasets provided by the tool. As it is illustrated in Figure 2, the goal
of the system is, given just one (or very few) input/output example(s), to try to fill the
outputs of the rest of instances (whose output fields have not been filled). For this, users
can fill as many output text fields as they like (from 1 to n−1) in order to show the system
what the output data should look like, i.e., which is the desired data transformation. Once
the input/output examples are given, the user should choose one of the domains (DBBK)
suggested by the system (dates, emails, names or strings). If no domain is selected, the
system uses the general background knowledge (the complete set of functions with all the
domains together) to try to induce the possible transformation to be applied.

input output
"03/29/86"

"74-03-31"

"99/12/13"

"11.02.96"

"31/05/17"

"25/08/85"

"05 30 85"

input output
"03/29/86" "29"

"74-03-31"

"99/12/13"

"11.02.96"

"31/05/17"

"25/08/85"

"05 30 85"

input output
"03/29/86" "29"

"74-03-31" "31"

"99/12/13" "13"

"11.02.96" "11"

"31/05/17" "31"

"25/08/85" "25"

"05 30 85" "30"

 "31"

MagicHaskeller

f “03/29/86” == “29”
&&
f “74-03-31” == “31”

dates.dom

\a -> extractDayCardinal a

Figure 2: System functionality. Once the user provides input/output examples and the
domain (DBBK), the system tries to induce the possible transformation to be
applied.

MagicHaskeller returns, if possible, a list of functions solving the problem at hand.
In this case, the system uses the first function of the list of potential functions returned
(sorted by complexity). Then, Haskell is used to transform the rest of inputs provided in
the website (with empty output fields) using the function selected. Once the process is
completed, the empty output fields are updated in the website (Figure 3). This process is
completely automatic and transparent for the user.

4

Domain specific induction for data wrangling automation

Figure 3: Outputs obtained using emails domain and the first function returned by
MagicHaskeller: toLowString (appendAt (changePunctuationString a dot)). The
first instance (row) is the input used to learn.

3. Experiments

In order to evaluate the performance of our approach, we have tested it with eight different
datasets2 originals or based on examples of Singh and Gulwani (2016), PROSE3, Singh and
Gulwani (2015), Gulwani (2011), Ellis and Gulwani (2017) and Contreras-Ochando et al.
(2016). Table 2 illustrates some instances from these datasets including problems related
to each different domain (dates, emails, names and strings).

In order to evaluate the performance of our approach we have compared our results
with the results obtained using another data wrangling tool, FlashFill. FlashFill addresses
a similar kind of problem, that is, it takes one o more examples to induce a potential solution
to apply to the rest of instances. For these experiments, we have set the maximum number
of functions concatenated by MagicHaskeller to four. However, this parameter could be
higher, increasing the chances to get a solution. Table 2 shows some results and the accuracy
obtained by using the two approaches with only the first example of the datasets. FlashFill
works accurately with string-related problems (dataset #8, for instance). However, it has
some limitations when the problem at hand includes data in different formats. Dataset #1
contains different types of dates, as the real example on Table 1. In this case, FlashFill is
not able to detect that all the data are dates, transforming only a few of them. However,
our approach is able to use functions adapted to the context, solving all of them regardless
of their format. In summary, these results show that our approach is able to deal efficiently
with data wrangling problems.

4. Conclusions and Future Work

In this paper we present an inductive approach to deal with data wrangling problems.
Our approach is based on an existing inductive programming system, MagicHaskeller, but

2. The system has been tested in an Ubuntu 64-bit virtual machine (1 CPU, 2GB RAM).
3. https://github.com/Microsoft/prose/blob/master/ProgramSynthesis/benchmarks/emails.tsv

5

https://github.com/Microsoft/prose/blob/master/ProgramSynthesis/benchmarks/emails.tsv

Domain specific induction for data wrangling automation

id n input output FlashFill DSI

1 7
29/03/86 29-03-86
25-03-74 25-03-74 25-03-74 25-03-74
11.02.96 11-02-96 11.02.96 11-02-96

Accuracy: 0.66 1

2 7
03/29/86 29
74-03-31 31 03 31
05 30 85 30 30 30

Accuracy: 0.16 1

3 5
Sophia Underwood sophia.underwood@
Logan Smith logan.smith@ logan.smith@ logan.smith@
Lucas Janckle lucas.janckle@ lucas.janckle@ lucas.janckle@

Accuracy: 1 1

4 16
Nancy.FreeHafer@fourthcoffee.com fourthcoffee
Andrew.Cencici@northwindtraders.com northwindtraders northwindtraders northwindtraders
Laura.Giussani@adventure-works.com adventure-works adventure-works adventure-works

Accuracy: 1 1

5 4
Mr. Roger Male
Mrs. Simona Female Female
Mr. John Male Male

Accuracy: 0 1

6 5
Dr. Eran Yahav Yahav, E.
Prof. Kathleen S. Fisher Fisher, K. Fisher, K.
Bill Gates, Sr. Gates, B. Sr., G. Gates,, B.

Accuracy: 0 0.5

7 4
Dr. Mark Sipster Dr.
Louis Johnson, PhD PhD Lou PhD
Prof. Edward Davis Prof. Prof. Prof.

Accuracy: 0.5 1

8 3
International Business Machines IBM
Principles Of Programming Languages POPL POPL POPL
International Conference on Software Engineering ICSE ICSE ICSE

Accuracy: 1 1

Table 2: Example of the results of our approach compared with FlashFill. Output is the
expected output. The first row of each dataset is the example given to FlashFill
and MagicHaskeller to learn. Green colour means correct result; Red colour means
incorrect result. n is the number of instances in each dataset.

modified and updated so that it allows the user to incorporate and use domain-specific
background knowledge in runtime.

To illustrate its functionality, we have created a web application with an intuitive visual
interface that facilitates the user to automate the data wrangling process. In order to
evaluate the performance of the system we have tested it with four different types of data
(domains) and problems: dates, emails, names and strings. Finally, we have compared our
results with the results of another data wrangling system. The results show that our system
is able to transform the input data into new output attributes from one or more examples
in a few seconds.

As future work for the demo back-end, we propose to automate the detection of the
data domain by using machine learning techniques to recommend the user the best DSBK
given the input data provided. We also plan to extend the domains thus including new ones
such as phone numbers, addresses, etc.

For the front-end of the web application, we plan to allow users to upload their own
datasets in addition to the examples and the manual input. Besides, it could be useful to
have more than one input to generate the output (for instance a user name and a domain
to create an email).

Finally, we plan to use not only the first function returned by MagicHaskeller but some
of them for making different dynamic suggestions to the user in order to decide which of
them is the most suitable for the problem at hand.

6

Domain specific induction for data wrangling automation

Acknowledgments

This work has been partially supported by the EU (FEDER) and the Spanish MINECO
project TIN 2015-69175-C4-1-R (LOBASS) and by Generalitat Valenciana under ref. PROM-
ETEOII/2015/013 (SmartLogic). Lidia Contreras was supported by FPU-ME grant FPU15/03219.

References

D. W. Barowy, S. Gulwani, T. Hart, and B. G. Zorn. FlashRelate: extracting relational
data from semi-structured spreadsheets using examples. In Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implementation, Portland,
OR, USA, June 15-17, 2015, pages 218–228, 2015.

B Boehmke. Data processing with dplyr & tidyr. Retrieved from RPub. com, 2014.

L. Contreras-Ochando, F. Mart́ınez-Plumed, C. Ferri, J. Hernández-Orallo, and M. J.
Ramı́rez-Quintana. General-purpose inductive programming for data wrangling automa-
tion. AI4DataSci @ NIPS 2016, 2016.

K. Ellis and S. Gulwani. Learning to learn programs from examples: Going beyond pro-
gram structure. May 2017. URL https://www.microsoft.com/en-us/research/

publication/learning-learn-programs-examples-going-beyond-program/

/-structure/.

S. Gulwani. Automating string processing in spreadsheets using input-output examples. In
Proc. 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’11, pages 317–330, New York, NY, USA, 2011. ACM.

S. Gulwani, J. Hernandez-Orallo, E. Kitzelmann, S. H Muggleton, U. Schmid, and B. Zorn.
Inductive programming meets the real world. Communications of the ACM, 58(11):90–99,
2015.

K. Ham. Openrefine (version 2.5). http://openrefine. org. free, open-source tool for cleaning
and transforming data. Journal of the Medical Library Association, 101(3):233, 2013.

S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. Wrangler: Interactive visual specification
of data transformation scripts. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 3363–3372. ACM, 2011.

S. Katayama. An analytical inductive functional programming system that avoids un-
intended programs. In Proceedings of the ACM SIGPLAN 2012 workshop on Partial
evaluation and program manipulation, pages 43–52. ACM, 2012.

J. Kazil and K. Jarmul. Data wrangling with Python: tips and tools to make your life easier.
O’Reilly Media, Inc., 2016.

E. Kitzelmann and U. Schmid. Inductive synthesis of functional programs: An explanation
based generalization approach. Journal of Machine Learning Research, 7:429–454, 2006.

7

https://www.microsoft.com/en-us/research/publication/learning-learn-programs-examples-going-beyond-program//-structure/
https://www.microsoft.com/en-us/research/publication/learning-learn-programs-examples-going-beyond-program//-structure/
https://www.microsoft.com/en-us/research/publication/learning-learn-programs-examples-going-beyond-program//-structure/

Domain specific induction for data wrangling automation

V. Le and S. Gulwani. FlashExtract: A framework for data extraction by examples. In
Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’14, pages 542–553, New York, USA, 2014. ACM.

R. Singh. BlinkFill: Semi-supervised programming by example for syntactic string trans-
formations. Proceedings of the VLDB Endowment, 9(10):816–827, 2016.

R. Singh and S. Gulwani. Predicting a correct program in programming by example. In
International Conference on Computer Aided Verification, pages 398–414. Springer, 2015.

R. Singh and S. Gulwani. Transforming spreadsheet data types using examples. In Pro-
ceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’16, pages 343–356, New York, USA, 2016. ACM.

D. Steinberg. How much time needs to be spent preparing data for
analysis? http: // info. salford-systems. com/ blog/ bid/ 299181/

How-Much-Time-Needs-to-be-Spent-Preparing-Data/ /-for-Analysis , 2013.

H. Wickham. reshape2: Flexibly reshape data: A reboot of the reshape package. r package
version 1.4. 2, 2016.

8

http://info.salford-systems.com/blog/bid/299181/How-Much-Time-Needs-to-be-Spent-Preparing-Data//-for-Analysis
http://info.salford-systems.com/blog/bid/299181/How-Much-Time-Needs-to-be-Spent-Preparing-Data//-for-Analysis

	Introduction
	Approach
	Domain Specific Induction
	System Architecture and Functionality

	Experiments
	Conclusions and Future Work

