8th International Conference on Intelligent Data Engineering and Automated Learning (IDEAL'07)

Joint Cutoff Probabilistic Estimation Using Simulation: A Mailing Campaign Application

Antonio Bella Cèsar Ferri José Hernández-Orallo María José Ramírez-Quintana

- 1. Introduction
- 2. Campaign design with one product
- 3. Using simulation and data mining for a campaign design with more than one product
- 4. Experiments with N products
- 5. Conclusions

- 1. Introduction
- 2. Campaign design with one product
- 3. Using simulation and data mining for a campaign design with more than one product
- 4. Experiments with N products
- 5. Conclusions

1. Introduction (I)

□ Example:

	New Coach	Old Coach
Probability	DM Model	DM Model
Trip 1	0.86	0.42
Trip 2	0.56	0.04
Trip 3	0.77	0.21
Trip 4	0.91	0.13

1. Introduction (II)

1. Introduction (III)

- □ DM models accompanied by probabilities
- □ Train & Test as usual
- □ Probabilities and constraints are used to estimate the cutoff by simulation
- ☐ Simulation framework: basic Petri nets
- □ A direct-marketing campaign design

- 1. Introduction
- 2. Campaign design with one product
- 3. Using simulation and data mining for a campaign design with more than one product
- 4. Experiments with N products
- 5. Conclusions

IDEAL'07

7

2. Campaign design with one product (I)

2. Campaign design with one product (I)

2. Campaign design with one product (I)

2. Campaign design with one product (II)

- □ Select the best cutoff
- □ Additional information:
 - I_{cost}: investment cost
 - b: benefit from selling one product
 - cost: sending cost of a mail
 - C: list of customers $(c_k \in C)$
 - $p(c_k)$: estimated probability

☐ Accumulated Expected Benefit:

$$-I_{cost} + \sum_{k=1..j} (b * p(c_k) - cost)$$

$$E(Benefit)$$

- □ Validation set:
 - real Accumulated Benefit

$$\mathbf{f}(\mathbf{c}_{\mathbf{k}}) \begin{cases} 0 \\ 1 \end{cases}$$

2. Campaign design with one product (III)

□ Example:

- $I_{cost} = 250 \text{ m.u.}$
- b = 200 m.u.
- cost = 20 m.u.

Customer	Buys	Probability	E(Benefit)	Acc. Benefit
				-250
3	YES	0.8098	141.96	-70
10	YES	0.7963	139.26	110
8	YES	0.6605	112.10	290
1	YES	0.6299	105.98	470
4	NO	0.5743	94.86	450
6	NO	0.5343	86.85	430
5	YES	0.4497	69.94	610
7	NO	0.2675	33.50	590
9	NO	0.2262	24.24	570
2	NO	0.0786	-4.29	550

2. Campaign design with one product (III)

□ Example:

- $I_{cost} = 250 \text{ m.u.}$
- b = 200 m.u.
- cost = 20 m.u.

- 1. Introduction
- 2. Campaign design with one product
- 3. Using simulation and data mining for a campaign design with more than one product
- 4. Experiments with N products
- 5. Conclusions

IDEAL'07

3. Using simulation and data mining for a campaign design with more than one product (I)

- Constraints and settings:
 - Stock limits
 - Different benefit for each product
 - Alternative products
 - The same sending cost

3. Using simulation and data mining for a campaign design with more than one product (II)

□ Single Approach:

- calculate local cutoffs
- 2. order all the pairs (customer, product)
- 3. global cutoff is the average of local cutoffs

□ Joint Simulation Approach:

- 1. order all the pairs (customer, product)
- 2. calculate best global cuttoff by simulation

	Product p ₁					
Customer	E(Benefit)	f _{p1}	Acc. Benefit			
			-150			
2	76.61	1	-70			
8	75.71	1	10			
9	60.37	0	-10			
5	48.19	1	70			
1	44.96 1		150			
7	30.96	0	130			
10	24.58	1	210			
3	23.04 0 1		190			
6	7.81 1 2		270			
4	-4.36	0	250			

Example	· ·
---------	-----

- = 10 customers
- 2 products
- $Icost_{p1} = 150 \text{ m.u.}$
- $Icost_{p2} = 250 \text{ m.u.}$
- $b_1 = 100 \text{ m.u.}$
- $b_2 = 200 \text{ m.u.}$
- cost = 20 m.u.

Product p ₂					
Customer	E(Benefit)	f _{p2}	Acc. Benefit		
			-250		
3	141.96	1	-70		
10	139.26	1	110		
8	112.10 1		290		
1	105.98	1	470		
4	94.86	0	450		
6	86.85	0	430		
5	69.94	1	610		
7	33.50	0	590		
9	25.24	25.24 0 570		25.24 0 57	570
2	-4.29	0	550		

	Single & Joint Approaches				
	Customer	Product	Acc. Benefit		
			-400		
	3	p_2	-220		
	10	p_2	-40		
	8	p_2	140		
	1	p_2	320		
	4	p_2	300		
	6	p_2	280		
	2	p ₁	360		
	8	p ₁	340		
	5	p_2	520	Joint	
	9	p ₁	500		
	5	p_1	480		
	1	p ₁	460		
	7	p_2	440		
	7	p_1	420		
	9	p_2	400		
Single	10	p ₁	380		
	3	p ₁	360		
	6	p ₁	440		
	2	p_2	420		
	4	p ₁	400		
'				•	

3. Using simulation and data mining for a campaign design with more than one product (IV)

- 1. Introduction
- 2. Campaign design with one product
- 3. Using simulation and data mining for a campaign design with more than one product
- 4. Experiments with N products
- 5. Conclusions

4. Experiments with N products (I)

- □ Reference customers file
- □ Parameters:
 - Number of customers: 10000 (60% training, 20% validation and 20% testing)
 - Number of products: 2, 3 and 4
 - Probability of buying each product: 0.01, 0.05, 0.2, 0.5, 0.8, 0.95 and 0.99
 - Benefits for each product: 100 m.u. for the first product and 100, 200, 500 or 1000 m.u. for the others
 - Sending cost (the same for all products): 10, 20, 50 or 90 m.u.
 - Stock for each product: 0.1, 0.2, 0.5 or 1 (multiplied by number of customers)
 - Investment cost for each product: benefits of the product multiplied by stock of the product and divided by 20
 - Correlation (how similar the products are): 0.25, 0.5, 0.75 or 1

4. Experiments with N products (II)

	2 products		3 products		4 products	
	Single	Joint	Single	Joint	Single	Joint
Benefits	165626	171225	182444	186805	220264	231771
Single	-	V	-	V	-	V
Joint	Х	-	Х	-	Х	-

- □ Friedman test: wins (V) / loses (X) ($\alpha = 0.005$)
- □ Average of many different situations and parameters

- 1. Introduction
- 2. Campaign design with one product
- 3. Using simulation and data mining for a campaign design with more than one product
- 4. Experiments with N products
- 5. Conclusions

5. Conclusions

- New framework to combine simulation and data mining to address decision making problems
- ☐ Simulation-based method outperforms classical analytical one
- □ Future work:
 - Other kind of problems
 - Probability calibration

Joint Cutoff Probabilistic Estimation Using Simulation: A Mailing Campaign Application

Thanks for your attention!

Antonio Bella http://www.dsic.upv.es/~abella abella@dsic.upv.es

