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Introduction

The reuse of knowledge which has been acquired in previous
learning processes in order to improve or accelerate the
learning of future tasks is an appealing idea.
The knowledge transferred between tasks can be viewed as a
bias in the learning of the target using the information learned
in the source task
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Introduction

Research on transfer learning has attracted more and more
attention since 1995 in different names and areas:

Learning to learn
Life-long learning
Knowledge-transfer
Inductive transfer
Multitask learning
Knowledge consolidation
Incremental/cumulative learning
Meta-learning
Reinforcement Learning.
Reframing

4 / 31



Introduction The gErl System Reusing Past Policies Conclusions and Future Work

Introduction

Research on transfer learning has attracted more and more
attention since 1995 in different names and areas:

Learning to learn
Life-long learning
Knowledge-transfer
Inductive transfer
Multitask learning
Knowledge consolidation
Incremental/cumulative learning
Meta-learning
Reinforcement Learning.
Reframing

4 / 31



Introduction The gErl System Reusing Past Policies Conclusions and Future Work

Introduction

Reinforcement Learning.
The knowledge is transfered in several ways ([Taylor and Stone, 2009]
for a survey):

Modifying the learning algorithm
[Fernandez and Veloso, 2006, Mehta, 2005].
Biasing the initial action-value function [J.Carroll, 2002].
Mapping between actions and/or states
[Liu and Stone, 2006, Price and Boutilier, 2003].
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Introduction

We present a general rule-based learning setting where
operators can be defined and customised for each kind
of problem.

The generalisation/especialiazation operator to use depends on
the structure of the data.
Adaptive and flexible rethinking of heuristics, with a
model-based reinforcement learning approach.

http://users.dsic.upv.es/˜fmartinez/gerl.html
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gErl

Flexible architecture [Lloyd, 2001] (1/2):

Designing customised systems for applications with complex
data.
Operators can be modified and finetuned for each problem.
Different to:

Specialized systems (Incremental models
[Daumé III and Langford, 2009, Maes et al., 2009]) .
Feature transformations (kernels [Gärtner, 2005] or distances
[Estruch et al., 2006]).
Fixed operators (Plotkin’s lgg [Plotkin, 1970], Inverse
Entailment [Muggleton, 1995], Inverse narrowing and CRG
[Ferri et al., 2001]).
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gErl

Flexible architecture [Lloyd, 2001] (2/2):
Population of rules and programs evolved as in an evolutionary
programming setting (LCS [Holmes et al., 2002]).
Reinforcement Learning-based heuristic.
Optimality criteria (MML/MDL) [Wallace and Dowe, 1999]).
Erlang functional programming language
[Virding et al., 1996].

This is a challenging proposal not sufficiently explored in machine
learning.
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Architecture

A given problem (E+ and E−) and a (possible empty) BK .
member([1, 2, 3], 3)→ true
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Architecture

Flexible architecture which works with populations of rules
(unconditional / conditional equations) and programs written in

Erlang.
member([X |Y ],Z ) when true → member(Y ,Z )
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Architecture

The population evolves as in an evolutionary programming setting.

9 / 31



Introduction The gErl System Reusing Past Policies Conclusions and Future Work

Architecture

Operators are applied to rules for generating new rules and
combined with existing or new programs.
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Architecture

Reinforcement Learning-based heuristic to guide the learning.
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Architecture

Appropriate operators + MML based optimality criteria +
Reinforcement Learning-based heuristic.

9 / 31



Introduction The gErl System Reusing Past Policies Conclusions and Future Work

Architecture
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As a result, this architecture can be seen as a ‘meta-learning
system’, that is, as a ‘system for writing machine learning systems’.
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Why Erlang?

Erlang/OTP [Virding et al., 1996] is a functional programming lan-
guage developed by Ericsson and was designed from the ground up
for writing scalable, fault-tolerant, distributed, non-stop and soft-
realtime applications.

Free and open-source language with a large community of
developers behind.
Reflection and higher order.
Unique representation language, operators, examples,
models and background knowledge are represented in the
same language.
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Operators over Rules and Programs

The definition of customized operators is one of the key
concepts of our proposal.
In gErl, the set of rules R is transformed by applying a set of
operators O ⊂ O.
Operators perform modifications over any of subparts of a rule
in order to generalise or specialise it.
gErl provides two meta-operators able to define well-known
generalisation and specialisation operators in Machine
Learning
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RL-based heuristics

Heuristics must be overhauled as decisions about the
operator that must be used (over a rule) at each particular
state of the learning process.
A Reinforcement Learning (RI) [Sutton and Barto, 1998]
approach suits perfectly for our purposes.
Our decision problem is a four-tuple 〈S,A, τ, ω〉 where:

S: state space (st = 〈R,P〉).
A : O ×R (a= 〈o, ρ〉).
τ : S ×A → S.
ω : S ×A → R.
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MML/MDL-based Optimality

According to the MDL/MML philosophy, the optimality of a program
p is defined as the weighted sum of two simpler heuristics, namely, a
complexity-based heuristic (which measures the complexity of p) and
a coverage heuristic (which measures how well p fits the evidence):

Cost

Cost(p) = β1 ·MsgLen(p) + β2 · (MsgLen(e|p))
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RL-based heuristics
The probably infinite number of states and actions makes the application of classical
RL algorithms not feasible:

States. ṡt = 〈φ1, φ2, φ3〉
1 Global optimality (φ1):
2 Average Size of Rules (φ2)
3 Average Size of programs (φ3)

Actions. ȧ = 〈o, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6, ϕ7, ϕ8〉
1 Operator (o)
2 Size (ϕ1)
3 Positive Coverage Rate (ϕ2).
4 Negative Coverage Rate (ϕ3).
5 NumVars (ϕ4)
6 NumCons (ϕ5)
7 NumFuncs (ϕ6)
8 NumStructs (ϕ7)
9 isRec (ϕ8)

Transitions. Transitions are deterministic. A transition τ evolves the current
sets of rules and programs by applying the operators selected (together with the
rule) and the combiners.
Rewards. The optimality criteria seen above is used to feed the rewards.
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Modelling the state-value function: using a regression
model

We use a hybrid between value-function methods (which
update a state-value matrix) and model-based methods
(which learn models for τ and ω) [Sutton, 1998].
Generalise the state-value function Q(s, a) of the Q-learning
[Watkins and Dayan, 1992] (which returns quality values,
q ∈ R) by a supervised model

QM : S ×A → R
gErl uses linear regression by default for generating QM , which
is retrained periodically from Q.
QM is used to obtain the best action ȧ for the state ṡt as
follows:

at = arg max
a∈A
{QM(ṡt , ȧ)}
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Modelling the state-value function: using a regression
model

 

state (𝒔) action (𝒂) 
𝒒 

𝜱1 𝜱2 𝜱3 o 𝝋1 𝝋2 𝝋3 𝝋4 𝝋5 𝝋6 𝝋7 𝝋8 

161.32 17.92 1 1 17.92 0.11 0 0 4 2 0 0 1 

… 

161.32 17.92 1 4 17.92 0.11 0 0 4 2 0 0 1 

140.81 17.92 1 2 15.33 0.11 0 1 3 2 0 0 0.82 

161.32 17.92 1 3 15.33 0.11 0 1 3 2 0 0 0.82 

161.32 17.92 1 2 15.33 0.11 0 1 3 2 0 0 0.82 

161.32 17.92 1 2 15.33 0.22 0 1 3 2 0 0 0.85 

161.32 17.92 1 1 15.33 0.11 0.2 1 3 2 0 0 0.79 

Once the system has started, at each step, Q is updated using
the following formula:

Q[st , at ]← α

[
wt+1 + γmax

at+1
QM(st+1, at+1)

]
+(1−α)Q[st , at ]

(1)
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Example: Playtennis

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑰𝒅𝒆+ 𝒆+ 

1  𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, ℎ𝑜𝑡, ℎ𝑖𝑔ℎ, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠  

2 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑟𝑎𝑖𝑛, 𝑚𝑖𝑙𝑑, ℎ𝑖𝑔ℎ, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 

3 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑟𝑎𝑖𝑛, 𝑐𝑜𝑜𝑙, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 

4 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, 𝑐𝑜𝑜𝑙, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑠𝑡𝑟𝑜𝑛𝑔) → 𝑦𝑒𝑠 

5 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑠𝑢𝑛𝑛𝑦, 𝑐𝑜𝑜𝑙, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 

6 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑟𝑎𝑖𝑛, 𝑚𝑖𝑙𝑑, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 

7 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑠𝑢𝑛𝑛𝑦, 𝑚𝑖𝑙𝑑, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑠𝑡𝑟𝑜𝑛𝑔) → 𝑦𝑒𝑠 

8 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, 𝑚𝑖𝑙𝑑, ℎ𝑖𝑔ℎ, 𝑠𝑡𝑟𝑜𝑛𝑔) → 𝑦𝑒𝑠 

9 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, ℎ𝑜𝑡, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 

𝑰𝒅𝒐 𝒐 

1 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 (𝐿1, 𝑋1) 

2 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 (𝐿2, 𝑋2) 

3 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 (𝐿3, 𝑋3) 

4 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 (𝐿4, 𝑋4) Table 1: Set of positive examples 𝐸− (Playtennis problem) 
 

𝑰𝒅𝒆− 𝒆− 

1  𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑠𝑢𝑛𝑛𝑦, ℎ𝑜𝑡, ℎ𝑖𝑔ℎ, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠  

2 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑠𝑢𝑛𝑛𝑦, ℎ𝑜𝑡, ℎ𝑖𝑔ℎ, 𝑠𝑡𝑟𝑜𝑛𝑔) → 𝑦𝑒𝑠 

3 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑟𝑎𝑖𝑛, 𝑐𝑜𝑜𝑙, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑠𝑡𝑟𝑜𝑛𝑔) → 𝑦𝑒𝑠 

4 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑠𝑢𝑛𝑛𝑦, 𝑚𝑖𝑙𝑑, ℎ𝑖𝑔ℎ, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 

5 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑟𝑎𝑖𝑛, 𝑚𝑖𝑙𝑑, ℎ𝑖𝑔ℎ, 𝑠𝑡𝑟𝑜𝑛𝑔) → 𝑦𝑒𝑠 

Table 3: Set of operators 𝑂 ∈ 𝒪 

Table 2: Set of negative examples 𝐸− (Playtennis problem) 
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Example: Playtennis
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2 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑟𝑎𝑖𝑛, 𝑚𝑖𝑙𝑑, ℎ𝑖𝑔ℎ, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 

3 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑟𝑎𝑖𝑛, 𝑐𝑜𝑜𝑙, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 

4 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, 𝑐𝑜𝑜𝑙, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑠𝑡𝑟𝑜𝑛𝑔) → 𝑦𝑒𝑠 

5 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑠𝑢𝑛𝑛𝑦, 𝑐𝑜𝑜𝑙, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 

6 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑟𝑎𝑖𝑛, 𝑚𝑖𝑙𝑑, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 

7 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑠𝑢𝑛𝑛𝑦, 𝑚𝑖𝑙𝑑, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑠𝑡𝑟𝑜𝑛𝑔) → 𝑦𝑒𝑠 

8 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, 𝑚𝑖𝑙𝑑, ℎ𝑖𝑔ℎ, 𝑠𝑡𝑟𝑜𝑛𝑔) → 𝑦𝑒𝑠 

9 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, ℎ𝑜𝑡, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 

𝑰𝒅𝝆 𝝆 MsgLen(𝝆) Opt(𝝆) Cov+ [𝝆] Cov- [𝝆] 

1  𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, ℎ𝑜𝑡, ℎ𝑖𝑔ℎ, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠  17.92 161.32 1 [1] 0 [] 

2 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑟𝑎𝑖𝑛, 𝑚𝑖𝑙𝑑, ℎ𝑖𝑔ℎ, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 17.92 161.32 1 [2] 0 [] 

3 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑟𝑎𝑖𝑛, 𝑐𝑜𝑜𝑙, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 17.92 161.32 1 [3] 0 [] 

4 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, 𝑐𝑜𝑜𝑙, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑠𝑡𝑟𝑜𝑛𝑔) → 𝑦𝑒𝑠 17.92 161.32 1 [4] 0 [] 

5 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑠𝑢𝑛𝑛𝑦, 𝑐𝑜𝑜𝑙, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 17.92 161.32 1 [5] 0 [] 

6 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑟𝑎𝑖𝑛, 𝑚𝑖𝑙𝑑, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 17.92 161.32 1 [6] 0 [] 

7 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑠𝑢𝑛𝑛𝑦, 𝑚𝑖𝑙𝑑, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑠𝑡𝑟𝑜𝑛𝑔) → 𝑦𝑒𝑠 17.92 161.32 1 [7] 0 [] 

8 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, 𝑚𝑖𝑙𝑑, ℎ𝑖𝑔ℎ, 𝑠𝑡𝑟𝑜𝑛𝑔) → 𝑦𝑒𝑠 17.92 161.32 1 [8] 0 [] 

9 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, ℎ𝑜𝑡, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 17.92 161.32 1 [9] 0 [] 

Table 4: Set of rules generated 𝑅 ∈ ℛ  

Table 1: Set of positive examples 𝐸− (Playtennis problem) 

state (𝒔) action (𝒂) 
𝒒 

𝜱1 𝜱2 𝜱3 o 𝝋1 𝝋2 𝝋3 𝝋4 𝝋5 𝝋6 𝝋7 𝝋8 

161.32 17.92 1 1 17.92 0.11 0 0 4 2 0 0 1 

… 

161.32 17.92 1 4 17.92 0.11 0 0 4 2 0 0 1 

 

Table 5: Matrix Q  

Step 0 

Step2 

Step 3 

Step 4 

Step 5 
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Example: Playtennis
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑰𝒅𝝆 𝝆 MsgLen(𝝆) Opt(𝝆) Cov+ [𝝆] Cov- [𝝆] 

1  𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, ℎ𝑜𝑡, ℎ𝑖𝑔ℎ, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠  17.92 161.32 1 [1] 0 [] 

2 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑟𝑎𝑖𝑛, 𝑚𝑖𝑙𝑑, ℎ𝑖𝑔ℎ, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 17.92 161.32 1 [2] 0 [] 

3 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑟𝑎𝑖𝑛, 𝑐𝑜𝑜𝑙, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 17.92 161.32 1 [3] 0 [] 

4 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, 𝑐𝑜𝑜𝑙, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑠𝑡𝑟𝑜𝑛𝑔) → 𝑦𝑒𝑠 17.92 161.32 1 [4] 0 [] 

5 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑠𝑢𝑛𝑛𝑦, 𝑐𝑜𝑜𝑙, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 17.92 161.32 1 [5] 0 [] 

6 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑟𝑎𝑖𝑛, 𝑚𝑖𝑙𝑑, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 17.92 161.32 1 [6] 0 [] 

7 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑠𝑢𝑛𝑛𝑦, 𝑚𝑖𝑙𝑑, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑠𝑡𝑟𝑜𝑛𝑔) → 𝑦𝑒𝑠 17.92 161.32 1 [7] 0 [] 

8 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, 𝑚𝑖𝑙𝑑, ℎ𝑖𝑔ℎ, 𝑠𝑡𝑟𝑜𝑛𝑔) → 𝑦𝑒𝑠 17.92 161.32 1 [8] 0 [] 

9 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, ℎ𝑜𝑡, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 17.92 161.32 1 [9] 0 [] 

10 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑠𝑢𝑛𝑛𝑦, 𝑋2, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 15.34 158.74 1 [5] 0 [] 

Table 4: Set of rules generated 𝑅 ∈ ℛ  

𝑰𝒅𝒐 𝒐 

1 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 (𝐿1, 𝑋1) 

2 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 (𝐿2, 𝑋2) 

3 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 (𝐿3, 𝑋3) 

4 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 (𝐿4, 𝑋4) 

 

state (𝒔) action (𝒂) 
𝒒 

𝜱1 𝜱2 𝜱3 o 𝝋1 𝝋2 𝝋3 𝝋4 𝝋5 𝝋6 𝝋7 𝝋8 

161.32 17.92 1 1 17.92 0.11 0 0 4 2 0 0 1 

… 

161.32 17.92 1 4 17.92 0.11 0 0 4 2 0 0 1 

140.81 17.92 1 2 15.33 0.11 0 1 3 2 0 0 0.82 

Table 3: Set of operators 𝑂 ∈ 𝒪 

Table 5: Matrix Q  

Step 1 

𝑎𝑡=1 = arg max
𝑎 ∈ 𝒜

{𝑄𝑀(�̇�𝑡, 𝑎)} = 〈2, 5〉 
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Example: Playtennis

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑰𝒅𝝆 𝝆 MsgLen(𝝆) Opt(𝝆) Cov+ [𝝆] Cov- [𝝆] 

1  𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, ℎ𝑜𝑡, ℎ𝑖𝑔ℎ, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠  17.92 161.32 1 [1] 0 [] 

2 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑟𝑎𝑖𝑛, 𝑚𝑖𝑙𝑑, ℎ𝑖𝑔ℎ, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 17.92 161.32 1 [2] 0 [] 

3 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑟𝑎𝑖𝑛, 𝑐𝑜𝑜𝑙, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 17.92 161.32 1 [3] 0 [] 

4 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, 𝑐𝑜𝑜𝑙, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑠𝑡𝑟𝑜𝑛𝑔) → 𝑦𝑒𝑠 17.92 161.32 1 [4] 0 [] 

5 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑠𝑢𝑛𝑛𝑦, 𝑐𝑜𝑜𝑙, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 17.92 161.32 1 [5] 0 [] 

6 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑟𝑎𝑖𝑛, 𝑚𝑖𝑙𝑑, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 17.92 161.32 1 [6] 0 [] 

7 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑠𝑢𝑛𝑛𝑦, 𝑚𝑖𝑙𝑑, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑠𝑡𝑟𝑜𝑛𝑔) → 𝑦𝑒𝑠 17.92 161.32 1 [7] 0 [] 

8 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, 𝑚𝑖𝑙𝑑, ℎ𝑖𝑔ℎ, 𝑠𝑡𝑟𝑜𝑛𝑔) → 𝑦𝑒𝑠 17.92 161.32 1 [8] 0 [] 

9 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, ℎ𝑜𝑡, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 17.92 161.32 1 [9] 0 [] 

10 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑠𝑢𝑛𝑛𝑦, 𝑋2, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 15.34 158.74 1 [5] 0 [] 

11 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, 𝑐𝑜𝑜𝑙, 𝑋3, 𝑠𝑡𝑟𝑜𝑛𝑔) → 𝑦𝑒𝑠 15.34 158.74 1 [4] 0 [] 

12 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, 𝑋2, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 15.34 158.74 1 [9] 0 [] 

13 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑟𝑎𝑖𝑛, 𝑋2, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 15.34 140.81 2 [3,6] 0 [] 

14 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑋1, ℎ𝑜𝑡, ℎ𝑖𝑔ℎ, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 15.34 176.66 1 [1] 1 [1] 
 

Table 4: Set of rules generated 𝑅 ∈ ℛ  

state (𝒔) action (𝒂) 
𝒒 

𝜱1 𝜱2 𝜱3 o 𝝋1 𝝋2 𝝋3 𝝋4 𝝋5 𝝋6 𝝋7 𝝋8 

161.32 17.92 1 1 17.92 0.11 0 0 4 2 0 0 1 

… 

161.32 17.92 1 4 17.92 0.11 0 0 4 2 0 0 1 

140.81 17.92 1 2 15.33 0.11 0 1 3 2 0 0 0.82 

161.32 17.92 1 3 15.33 0.11 0 1 3 2 0 0 0.82 

161.32 17.92 1 2 15.33 0.11 0 1 3 2 0 0 0.82 

161.32 17.92 1 2 15.33 0.22 0 1 3 2 0 0 0.85 

161.32 17.92 1 1 15.33 0.11 0.2 1 3 2 0 0 0.79 

 

Table 5: Matrix Q  

Step 1 

Step 2 

Step 3 

Step 4 

Step 5 
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Reusing Past Policies
 

state (𝒔𝒔) action (𝒂𝒂) 
𝒒𝒒 

𝜱𝜱1 𝜱𝜱2 𝜱𝜱3 o 𝝋𝝋1 𝝋𝝋2 𝝋𝝋3 𝝋𝝋4 𝝋𝝋5 𝝋𝝋6 𝝋𝝋7 𝝋𝝋8 
161.32 17.92 1 1 17.92 0.11 0 0 4 2 0 0 1 
161.32 17.92 1 4 17.92 0.11 0 0 4 2 0 0 1 
140.81 17.92 1 2 15.33 0.11 0 1 3 2 0 0 0.82 
161.32 17.92 1 3 15.33 0.11 0 1 3 2 0 0 0.82 
161.32 17.92 1 2 15.33 0.11 0 1 3 2 0 0 0.82 
161.32 17.92 1 2 15.33 0.22 0 1 3 2 0 0 0.85 
161.32 17.92 1 1 15.33 0.11 0.2 1 3 2 0 0 0.79 

… 

The abstract representation of states and actions (the φ and ϕ fea-
tures) which allows the system does not start from the scratch and
reuse the optimal information:

Actions successfully applied to certain states (from the
previous task) when it reaches a similar (with similar features)
new state.

Due this abstract representation, how different are the source and
target task does not matter.
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Reusing Past Policies

The table QS can be viewed as knowledge acquired during the
learning process that can be transferred to a new situation.
When gErl learns the new task, QS is used to train a new
model QT

M
1.

QS is used from the first learning step and it is afterwards
updated with the new information acquired using the model
QT

M .

 

 

 

 

 

 

 

 

 

 
 
 
 

 Source Task 
𝑄𝑆[𝑠, 𝑎] 

 

 𝒔𝒕𝒂𝒕𝒆 (𝒔) 𝒂𝒄𝒕𝒊𝒐𝒏 (𝒂) 𝒒 
step 1 

Φ𝑖 𝑎𝑠𝑡𝑒𝑝, Φ𝑠𝑡𝑒𝑝,𝑗  𝑞𝑠𝑡𝑒𝑝 step 2 

… 

step n 

 
Target Task 

𝑄𝑇[𝑠, 𝑎] 
 

 
 

 𝒔𝒕𝒂𝒕𝒆 (𝒔) 𝒂𝒄𝒕𝒊𝒐𝒏 (𝒂) 𝒒   

 

Φ𝑖 𝑎𝑠𝑡𝑒𝑝, Φ𝑠𝑡𝑒𝑝,𝑗  𝑞𝑠𝑡𝑒𝑝 
 

Previous  

Knowledge 
 

 

 
step 1’ 

Φ𝑖 𝑎𝑠𝑡𝑒𝑝´, Φ𝑠𝑡𝑒𝑝´,𝑗  𝑞𝑠𝑡𝑒𝑝´ 
 

New 

Knowledge 
step 2’ 

…  

step n’ 

1We don’t transfer the QS
M model since it may not have been retrained with

the last information added to the table QS (because of the periodicity of
training).
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An illustrative example of Transfer Knowledge

List processing problems as a structured prediction domain:
1 d → c: replaces “d” by “c”.

(trans([t, r , a, d , e])→ [t, r , a, c, e])
2 e → ing : replaces “e” by “ing” located at the last position of

a list. (trans([t, r , a, d , e])→ [t, r , a, d , i , n, g ])
3 d → pez : replaces “d” by “pez” located at any position of a

list. (trans([t, r , a, d , e])→ [t, r , a, p, e, z , e])
4 Prefixover : adds the prefix “over”.

(trans([t, r , a, d , e])→ [o, v , e, r , t, r , a, d , e])
5 Suffixmark : adds the suffix “mark”.

(trans([t, r , a, d , e])→ [t, r , a, d , e,m, a, r , k])
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An illustrative example of Transfer Knowledge

Since we want to analyse the ability of the system to improve the
learning process when reusing past policies:

1 we will solve each of the previous problems separately and,
2 then we will reuse the policy learnt solving one problem to

solve the rest (including itself).

The set of operators used consists of the user-defined
operators and a small number of non-relevant operators (20).
To make the experiments independent of the operator index,
we will set up 5 random orders for them.
Each problem has 20 positive instances e+ and no negative
ones.
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An illustrative example of Transfer Knowledge

l → c e → ing d → pez Prefixover Suffixmark
Steps 108.68 76.76 74.24 61.28 62.28

Table: Results not reusing previous policies (average number of steps).

Problem
PCY from l → c e → ing d → pez Prefixover Suffixmark

l → c 65.68 58 70, 64 48.84 49.12
e → ing 66.48 50.04 56.4 45.2 45.36
d → pez 56.36 49.6 57.32 52.24 45.84
Prefixover 58.8 48.96 60.6 43.8 46.88
Suffixmark 102, 72 64.4 67.32 56.16 57.48
Average 70.01 54.2 62.46 49.25 48.94

Table: Results reusing policies (average number of steps).

From each problem we extract 5 random samples of ten positive instances in
order to learn a policy from them with each of the five order of operators (5
problems × 5 samples × 5 operator orders = 125 different experiments).
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Conclusions and Future Work

One of the problems of reusing knowledge from previous
learning problems to new ones is the representation and
abstraction of this knowledge.
In this paper we have investigated how policy reuse can be
useful (even in cases where the problems have no operators in
common), simply because some abstract characteristics of two
learning problems are similar at a more general level.
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Conclusions and Future Work

There are many other things to explore in the context of gErl:
Include features for the operators.
Measure of similarity between problems (would help us to
better understand when the system is able to detect these
similarities).
Apply the ideas in this paper to other kinds of systems (LCS,
RL and other evolutionary techniques).
Apply this ideas to other psychonometrics (IQ tests):

Odd-one-out problems.
Raven’s matrices.
Thurstone Letter Series.
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Thanks

THANKS
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