Negotiation with Price-dependent Probability Models

Outline

- Introduction
- A Taxonomy of CRM Prescription Problems
- CRM Prescription Problems without Negotiation
- CRM Prescription Problems with Negotiation

■ Scenario with Negotiable Price and several Customers
■ Conclusions and Future Work

Introduction

Customer Relationship Management (CRM) prescription problems

Introduction

Customer Relationship Management (CRM) prescription problems

T10110010ct10n

Customer Relationship Management (CRM) prescription problems

Introduction

How can data-mining help?

- One probabilistic data-mining model for each customer or/and product is learned from previous data.

Training Data

District	Rooms	\mathbf{M}^{2}	Price	Buy?
Centro	3	130	248.352	NO
Ruzafa	2	71	260.000	NO
Patraix	1	36	159.680	YES
Botánico	3	120	351.000	YES
Mestalla	3	90	232.000	YES
Ruzafa	2	114	348.587	NO
Malilla	3	78	224.000	YES
Patraix	2	140	286.000	NO
Nazaret	3	70	126.000	YES
Centro	3	100	240.405	YES
\ldots	\ldots	\ldots	\ldots	\ldots
Mestalla	2	75	225.500	YES

Data Mining Model

District	Rooms	\mathbf{M}^{2}	Price	Prob. (YES)
Ruzafa	2	101	244.752	0,83
Patraix	3	90	280.000	0,42
Centro	2	70	236.900	0,27

Introduction

Negotiable feature (Price)

Introduction

Expected profit curves

- The buying probability changes depending on the price (negotiable feature).
- The seller does not know the real model and tries to learn the most accurate model from previous data by using data-mining techniques.
- $\mathrm{E}($ Profit $)=$ Probability * Price

Introduction

Negotiation scenario

- The customer is interested in the product.
- He will buy the product if the price is less than or equal to the maximum price that he could pay for it.
- The seller will not sell the product if its price is under a minimum price.
- He has a probabilistic model of the customer that assigns a probability of buying the product for each price (learned from previous data).

9 - Appropriated negotiation strategy \rightarrow Agreement

Infroduction

Example of a negotiation

Product 1
Min. Price $=$ $197.164 €$
Negotiation strategy:

1) $490.000 €$
2) $240.700 €$
3) $200.000 €$

A Taxonomy of CRIM Prescription Problems

Case	Kinds of products	Net price	Number of customers	Approach
1	1	fixed	1	Trivial
2	1	fixed	M	Customer ranking
3	N	fixed	1	Product ranking
4	N	fixed	M	Joint Cut-off [1]
5	1	negotiable	1	Negotiable Features [2]
6	1	negotiable	M	This work
7	N	negotiable	1	This work
8	N	negotiable	M	Future work

[1] A. Bella, C. Ferri, J. Hernández-Orallo, and M.J. Ramírez Quintana. Joint Cut-off Probabilistic Estimation Using Simulation: A Mailing Campaign Application. In IDEAL, volume 4881 of LNCS, pages 609-619. Springer, 2007.
[2] A. Bella, C. Ferri, J. Hernández-Orallo, and M.J. Ramírez Quintana. Feature Dependent Models.
11 Technical Report, Universidad Politécnica de Valencia, 2009

CRIM Prescription Problems without Negotiation

Trivial

Case	Kinds of products	Net price	Number of customers	Approach
1	1	fixed	1	Trivial

- The seller offers the product to the customer at a fixed price and the customer may or not buy the product.

CRMM Prescription Problems without Negotiation

Customer and product rankings

Case	Kinds of products	Net price	Number of customers	Approach
2	1	fixed	M	Customer ranking
3	N	fixed	1	Product ranking

- Mailing campaign design.
- Ranking of customers or products from a probabilistic estimation data mining model.

CRMM Prescripition Problems without Negotiation

Example of a mailing campaign design with one product

- Example:
- $I_{\text {cost }}=250 €$
- price $=200 €$
- cost $=20 €$
- Accumulated Profit:
$-\mathrm{I}_{\text {cost }}+\sum_{\mathrm{k}=1 . \mathrm{j}}\left(\right.$ price * $\mathrm{p}\left(\mathrm{c}_{\mathrm{k}}\right)-$ cost $)$
14

Customer	Prob.	E(Profit)	Acc. Profit
			-250
3	0,8098	141,96	$-108,04$
10	0,7963	139,26	31,22
8	0,6605	112,10	143,32
1	0,6299	105,98	249,3
4	0,5743	94,86	344,16
6	0,5343	86,85	431,01
5	0,4497	69,94	500,95
7	0,2675	33,50	534,45
$\mathbf{9}$	0,2262	24,24	558,69
2	0,0786	$-4,29$	554,4

CRM Prescription Problems without Negotiation

Example of a mailing campaign design with one product

- Example:
- $\mathrm{I}_{\text {cost }}=250 €$
- price $=200 €$
- cost $=20 €$
- Accumulated Profit:
$-\mathrm{I}_{\text {cost }}+\Sigma_{\mathrm{k}=1 . \mathrm{j}}\left(\right.$ price * $\mathrm{p}\left(\mathrm{c}_{\mathrm{k}}\right)-$ cost $)$

CRIM Prescription Problems without Negotiation

Joint cut-off probabilistic estimation using simulation

Case	Kinds of products	Net price	Number of customers	Approach
4	N	fixed	M	Joint Cut-off [1]

- Mailing campaign application with more than one product.
- N rankings of customers (one for each product).
- Obtain the set of customers that gives the maximum global profit fulfilling the constraints.
- The best local cut-off for each product does not give the best global profit.

CRIV Prescription Problems without Negotiation

Methods to calculate the global cut-off

- Single Approach:

1. calculate local cutoffs
2. order all the pairs (customer, product)
3. global cutoff is the average of local cutoffs

- Joint Simulation Approach:

1. order all the pairs (customer, product)
2. calculate best global cuttoff by simulation (using Petri nets)

Product p_{1}

Product p_{1}			
Customer	E (Profit)	$f_{p 1}$	Acc. Profit
			-150
2	76.61	1	-70
8	75.71	1	10
9	60.37	0	-10
5	48.19	1	70
1	44.96	1	150
7	30.96	0	130
10	24.58	1	210
3	23.04	0	190
6	7.81	1	270
4	-4.36	0	250

Product p_{2}			
Customer	E (Profit)	$\mathrm{f}_{\mathrm{p} 2}$	Acc. Profit
			-250
3	141.96	1	-70
10	139.26	1	110
8	112.10	1	290
1	105.98	1	470
4	94.86	0	450
6	86.85	0	430
5	69.94	1	610
7	33.50	0	590
9	25.24	0	570
2	-4.29	0	550

Single \& Joint Approaches

Single \& Joint Approaches		
Customer	Product	Acc. Profit
		-400
3	p_{2}	-220
10	p_{2}	-40
8	p_{2}	140
1	p_{2}	320
4	p_{2}	300
6	p_{2}	280
2	p_{1}	360
8	p_{1}	340
5	p_{2}	520
9	p_{1}	500
5	p_{1}	480
1	p_{1}	460
7	p_{2}	440
7	p_{1}	420
9	p_{2}	400
10	p_{1}	380
	p_{1}	360
	p_{1}	440
2	p_{2}	420
4	p_{1}	400

CRMM Prescription Problems with Negotiation

Negotiation strategies (I)

- Strategies to obtain the maximum profit using the profit curves.
- If we have only 1 bid:
- Maximum Expected Profit (MEP):
MAX(Probability * Price)
- Baseline method.

CRM: Prescription Problems with Negotiation

Example MEP

District	Rooms	M 2	Min. Price	Max. Price	MEP
Benimaclet	3	70	113.868	160.000	$\mathbf{1 4 8 . 0 0 0}$

CRIM Prescription Problems with Negotiation

Negotiation strategies (II)

■ ∞ bids !!!

■ N bids (e.g. 3 in "Negotiable Features")

- Best Local Expected Profit (BLEP)
- Maximum Global Optimisation (MGO)

CRMM Prescription Problems with Negotiation

Best Local Expected Profit (BLEP) algorithm

$\mathrm{Bid}_{1} \leftarrow \mathrm{MEP}$
Bid $\leftarrow \operatorname{Bid}_{1}$
FOR $\left(\operatorname{Bid}_{2}\right.$ and $\left.\operatorname{Bid}_{3}\right)\{$
IF p(Bid) != MAX(probabilities)
THEN \{
probabilities[probabilities $\leq \mathrm{p}(\mathrm{Bid})] \leqslant 0$
normalise(probabilities, p (Bid), MAX(probabilities))
$\operatorname{Bid}_{\mathrm{x}} \leftarrow \mathrm{MEB}$
$\mathrm{Bid} \leftarrow \mathrm{Bid}_{\mathrm{x}}$
ELSE \{
$\operatorname{Bid}_{\mathrm{x}} \leftarrow \operatorname{Bid} / 2$
$\mathrm{Bid} \leftarrow \mathrm{Bid}_{\mathrm{x}}$
\}
\}

CRMM Prescription Problems with Negotiation

Example BLEP (I)

CRMM Prescription Problems with Negotiation

Example BLEP (II)

District	Rooms	M^{2}	Min. Price	Max. Price	BLEP
Benimaclet	3	70	113.868	160.000	$\mathbf{1 4 8 . 0 0 0}$

CRMM Prescription Problems with Negotiation

Maximum Global Optimisation (MGO)

- Formula:

$$
p_{1}{ }^{*} b i d_{1}+\left(1-p_{1}\right)^{*} p_{2}{ }^{*} b i d_{2}+\left(1-p_{1}\right)^{*}\left(1-p_{2}\right)^{*} p_{3}{ }^{*} b i d_{3}
$$

where p_{x} is the probability and bid $_{x}$ is the price

- Montecarlo method:

■ 1.000 triplets of values generated randomly

$$
\operatorname{bid}_{1}>\operatorname{bid}_{2}>\operatorname{bid}_{3}
$$

- Choose the triplet of values that maximises the formula

CRMM Prescription Problems with Negotiation

Example MGO

District	Rooms	M 2	Min. Price	Max. Price	MGO
Mestalla	3	90	197.164	271.000	$\mathbf{2 4 0 . 7 0 0}$

CRIM Prescription Problems with Negotiation

Negotiable features

Case	Kinds of products	Net price	Number of customers	Approach
5	1	negotiable	1	Negotiable Features [2]

- Obtain the maximum price for the product with limited number of bids.
- Learning one probabilistic data-mining model for the customer from previous product data and applying negotiation strategies in order to obtain the maximum profit.
- Only 1 profit curve.

CRMP Prescription Problems with Negotiation

Negotiable price and multiple customers or products

Case	Kinds of products	Net price	Number of customers	Approach
6	1	negotiable	M	This work
7	N	negotiable	1	This work

- Obtain the maximum global profit selling the product to each customer at his maximum price.
- Learning one probabilistic data-mining model for each customer or product and applying negotiation strategies.
- M or N profit curves. Apply the negotiation strategies to the envelope curve.

CRMP Prescription Problems with Negotiation

Example with 3 different customers

- Extension of rankings to expected profit curves. A ranking of customers and/or products for each price of the product.

CRIM Prescription Problems with Negotiation

Negotiable price, and multiple customers and products

Case	Kinds of products	Net price	Number of customers	Approach
8	N	negotiable	M	Future work

- Obtain the maximum global profit selling the products to the customers at their maximum prices.
- (Ongoing work) using simulation or evolutionary computation. The best point in each curve does not give the best global solution.
- For each of the N kind of products, there will be M profit curves. ($\mathrm{N} x \mathrm{M}$ profit curves)

CRMM Prescription Problems with Negotiation

Example with 2 customers and 2 products

- 2 customers.

■ ---- customer 1

- $\operatorname{MEP}(\mathrm{p} 1)=105 €$
- $\operatorname{MEP}(\mathrm{p} 2)=120 € \frac{\text { 륜 }}{}$
- ... customer 2
- $\operatorname{MEP}(\mathrm{p} 1)=48 €$
- MEP $(\mathrm{p} 2)=88 €$
- $\mathrm{c} 1 \cdot \mathrm{p} 2+\mathrm{c} 2 \cdot \mathrm{p} 1=120+48=168 €$
- $\mathrm{c} 1 \cdot \mathrm{p} 1+\mathrm{c} 2 \cdot \mathrm{p} 2=105+88=193 €$

Scenario with Negotiable Price and several Customers

Example with 2 customers

- 2 customers and BLEP strategy.

■ ---- customer 1 (max. $100 €$)
■ customer 2 (max. $150 €$)

Scenario with Negotiable Price and several Customers

Example with 2 customers (1)

Offer	Price	Customer	Accepted
1	309	1	No

Scenario with $\mathbb{N e g o t i a b l e ~ P r i c e ~ a n d ~ s e v e r a l ~ C u s t o m e r s ~}$

Example with 2 customers (2)

Offer	Price	Customer	Accepted
2	214	1	No

Scenario with $\mathbb{N e g o t i a b l e ~ P r i c e ~ a n d ~ s e v e r a l ~ C u s t o m e r s ~}$

Example with 2 customers (3)

Offer	Price	Customer	Accepted
3	276	2	No

Scenario with Negotiable Price and several Customers

Example with 2 customers (4)

Offer	Price	Customer	Accepted
4	149	1	No

Scenario with $\mathbb{N e g o t i a b l e ~ P r i c e ~ a n d ~ s e v e r a l ~ C u s t o m e r s ~}$

Example with 2 customers (5)

Offer	Price	Customer	Accepted
5	101	1	No

Scenario with Negotiable Price and several Customers

Example with 2 customers (6)

Offer	Price	Customer	Accepted
6	150	2	Yes

Scenario with Negotiable Price and several Customers

BLEP vs, BLEP with ordering pre-process

Offer	Price	Customer	Accepted
1	309	1	No
2	214	1	No
3	276	2	No
4	149	1	No
5	101	1	No
$\mathbf{6}$	$\mathbf{1 5 0}$	$\mathbf{2}$	Yes

Offer	Price	Customer	Accepted
1	309	1	No
2	276	2	No
3	214	1	No
$\mathbf{4}$	$\mathbf{1 5 0}$	$\mathbf{2}$	Yes

Conclusions

- A taxonomy of CRM prescription problems has been devised.
- Data-mining helps the seller to make a decision about which product should be offered to which customer and at what price in order to obtain as much overall profit as possible.
- Extension of rankings to expected profit curves. A ranking of customers and/or products for each price of the product.

Future Work

- Study the performance of the proposed methods.
- Experiments applying those negotiation strategies.
- ... and other suitable negotiation strategies.
- Buyers can also use data-mining (counter-offers).
- Create a scenario with multiple sellers and buyers using negotiation strategies assisted by data-mining techniques.

Thanks for your attention!

