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Abstract. In some data mining problems, there are some input fea-
tures that can be freely modified at prediction time. Examples happen
in retailing, prescription or control (prices, warranties, medicine doses,
delivery times, temperatures, etc.). If a traditional model is learned,
many possible values for the special attribute will have to be tried to
attain the maximum profit. In this paper, we exploit the relationship
between these modifiable (or negotiable) input features and the output
to (1) change the problem presentation, possibly turning a classification
problem into a regression problem, and (2) maximise profits and derive
negotiation strategies. We illustrate our proposal with a paradigmatic
Customer Relationship Management (CRM) problem: maximising the
profit of a retailing operation where the price is the negotiable input
feature. Different negotiation strategies have been experimentally tested
to estimate optimal prices, showing that strategies based on negotiable
features get higher profits.

1 Introduction

In data mining, problem features (or attributes) have been usually classified as
input and output features. A problem is said to be supervised if it has output
features, and it is said to be unsupervised if it does not have output features.
Input features can be of many kinds: numerical, nominal, structured, etc. In
fact, many data mining methods have been specialised to specific kinds of input
features. In supervised learning, it is usually assumed that the goal of a model
is to predict an output value given an input. Consequently, a function is learned
from inputs to outputs, which is eventually applied to new cases.

However, in many application areas not all input feature values are given.
This does not mean that they are unknown (i.e., null), but that they can be mod-
ified or fine-tuned at prediction time. Consider a typical data mining problem: a
loan granting model where loans are granted or not according to a model which
has been learnt from previous customer behaviours. It is generally assumed that
given the input feature values (the customer’s personal information, the loan
amount, the operation’s data, etc.) the model will provide an output (yes/no, a
probability, a profit, etc.). But in real scenarios, the decision of whether the loan
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must be granted or not might change if one or more of the input feature values
can be changed. Perhaps, a loan cannot be granted for 300,000 euros, but it can
be granted for 250,000 euros. If the customer asks the bank’s clerk “what is the
maximum amount you can grant for this operation?”, we have a sort of inverse
problem. Since the model is not generally an analytical one (it is not generally a
linear regression model but a neural network, SVM, decision tree or other kind
of difficult-to-inverte models), the only possibility to give a precise answer to the
customer is to try all the possible input combinations for the loan amount and
find out the maximum value which is granted. After this inefficient and ad-hoc
process, the clerk can give an answer such as: “According to our loan models,
we can grant a maximum of 278,304 euros”. Apart from this inefficiency, there
is another more serious problem: the clerk knows that the model will give a neg-
ative answer to any amount above this maximum, for instance, 278,305 euros,
which makes this loan a quite risky one.

This typical example shows that some input features are crucial in the way
that they can be freely modified at prediction time. The existence of these special
attributes makes it quite inefficient to develop a classification/regression model
in the classical way, since whenever there is a new instance hundreds of possible
values have to be tried for the special attribute in order to see which combination
can attain the maximum profit, or, as the previous example, the maximum risk.
Additionally, these features are frequently associated to negotiation scenarios,
where more than one attempt or offer have to be made, by suitably choosing
different values for this special input feature.

In this paper we analyse these special features that we call “negotiable fea-
tures”, and how they affect data mining problems, its presentation and its use
for confidence probability estimation and decision making. As we will see, we can
exploit the relation between these input features and the output to change the
problem presentation. In this case, a classification problem can be turned into
a regression problem over an input feature [1]. Also, we present a first general
systematic approach on how to deal with these features in supervised models and
how to apply these models in real negotiation scenarios where there are several
attempts for the output value.

The paper is organised as follows. In Section 2 we focus on classification
problems with one numerical negotiable feature, since this is the most frequent
and general case, and it also includes prototypical cases, when the negotiable
feature is price or time. We present a general approach to the inversion prob-
lem which transforms the classification problem into a regression one, where the
negotiable feature is placed as the output. In Section 3, we describe a specific
real scenario (an estate agent’s) where negotiation can take place. We also de-
velop some negotiation strategies using the previous approaches in Section 4. In
Section 5, we experimentally evaluate models and negotiation strategies with a
baseline approach. Section 6 includes the conclusions and future work.

2 Inverting Problem Presentation

As we have mentioned in the introduction, there are many data mining problems
where one or more input attributes, we call negotiable features, can be modified
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at application time. Imagine a model which estimates the delivery time for an
order depending on the kind of product and the units which are ordered. One
possible (traditional) use of this model is to predict the delivery time given a
new order. However, another use of this model is to determine the number of
units (provided it is possible to play with this value) that can be delivered in a
fixed period of time, e.g. one week. This is an example of an “inverse use” of a
data mining model, where all inputs except one and the output are fixed, and
the objective is to determine the remaining input value.

The inversion problem can be defined as follows. Consider a supervised prob-
lem, where input attribute domains are denoted by Xi, i ∈ {1, . . . ,m}, and the
output attribute domain is denoted by Y . We denote the target (real) function
as f : X1 × X2 × . . . × Xm → Y . Values for input and output attributes will
be denoted by lowercase letters. Hence, labelled instances are then tuples of the
form 〈x1, x2, . . . , xm, y〉 where xi ∈ Xi and y ∈ Y . The inversion problem con-
sists in defining the function f I : X1× . . .×Xi−1× Y ×Xi+1× . . .×Xm → Xi,
where Xi is the negotiable feature. In the above example, f is the function that
calculates the delivery time of an order, the negotiable feature Xi is the number
of delivered units and f I calculates this number by considering fixed the delivery
time.

In the inverting problem the property that we call sensitive is satisfied.
Fixing the values of all the other input attributes Xj 6= Xi for at least n examples
from the dataset D (n ≤ |D| being n determined by the user depending on
the problem, the presence of noise, . . . ), there are two different values for Xi

producing different output values.
We also assume a monotonic dependency between the input attribute Xi

and the output. This dependency is defined under the assumption that there
is a strict total order relation for the output, denoted by ≺, such that for ev-
ery two different possible values ya, yb ∈ Y , we have that either ya ≺ yb or
yb ≺ ya. This order usually represents some kind of profit, utility or cost. For
numerical outputs, ≺ is usually the order relation between real numbers (either
< or >, depending on whether it is a cost or profit). For nominal outputs, ≺
usually sets an order between the classes. For binary problems, where POS and
NEG represent the positive and negative class respectively, we can just set that
NEG ≺ POS. For more than two classes, the order relation can be derived from
the cost of each class. Analogously, there is also a total order relation for the
input denoted as �. Based on this order, we can establish a monotonic depen-
dency between the input and the output features. Thus, ∀a, b ∈ Xi, if a � b
then f(x1, . . . , xi−1, a, xi+1, . . . , xm) ≺ f(x1, . . . , xi−1, b, xi+1, . . . , xm) (mono-
tonically increasing) or ∀a, b ∈ Xi, if a � b then f(x1, . . . , xi−1, a, xi+1, . . . , xm) �
f(x1, . . . , xi−1, b, xi+1, . . . , xm) (monotonically decreasing).

The inversion problem is well-known [1] and seems simple at first sight, but
many questions arise. First, is f I also a function? In other words, for two different
values for Xi we may have the same value for Y which will ultimately translate
into two inconsistent examples for f I (two equal inputs giving different outputs).
Second, the fact that we have an example saying that a given loan amount
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was granted to a customer does not mean that this is the maximum amount
that could be granted to the customer. Third, deriving probabilities to answer
questions such as “which loan amount places this operation at a probability
of 0.95 of being a profitable customer?” seem to be unsolvable with this new
presentation.

But if we take a closer look at these issues, we see that although relevant,
there is still a possibility behind this problem presentation change. First, many
regression techniques work well for inconsistent examples, so this is not a big
practical problem. Second, it is true that cases do not represent the maximum
amount, but in many cases the examples represent deals and they are frequently
not very far away from the maximum. Or, in the worst case, we can understand
the new task as “inferring” the typical value for Xi such that the loan is granted
to the customer. And third, we can also obtain probabilities in a regression
problem. We extend this idea further below.

If we invert the problem, how can we address the original problem again?
With the original model and for only two classes, it can be done by calculating
p(POS|〈x1, . . . , xi−1, a, xi+1, . . . , xm〉), for any possible value a ∈ Xi. From the
inverted (regression) problem, we get: â = f I(x1, . . . , xi−1, POS, xi+1, . . . , xm).
If we think of â as the predicted maximum or minimum for a which makes a
change on the class, a reasonable assumption is to give 0.5 probability for this,
that is p(POS|〈x1, . . . , xi−1, âxi+1, . . . , xm〉) = 0.5.

The next step is to assume that the output for f I follows a distribution with
centre at â. For instance, we can assume a normal distribution with mean at
â and use the standard error (mean absolute error, mae, on the training set)
as standard deviation σ. In other words, we use N(â,mae2). Figure 1 shows an
example of a normal distribution with centre at â = 305, 677.9 and standard
deviation σ = 59, 209.06 and its associated cumulative distribution function.

Fig. 1. Left: Example of a normal distribution â = 305, 677.9 and σ = 59, 209.06.
Right: Associated cumulative distribution function.

From here, we can derive the probability for any possible value a as the
cumulative distribution function derived from the above normal, i.e., Φâ,mae2 .

Consequently, for solving the original problem, (1) we solve the inversion
problem directly and (2) we use the predicted value of the negotiable feature as
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mean of a normal distribution with the standard error as standard deviation.
We call this model negotiable feature model.

3 Negotiation using Negotiable Feature Models: A Real
Scenario

We are going to illustrate the approach we have presented in the previous section
in a real example. In particular, we have studied the problem of retailing, where
the (negotiable) input feature is the price (denoted by π) and the problem is a
classification problem (buying or not).

We present an example using real data from an estate agent’s, which sells flats
and houses they have in their portfolio. We have several conventional attributes
describing the property (squared metres, location, number of rooms, etc.), and
a special attribute which is our negotiable feature, price. We will use the term
“product” for properties to make it clear that the case is directly extensible to
virtually any retailing problem where price is negotiable.

We start with the simplest negotiation scenario, where there are only one
seller and one buyer who both negotiate for one product. One buyer is interested
in one specific product. S/he likes the product and s/he will buy the product if
its price is under a certain price that s/he is willing to pay for this product.In
fact, if we reduce price to 0, the probability of having class POS approaches 1
and if we increase price to a very large amount, the probability of having class
NEG approaches 1. Moreover, the relation between price and the class order
NEG ≺ POS is monotonically decreasing.

Additionally, in our problem, the seller has a “minimum price” (denoted by
πmin), which corresponds to the price that the owner has set when the product
was included in the portfolio plus a quantity that the seller sets as fixed and
variable costs. Any increment over this minimum price is profitable for the seller.
Conversely, selling under this value is not acceptable for the seller. Therefore,
the seller will not sell the product if its price is under this minimum price that
s/he knows. Finally, the profit obtained by the product will be the difference
between the selling price minus the minimum price: Profit(π) = π − πmin.

Obviously, the goal of the seller is to sell the product at the maximum possible
price (denoted by πmax) which is the value such that the following equalities hold:

f(x1, . . . , xi−1, πmax, xi+1, . . . , xm) = POS
f(x1, . . . , xi−1, πmax + ε, xi+1, . . . , xm) = NEG,∀ε > 0

In other words, the use for the model is: “Which is the maximum price that I can
sell this product to this customer?”. Logically, the higher the price the lower the
probability, so the goal is more precisely to maximise the expected profit, which
is defined as follows:

E Profit(π) = p̂(POS|〈x1, . . . , xi−1, π, xi+1, . . . , xm〉) · Profit(π) (1)
where p̂ is the estimated probability given by the negotiable feature model.

To ease notation we will denote p̂(POS|〈x1, . . . , xi−1, π, xi+1, . . . , xm〉) as
p̂(POS|π), consequently, we can express (1) as:

E Profit(π) = p̂(POS|π) · Profit(π) (2)
with the additional constraint, as mentioned, that π ≥ πmin.
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Fig. 2. Left: Example of estimated probabilities. Right: Associated expected profit.
The minimum and maximum price are also shown.

So, if we have a model which estimates probabilities for the positive class, we
can use formula (2) to choose the price that has to be offered to the customer.
If probabilities are well estimated, for all the range of possible prices, this must
be the optimal strategy. In Figure 2 an example of the plots that are obtained
for the estimated probabilities and expected profit is shown.

But this is the case where we have one bid (one offer). In many negotiation
scenarios, we have the possibility of making several bids, as in bargaining. In this
situation, it is not so direct how to use the model in order to set a sequence of
bids to get the maximum overall expected profit. For instance, if we are allowed
three bids, the overall expected profit of a sequence of bids is defined as:

E Profit(〈π1, π2, π3〉) = p̂(POS|π1) ·Profit(π1)+(1− p̂(POS|π1)) · p̂(POS|π2) ·Profit(π2)+

(1− p̂(POS|π1)) · (1− p̂(POS|π2)) · p̂(POS|π3) · Profit(π3),
where π1 > π2 > π3 ≥ πmin.

4 Negotiation Strategies

In the scenario described in Section 3 the seller is the agent who uses the nego-
tiable feature models to guide the negotiation, while the buyer can only make
the decision of buying or not the product.

When we have one possible offer, it is not sensible to set the price at the
maximum price that our model predicts it can be sold, because in many cases,
because of the prediction error, it will be overestimated and we will not sell the
product. On the contrary, selling at the minimum price ensures that we sell as
many products as possible, but we get minimum profit as well. In Section 3 we
saw that an appropriate way of doing this is by using the expected profit.

Obviously, if the maximum price for the buyer is lower than the minimum
price for the seller, the product is not sold. We will exclude these cases, since
any strategy is not going to work well for them and it is not going to make any
difference to include them or not in terms of comparison.

When we have more than one possible offer, we start with a first offer and if
the price is less or equal than a price which is accepted by the buyer, s/he will
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buy the product. Otherwise, the seller can still make another offer and follow
the negotiation.

It is clear that there exists an optimum solution to this problem when the
seller can make “infinite” offers to the buyer, but it is inefficient and unfeasible.
This idea consists in beginning the negotiation with a very high offer and make
offers of one euro less each time, until the (patient and not very intelligent) buyer
purchases the product or until the price of the product is the minimum price.
In this case the product would be sold by its maximum price, because the buyer
purchases the product when the price offered was equal to the maximum price
considered by the buyer.

In what follows we propose several strategies. One is the “baseline” method
which is typically used in real estate agent’s. For cases with one single bid, we
introduce the strategy called “Maximum Expected Profit” (MEP), which is just
the application of the expected profit as presented in the previous section. For
cases with more bids (multi-bid) we present two strategies: “Best Local Expected
Profit” (BLEP) strategy and “Maximum Global Optimisation” (MGO) strategy.
Let us see all of them in detail below:

– Baseline method (1 bid or N bids). One of the simplest methods to price a
product is to increase a percentage to its minimum price (or base cost). In-
stead of setting a fix percentage arbitrarily, we obtain the percentage (called
α) such that it obtains the best result for the training set. For example if
we obtain that the best α is 0.4, it is expected that the best profit will be
obtained increasing in 40% the minimum price of the properties. If we have
only 1 bid, we will increase the minimum price of the flat by α. But, if we
have N bids, we will have one half of the bids with a value of α less than
the calculated α and the other half of the bids with a value of α greater
than the calculated α. In particular, the value of α will increase or decrease
by α/(N + 1) in each bid. For example, for 3 bids and the previous sample
the three values of α for three bids would be 50%, 40% and 30%. Therefore,
the first offer would be an increase of 50% over the minimum price of the
product, the second an increase of 40% and the third an increase of 30%.

– Maximum Expected Profit (MEP) strategy (1 bid). This strategy is typ-
ically used in marketing when the seller can only make one offer to the
customer. Each price for an instance gives a probability of buying. This
strategy chooses the price that maximises the value of the expected profit.
πMEP = argmaxπ(E Profit(π)).

– Best Local Expected Profit (BLEP) strategy (N bids). This strategy con-
sists in applying the MEP strategy iteratively, when it is possible to make
more that one offer to the buyer. The first offer is the MEP, and if the
customer does not accept the offer, his/her curve of estimated probabilities
is normalised taking into account the following: the probabilities of buying
that are less than or equal to the probability of buying at this price will be
set to 0; and the probabilities greater than the probability of buying at this
price will be normalised between 0 and 1. The next offer will be calculated
by applying the MEP strategy to the normalised probabilities. In the case
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of the probability of buying which is associated to the price is the maximum
probability, it will not be set to 0, because the expected profit would always
be 0. Instead of this, the next offer is directly the half of the price. The
pseudo-code is in Algorithm 1.

– Maximum Global Optimisation (MGO) strategy (N bids). The objective of
this strategy is to obtain the N offers that maximise the expected profit by
generalising the formula that we have presented in Section 3:
πMGO = argmax〈π1,...,πN 〉(E Profit(〈π1, . . . , πN 〉) = argmax〈π1,...,πN 〉(p̂(POS|π1) ·

Profit(π1) + (1 − p̂(POS|π1)) · p̂(POS|π2) · Profit(π2) + . . . + (1 − p̂(POS|π1)) · . . . · (1 −

p̂(POS|πN−1)) · p̂(POS|πN ) · Profit(πN )).
Getting the N bids from the previous formula is not direct but can be done
in several ways. One option is just using a Montecarlo approach with a
sufficient number of tuples to get the values for the prices that maximise the
expected profit.

Algorithm 1: BLEP strategy

Require: N , epf (estimated probability function or curve)
Ensure: πBLEB
∀x, epf(x)← p̂(POS|x)
π1 ← πMEB
π ← π1
for πi, i ∈ 2..N do

if epf(π) 6= maxx∈0..∞(epf(x)) then
∀x, epf(x)← 0
if epf(x) 6 epf(π) then
epf ← normalise(epf, epf(π),maxx∈0..∞ epf(x))
{normalise(f(x),mix,max): returns normalised function of f(x) from values min and
max to [0..1]}

end if
πi ← πMEB
π ← πi

else
πi ← π ÷ 2
π ← πi

end if
end for
πBLEB ← 〈π1, . . . , πN 〉

5 Experiments

5.1 Experimental Settings

Experiments have been performed by using real data collected from an estate
agent’s. We have information of 2,800 properties (flats and houses) that were
sold in the last months, for which we have the following attributes (“district”,
“number of rooms”, “square metres” and the “owner’s price”). The “owner’s
price” is the price which the owner wants to obtain for the property.

In the experiments we have assumed that the “owner’s price” is some kind of
“market price” and we have considered that it is the “maximum price”. Although
it is not always true because in some cases the buyer could have paid more than
this for the property.

We have randomly split the dataset into a training set and a test set. 10%
of the data are for training and the rest to test. This tries to simulate a realistic
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situation when there are not too many data for training. Therefore, the results
refer to 2,520 properties, and learning is made from 280 flats. We applied the
solutions proposed in Section 2 to the data. In particular we have used a J48
decision tree1 (with Laplace correction and without pruning) implemented in
the data mining suite WEKA [3]. Since the predicted probability curve given
by a classifier (such as the J48 classifier) typically shows discontinuities and
strong steps when varying a negotiable feature, we have smoothed it with a low-
pass filter with Bartlett overlapping window [2]. The parameter of the window
has been set to the “minimum price” divided by 400. The “inversion problem”
solution has been implemented with the LinearRegression and M5P regression
techniques, also from WEKA.

These three learning techniques have been used to guide the three negotiation
strategies explained in Section 4 (for the MGO strategy we used a Montecarlo
approach using 1,000 random triplets) and they are compared to the two baseline
methods also mentioned in Section 4. In the experiments the number of bids is
either one or set to three, i.e., N = 3. Summing up, we have nine negotiation
methods based on learning techniques and also two baseline methods (without
learning process) using the best possible α (80% for one bid and the triplet
〈100%, 80%, 60%〉 for three bids).

5.2 Experimental Results
In Table 1 we can observe the results obtained for each method, in terms of
number of sold properties, total sold price (in euros) and total profit (in euros).

Table 1. Results obtained by the negotiation strategies, baseline methods and reference methods
(minimum and maximum profit). Sold price and profit measured in euros.

Method Sold flats Sold price Profit

All flats sold at πmin 2,520 356,959,593 0
All flats sold at πmax 2,520 712,580,216 355,620,623

1 bid
Baseline (80%) 1,411 200,662,464 89,183,317

MEP (J48) 1,360 302,676,700 129,628,471
MEP (LinearRegression) 1,777 354,973,300 159,580,109

MEP (M5P ) 1,783 358,504,700 161,736,313

3 bids
Baseline (100%, 80%, 60%) 1,588 264,698,467 124,483,288

BLEP (J48) 1,940 382,921,400 173,381,116
BLEP (LinearRegression) 2,056 400,953,200 174,832,025

BLEP (M5P ) 2,063 404,009,700 176,874,221
MGO (J48) 1,733 390,529,770 176,020,611

MGO (LinearRegression) 1,918 475,461,200 232,600,223
MGO (M5P ) 1,906 476,171,900 234,259,509

As we see in Table 1 all the negotiation methods outperform the baseline
methods. For one bid, MEP is clearly better than the baseline method. For
three bids, both BLEP and MGO are much better than the baseline method.
Overall, MGO makes a global optimisation and hence get better results.
1 In this problem, we only have data of sold properties (positive class), therefore, we

have generated examples of the negative class with a price higher than the “owners’s
price”.
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On the other hand, the regression techniques outperform the J48 decision
tree, so, for this problem the solution of inverting problem presentation out-
performs the improved classifier solution. This is especially dramatic for MGO,
which is the method that depends most on a good probability estimation. This
means that the inversion problem using a normal distribution to get the esti-
mated probabilities turns out to be a very useful approach.

6 Conclusions

This paper introduces a number of new contributions in the area of data mining
and machine learning which can be useful for many application areas: retailing,
control, prescription, and others where negotiation or fine-tuning can take place.
Nonetheless, the implications can affect other decision-making problems where
data mining models are used.

The first major contribution is the analysis of the relation between negotiable
features and problem presentation, and more specifically the inversion problem
which happens naturally when we have to modify or play with the negotiable
attribute. We have seen that using the monotonic dependency we can change of
problem presentation to do the inversion problem (such as changing a classifi-
cation problem into a regression), where the original problem is now indirectly
solved by estimating probabilities using a normal distribution.

The second major contribution is its application to real negotiation problems.
We have developed several negotiation strategies and we have seen how they
behave for one or more bids in a specific problem of property selling. We have
shown that our approach highly improves the results of the classical baseline
method (not using data mining) which is typical in this area. In the end, we
show that the change of problem presentation (from classification into regression
problem, using the negotiable feature, price, as output) gets the best results for
the case with one bid but also for the case with three bids.

Since this work introduces new concepts and new ways of looking at some
existing problems, many new questions and ideas appear. For instance, we would
like to analyse how to tackle the problem when there are more than one nego-
tiable feature at a time, especially for the inversion problem approach (since we
would require several models, one for each negotiable feature).

Finally, more complex negotiation strategies and situations can be explored
in the future: the customer can counter-offer, several customers, etc.
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