Workshop on Agreement Technologies 2009 (WAT 2009)

Negotiation with Price-dependent Probability Models

Antonio Bella, Cèsar Ferri, José Hernández-Orallo and María José Ramírez-Quintana

Outline

- Introduction
- A Taxonomy of CRM Prescription Problems
 - CRM Prescription Problems without Negotiation
 - CRM Prescription Problems with Negotiation
- Scenario with Negotiable Price and several Customers
- Conclusions and Future Work

Customer Relationship Management (CRM) prescription problems

Customer Relationship Management (CRM) prescription problems

Customers

- Each customer is different.
- Constraints:
 - Maximum number of products that a customer can buy.

Seller

Products

• Stocks.

Customer Relationship Management (CRM) prescription problems

Customers

- Each customer is different.
- Constraints:
 - Maximum number of products that a customer can buy.

Products

- Each product is different.
- Constraints:
 - Stocks.

How can data-mining help?

■ One probabilistic data-mining model for each customer or/and product is learned from previous data.

Training Data

		\mathcal{O}		
District	Rooms	\mathbf{M}^2	Price	Buy?
Centro	3	130	248.352	NO
Ruzafa	2	71	260.000	NO
Patraix	1	36	159.680	YES
Botánico	3	120	351.000	YES
Mestalla	3	90	232.000	YES
Ruzafa	2	114	348.587	NO
Malilla	3	78	224.000	YES
Patraix	2	140	286.000	NO
Nazaret	3	70	126.000	YES
Centro	3	100	240.405	YES
Mestalla	2	75	225.500	YES

Data Mining Model

New Data

District	Rooms	M^2	Price	Prob. (YES)
Ruzafa	2	101	244.752	0,83
Patraix	3	90	280.000	0,42
Centro	2	70	236.900	0,27

Negotiable feature (Price)

District	Rooms	\mathbf{M}^2
Mestalla	3	90

District	Rooms	\mathbf{M}^2	Price	Prob.
Mestalla	3	90	0	0,998
Mestalla	3	90	100	0,998
	•••		•••	
Mestalla	3	90	182.900	0,988
Mestalla	3	90	183.000	0,65
Mestalla	3	90	248.000	0,65
Mestalla	3	90	248.100	0,091
				•••
Mestalla	3	90	496.200	0,091
Mestalla	3	90	496.300	0

Expected profit curves

- The buying probability changes depending on the price (negotiable feature).
- The seller does not know the real model and tries to learn the most accurate model from previous data by using data-mining techniques.
- E(Profit) = Probability * Price

Negotiation scenario

- The **customer** is interested in the product.
- He will buy the product if the price is less than or equal to the maximum price that he could pay for it.
- The seller will not sell the product if its price is under a minimum price.
- He has a probabilistic model of the customer that assigns a probability of buying the product for each price (learned from previous data).
- Appropriated negotiation strategy → Agreement

Example of a negotiation

A Taxonomy of CRM Prescription Problems

Case	Kinds of products	Net price	Number of customers	Approach
1	1	fixed	1	Trivial
2	1	fixed	M	Customer ranking
3	N	fixed	1	Product ranking
4	N	fixed	M	Joint Cut-off [1]
5	1	negotiable	1	Negotiable Features [2]
6	1	negotiable	M	This work
7	N	negotiable	1	This work
8	N	negotiable	M	Future work

^[1] A. Bella, C. Ferri, J. Hernández-Orallo, and M.J. Ramírez Quintana. Joint Cut-off Probabilistic Estimation Using Simulation: A Mailing Campaign Application. In IDEAL, volume 4881 of LNCS, pages 609-619. Springer, 2007.

[2] A. Bella, C. Ferri, J. Hernández-Orallo, and M.J. Ramírez Quintana. Feature Dependent Models.
 Technical Report, Universidad Politécnica de Valencia, 2009

Trivial

Case	Kinds of products	Net price	Number of customers	Approach
1	1	fixed	1	Trivial

■ The seller offers the product to the customer at a fixed price and the customer may or not buy the product.

Customer and product rankings

Case	Kinds of products	Net price	Number of customers	Approach
2	1	fixed	M	Customer ranking
3	N	fixed	1	Product ranking

- Mailing campaign design.
- Ranking of customers or products from a probabilistic estimation data mining model.

Example of a mailing campaign design with one product

Example:

Accumulated Profit:

-
$$I_{cost}$$
 + $\Sigma_{k=1..j}$ (price * $p(c_k)$ – $cost$)

Customer	Prob.	E(Profit)	Acc. Profit
			-250
3	0,8098	141,96	-108,04
10	0,7963	139,26	31,22
8	0,6605	112,10	143,32
1	0,6299	105,98	249,3
4	0,5743	94,86	344,16
6	0,5343	86,85	431,01
5	0,4497	69,94	500,95
7	0,2675	33,50	534,45
9	0,2262	24,24	558,69
2	0,0786	-4,29	554,4

Example of a mailing campaign design with one product

cutoff

- Example:
 - I_{cost} = 250 €
 - price = 200 €
 - cost = 20 €
- Accumulated Profit:

$$-I_{cost} + \Sigma_{k=1..j} (price * p(c_k) - cost)$$

Joint cut-off probabilistic estimation using simulation

Case	Kinds of products	Net price	Number of customers	Approach
4	N	fixed	M	Joint Cut-off [1]

- Mailing campaign application with more than one product.
- N rankings of customers (one for each product).
- Obtain the set of customers that gives the maximum global profit fulfilling the constraints.
- The best local cut-off for each product does not give the best global profit.

Methods to calculate the global cut-off

Single Approach:

- 1. calculate local cutoffs
- 2. order all the pairs (customer, product)
- 3. global cutoff is the average of local cutoffs

Joint Simulation Approach:

- 1. order all the pairs (customer, product)
- 2. calculate best global cuttoff by simulation (using Petri nets)

	Product	p ₁	
Customer	E(Profit)	f _{p1}	Acc. Profit
			-150
2	76.61	1	-70
8	75.71	1	10
9	60.37	0	-10
5	48.19	1	70
1	44.96	1	150
7	30.96	0	130
10	24.58	1	210
3	23.04	0	190
6	7.81	1	270
4	-4.36	0	250

Product p2 Customer E(Profit) fp2 Acc. P 3 141.96 1 -70 10 139.26 1 110						
Customer E(Profit) f _{p2} Acc. Profit 3 141.96 1 -70 10 139.26 1 110)					
Customer E(Profit) f _{p2} Acc. Profit 3 141.96 1 -70 10 139.26 1 110						
3 141.96 1 -70 10 139.26 1 110	Product p₂					
3 141.96 1 -70 10 139.26 1 110	rofit					
10 139.26 1 110)					
l)					
8 112.10 1 290)					
1 105.98 1 470)					
4 94.86 0 450)					
6 86.85 0 430)					
5 69.94 1 610)					
7 33.50 0 590)					
9 25.24 0 570)					
2 -4.29 0 550)					

		Single & Jo	oint Approaches	
	Customer	Product	Acc. Profit	
			-400	
	3	p_2	-220	
	10	p_2	-40	
	8	p_2	140	
	1	p_2	320	
	4	p_2	300	
	6	p_2	280	
	2	p ₁	360	
	8	p ₁	340	
	5	p_2	520	Joint
	9	p ₁	500	
	5	p ₁	480	
	1	p ₁	460	
	7	p_2	440	
	7	p ₁	420	
	9	p ₂	400	
Single	10	p ₁	380	
	3	p ₁	360	
	6	p ₁	440	
	2	p ₂	420	
	4	p ₁	400	

T	1
Examp	le:
LAamp	IC.

- 10 customers
- 2 products
- Icost_{p1} = 150 €
- Icost_{p2} = 250 €
- price_{p1} = 100 €
- price_{p2} = 200 €
- cost = 20 €

Negotiation strategies (I)

- Strategies to obtain the maximum profit using the profit curves.
- If we have only 1 bid:
 - Maximum Expected Profit (MEP):MAX(Probability * Price)
 - Baseline method.

Example MEP

District	Rooms	M^2	Min. Price	Max. Price	MEP
Benimaclet	3	70	113.868	160.000	148.000

Negotiation strategies (II)

- ∞ bids !!!
- N bids (e.g. 3 in "Negotiable Features")
 - Best Local Expected Profit (BLEP)
 - Maximum Global Optimisation (MGO)

Best Local Expected Profit (BLEP) algorithm

```
Bid_1 \leftarrow MEP
Bid ← Bid<sub>1</sub>
FOR (Bid<sub>2</sub> and Bid<sub>3</sub>){
      IF p(Bid) != MAX(probabilities)
      THEN {
                         probabilities[probabilities \leq p(Bid)] \leftarrow 0
                         normalise(probabilities, p(Bid), MAX(probabilities))
                         Bid_x \leftarrow MEB
                         Bid \leftarrow Bid_x
      ELSE {
                         Bid_x \leftarrow Bid / 2
                         Bid ← Bid<sub>x</sub>
```

Example BLEP (I)

District	Rooms	M^2	Min. Price	Max. Price	BLEP
Patraix	3	93	211.422	230.000	0

Example BLEP (II)

4e+05

5e+05

District	Rooms	M^2	Min. Price	Max. Price	BLEP
Benimaclet	3	70	113.868	160.000	148.000

Maximum Global Optimisation (MGO)

■ Formula:

$$p_1*bid_1 + (1-p_1)*p_2*bid_2 + (1-p_1)*(1-p_2)*p_3*bid_3$$

where p_x is the probability and bid_x is the price

- Montecarlo method:
 - 1.000 triplets of values generated randomly

$$bid_1 > bid_2 > bid_3$$

Choose the triplet of values that maximises the formula

Example MGO

District	Rooms	M^2	Min. Price	Max. Price	MGO
Mestalla	3	90	197.164	271.000	240.700

Price

Price

Negotiable features

Case	Kinds of products	Net price	Number of customers	Approach
5	1	negotiable	1	Negotiable Features [2]

- Obtain the maximum price for the product with limited number of bids.
- Learning one probabilistic data-mining model for the customer from previous product data and applying negotiation strategies in order to obtain the maximum profit.
- Only 1 profit curve.

Negotiable price and multiple customers or products

Case	Kinds of products	Net price	Number of customers	Approach
6	1	negotiable	M	This work
7	N	negotiable	1	This work

- Obtain the maximum global profit selling the product to each customer at his maximum price.
- Learning one probabilistic data-mining model for each customer or product and applying negotiation strategies.
- M or N profit curves. Apply the negotiation strategies to the envelope curve.

Example with 3 different customers

■ Extension of rankings to expected profit curves. A ranking of customers and/or products for each price of the product.

Negotiable price, and multiple customers and products

Case	Kinds of products	Net price	Number of customers	Approach
8	N	negotiable	M	Future work

- Obtain the maximum global profit selling the products to the customers at their maximum prices.
- (Ongoing work) using simulation or evolutionary computation. The best point in each curve does not give the best global solution.
- For each of the N kind of products, there will be M profit curves. (N x M profit curves)

Example with 2 customers and 2 products

- 2 customers.
- ---- customer 1

- MEP (p1) = 105 € (p2) = 120 € (p2)
- ··· customer 2
 - MEP (p1) = 48 €
 - MEP (p2) = 88 €

Product 1

Product 2

- $c1 \cdot p2 + c2 \cdot p1 = 120 + 48 = 168 €$
- $c1 \cdot p1 + c2 \cdot p2 = 105 + 88 = 193 €$

Scenario with Negotiable Price and several Customers Example with 2 customers

- 2 customers and BLEP strategy.
- ---- customer 1 (max. 100 €)
- customer 2 (max. 150 €)

Example with 2 customers (1)

Offer	Price	Customer	Accepted
1	309	1	No

Example with 2 customers (2)

Offer	Price	Customer	Accepted
2	214	1	No

Example with 2 customers (3)

Offer	Price	Customer	Accepted
3	276	2	No

Example with 2 customers (4)

Offer	Price	Customer	Accepted
4	149	1	No

Example with 2 customers (5)

Offer	Price	Customer	Accepted
5	101	1	No

Example with 2 customers (6)

Offer	Price	Customer	Accepted
6	150	2	Yes

BLEP vs. BLEP with ordering pre-process

Offer	Price	Customer	Accepted
1	309	1	No
2	214	1	No
3	276	2	No
4	149	1	No
5	101	1	No
6	150	2	Yes

Offer	Price	Customer	Accepted
1	309	1	No
2	276	2	No
3	214	1	No
4	150	2	Yes

Conclusions

- A taxonomy of CRM prescription problems has been devised.
- Data-mining helps the seller to make a decision about which product should be offered to which customer and at what price in order to obtain as much overall profit as possible.
- Extension of rankings to expected profit curves. A ranking of customers and/or products for each price of the product.

Future Work

- Study the performance of the proposed methods.
- Experiments applying those negotiation strategies.
- ... and other suitable negotiation strategies.
- Buyers can also use data-mining (counter-offers).
- Create a scenario with multiple sellers and buyers using negotiation strategies assisted by data-mining techniques.

Workshop on Agreement Technologies 2009 (WAT 2009)

Thanks for your attention!

Antonio Bella http://users.dsic.upv.es/~abella abella@dsic.upv.es

Universitat Politècnica de València, Spain

