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Introduction 
Inference Processes like (computational) deduction and 
induction can be regarded in a computational framework 
as processes that generate an output O from an input I. 
 
In the case of deduction: 
 I = Premises P + Axiomatic System S 
 O = Conclusion C. 
 Some semantical restrictions should be preserved. 

In the case of induction: 
 I = Evidence E + Background Theory B. 
 O = the hypothesis H 
 Some evaluation criteria should be ensured.  
 

Let us consider the term information seen as the result 
of a computational effort, analogously to the way 
energy is seen as the result of a physical work. 

⇓ 
Both C and H provide information.  

 

How this computational effort is to be measured?  
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Descriptional Complexity 
 
Descriptional Complexity (Kolmogorov Complexity 
or Algorithmic Information Theory): 
 
DEFINITION  1. KOLMOGOROV COMPLEXITY 
The Kolmogorov Complexity (KC) of a string x on a bias β :  

Kβ(x|y) = min { lβ(px(y)) } 
 

where px denotes any “prefix-free” β-program for x using input y and 

lβ(px) denotes the length of px in β. 
 

Kβ(x) = Kβ(x|ε) where ε denotes the empty string. 
 

Kolmogorov Complexity is an absolute and objective 
criterion of simplicity. It is independent (up to a 
constant term) of the descriptional mechanism used. 
 
 
DEFINITION  2. ABSOLUTE INFORMATION GAIN 
The absolute information gain of an object x wrt. an object y:  

V (x | y) = K(x | y) / K(x) 
 

The information which is needed to describe x from y wrt. the 
information which is needed to describe x alone. 
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Kt as Effort 
 
DEFINITION  3. LEVIN’S LENGTH-TIME COMPLEXITY 
The Levin Complexity  of a string x on a bias β :  

Ktβ(x|y) = min { LTβ(px(y)) } 

where LTβ(px) = l(px) + log2 Costβ(px) 

 

Why Kt instead of K?  
 
 

• Kt is computable. 

• Levin showed that the weighting LT(x) = length(x) 
+ log Cost(x) between space and time is optimal in 
the sense of universal search problems. 

Intuitively, given any problem, either an 
amount of time is needed to obtain the answer to 

the problem or either an amount of the data 
(space) of the solution is needed. 

 
Given two objects, the effort from x to y is then  
measured as Kt(y | x).  
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Computational Information Gain 
 

The Information Gain of object y wrt. object x is then 
defined as the quotient between the effort which is 
necessary to describe y from x and the effort which is 
necessary to describe y alone.  
 
DEFINITION  4. COMPUTATIONAL INFORMATION GAIN 
The Computational Information Gain of an object x wrt. an 
object y is:  

G(x | y) = Kt(x | y) / Kt(x) 

 
THEOREM 1. LIMITS OF G(x | y) 
There exists a constant c such that for every x and y, 

log l(x)/(l(x) + log l(x) + c) < G(x | y) ≤ 1 

 
THEOREM 2. ROBUSTNESS TO POLYNOMIALITY 
Consider a learning algorithm A* in P (i.e. polynomial), 

namely ∃p∈�+ : O(n  

p−1) ≤ O(A*) ≤ O(n  

p), being A* of 
constant size, i.e., l(A*)= c. This algorithm deterministically 
transforms y into x, where x is a program for y, being n = 

l(y). There is a τ such that for all x and y, if n > τ and Kt(x) 

> k · p · log n, then G(x|y) ≤ 2 / k. 
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Proof of Theorem 1 
 

PROOF OF THEOREM 1. The second inequality G(x | y) ≤ 1 is 
obtained by considering that y must only be read if it is 

necessary for obtaining x, so ∀x,y Kt(x | y) ≤ Kt(x). The 

limit 1 is obvious by choosing y = ε and the definition of 

Kt(x) as Kt(x | ε). The first inequality is justified by the fact 
that the numerator follows 

Kt(x | y) ≥ log l(x) 
because x must be printed and this takes at least l(x) + c2 
units of time. In fact this limit can be come close if x = y 
because the program “print y” has cost approximately 2 · 
l(x). The denominator must follow this disequality. 

Kt(x) < l(x) + log l(x) + c 
because in the worst case, when x is random, we need l(x) 
+ c1 bits of information for the program “print x” and at 
most l(x) + c2 units of time to be printed. Both constants 
can be represented by a negligible c.  By (1) and (2) we have 

that log l(x)/(l(x) + log l(x) + c) < G(x | y). � 
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Proof of Theorem 2 
 
PROOF OF THEOREM 2. For every string of data y, let us 
construct x in the following way: x = “apply A* to y”. 
Since we can construct x from <A*, y> in an easy way p= 

“apply 1st argument to 2nd argument” Kt(x |<A*, y>) ≤ 
LT(p) = l(p) + log cost (p) < c’ + log np). It is obvious that 
Kt(x|y) < Kt(x |<A*, y>). So we have that Kt(x|y) < c’ + log 
np = c’ + p log n. 
 

If, as supposed, Kt(x) > k · p · log n, then the quotient 

G(x|y) = Kt(x|y) / Kt(x) ≤ ((c’ / (p · log n )) + 1) / k. 

Since p > 0, just choose τ = n such that c’ / (p · log n) < 1. 

From here, G(x|y) ≤ 2 / k.  � 
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Information and Deduction 
 

Carnap Probabilistic Calculus: 
 P |= Q  means that Q has less information than P. 
 

Is deduction non-informative? 

 
In omniscient systems:  

• Everything implicit is immediately and 
effortlessly made explicit. 

In non-omniscient (real) systems: 

• Making explicit what was implicit requires 
effort and, consequently, 

• Deduction is costly and the conclusions are 
worthy, valuable, i.e. informative, and, in some 
cases, surprising. 

 
Hintikka (1970) introduced the theory of semantic 
information to distinguish between: 

• ‘cash’ information → Surface Information 

• ‘potential’ information → Depth Information 
Based on the constituents of first-order logic. 
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Information Gain and Deduction 
 
If y represents the premises and x the conclusion: 
 
Minimum: G(x | y) = log l(x) / (l(x) + log(l(x)) ≈ 0 

The conclusion is evident from the premises. It is easy 

to describe the conclusion from the data. Kt(x | y) �� 
 

Maximum: G(x | y) = 1 

We have that Kt(x | y) = Kt(x). The premises are useless 
(in time-space terms) to describe the conclusion. It is 
necessary a great computational work on the premises 
y to obtain the conclusion or there is a need for 
external information. 

 

G(x |||| y) V(x |||| y) Meaning 

≈ 0 0 x is explicit from y. 

≈ 0 1 Impossible 

1 0 x is deeply implicit in y. 

1 1 x is independent wrt. y. 

 
V represents the limit (wrt. to efficiency) of G (in the same way 

as depth information is the limit of surface information). 
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Representational Optimality 
 
Given a deductive system with axioms A and its set of 
consequences (or theorems) S. The representational optimality 
is defined as: 
 

Opt(S) = argminT { τ·L(T) + ∑s∈S Kt(s|T) s.t. ∀s∈S : V(s|T)=0} 
 
Intermediate Information is useful to maintain explicitly: 
A theorem P such that A |= P should be left explicitly in T  if  

∑s∈S Kt(s|<A,P>) < ∑s∈S Kt(s|A) and T does not get too long. 
 
This  formalises the well-known necessity of theorems (or 
lemmata) and the use of extensional properties for 
mathematical practice, in order to avoid difficult 
derivations that were already done (while still maintaining 
under control the whole size of the theory).  
 
There are many more views of ‘optimality’ that can be 
expressed or combined in this framework.  
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Information and Induction 
 
Carnap Probabilistic Calculus: 

    P  |= Q  means that P has more information than Q. 
 

Is induction always informative? 

 
Popper recognised that not every inductive inference 
is informative.  

Example: Given data x, the theory “print x for ever” is 
little informative. 

 
Popper advocated for the “informativeness” of 
hypotheses. 
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Information Gain and Induction 
 
If x is the theory and y is the data (the evidence): 
 

Minimum: G(x | y) = log l(x) / (l(x) + log(l(x)) ≈ 0 

The theory is evident from the data. It is very easy to 

describe the theory from the data. Kt(x | y) �� 
 Examples:  � the polynomial obtained from the data. 

  � Exceptions (Kt(x | y) ��) 
  � Extensionalities (part of x is in y) 
 

Maximum: G(x | y) = 1 

We have that Kt(x | y) = Kt(x). The data is useless (in 
time-space terms) to describe the theory. It is necessary 
a great computational work on the data y to obtain the 
theory or there is a need for external information. 
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What is to Discover? 
 

A concept x is surprising wrt. y in a context β  iff: 
Gβ(x | y) �� 

 
A concept or theory x is a discovery wrt. y in a context 

β  iff: 
Gβ(x | y) ��  and Gβ(y | x) ≈ 0 

i.e, x is surprising for y and y is explicit from x (e.g. x is 
an efficient theory or explanation for y). 
 
In a proper way, discovering must be accompanied 
by confirmation, however, x is valuable per se. 
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Learning, Identification and Gain 
Gold (1967): Learning as “identification in the limit”: 
 
For finite concepts, however: 

• An inductive algorithm that gives the 
extensional theory for the data has formally 
learnt!!! 

 

The MDL principle (the best theory is the shortest one) 
gives that “extensional” theory for the great majority of 
data samples (most strings are random). 
 

Authentic Learning: 
 

The more that one learns the greater G(h | d).  
 
 

However, G is not a plausibility criterion. 
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Investment and Selection Criteria 
There are infinite theories for some data. 
 

Which ones are useful to remember? 

 
Only the best one according to a plausibility selection 
criterion? If this best one is refuted later, all the work 
should be made again... 

 

Is it valuable to store the computational 
effort which has been invested for more 

than one hypothesis? 

 
Memory is not unlimited... 
 
Oblivion Criterion: 

OC(h | d) = G(h | d) · PC(h | d) 

 
For instance, if the plausibility criterion is the MDL 
principle we have: 

OC(h | d) = G(h | d) · 2−l(h) 
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Related Concepts 
 

• Kirsh’s theory of explicitness is perfectly 
formalised by G. 

  

• Quinlan’s Gain Ratio: (induction of binary trees) If 
C is set of class labels and X is a feature for 
splitting the tree then a descriptional variant of 
Gain Ratio is equal to 1 − V(X | C). 

  

• Intensionality: Extensional concepts have G = 0. 
Comprehensive theories usually have more 
information gain. 

  

• Compression is positively related to G. If the 
compression ratio between the data d and the 
hypothesis is greater than l(d) / log l(d) then G(h | 
d) = 1. (the data must be read) 



 17

Combination of Ind/Ded and 
Plausibility/Informativeness Criteria 
 
Axioms are given by experience (evidence). 
 
Which things should be left explicit in a theory? 
• Those properties which are useful to cover the evidence. 

• Those properties which justify other properties. 

 
Which should be forgotten? 

• Evidence which is well covered by the theory. 

• Consequences which are easy to recover from 
axioms (low gain). 

• Properties which are not used for the consequences 
or for other properties.  

  
This leads to a theory of reinforcement2. A rule or 
property is more reinforced if it is more used by the 
evidence or by other rules / properties. 

                                 
2 (Hernández-Orallo 1999) Intl. J. of Intelligent Systems, to appear. 
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Conclusions 
 

• Deduction and induction can be conciliated in 
terms of information gain. 

 

• This allows more consistent combinations of 
deductive systems and inductive paradigms 
for the construction of non-omniscient 
(resource-bounded) rational agents. 

 

• Interestingness and Explicitness are concepts 
which are shared both by deduction and 
induction. 

  
 Drawbacks: 
 

• V is not computable and G must be 
approximated.... 

 


