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Abstract—Quantification is the name given to a novel ma-
chine learning task which deals with correctly estimating the
number of elements of one class in a set of examples. The
output of a quantifier is a real value; since training instances
are the same as a classification problem, a natural approach
is to train a classifier and to derive a quantifier from it. Some
previous works have shown that just classifying the instances
and counting the examples belonging to the class of interest
(classify & count) typically yields bad quantifiers, especially
when the class distribution may vary between training and
test. Hence, adjusted versions of classify & count have been
developed by using modified thresholds. However, previous
works have explicitly discarded (without a deep analysis) any
possible approach based on the probability estimations of
the classifier. In this paper, we present a method based on
averaging the probability estimations of a classifier with a very
simple scaling that does perform reasonably well, showing that
probability estimators for quantification capture a richer view
of the problem than methods based on a threshold.

Keywords-quantification; probability estimators; class imbal-
ance; classification;

I. INTRODUCTION

George Forman [1][2][3] has introduced and systematised
a new supervised machine learning task called ‘quantifica-
tion’. Quantification is defined as follows: “given a labeled
training set, induce a quantifier that takes an unlabeled
test set as input and returns its best estimate of the class
distribution.”[2]. For instance, consider a bank that has a
credit risk assessment model (possibly a machine learning
classifier), and it is assigned a new portfolio of customers
(e.g., 100,000 new customers who originated from an agree-
ment with a retailing company). A very important (and
classical) question is to determine which customers the
credits will be granted to. However, before resolving all
of these specific decision making problems, the bank will
typically require an assessment of how many credits it
will grant, i.e., the bank will need to quantify how many
of the customers in the portfolio will have their credit
approved. The accuracy of this quantification is critical to
assigning human and economical resources, long before any
specific decision is made. Also, the result of this estimation
may affect the thresholds that may be established for each
particular operation since the assessment of the global risk
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can affect the way in which each local risk is managed
(e.g. the policies will probably change if the plan was to
work with 25,000 positive results but we expect 50,000).
The quantification problem can be found in almost any area
in data mining, such as failure detection, medical diagnosis,
customer-relationship management, and retailing.

The task is closely related to classification since examples
have the same presentation (several input features and a
nominal output feature), but it is different in that we are
not interested in the specific predictions for each instance of
an application dataset, but on the overall count of elements
of a particular class. Consequently, quantification is applied
to a batch of examples, and not to a single example alone.
Since the output of the quantification problem is a real value,
it has a relation to regression, but the input of the regressor
would be a single example rather than a set of examples.

Quantification is a very frequent problem in real appli-
cations, so it is somewhat surprising that nobody in the
data mining community, until George Forman, recognised,
baptised, and addressed this task on its own. In [1][2][3],
Forman develops several methods and defines new experi-
mental settings to evaluate the task, especially focussing on
the cases where the training class distribution is different to
the test class distribution.

One of the first conclusions from these works is that the
naı̈ve solution called classify & count (CC) does not work
well. Consequently, several other methods are introduced, by
properly adjusting the threshold and also scaling the result.
Other methods are not based on CC but are still based on
thresholds. However, there is another way to address the
problem, which is to consider probability estimators instead
of crisp classifiers. If a classifier estimates a class probability
for each example, the CC method becomes the probability
estimation & average (P&A) method. Surprisingly, this
approach is considered a “non-solution” in Section 3.4 in
[1] and an “ill-conceived method” in Section 2.4 in [3].
The reason for this is clearly shown with an example:
“For a well-calibrated classifier, the output value y = 70%
indicates that, of the training cases that score similarly,
approximately 70% were positive. Supposing a large test
set contains the same proportion of positives, as among
those cases that score y = 70% ± ε, roughly 70% would
be positive. However, if we repeat the test with most of the
negative cases removed at random, then the proportion of
positives among the remaining test cases scoring in this bin



(y = 70%± ε) would be much greater. Thus, the output of
70% would greatly underestimate the new P (+|y = 70%);
and likewise for every bin. Again, the end effect is that
this method would underestimate at high prevalence and
overestimate at low prevalence, just like the CC method.
As a result, the use of probability estimators has not been
explored since it has been considered a “non-solution”.

We agree with the rationale, but this does not necessarily
imply that we should not give adjusted versions of P&A a
chance. If adjusted versions of CC work, such as Forman’s
AC and T50, we think we could explore similar (or differ-
ent) adjusting methods for P&A. In this paper, we present a
simple scaling method over P&A, called “Scaled Probability
Average”, which shows very good performance. A quantifier
based on probability estimation is not based on a threshold,
so the appraisal of this threshold is not so critical. In fact,
our method depends on the quality of all the probabilities
since it considers all the information that the classifier gives
us about the dataset.

Summing up, the main contributions of this paper are
that we introduce probability estimation to the scene of
quantification, and we derive a simple scaling method that
shows good performance.

The paper is organised as follows. Section II introduces
basic notation and terminology for the quantification prob-
lem and sets the quality measures for quantification. Section
III derives the methods based on P&A, presents the plain
version Probability Average (which is actually a bad solu-
tion in general) and then introduces the Scaled Probability
Average method. These two methods are evaluated in Section
IV with a range of test class imbalances and then compared
to other quantification methods. Finally, Section V wraps up
the paper with the conclusions and future work.

II. NOTATION AND PREVIOUS WORK

Given a dataset T , n denotes the number of examples,
and c the number of classes. We will use i to index or
refer to examples, so we will express i = 1 . . . n or i ∈ T
indistinctly. f(i, j) represents the actual probability of ex-
ample i to be of class j. We assume that f(i, j) always takes
values in {0,1} and is not strictly a probability but a single-

label indicator function. With nj =
n∑
i=1

f(i, j), we denote

the number of examples of class j. π(j) denotes the prior
probability of class j, i.e., π(j) = nj/n. When referring to
a particular dataset T , we will use the equivalent expression

πT (j) =
∑

i∈T
f(i,j)

|T | . Given a classifier, p(i, j) represents
the estimated probability of example i to be of class j
taking values in [0,1]. π̂(j) denotes the estimated probability

of class j which is defined as π̂T (j) =
∑

i∈T
p(i,j)

|T | when
referring to a dataset T . For the sake of readability, when
c = 2, we will use the symbols ⊕ for the positive class and
	 for the negative class. Since the probabilities are comple-
mentary for two classes, we will focus on the positive class.

Cθ(i, j) is 1 iff j is the predicted class obtained from p(i, j)
using a threshold θ. We can omit θ when it is embedded in
the classifier or clear from the context. When c = 2, we
will use the following measures TP =

n∑
i=1

f(i,⊕)C(i,⊕),

TN =
n∑
i=1

f(i,	)C(i,	), FP =
n∑
i=1

f(i,	)C(i,⊕),

FN =
n∑
i=1

f(i,⊕)C(i,	); we will also use the ratios,

tpr = TP/(TP + FN) and fpr = FP/(FP + TN). We
will use pos for the actual proportion of positives, i.e., π(⊕);
and we will use neg for the actual proportion of negatives,
i.e., π(	). Finally, the function clip(X, a, b) truncates a real
value X inside an interval [a, b]. We represent the elements
of T of class ⊕ and 	 with T⊕ and T	, respectively.

A. Quantification

Forman [1][2][3] was the first to identify and name the
quantification problem: “quantification is accurately estimat-
ing the number of positives in the test dataset as opposed to
classifying individual cases accurately.” Therefore, the main
objective in a quantification task is to estimate the class
distribution in the target population from the distribution
observed in the training dataset. This problem is especially
important in many application areas, such as medicine, risk
assessment, diagnosis, etc., where the training dataset does
not represent a random sample of the target population
(because population changes over time or the classes are
highly imbalanced, with the positive class as a minority).

As Forman pointed out, quantification is a machine
learning task that is quite different from classification. In
quantification, we are interested in the test set as a whole
in order to determine its class distributions and not in the
individual predictions for each example. In fact, although
accurate classifications generally give accurate class count-
ing, an inaccurate classifier can also be a good quantifier if
false positives and false negatives cancel each other. In [3],
Forman introduced several quantification methods that we
arrange into the following three groups:
• Methods based on counting the positive predicted ex-

amples. The classify & count (CC) and the adjusted
count (AC) methods belong to this group.

• Methods based on selecting a classifier threshold, but
in this case, the threshold is determined from the
relationship between tpr and fpr in order to provide
better quantifier estimates. For instance, some methods
choose one particular threshold, such as: the X method,
which selects the threshold that satisfies fpr = 1−tpr;
the Max method, which selects the threshold that max-
imises the difference tpr− fpr; or those methods like
T50 that select a particular rate between tpr and fpr.
The Median Sweep (MS) method1 is another method
that tests all the thresholds in the test set, estimates the

1It is proposed when the tpr and fpr are estimated from cross-validation.



number of positives in each one, and returns a mean or
median of these estimations.

• Methods based on a mixture of distributions. The
Mixture Model (MM )[1] is included in this group.
It consists of determining the distributions from the
classifier scores on the training positive (D⊕) and neg-
ative examples (D	) and then modelling the observed
distribution D on the test set as a mixture of D⊕ and
D	.

The best results are obtained with AC in general; however,
when the training sets are small and the number of positives
is small, other methods such as T50 or MS can get
better results (at the cost of performing worse in other
more balanced situations). Of the above-mentioned methods
proposed by Forman, the simplest one is the CC method.
It consists of learning a classifier from the training dataset
and counting the examples of the test set that the classifier
predicts positive (

∑
i∈Test C(i,⊕)). This method gives poor

results since it underestimates/overestimates the proportion
of positives, unless the classifier is perfect (tpr = 1 and
fpr = 0). The AC method is an improvement of the CC
method, which estimates the true proportion of positives p̂os
by applying the equation p̂os = p̂os

′−fpr
tpr−fpr , where p̂os

′ is

the proportion of predicted positives
∑

i∈T est
C(i,⊕)

|Test| . Forman
proposed estimating tpr and fpr by cross-validation on the
training set. Since this scaling can give negative results
or results above 1, the last step is to clip p̂os to the
range [0..1]. Finally, T50 is another method that selects the
threshold where tpr = 50% and the rest works the same
as AC. This method supposedly behaves better when the
denominator in the formula of p̂os is unstable with AC.
We have implemented these three methods in order to fairly
compare the performance of our proposals with them. The
reason for this choice is that these methods are the ones that
are most related to ours and their performance is good, or
very good, with respect to other quantification methods such
as X , Max, or MS. In other words, they are representative
of the state-of-the-art in quantification. Motivated by the
fact that in quantification only one result per dataset is
produced, Forman proposed an experimental methodology
to evaluate quantification that is different from the one that
is normally used for classification. It consists in varying the
class distribution between the training set and the test set.
For the training set, Forman randomly selected the number
of positive and negative examples from a range. For the test
set, he varied the percentage of positive examples to also
cover scenarios with imbalanced classes.

As we have mentioned in the introduction, a natural
approach to solve the quantification problem that Forman
disregarded is to use a probability estimator instead of a
classifier. But, we will show that there is a different way
to estimate the positive proportion by using probability
estimations sharing the spirit of the CC method.

Moreover, our proposal is supposed to be more robust
to variations in the probability estimation of few examples
than other methods based on thresholds because we take into
account all the information from the dataset. For example,
consider a test set with probabilities and actual classes as fol-
lows: (0.90,+), (0.55,+), (0.53,−), (0.51,−) and (0.21,−).
If we set the threshold at 0.6, the proportion of positives is
20%; however, if the threshold is 0.5, then the proportion
of positives is 80%. Note that this is a good classifier,
with perfect ordering, i.e., AUC=1. Therefore, methods that
use thresholds are less robust in the sense that a change
in the estimation of few examples could cause a small
shift in the threshold but a large variation in the positive
count estimation. However, regarding the probabilities of all
the examples, the proportion of positives is 54%. In order
to have a large change here, many probability estimations
would have to change significantly.

B. Quantification Evaluation

We use two global evaluation measures from the classical
error measures for continuous variables, the Mean Absolute
Error (MAE) and the Mean Squared Error (MSE) for
quantification. Forman only used the absolute error in his
experiments, but we consider that the MSE measure is a
better way to quantify differences between estimations for
real values. Let us formalise these measures in order to better
establish the quantification problem and goal.

Consider that we have a method that estimates the
proportion of elements for each class (π̂T (j)). By cal-
culating the absolute difference of these two values, we
have the global MAE for each class, GMAEj(T ) =
|πT (j)− π̂T (j)|, and for all the classes we have
GMAE(T ) = 1

c ·
∑
j=1..cGMAEj(T ). Similarly, we

calculate GMSEj(T ) (πT (j)− π̂T (j))2 and GMSE(T ) =
1
c ·

∑
j=1..cGMSEj(T ). For binary problems, we have

that GMAE⊕ = GMAE	 = GMAE and also that
GMSE⊕ = GMSE	 = GMSE. Therefore, for binary
problems, we will only evaluate the error for the proportion
of positives.

III. QUANTIFYING BY SCALED AVERAGED
PROBABILITIES

The idea of using an average of the probability estimations
is supported by the issue that probabilities represent much
richer information than just the decisions, which are simply
derived information from the probability estimation using a
threshold. After this rationale, the use of probabilities shapes
a family of methods that we call probability estimation
& average. The simplest method in this family is called
Probability Average (PA). First, a probabilistic classifier
is learned from the training data, such as a Probability
Estimation Tree or a Naı̈ve Bayes model. Then, the learned
model is applied to the instances in the test set, obtaining
a probability estimation for each one. Finally, the average



of the estimated probabilities for each class is calculated.
Although this definition is multiclass, for the rest of the
paper we will concentrate on binary datasets. In this case, we
only need to care about one class (the positive class), and the

method is defined as follows: π̂PATest(⊕) =
∑

i∈T est
p(i,⊕)

|Test| .
Logically, if the proportion of positive examples in the

training set is different from the proportion of positive
examples in the test set, the result will not be satisfactory in
general. The solution comes precisely from the analysis of
the extreme case when all the elements in the test set are of
one class. In this case, we will get the average probability for
the positive cases alone, which can only be 1 for a perfect
classifier (which is not frequently the case). As in the AC
method, the idea is to use a proper scaling.

Nevertheless, from the training set, it is possible to calcu-
late the actual proportion of positive examples (πTrain(⊕)),
the positive probability average (π̂Train(⊕)), the positive
probability average for the positives (π̂Train⊕(⊕)), and the
positive probability average for the negatives (π̂Train	(⊕)).

From the definitions, it is easy to check the following:
π̂Train⊕(⊕) ·πTrain(⊕)+ π̂Train	(⊕) · (1−πTrain(⊕)) =
π̂Train(⊕).

From this equation, we derive πTrain(⊕) =
π̂T rain(⊕)−π̂T rain	 (⊕)

π̂T rain⊕ (⊕)−π̂T rain	 (⊕) , which yields a probabilistic
version of Forman’s adjustment (see Fig.1). When all are
positives, π̂Train⊕(⊕) sets the maximum, and we scale
this to 1. When all are negatives, π̂Train	(⊕) sets the
minimum, and we scale this to 0.

Thus, we propose a new quantification method, which
we call Scaled Probability Average (SPA), applying this last
formula (scaling) in the same way as Forman to the value
obtained with the PA method (π̂PATest(⊕)), i.e., π̂SPATest (⊕) =
π̂P A

T est(⊕)−π̂T rain	 (⊕)

π̂T rain⊕ (⊕)−π̂T rain	 (⊕) .

π̂SCCTest (⊕) =

∑
i∈T est

C(i,⊕)

|T est| −π̂T rain	 (⊕)

π̂T rain⊕ (⊕)−π̂T rain	 (⊕)

we will get the average probability for the positive cases alone, which can only

be 1 for a perfect classifier (which is not frequently the case). As in the Adjusted

Count (AC) method, the idea is to use a proper scaling.

Nevertheless, from the training set, it is possible to calculate the actual pro-

portion of positive examples (πTrain(⊕)), the positive probability average (π̂Train(⊕)),

the positive probability average for the positives (π̂Train⊕(⊕)), and the positive

probability average for the negatives (π̂Train"(⊕)).

From the definitions, it is easy to check the following: π̂Train⊕(⊕)·πTrain(⊕)+

π̂Train"(⊕) · (1− πTrain(⊕)) = π̂Train(⊕).

From this equation, we derive πTrain(⊕) =
π̂T rain(⊕)−π̂T rain" (⊕)

π̂T rain⊕ (⊕)−π̂T rain" (⊕) , which

yields a probabilistic version of Forman’s adjustment (see Fig.1). When all are

positives, π̂Train⊕(⊕) sets the maximum, and we scale this to 1. When all are

negatives, π̂Train"(⊕) sets the minimum, and we scale this to 0.

Thus, we propose a new quantification method, which we call Scaled Prob-

ability Average (SPA), applying this last formula (scaling) in the same way as

Forman to the value obtained with the PA method (π̂PA
Test(⊕)), i.e., π̂SPA

Test (⊕) =
π̂P A

T est(⊕)−π̂T rain" (⊕)

π̂T rain⊕ (⊕)−π̂T rain" (⊕) .
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Fig. 1. Scaling used in the SPA method. The limits in the training set are placed at 0.3 and 0.9.
The estimated value for the training set is 0.54 whereas the actual proportion in the training set is
0.4. The scaling would move a case at 0.4 to 0.23 and a case at 0.8 to 0.83.

In the same way as in the SPA method the proportion of positive examples

estimated by the PA method is scaled, also this scaling can be applied to the
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Figure 1. Scaling used in the SPA method. The limits in the training set are
placed at 0.3 and 0.9. The estimated value for the training set is 0.54 whereas the
actual proportion in the training set is 0.4. The scaling would move a case at 0.4 to
0.23 and a case at 0.8 to 0.83.

In the same way as in the SPA method, the proportion
of positive examples estimated by the PA method is scaled.
This scaling can also be applied to the proportion of posi-
tive examples estimated by the CC method. Therefore, we
propose the Scaled Classify & Count (SCC) method.

IV. EXPERIMENTS

In this section, we present an experimental evaluation of
several quantification methods: those based on classification
(i.e., on a threshold), namely CC, AC, T50 (explained in
Section II); our two methods based on probability average,
namely PA and SPA; and a hybrid method (SCC), which is
explained in Section III. We have not used an internal cross-
validation process with the training set to better estimate the
thresholds, tpr and fpr, as Forman does. Instead, we have
used an additional validation set to estimate the thresholds,
tpr and fpr. In other words, the methods are the same, but
instead of using a 50 fold cross-validation process with the
training set, we have used two different sets (training and
validation) and repeated the process 100 times.

The experimental setting is based on the common case
where we train a classifier or probability estimator on a
training dataset and we want to quantify the number of
examples of one class for a different test dataset. We are
especially interested in cases where class distributions vary
between training and test. In order to get this variation
(and being able to consider cases where the majority class
examples are increased or reduced), for each problem, we
divided the whole dataset into 37.5% for training, 37.5%
for validation, and 25% for test. With this original test set,
we constructed six different variations test sets: the whole
test set with the original proportion of classes, and five test
sets changing the proportion of classes (100% of examples
of positive class and 0% of negative class, 75% and 25%,
50% and 50%, 25% and 75%, and 0% and 100%). The
proportions were obtained by random undersampling using
a uniform distribution.

In order to have a broad range of classifiers and probabil-
ity estimators, we used four different methods from WEKA
[4]: Naı̈veBayes, J48 (a C4.5 implementation), IBk (k = 10)
(a k-NN implementation), and Logistic (a logistic regression
implementation). We used the WEKA default parameters in
the methods (except the parameter k in the IBk method that
is set to 10). A total of 100 repetitions were performed for
each dataset (25 for each classifier). We selected 20 binary
datasets (Table I) from the UCI repository [5]. We adopted
the same criterion as Forman, and the positive class is the
minority class.

In Table I, we show the results with respect to the GMSE
measure2 for each method. These values are the average of
the 100 repetitions for each dataset. We also include MSE,
AUC, CalBin and Accuracy measures (see, e.g. [6] for a
definition of these measures). For each dataset, as suggested
in [7], we calculated a Friedman test and showed that the
six methods do not have identical effects, so we calculated
the Nemenyi post-hoc test to compare all the methods with
each other (with a probability of 99.5%). The values in bold
show that this method outperforms the others and that the

2GMAE results portray a similar picture.



Table I
GMSE MEASURE FOR EACH DATASET AND THE AVERAGE RESULT OF ALL THE DATASETS FOR EACH QUANTIFICATION METHOD, AND MSE, AUC,

CALBIN AND ACCURACY MEASURES FOR EACH DATASET.

# Datasets Size πT r(⊕) CC AC T50 SCC PA SPA MSE AUC CalBin Acc.
1 Wisconsin Breast Cancer 699 0.34 0.0022 0.0008 0.0667 0.0008 0.0032 0.0006 0.04 0.82 0.04 0.95
2 Chess 3196 0.48 0.0033 0.0002 0.0155 0.0024 0.0116 0.0001 0.06 0.82 0.09 0.93
3 Credit Rating 690 0.45 0.0219 0.0046 0.0115 0.0070 0.0286 0.0037 0.15 0.76 0.16 0.82
4 German Credit 1000 0.31 0.0921 0.0265 0.0277 0.0598 0.0878 0.0176 0.24 0.65 0.26 0.65
5 Pima Diabetes 768 0.35 0.0572 0.0160 0.0247 0.0332 0.0642 0.0099 0.21 0.69 0.23 0.70
6 House Voting 435 0.38 0.0044 0.0018 0.0522 0.0018 0.0048 0.0014 0.07 0.81 0.07 0.92
7 Monks1 556 0.49 0.0449 0.0072 0.0186 0.1025 0.0487 0.0057 0.16 0.72 0.23 0.79
8 Mushroom 8124 0.48 0.0268 0.0004 0.0380 0.0022 0.0211 0.0003 0.12 0.80 0.13 0.84
9 Spam 4601 0.39 0.0118 0.0003 0.0284 0.0006 0.0156 0.0003 0.10 0.80 0.10 0.88

10 Tic-tac 958 0.34 0.0626 0.0107 0.0127 0.0525 0.0671 0.0062 0.19 0.71 0.23 0.72
11 Breast Cancer 286 0.29 0.1280 0.1118 0.1171 0.1638 0.1057 0.0829 0.28 0.60 0.31 0.62
12 Haberman Breast 306 0.27 0.2045 0.1478 0.1265 0.2555 0.1316 0.1049 0.28 0.59 0.31 0.60
13 Heart Disease 303 0.45 0.0236 0.0108 0.0235 0.0116 0.0291 0.0083 0.15 0.75 0.17 0.80
14 Heart Statlog 270 0.43 0.0251 0.0141 0.0352 0.0152 0.0320 0.0111

¯
0.15 0.75 0.18 0.80

15 Ionosphere 351 0.35 0.0429 0.0075 0.0446 0.0068 0.0487 0.0053 0.17 0.75 0.19 0.81
16 Monks2 601 0.34 0.2386 0.1826 0.2146 0.3087 0.1168 0.1732 0.27 0.55 0.31 0.52
17 Monks3 554 0.48 0.0010 0.0004 0.0151 0.0069 0.0151 0.0006 0.05 0.82 0.13 0.97
18 Hepatitis 155 0.19 0.1536 0.1241 0.1329 0.1454 0.1226 0.0885 0.27 0.66 0.30 0.66
19 Sonar 208 0.46 0.0525 0.0460 0.0622 0.0521 0.0572 0.0400 0.26 0.67 0.27 0.69
20 Spect 80 0.49 0.1009 0.0921 0.1308 0.1530 0.0722 0.0879 0.24 0.68 0.27 0.70

AVG. 0.39 0.0649 0.0403 0.0599 0.0691 0.0542 0.0324 0.17 0.72 0.2 0.77

difference is statistically significant. Also, if several values
are underlined, this indicates that these methods outperform
the rest with a statistically significant difference, but the
difference between the two is not significant.
The results are categorical as far as the use of probability
estimators. Not only do they work, but they outperform all
the other methods. Of course, as we expected, a proper
scaling is the key to success. In the same way that AC
dramatically improves CC, SPA also improves PA. How-
ever, by looking at the table in more detail we can get
more insight. For instance, while CC and PA are relatively
close, SPA is able to improve PA more than AC is able
to improve CC (in relative terms). The reason may be
found in the way that SPA is not based on thresholds (or
measures such as tpr or fpr which depend on them), but on
averages. Thus, the results show that SPA is more robust.
Regarding the other methods, SCC is a hybrid method that
uses classification to estimate the base proportion and uses
the probability average to scale it. The result shows no clear
improvement over CC or PA. This supports the thesis that,
for SPA, it is the conjunction of PA with the scaling what
makes the results good. The behaviour of T50 is expected,
since it highly depends on the threshold and this is a method
oriented to cases where the original training set is highly
imbalanced.

In order to analyse the effect of imbalance (in the training
set), we repeated the experiments but reduced the number
of examples of the positive class by 90% in the training
and validation sets. In this situation, the SPA method still
obtains good results, but, in most cases, the differences
between the SPA method and the AC and T50 methods
are not statistically significant. We want to remark that
AC and T50 methods are designed for situations where
the proportion of classes are imbalanced. Even though, this

second experimental setting is more favourable for the AC
and T50 methods, SPA method still obtains good results.
These results are summarised in Fig.2 (right).

Finally, in order to analyse the effect with respect to test
imbalance, for each dataset, we analysed the results for the
six different test set imbalances. The conclusion was that the
behaviour is similar in all the datasets. The best results (as
expected) are obtained with class proportions that are close
to the original class proportion or close to 0.5, and much
worse as we get closer to 0 or 1 proportions. In Fig.2 (left),
we show a typical case of a dataset where the errors are
much lower when the test proportion is close to the original
training proportion. In Fig.2 (centre), we show the average
results for the 20 datasets without reducing the proportion
of examples of the positive class in the training set. In Fig.2
(right), we show the results of reducing the proportion of
examples of the positive class by 90% in the training and
validation sets. Fig.2 (centre) shows that when the proportion
of examples of the positive class in the test set is more or
less between 20% and 60%, the AC method is the one that
obtains the best results. In the rest of proportions, the SPA
is the best method because its behaviour is always quite
similar. With this in mind, it is logical to think in terms of a
new “mixed” method, which uses the method that obtain the
best results in each interval. We have not implemented this
method, but we propose its implementation and experimental
evaluation as an interesting topic for future work.

V. CONCLUSIONS AND FUTURE WORK

Quantification is an old and frequent problem that has
only very recently received proper attention as a separate
machine learning task. In our opinion, one of the most
natural ways to address the problem is to average the
probability estimations for each class because we use all
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Figure 2. Upper-Left: GMSE results with variable test positive ratios for the dataset CreditR. Upper-Centre: GMSE results with variable test positive ratios for the average
of all the datasets. Upper-Right: GMSE results with variable test positive ratios for the average of all the datasets, with the proportion of positive examples in the training and
validation sets reduced by 90%. Lower-(Left, Centre and Right): The value of each quantification method for each test setting. The diagonal shows the perfect value.

the information provided by the probability estimator and
because we do not rely so much on a good threshold choice.
However, in the same way that CC does not work, this
easy approach does not work. Since CC can be adjusted, we
have seen that a simple probability average method can also
be adjusted. We have derived a generalisation of Forman’s
scaling for probabilities, and we have derived a new method
from it. The results are highly positive and show that the
use of probability estimators for quantification is good to
pursue, which can lead to new methods in the future.

As further future work, there are obviously several areas
(cost quantification [3]) and experimental settings (very im-
balanced training datasets) that are borrowed from Forman’s
seminal works for which a more exhaustive evaluation of
our methods and the derivation of specialised ones should be
addressed. One of these extensions is quantification for more
than two classes. Our PA method is originally multiclass,
but the scaling used in SPA is not. We think that proper
methods (different to indirect 1vs1 or 1vsall) could be
derived using probability averaging.

Finally, quantification for regression is also a machine
learning task that should be investigated (as we stated in the
introduction with the credit assessment problem, where an

estimation of the total amount for a customer portfolio and
not the number of granted credits would be the goal). In fact,
quantification for regression might be closer to quantification
through probability averaging than through classification.
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