
Introduction The gErl System Reusing Past Policies Conclusions and Future Work

Policy Reuse in a General Learning Framework

Fernando Mart́ınez-Plumed, Cèsar Ferri, José
Hernández-Orallo, Maŕıa José Raḿırez-Quintana

CAEPIA 2013

September 15, 2013

1 / 31

Introduction The gErl System Reusing Past Policies Conclusions and Future Work

Table of contents

1 Introduction

2 The gErl System

3 Reusing Past Policies

4 Conclusions and Future Work

2 / 31

Introduction The gErl System Reusing Past Policies Conclusions and Future Work

Introduction

The reuse of knowledge which has been acquired in previous
learning processes in order to improve or accelerate the
learning of future tasks is an appealing idea.
The knowledge transferred between tasks can be viewed as a
bias in the learning of the target using the information learned
in the source task

Learning System Learning System Learning System

Different Tasks
Source Tasks

Knowledge Learning System

Target Task

3 / 31

Introduction The gErl System Reusing Past Policies Conclusions and Future Work

Introduction

Research on transfer learning has attracted more and more
attention since 1995 in different names and areas:

Learning to learn
Life-long learning
Knowledge-transfer
Inductive transfer
Multitask learning
Knowledge consolidation
Incremental/cumulative learning
Meta-learning
Reinforcement Learning.
Reframing

4 / 31

Introduction The gErl System Reusing Past Policies Conclusions and Future Work

Introduction

Research on transfer learning has attracted more and more
attention since 1995 in different names and areas:

Learning to learn
Life-long learning
Knowledge-transfer
Inductive transfer
Multitask learning
Knowledge consolidation
Incremental/cumulative learning
Meta-learning
Reinforcement Learning.
Reframing

4 / 31

Introduction The gErl System Reusing Past Policies Conclusions and Future Work

Introduction

Reinforcement Learning.
The knowledge is transfered in several ways ([Taylor and Stone, 2009]
for a survey):

Modifying the learning algorithm
[Fernandez and Veloso, 2006, Mehta, 2005].
Biasing the initial action-value function [J.Carroll, 2002].
Mapping between actions and/or states
[Liu and Stone, 2006, Price and Boutilier, 2003].

5 / 31

Introduction The gErl System Reusing Past Policies Conclusions and Future Work

Introduction

We present a general rule-based learning setting where
operators can be defined and customised for each kind
of problem.

The generalisation/especialiazation operator to use depends on
the structure of the data.
Adaptive and flexible rethinking of heuristics, with a
model-based reinforcement learning approach.

http://users.dsic.upv.es/˜fmartinez/gerl.html

6 / 31

Introduction The gErl System Reusing Past Policies Conclusions and Future Work

gErl

Flexible architecture [Lloyd, 2001] (1/2):

Designing customised systems for applications with complex
data.
Operators can be modified and finetuned for each problem.
Different to:

Specialized systems (Incremental models
[Daumé III and Langford, 2009, Maes et al., 2009]) .
Feature transformations (kernels [Gärtner, 2005] or distances
[Estruch et al., 2006]).
Fixed operators (Plotkin’s lgg [Plotkin, 1970], Inverse
Entailment [Muggleton, 1995], Inverse narrowing and CRG
[Ferri et al., 2001]).

7 / 31

Introduction The gErl System Reusing Past Policies Conclusions and Future Work

gErl

Flexible architecture [Lloyd, 2001] (2/2):
Population of rules and programs evolved as in an evolutionary
programming setting (LCS [Holmes et al., 2002]).
Reinforcement Learning-based heuristic.
Optimality criteria (MML/MDL) [Wallace and Dowe, 1999]).
Erlang functional programming language
[Virding et al., 1996].

This is a challenging proposal not sufficiently explored in machine
learning.

8 / 31

Introduction The gErl System Reusing Past Policies Conclusions and Future Work

Architecture

A given problem (E+ and E−) and a (possible empty) BK .
member([1, 2, 3], 3)→ true

9 / 31

Introduction The gErl System Reusing Past Policies Conclusions and Future Work

Architecture

Flexible architecture which works with populations of rules
(unconditional / conditional equations) and programs written in

Erlang.
member([X |Y],Z) when true → member(Y ,Z)

9 / 31

Introduction The gErl System Reusing Past Policies Conclusions and Future Work

Architecture

The population evolves as in an evolutionary programming setting.

9 / 31

Introduction The gErl System Reusing Past Policies Conclusions and Future Work

Architecture

Operators are applied to rules for generating new rules and
combined with existing or new programs.

9 / 31

Introduction The gErl System Reusing Past Policies Conclusions and Future Work

Architecture

Reinforcement Learning-based heuristic to guide the learning.

9 / 31

Introduction The gErl System Reusing Past Policies Conclusions and Future Work

Architecture

Appropriate operators + MML based optimality criteria +
Reinforcement Learning-based heuristic.

9 / 31

Introduction The gErl System Reusing Past Policies Conclusions and Future Work

Architecture

State

Reward

Actionp{o,ρ}Actionp{o,ρ}

Reinforcement
Modulep
BAgentk

HeuristicpModel

RulespR

SystempBEnvironmentk

Population

ProgramspP

OperatorspO CombinerspC

Rule
Generator

Program
Generator

O C

R Pp-ρ-

ρ-

EvidencepEp
Be+,e-k

Problem

Background
Knowledge

co

As a result, this architecture can be seen as a ‘meta-learning
system’, that is, as a ‘system for writing machine learning systems’.

9 / 31

Introduction The gErl System Reusing Past Policies Conclusions and Future Work

Why Erlang?

Erlang/OTP [Virding et al., 1996] is a functional programming lan-
guage developed by Ericsson and was designed from the ground up
for writing scalable, fault-tolerant, distributed, non-stop and soft-
realtime applications.

Free and open-source language with a large community of
developers behind.
Reflection and higher order.
Unique representation language, operators, examples,
models and background knowledge are represented in the
same language.

10 / 31

Introduction The gErl System Reusing Past Policies Conclusions and Future Work

Operators over Rules and Programs

The definition of customized operators is one of the key
concepts of our proposal.
In gErl, the set of rules R is transformed by applying a set of
operators O ⊂ O.
Operators perform modifications over any of subparts of a rule
in order to generalise or specialise it.
gErl provides two meta-operators able to define well-known
generalisation and specialisation operators in Machine
Learning

11 / 31

Introduction The gErl System Reusing Past Policies Conclusions and Future Work

RL-based heuristics

Heuristics must be overhauled as decisions about the
operator that must be used (over a rule) at each particular
state of the learning process.
A Reinforcement Learning (RI) [Sutton and Barto, 1998]
approach suits perfectly for our purposes.
Our decision problem is a four-tuple 〈S,A, τ, ω〉 where:

S: state space (st = 〈R,P〉).
A : O ×R (a= 〈o, ρ〉).
τ : S ×A → S.
ω : S ×A → R.

12 / 31

Introduction The gErl System Reusing Past Policies Conclusions and Future Work

MML/MDL-based Optimality

According to the MDL/MML philosophy, the optimality of a program
p is defined as the weighted sum of two simpler heuristics, namely, a
complexity-based heuristic (which measures the complexity of p) and
a coverage heuristic (which measures how well p fits the evidence):

Cost

Cost(p) = β1 ·MsgLen(p) + β2 · (MsgLen(e|p))

13 / 31

Introduction The gErl System Reusing Past Policies Conclusions and Future Work

MML/MDL-based Optimality

According to the MDL/MML philosophy, the optimality of a program
p is defined as the weighted sum of two simpler heuristics, namely, a
complexity-based heuristic (which measures the complexity of p) and
a coverage heuristic (which measures how well p fits the evidence):

Cost

Cost(p) = β1 ·MsgLen(p)+

β2 · (MsgLen({e ∈ E+ : p 6|= e}) + MsgLen({e ∈ E− : p |= e}))

13 / 31

Introduction The gErl System Reusing Past Policies Conclusions and Future Work

RL-based heuristics
The probably infinite number of states and actions makes the application of classical
RL algorithms not feasible:

States. ṡt = 〈φ1, φ2, φ3〉
1 Global optimality (φ1):
2 Average Size of Rules (φ2)
3 Average Size of programs (φ3)

Actions. ȧ = 〈o, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6, ϕ7, ϕ8〉
1 Operator (o)
2 Size (ϕ1)
3 Positive Coverage Rate (ϕ2).
4 Negative Coverage Rate (ϕ3).
5 NumVars (ϕ4)
6 NumCons (ϕ5)
7 NumFuncs (ϕ6)
8 NumStructs (ϕ7)
9 isRec (ϕ8)

Transitions. Transitions are deterministic. A transition τ evolves the current
sets of rules and programs by applying the operators selected (together with the
rule) and the combiners.
Rewards. The optimality criteria seen above is used to feed the rewards.

14 / 31

Introduction The gErl System Reusing Past Policies Conclusions and Future Work

Modelling the state-value function: using a regression
model

We use a hybrid between value-function methods (which
update a state-value matrix) and model-based methods
(which learn models for τ and ω) [Sutton, 1998].
Generalise the state-value function Q(s, a) of the Q-learning
[Watkins and Dayan, 1992] (which returns quality values,
q ∈ R) by a supervised model

QM : S ×A → R
gErl uses linear regression by default for generating QM , which
is retrained periodically from Q.
QM is used to obtain the best action ȧ for the state ṡt as
follows:

at = arg max
a∈A
{QM(ṡt , ȧ)}

15 / 31

Introduction The gErl System Reusing Past Policies Conclusions and Future Work

Modelling the state-value function: using a regression
model

state (𝒔) action (𝒂)
𝒒

𝜱1 𝜱2 𝜱3 o 𝝋1 𝝋2 𝝋3 𝝋4 𝝋5 𝝋6 𝝋7 𝝋8

161.32 17.92 1 1 17.92 0.11 0 0 4 2 0 0 1

…

161.32 17.92 1 4 17.92 0.11 0 0 4 2 0 0 1

140.81 17.92 1 2 15.33 0.11 0 1 3 2 0 0 0.82

161.32 17.92 1 3 15.33 0.11 0 1 3 2 0 0 0.82

161.32 17.92 1 2 15.33 0.11 0 1 3 2 0 0 0.82

161.32 17.92 1 2 15.33 0.22 0 1 3 2 0 0 0.85

161.32 17.92 1 1 15.33 0.11 0.2 1 3 2 0 0 0.79

Once the system has started, at each step, Q is updated using
the following formula:

Q[st , at]← α

[
wt+1 + γmax

at+1
QM(st+1, at+1)

]
+(1−α)Q[st , at]

(1)
16 / 31

Introduction The gErl System Reusing Past Policies Conclusions and Future Work

Example: Playtennis

𝑰𝒅𝒆+ 𝒆+

1 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, ℎ𝑜𝑡, ℎ𝑖𝑔ℎ, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠

2 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑟𝑎𝑖𝑛, 𝑚𝑖𝑙𝑑, ℎ𝑖𝑔ℎ, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠

3 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑟𝑎𝑖𝑛, 𝑐𝑜𝑜𝑙, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠

4 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, 𝑐𝑜𝑜𝑙, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑠𝑡𝑟𝑜𝑛𝑔) → 𝑦𝑒𝑠

5 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑠𝑢𝑛𝑛𝑦, 𝑐𝑜𝑜𝑙, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠

6 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑟𝑎𝑖𝑛, 𝑚𝑖𝑙𝑑, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠

7 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑠𝑢𝑛𝑛𝑦, 𝑚𝑖𝑙𝑑, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑠𝑡𝑟𝑜𝑛𝑔) → 𝑦𝑒𝑠

8 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, 𝑚𝑖𝑙𝑑, ℎ𝑖𝑔ℎ, 𝑠𝑡𝑟𝑜𝑛𝑔) → 𝑦𝑒𝑠

9 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, ℎ𝑜𝑡, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠

𝑰𝒅𝒐 𝒐

1 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 (𝐿1, 𝑋1)

2 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 (𝐿2, 𝑋2)

3 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 (𝐿3, 𝑋3)

4 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 (𝐿4, 𝑋4) Table 1: Set of positive examples 𝐸− (Playtennis problem)

𝑰𝒅𝒆− 𝒆−

1 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑠𝑢𝑛𝑛𝑦, ℎ𝑜𝑡, ℎ𝑖𝑔ℎ, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠

2 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑠𝑢𝑛𝑛𝑦, ℎ𝑜𝑡, ℎ𝑖𝑔ℎ, 𝑠𝑡𝑟𝑜𝑛𝑔) → 𝑦𝑒𝑠

3 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑟𝑎𝑖𝑛, 𝑐𝑜𝑜𝑙, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑠𝑡𝑟𝑜𝑛𝑔) → 𝑦𝑒𝑠

4 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑠𝑢𝑛𝑛𝑦, 𝑚𝑖𝑙𝑑, ℎ𝑖𝑔ℎ, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠

5 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑟𝑎𝑖𝑛, 𝑚𝑖𝑙𝑑, ℎ𝑖𝑔ℎ, 𝑠𝑡𝑟𝑜𝑛𝑔) → 𝑦𝑒𝑠

Table 3: Set of operators 𝑂 ∈ 𝒪

Table 2: Set of negative examples 𝐸− (Playtennis problem)

17 / 31

Introduction The gErl System Reusing Past Policies Conclusions and Future Work

Example: Playtennis

𝑰𝒅𝒆+ 𝒆+

1 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, ℎ𝑜𝑡, ℎ𝑖𝑔ℎ, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠

2 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑟𝑎𝑖𝑛, 𝑚𝑖𝑙𝑑, ℎ𝑖𝑔ℎ, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠

3 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑟𝑎𝑖𝑛, 𝑐𝑜𝑜𝑙, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠

4 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, 𝑐𝑜𝑜𝑙, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑠𝑡𝑟𝑜𝑛𝑔) → 𝑦𝑒𝑠

5 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑠𝑢𝑛𝑛𝑦, 𝑐𝑜𝑜𝑙, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠

6 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑟𝑎𝑖𝑛, 𝑚𝑖𝑙𝑑, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠

7 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑠𝑢𝑛𝑛𝑦, 𝑚𝑖𝑙𝑑, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑠𝑡𝑟𝑜𝑛𝑔) → 𝑦𝑒𝑠

8 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, 𝑚𝑖𝑙𝑑, ℎ𝑖𝑔ℎ, 𝑠𝑡𝑟𝑜𝑛𝑔) → 𝑦𝑒𝑠

9 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, ℎ𝑜𝑡, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠

𝑰𝒅𝝆 𝝆 MsgLen(𝝆) Opt(𝝆) Cov+ [𝝆] Cov- [𝝆]

1 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, ℎ𝑜𝑡, ℎ𝑖𝑔ℎ, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 17.92 161.32 1 [1] 0 []

2 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑟𝑎𝑖𝑛, 𝑚𝑖𝑙𝑑, ℎ𝑖𝑔ℎ, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 17.92 161.32 1 [2] 0 []

3 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑟𝑎𝑖𝑛, 𝑐𝑜𝑜𝑙, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 17.92 161.32 1 [3] 0 []

4 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, 𝑐𝑜𝑜𝑙, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑠𝑡𝑟𝑜𝑛𝑔) → 𝑦𝑒𝑠 17.92 161.32 1 [4] 0 []

5 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑠𝑢𝑛𝑛𝑦, 𝑐𝑜𝑜𝑙, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 17.92 161.32 1 [5] 0 []

6 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑟𝑎𝑖𝑛, 𝑚𝑖𝑙𝑑, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 17.92 161.32 1 [6] 0 []

7 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑠𝑢𝑛𝑛𝑦, 𝑚𝑖𝑙𝑑, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑠𝑡𝑟𝑜𝑛𝑔) → 𝑦𝑒𝑠 17.92 161.32 1 [7] 0 []

8 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, 𝑚𝑖𝑙𝑑, ℎ𝑖𝑔ℎ, 𝑠𝑡𝑟𝑜𝑛𝑔) → 𝑦𝑒𝑠 17.92 161.32 1 [8] 0 []

9 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, ℎ𝑜𝑡, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 17.92 161.32 1 [9] 0 []

Table 4: Set of rules generated 𝑅 ∈ ℛ

Table 1: Set of positive examples 𝐸− (Playtennis problem)

state (𝒔) action (𝒂)
𝒒

𝜱1 𝜱2 𝜱3 o 𝝋1 𝝋2 𝝋3 𝝋4 𝝋5 𝝋6 𝝋7 𝝋8

161.32 17.92 1 1 17.92 0.11 0 0 4 2 0 0 1

…

161.32 17.92 1 4 17.92 0.11 0 0 4 2 0 0 1

Table 5: Matrix Q

Step 0

Step2

Step 3

Step 4

Step 5

17 / 31

Introduction The gErl System Reusing Past Policies Conclusions and Future Work

Example: Playtennis

𝑰𝒅𝝆 𝝆 MsgLen(𝝆) Opt(𝝆) Cov+ [𝝆] Cov- [𝝆]

1 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, ℎ𝑜𝑡, ℎ𝑖𝑔ℎ, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 17.92 161.32 1 [1] 0 []

2 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑟𝑎𝑖𝑛, 𝑚𝑖𝑙𝑑, ℎ𝑖𝑔ℎ, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 17.92 161.32 1 [2] 0 []

3 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑟𝑎𝑖𝑛, 𝑐𝑜𝑜𝑙, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 17.92 161.32 1 [3] 0 []

4 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, 𝑐𝑜𝑜𝑙, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑠𝑡𝑟𝑜𝑛𝑔) → 𝑦𝑒𝑠 17.92 161.32 1 [4] 0 []

5 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑠𝑢𝑛𝑛𝑦, 𝑐𝑜𝑜𝑙, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 17.92 161.32 1 [5] 0 []

6 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑟𝑎𝑖𝑛, 𝑚𝑖𝑙𝑑, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 17.92 161.32 1 [6] 0 []

7 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑠𝑢𝑛𝑛𝑦, 𝑚𝑖𝑙𝑑, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑠𝑡𝑟𝑜𝑛𝑔) → 𝑦𝑒𝑠 17.92 161.32 1 [7] 0 []

8 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, 𝑚𝑖𝑙𝑑, ℎ𝑖𝑔ℎ, 𝑠𝑡𝑟𝑜𝑛𝑔) → 𝑦𝑒𝑠 17.92 161.32 1 [8] 0 []

9 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, ℎ𝑜𝑡, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 17.92 161.32 1 [9] 0 []

10 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑠𝑢𝑛𝑛𝑦, 𝑋2, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 15.34 158.74 1 [5] 0 []

Table 4: Set of rules generated 𝑅 ∈ ℛ

𝑰𝒅𝒐 𝒐

1 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 (𝐿1, 𝑋1)

2 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 (𝐿2, 𝑋2)

3 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 (𝐿3, 𝑋3)

4 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 (𝐿4, 𝑋4)

state (𝒔) action (𝒂)
𝒒

𝜱1 𝜱2 𝜱3 o 𝝋1 𝝋2 𝝋3 𝝋4 𝝋5 𝝋6 𝝋7 𝝋8

161.32 17.92 1 1 17.92 0.11 0 0 4 2 0 0 1

…

161.32 17.92 1 4 17.92 0.11 0 0 4 2 0 0 1

140.81 17.92 1 2 15.33 0.11 0 1 3 2 0 0 0.82

Table 3: Set of operators 𝑂 ∈ 𝒪

Table 5: Matrix Q

Step 1

𝑎𝑡=1 = arg max
𝑎 ∈ 𝒜

{𝑄𝑀(𝑠̇𝑡, 𝑎)} = 〈2, 5〉

17 / 31

Introduction The gErl System Reusing Past Policies Conclusions and Future Work

Example: Playtennis

𝑰𝒅𝝆 𝝆 MsgLen(𝝆) Opt(𝝆) Cov+ [𝝆] Cov- [𝝆]

1 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, ℎ𝑜𝑡, ℎ𝑖𝑔ℎ, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 17.92 161.32 1 [1] 0 []

2 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑟𝑎𝑖𝑛, 𝑚𝑖𝑙𝑑, ℎ𝑖𝑔ℎ, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 17.92 161.32 1 [2] 0 []

3 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑟𝑎𝑖𝑛, 𝑐𝑜𝑜𝑙, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 17.92 161.32 1 [3] 0 []

4 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, 𝑐𝑜𝑜𝑙, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑠𝑡𝑟𝑜𝑛𝑔) → 𝑦𝑒𝑠 17.92 161.32 1 [4] 0 []

5 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑠𝑢𝑛𝑛𝑦, 𝑐𝑜𝑜𝑙, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 17.92 161.32 1 [5] 0 []

6 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑟𝑎𝑖𝑛, 𝑚𝑖𝑙𝑑, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 17.92 161.32 1 [6] 0 []

7 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑠𝑢𝑛𝑛𝑦, 𝑚𝑖𝑙𝑑, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑠𝑡𝑟𝑜𝑛𝑔) → 𝑦𝑒𝑠 17.92 161.32 1 [7] 0 []

8 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, 𝑚𝑖𝑙𝑑, ℎ𝑖𝑔ℎ, 𝑠𝑡𝑟𝑜𝑛𝑔) → 𝑦𝑒𝑠 17.92 161.32 1 [8] 0 []

9 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, ℎ𝑜𝑡, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 17.92 161.32 1 [9] 0 []

10 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑠𝑢𝑛𝑛𝑦, 𝑋2, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 15.34 158.74 1 [5] 0 []

11 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, 𝑐𝑜𝑜𝑙, 𝑋3, 𝑠𝑡𝑟𝑜𝑛𝑔) → 𝑦𝑒𝑠 15.34 158.74 1 [4] 0 []

12 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡, 𝑋2, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 15.34 158.74 1 [9] 0 []

13 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑟𝑎𝑖𝑛, 𝑋2, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 15.34 140.81 2 [3,6] 0 []

14 𝑝𝑙𝑎𝑦𝑡𝑒𝑛𝑛𝑖𝑠(𝑋1, ℎ𝑜𝑡, ℎ𝑖𝑔ℎ, 𝑤𝑒𝑎𝑘) → 𝑦𝑒𝑠 15.34 176.66 1 [1] 1 [1]

Table 4: Set of rules generated 𝑅 ∈ ℛ

state (𝒔) action (𝒂)
𝒒

𝜱1 𝜱2 𝜱3 o 𝝋1 𝝋2 𝝋3 𝝋4 𝝋5 𝝋6 𝝋7 𝝋8

161.32 17.92 1 1 17.92 0.11 0 0 4 2 0 0 1

…

161.32 17.92 1 4 17.92 0.11 0 0 4 2 0 0 1

140.81 17.92 1 2 15.33 0.11 0 1 3 2 0 0 0.82

161.32 17.92 1 3 15.33 0.11 0 1 3 2 0 0 0.82

161.32 17.92 1 2 15.33 0.11 0 1 3 2 0 0 0.82

161.32 17.92 1 2 15.33 0.22 0 1 3 2 0 0 0.85

161.32 17.92 1 1 15.33 0.11 0.2 1 3 2 0 0 0.79

Table 5: Matrix Q

Step 1

Step 2

Step 3

Step 4

Step 5
17 / 31

Introduction The gErl System Reusing Past Policies Conclusions and Future Work

Reusing Past Policies

state (𝒔𝒔) action (𝒂𝒂)
𝒒𝒒

𝜱𝜱1 𝜱𝜱2 𝜱𝜱3 o 𝝋𝝋1 𝝋𝝋2 𝝋𝝋3 𝝋𝝋4 𝝋𝝋5 𝝋𝝋6 𝝋𝝋7 𝝋𝝋8
161.32 17.92 1 1 17.92 0.11 0 0 4 2 0 0 1
161.32 17.92 1 4 17.92 0.11 0 0 4 2 0 0 1
140.81 17.92 1 2 15.33 0.11 0 1 3 2 0 0 0.82
161.32 17.92 1 3 15.33 0.11 0 1 3 2 0 0 0.82
161.32 17.92 1 2 15.33 0.11 0 1 3 2 0 0 0.82
161.32 17.92 1 2 15.33 0.22 0 1 3 2 0 0 0.85
161.32 17.92 1 1 15.33 0.11 0.2 1 3 2 0 0 0.79

…

The abstract representation of states and actions (the φ and ϕ fea-
tures) which allows the system does not start from the scratch and
reuse the optimal information:

Actions successfully applied to certain states (from the
previous task) when it reaches a similar (with similar features)
new state.

Due this abstract representation, how different are the source and
target task does not matter.

18 / 31

Introduction The gErl System Reusing Past Policies Conclusions and Future Work

Reusing Past Policies

The table QS can be viewed as knowledge acquired during the
learning process that can be transferred to a new situation.
When gErl learns the new task, QS is used to train a new
model QT

M
1.

QS is used from the first learning step and it is afterwards
updated with the new information acquired using the model
QT

M .

 Source Task
𝑄𝑆[𝑠, 𝑎]

 𝒔𝒕𝒂𝒕𝒆 (𝒔) 𝒂𝒄𝒕𝒊𝒐𝒏 (𝒂) 𝒒
step 1

Φ𝑖 𝑎𝑠𝑡𝑒𝑝, Φ𝑠𝑡𝑒𝑝,𝑗 𝑞𝑠𝑡𝑒𝑝 step 2

…

step n

Target Task

𝑄𝑇[𝑠, 𝑎]

 𝒔𝒕𝒂𝒕𝒆 (𝒔) 𝒂𝒄𝒕𝒊𝒐𝒏 (𝒂) 𝒒

Φ𝑖 𝑎𝑠𝑡𝑒𝑝, Φ𝑠𝑡𝑒𝑝,𝑗 𝑞𝑠𝑡𝑒𝑝

Previous

Knowledge

step 1’

Φ𝑖 𝑎𝑠𝑡𝑒𝑝´, Φ𝑠𝑡𝑒𝑝´,𝑗 𝑞𝑠𝑡𝑒𝑝´

New

Knowledge
step 2’

…

step n’

1We don’t transfer the QS
M model since it may not have been retrained with

the last information added to the table QS (because of the periodicity of
training).

19 / 31

Introduction The gErl System Reusing Past Policies Conclusions and Future Work

An illustrative example of Transfer Knowledge

List processing problems as a structured prediction domain:
1 d → c: replaces “d” by “c”.

(trans([t, r , a, d , e])→ [t, r , a, c, e])
2 e → ing : replaces “e” by “ing” located at the last position of

a list. (trans([t, r , a, d , e])→ [t, r , a, d , i , n, g])
3 d → pez : replaces “d” by “pez” located at any position of a

list. (trans([t, r , a, d , e])→ [t, r , a, p, e, z , e])
4 Prefixover : adds the prefix “over”.

(trans([t, r , a, d , e])→ [o, v , e, r , t, r , a, d , e])
5 Suffixmark : adds the suffix “mark”.

(trans([t, r , a, d , e])→ [t, r , a, d , e,m, a, r , k])

20 / 31

Introduction The gErl System Reusing Past Policies Conclusions and Future Work

An illustrative example of Transfer Knowledge

Since we want to analyse the ability of the system to improve the
learning process when reusing past policies:

1 we will solve each of the previous problems separately and,
2 then we will reuse the policy learnt solving one problem to

solve the rest (including itself).

The set of operators used consists of the user-defined
operators and a small number of non-relevant operators (20).
To make the experiments independent of the operator index,
we will set up 5 random orders for them.
Each problem has 20 positive instances e+ and no negative
ones.

21 / 31

Introduction The gErl System Reusing Past Policies Conclusions and Future Work

An illustrative example of Transfer Knowledge

l → c e → ing d → pez Prefixover Suffixmark
Steps 108.68 76.76 74.24 61.28 62.28

Table: Results not reusing previous policies (average number of steps).

Problem
PCY from l → c e → ing d → pez Prefixover Suffixmark

l → c 65.68 58 70, 64 48.84 49.12
e → ing 66.48 50.04 56.4 45.2 45.36
d → pez 56.36 49.6 57.32 52.24 45.84
Prefixover 58.8 48.96 60.6 43.8 46.88
Suffixmark 102, 72 64.4 67.32 56.16 57.48
Average 70.01 54.2 62.46 49.25 48.94

Table: Results reusing policies (average number of steps).

From each problem we extract 5 random samples of ten positive instances in
order to learn a policy from them with each of the five order of operators (5
problems × 5 samples × 5 operator orders = 125 different experiments).

22 / 31

Introduction The gErl System Reusing Past Policies Conclusions and Future Work

Conclusions and Future Work

One of the problems of reusing knowledge from previous
learning problems to new ones is the representation and
abstraction of this knowledge.
In this paper we have investigated how policy reuse can be
useful (even in cases where the problems have no operators in
common), simply because some abstract characteristics of two
learning problems are similar at a more general level.

23 / 31

Introduction The gErl System Reusing Past Policies Conclusions and Future Work

Conclusions and Future Work

There are many other things to explore in the context of gErl:
Include features for the operators.
Measure of similarity between problems (would help us to
better understand when the system is able to detect these
similarities).
Apply the ideas in this paper to other kinds of systems (LCS,
RL and other evolutionary techniques).
Apply this ideas to other psychonometrics (IQ tests):

Odd-one-out problems.
Raven’s matrices.
Thurstone Letter Series.

24 / 31

Introduction The gErl System Reusing Past Policies Conclusions and Future Work

Thanks

THANKS

25 / 31

Introduction The gErl System Reusing Past Policies Conclusions and Future Work

References I

[Daumé III and Langford, 2009] Daumé III, H. and Langford, J.
(2009).
Search-based structured prediction.

[Estruch et al., 2006] Estruch, V., Ferri, C., Hernández-Orallo, J.,
and Raḿırez-Quintana, M. J. (2006).
Similarity functions for structured data. an application to
decision trees.
Inteligencia Artificial, Revista Iberoamericana de Inteligencia
Artificial, 10(29):109–121.

[Fernandez and Veloso, 2006] Fernandez, F. and Veloso, M.
(2006).
Probabilistic policy reuse in a Reinforcement Learning agent.
In AAMAS âĂŹ06, pages 720–727. ACM Press.

26 / 31

Introduction The gErl System Reusing Past Policies Conclusions and Future Work

References II

[Ferri et al., 2001] Ferri, C., Hernández-Orallo, J., and
Raḿırez-Quintana, M. (2001).
Incremental learning of functional logic programs.
In FLOPS, pages 233–247.

[Gärtner, 2005] Gärtner, T. (2005).
Kernels for Structured Data.
PhD thesis, Universitat Bonn.

[Holmes et al., 2002] Holmes, J. H., Lanzi, P., and Stolzmann, W.
(2002).
Learning classifier systems: New models, successful applications.

Information Processing Letters.

27 / 31

Introduction The gErl System Reusing Past Policies Conclusions and Future Work

References III

[J.Carroll, 2002] J.Carroll (2002).
Fixed vs Dynamic Sub-transfer in Reinforcement Learning.
In ICMLA’02. CSREA Press.

[Liu and Stone, 2006] Liu, Y. and Stone, P. (2006).
Value-function-based transfer for reinforcement learning using
structure mapping.
AAAI, pages 415–20.

[Lloyd, 2001] Lloyd, J. W. (2001).
Knowledge representation, computation, and learning in
higher-order logic.

[Maes et al., 2009] Maes, F., Denoyer, L., and Gallinari, P. (2009).

Structured prediction with reinforcement learning.
Machine Learning Journal, 77(2-3):271–301.

28 / 31

Introduction The gErl System Reusing Past Policies Conclusions and Future Work

References IV

[Mehta, 2005] Mehta, N. (2005).
Transfer in variable-reward hierarchical reinforcement learning.
In In Proc. of the Inductive Transfer workshop at NIPS.

[Muggleton, 1995] Muggleton, S. (1995).
Inverse entailment and Progol.
New Generation Computing.

[Plotkin, 1970] Plotkin, G. (1970).
A note on inductive generalization.
Machine Intelligence, 5.

[Price and Boutilier, 2003] Price, B. and Boutilier, C. (2003).
Accelerating Reinforcement Learning through implicit imitation.
Journal of Artificial Intelligence Research, 19:2003.

29 / 31

Introduction The gErl System Reusing Past Policies Conclusions and Future Work

References V

[Sutton, 1998] Sutton, R. (1998).
Reinforcement Learning: An Introduction.
MIT Press.

[Sutton and Barto, 1998] Sutton, R. S. and Barto, A. G. (1998).
Reinforcement learning: An introduction.
MIT press.

[Taylor and Stone, 2009] Taylor, M. and Stone, P. (2009).
Transfer learning for Reinforcement Learning domains: A survey.
Journal of Machine Learning Research, 10(1):1633–1685.

[Virding et al., 1996] Virding, R., Wikström, C., and Williams, M.
(1996).
Concurrent programming in ERLANG (2nd ed.).
Prentice Hall International (UK) Ltd., Hertfordshire, UK, UK.

30 / 31

Introduction The gErl System Reusing Past Policies Conclusions and Future Work

References VI

[Wallace and Dowe, 1999] Wallace, C. S. and Dowe, D. L. (1999).
Minimum message length and kolmogorov complexity.
Computer Journal, 42:270–283.

[Watkins and Dayan, 1992] Watkins, C. and Dayan, P. (1992).
Q-learning.
Machine Learning, 8:279–292.

31 / 31

	Introduction
	The [gErl] System
	Principles
	Architecture
	Why Erlang?
	Operators over Rules and Programs
	RL-based heuristics
	Modelling the state-value function: a regression model
	Example

	Reusing Past Policies
	An illustrative example of Transfer Knowledge

	Conclusions and Future Work

