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Abstract 
 

We present different ways of measuring reinforcement 

for eager learning methods and constructive languages. 

The problem of propagating reinforcement from the 

evidence into the theory has been shown especially 

troublesome in high-level languages, like ILP, but the 

same problem pervades other representations that al-

low redescription (e.g. neural networks). 

In this work, we present an operative measure of rein-

forcement for general theories, studying the growth of 

knowledge, theory revision and abduction in this 

framework. Our approach performs an apportionment 

of credit wrt. the ‘course’ that the evidence makes 

through the learnt theory. The result is compared with 

other evaluation criteria, like the MDL principle. 

Finally, we study a more common view of reinforce-

ment, where the actions of an intelligent system can be 

rewarded or penalised, and we discuss whether this 

should affect the distribution of reinforcement. 

The most important result of this paper is that the way 

we distribute reinforcement into knowledge results in a 

rated ontology. In this way, one of the most difficult 

dilemmas of inductive learning, the choice of a prior 

distribution, disappears. 

Keywords: Reinforcement Learning, Incremental 

Learning, Ontology, Apportionment of Credit, Abduc-

tion, Induction, MDL principle, Knowledge Acquisi-

tion and Revision, ILP. 

1 Introduction 

The study of reinforcement learning in restricted repre-

sentations has been especially fruitful in this decade 

(see [19] for a survey) and it has been recently related 

with EBL [7]. One of the main problems of reinforce-

ment learning is that it is increasingly more difficult to 

assign and ‘propagate’ the reinforcement (or appor-

tionment of credit [18]) depending on two factors 

(which are as well related): (1) how eager is the induc-

tive strategy (vs. lazy methods like instance-based and 

                                                           
 
1 On-line papers: http://www.dsic.upv.es/~jorallo/ 
escrits/escritsa.htm 

case-based reasoning [27]) and (2) how expressible is 

the language where induction must take place. Ex-

planatory Based Learning (EBL) and Inductive Logic 

Programming (ILP) are two areas where the propaga-

tion of reinforcement faces these issues in a more ar-

duous way. 

In this paper we shall address the problem of rein-

forcement with eager learning methods. Eager learning 

methods extract all the regularity from the data in order 

to work with intensional knowledge (instead of the 

extensional knowledge of lazy methods [1]). 

Additionally, we will consider the problem with 

constructive languages. A constructive language is a 

language that allows dynamical change of its represen-

tational bias (what is sometimes known as the possibil-

ity of ‘redescription’), i.e., new constructed terms can 

be created to express more compactly the evidence. 

This is usually known in ILP as predicate invention. 

In decision trees or attribute languages, no invented 

terms are induced and the reinforcement is distributed 

among the initial attributes.  The main drawback of 

these approaches is the lack of flexibility: when arrived 

to a ‘saturation’ point, the data are not abstracted fur-

ther and the mean reinforcement arrives to a limit. 

Consequently, the ontology must be given and not con-

structed (a model of the ‘world’ is embedded in the 

system) and the possible extensions of this world are 

very restricted. 

In the case of learning in highly expressible frame-

works, a main problem is presented (apart from effi-

ciency): the ontology of the new constructed concepts 

is indirect. The usual solution to this problem is the 

assumption of a prior probability. Once the probabili-

ties are assigned, a bayesian framework can be used to 

‘propagate’ the distribution. 

In general, there is not justification at all of which 

prior distribution to choose. In the absence of any 

knowledge, the most usual one is the MDL (Minimum 

Description Length) principle [34][35]. The MDL 

principle is just a formalisation of Occam’s razor. 

Theoretically, its close relation with PAC-learning [41] 

has been established by [4]. Some high-level represen-

tation inductive methods have adapted these ideas (e.g. 

U-learnability in ILP [32]). 



All of them are based on the assumption of a prior. 

However, there are many riddles with the management 

of probabilities and, in particular, the best choice, the 

MDL principle, has additional ones. 

As we will see, most of these difficulties would 

disappear if no prior distribution is assumed and the 

knowledge is constructed by reinforcement, as the data 

suggest. However, the translation of these ideas to gen-

eral representational frameworks seems difficult. First, 

the length of the structures which supposedly are to be 

reinforced is variable. Second, and more importantly, it 

seems we can always invent ‘fantastic’ concepts that 

can be used in the rest of knowledge. Consequently, 

these ‘fantastic’ concepts are highly reinforced, in-

creasing the reinforcement ratio of knowledge in an 

unfair way. 

An immediate way out is the combination of rein-

forcement learning with some prior, mainly the MDL 

principle, essayed under the name of ‘incremental self-

improvement’ [36] using syntactic minimality to re-

strict the appearance of these inventions. 

Notwithstanding, our approach also avoids ‘fantas-

tic’ concepts but it is based exclusively on reinforce-

ment. Consequently, compression turns out to be an ‘a 

posteriori’ consequence of a well-established rein-

forcement, instead of an ‘arbitrary’ assumption.  

The paper is organised as follows. Section 2 pre-

sents some prior distributions usually assumed in ma-

chine learning, especially the MDL principle. Section 3 

introduces our framework for incremental knowledge 

construction. Section 4 essays a first adaptation of rein-

forcement to realise the problems of ‘fantastic’ con-

cepts. Section 5 remakes the approach and introduces 

the idea of ‘course’ to measure reinforcement. Section 

6 discusses the extension of these ideas to wider no-

tions of reinforcement with the presence of reward and 

penalties. Section 7 considers the length of the rein-

forced ‘units’ or ‘rules’ showing the relation with the 

MDL principle in the limit. In the same section it is 

introduced a balanced reinforcement suitable for EBL. 

Section 8 presents two methods for computing effec-

tively these measures and deals with their limitations 

and complexity. Section 9 closes the paper discussing 

the results and the open questions. 

2 Prior Selection in Machine Learning 

The aim of Machine Learning is the computational 

construction of hypothetical inferences from facts, as 

Michalski have pointed out [28]: “inductive inference 

was defined as a process of generating descriptions 

that imply original facts in the context of background 

knowledge. Such a general definition includes induc-

tive generalisation and abduction as special cases”. 

However, given some evidence E, infinite many 

hypotheses H can be induced ensuring H = E. Obvi-

ously, some selection criteria are needed. Depending 

on different applications, some criteria have been used 

(e.g. the most specific hypothesis, the most general 

one, the shortest one, the most informative one, ...). In 

general, this choice implies the assumption of a prior 

distribution which can be used to derive the likeliness 

of the hypotheses. 

The principle of simplicity, represented by Oc-

cam’s razor, selects the shortest hypothesis as the most 

plausible one. This principle was rejected by Karl 

Popper because, in his opinion (and at that moment) 

there was no objective criterion for simplicity. How-

ever, Kolmogorov complexity [43], denoted K(x), is an 

objective criterion for simplicity. This is precisely what 

R.J.Solomonoff proposed as a ‘perfect’ theory of in-

duction [26]. Algorithmic Complexity inspired J. 

Rissanen in 1978 to use it as a general modelling 

method, giving the popular MDL principle [34], re-

cently revised as a one-part code [35] instead of the 

initial two-parts code formulation. 

It is remarkable (and often forgotten) that Kolmo-

gorov Complexity just gives consistency to this theory 

of induction; Occam's razor is assumed but not proven. 

Nonetheless, some justifications have been given in the 

context of physics, reliability and entropy, but, in our 

opinion, it is the notion of reinforcement (or cross 

validation) which justifies the MDL principle more 

naturally. At a first sight, it seems that the higher the 

mean compression ratio (length(E) / length(H)) the 

higher the mean reinforcement ratio. 

Summing up, the MDL principle says that, in ab-

sence of any other knowledge about the hypotheses 

distribution, we should select the prior P(h) = 2−K(h), 

prevailing short theories over large ones. However, this 

prior has many riddles. First of all, (1) it is not com-

putable, so the prior must be approximated (e.g. using 

the time-weighted variant Kt of Kolmogorov complex-

ity [24]) or must dynamically change as the learner 

knows that something can be further compressed. Sec-

ond, (2) it presents problems with perfect data; the 

MDL principle usually ‘underfits’ the data, because 

sometimes it is too conservative. Third, the reliability 

of the theory is not always increasing with the number 

of examples which have confirmed the theory (e.g., a 

string of 10
10

 a's is more compressible than a string of 

78450607356 a's !). Moreover, (4) is is difficult to 

work with different and non-exclusive hypotheses, 

because if we have Ta and Tb, intuition (and logic) says 



that T = Ta ∨ Tb should have more probability, but 

MDL assigns less probability to T because it is larger. 

Finally, (5) the MDL principle has shown problems 

for explanation, because, for the sake of maximum 

mean compression, some part of the hypothesis can be 

not compressed at all, resulting in a very compressed 

part plus some additional extensional cases. This ex-

tensional part is not validated, making the whole theory 

weak. An ontology is difficult to construct from here if 

they are unrelated (not explained) with the other facts. 

This is closely related with the differentiation between 

Enumerative Induction and Best Explanation [13] [14] 

[8] and the distinction between Induction and Abduc-

tion [10]. 
We intend to handle these difficulties with a dy-

namical reinforcement. However, our approach has 

additional advantages: (1) no prior assumption has to 

be made (apart from how to distribute this reinforce-

ment, which is the topic of this paper), i.e. knowledge 

is constructed just as the data suggest, and (2) rein-

forcement can be more flexibly managed than prob-

abilities, and allows further insight on the relation be-

tween the evidence and the theory. 

3 Preliminaries 

With this section we just present the schema of incre-

mental learning and the languages we aim to address in 

the following sections. 

3.1 Incremental Knowledge Construction 

The field of knowledge construction gathers many 

other related subfields and usually makes use of very 

complex techniques for the organisation and revision 

of the data. We will tackle exclusively the inductive or 

learning task in knowledge construction. 

Incremental knowledge construction (which in-

cludes acquisition and revision) generates a theory 

from an evidence that is gradually supplied example by 

example. From the very beginning, with an empty 

knowledge T=∅, when new observations or evidences 

e are received, we can have three possible situations: 

• Prediction Hit (or 'matter of course'). The obser-

vations are covered without more assumptions, i.e., 

T = e. The theory T is reinforced. 

• Novelty. The observation is uncovered but consis-

tent with T, i.e. T ≠ e and T ∪ e ≠ �. Here, the 

possible actions are: 

1. Extension: T can be extended with a good ex-

planation A, (i.e. T ∪ A = e). 

2. Revision: revised if a good explanation cannot 

be found, 

3. Patch: quoted as an extensional exception 

(i.e. T’ = T ∪ e), or 

4. Rejection: regarded as noise and ignored. 

• Anomaly. The observation is inconsistent with the 

theory T, i.e., T ≠ e and T ∪ e = �. In this case, T 

cannot be extended and there are three possibilities: 

revision, patch or rejection. 

An eager but still non-explanatory approach to theory 

formation is Kuhn's theory of changing paradigms [23] 

which basically matches with the MDL principle: as 

too many exceptions to the paradigm are found, they 

are increasingly lengthy to quote (patch) and the whole 

paradigm (or part of it) must be changed.  

In the preceding sketch, abduction appears as an 

extension of current knowledge with some assumption 

(usually one or more facts) and induction is also an 

extension or revision which performs some kind of 

generalisation. Nevertheless, this characterisation is 

not sufficient for a clear distinction (see [15] for 

sounder considerations about how to distinguish them). 

In fact, it is a topic of current discussion (for a state of 

the art see [10]). In this way, abduction has been com-

monly seen as belief revision [5], usually combined 

with induction [2]. In other cases is related with valida-

tion, justification or ontology [9] in the way the part of 

the theory where abduction supports must be reliable. 

Unavoidabily, this reliability must come from a rein-

forcement produced by the previous evidence. 

The previous schema is general enough to include 

explanatory and conservative knowledge construction. 

Explanatory knowledge construction should minimise 

the exceptions, so patches and revisions should not be 

allowed. Thus, the revisions are much more frequent. 

Even more, the goal is anticipating, investing, finding 

more informative and easily refutable hypotheses [33], 

in contrast to what many approaches to minimal revi-

sions aim for (see e.g. [30]), supported by the obvious 

fact that a minimal revision is usually less costly, in 

short-term, than a deep revision. 

3.2 Representation Languages 

For the study of reinforcement we need to introduce 

some basics for the representation to which it can be 

applied. A ‘pattern’ of languages is defined as a set of 

chunks or rules r which are composed of a head (or 

consequence) and a body (or set of conditions) in the 

following way r  ≡ { h :- t1, t2, .. ts }. 

Since no restriction of how h and ti can be (there 

may be variables, equations, boolean operators...), our 

definition could be specialised to propositional lan-

guages, Horn theories, full logical theories, functional 

languages, some kind of grammars, and even higher-



order languages. In the following, we leave unspecified 

the semantics of the representations and we just say 

that e is a consequence of P, denoted P = e (in other 

words, there is a proof for e in P, or, simply, P covers 

e). 

4 Reinforcement wrt. the Theory Use 

Whatever the approach to knowledge construction, the 

revision of knowledge must come from a partial or 

total weakness of the theory or, in other words, a loss 

of reinforcement (or apportionment of credit [18]). We 

present a way to compute the reinforcement map for a 

given theory, depending on past observations. 

DEFINITION 4.1 

The pure reinforcement ρρ(r) of a rule r from a the-

ory T wrt. some given evidence E = {e1, e2, …, es} is 

computed as the number of proofs of ei where r is 

used. If there are more than one proof for a given ei, 

all of them are reckoned, but in the same proof, a 

rule is computed only once. 

DEFINITION 4.2 

The (normalised) reinforcement ρ(r) = 1 − 2−ρρ(r). 

Definition 4.2 is motivated by the convenience of 

maintaining reinforcement between 0 and 1. The mean 

reinforced ratio mρ(T) is defined as Σr∈T ρ(r)/m, being 

m the number of rules. These definitions show that, in 

general, the most (mean) reinforced theory is not the 

shortest one as the following example shows: 

EXAMPLE 4.1 
Given the evidence e1, e2, e3, consider a theory Ta = {r1, r2, 

r3} where {r1} covers {e1}, {r2} covers {e2} and {r3} cov-

ers {e3} and a theory Tb = {r1, r2, r3, r4} where {r1, r4} 

cover {e1}, { r2, r4 } cover {e2} and {r3, r4 } cover {e3}. 

From here, Ta is less reinforced than Tb. 

In the first case we have ρρa,1= ρρa,2= ρρa,3= 1 and 

mρ(Ta) = 0.5. For Tb we have ρρb,1= ρρb,2= ρρb,3= 1, 

ρρb,4= 3 and mρ(Tb) = 0.5938. 

In addition, redundancy does not imply a loss of mean 

reinforcement ratio (e.g. just add twice the same rule). 

However, measuring reinforcement of the theory 

presents problems of fantastic (unreal) concepts: 

THEOREM 4.3 

Consider a program P composed of rules ri of the 

form { h :- t1, t2, .. ts }, which covers n examples E = 

{ e1, e2, ...  en }. If the mean reinforcement ratio mρ < 

1 − 2−m then it can always be increased.  

PROOF 

A fantastic rule rf  can be added to the program by 

modifying all the rules of the program in the fol-

lowing way ri  = { h :- t1, t2, .. ts , rf }. Obviously, all 

the other rules maintain the same reinforcement but 

rf is now reinforced with ρρf = n. Since ρf > mρ  

then the new mρ’ must be greater than mρ. � 

One can argue that these fantastic rules could be 

checked out and eliminated. However, there are many 

ways to ‘hide’ a fantastic rule; in fact, cryptography 

relies on this fact. 

5 Reinforcement wrt. the Evidence 

It can be derived from this problem that reinforcement 

must be combined with a simplicity criterion in order 

to work (maybe neural networks theory is the field 

where this avoidance of overfitting, ensured by sim-

plicity, has been more thoroughfully studied in combi-

nation with reinforcement). 

However, there is solution without explicitly mak-

ing use of simplicity. The idea is measuring the valida-

tion wrt. the evidence. 

DEFINITION 5.1 

The course χT( f ) of a given fact f wrt. to a theory is 

computed as the product of all the reinforcements 

ρ(r) of all the rules r used in the proof of f. If a rule 

is used more than once, it is computed once. If f has 

more than one proof, we select the greatest course. 

In this case, we can select the theory with the greatest 

mean of the courses of all the data presented so far, 

defined as mχ(T, E) = Σe∈E χT(e)/n, being n the number 

of facts (examples) in the evidence. We can use the 

geometric mean instead, denoted by µχ. The following 

example shows the use of this new criterion for knowl-

edge construction: 
 

EXAMPLE 5.1 
Using Horn theories as representation (Prolog), suppose 

we have an incremental learning session as follows: 

⌦ Given the background theory B = { s(a,b), s(b,c), 

s(c,d) } we observe the evidence E = { e+
1: r(a,b,c), e+

2: 

r(b,c,d), e+
3: r(a,c,d), e--

1: ¬r(b,a,c), e--
2: ¬r(c,a,c) }: 

The following programs could be induced, with their 

corresponding reinforcements and courses: 

P1 = {r(X,Y,Z) :- s(Y,Z) : ρ = 0.875} 

 χ(e+
1)= χ(e+

2)= χ(e+
3)= 0.875 

P2 = {r(X,c,Z) : ρ = 0.75  

          r(a,Y,Z) : ρ = 0.75} 



 χ(e+
1)= χ(e+

2)= χ(e+
3)= 0.75 

P3 = {r(X,Y,Z) :- s(X,Y) : ρ = 0.75  

          r(X,Y,Z) :- s(Y,Z) : ρ = 0.875} 

 χ(e+
1)= χ(e+

2)= χ(e+
3)= 0.875 

P4 = {r(X,Y,Z) :- t(X,Y), t(Y,Z) : ρ = 0.875 

          t(X,Y) :- s(X,Y) : ρ = 0.875 

          t(X,Y) :- s(X,Z), t(Z,Y) : ρ = 0.5} 

 χ(e+
1)= χ(e+

2)= 0.7656, χ(e+
3)= 0.3828 

P5 = {r(X,Y,Z) :- t(X,Y) : ρ = 0.875  

          t(X,Y) :- s(X,Y) : ρ = 0.875 

          t(X,Y) :- s(X,Z), t(Z,Y) : ρ =  0.5} 

 χ(e+
1)= χ(e+

2)= 0.7656, χ(e+
3)= 0.3828 

At this moment, P1 and P3 are the best options and P4 and 

P5 seem ‘risky’ theories according to the evidence. 

⌦ e+
4 = r(a,b,d) is observed. 

P1 does not cover e4
+ and it is patched:  

P1a’ = {r(X,Y,Z) :- s(Y,Z) : ρ = 0.875 

            r(a,b,d) : ρ = 0.5} 

χ(e+
1)= χ(e+

2)= χ(e+
3) = 0.875, χ(e+

4) = 0.5 

 mχ = 0.78, µχ = 0.76 

P1b’ = {r(X,Y,Z) :- s(Y,Z) : ρ = 0.875 

           r(X,Y,d) : ρ = 0.875 } 

χ(e+
1)= χ(e+

2)= χ(e+
3)= χ(e+

4) = 0.875   

P2’ is reinforced = {r(X,c,Z) : ρ = 0.75.  

              r(a,Y,Z) : ρ = 0.875} 

χ(e+
1) = 0.875, χ(e+

2) = 0.75, χ(e+
3) = χ(e+

4) = 0.875   

P3’ is reinforced  = {r(X,Y,Z) :- s(X,Y) : ρ = 0.875.  

               r(X,Y,Z) :- s(Y,Z) : ρ = 0.875} 

χ(e+
1)= χ(e+

2)= χ(e+
3)= χ(e+

4) = 0.875   

P4’ is reinforced = 

    P4’= { r(X,Y,Z):-t(X,Y), t(Y,Z): ρ = 0.9375 

               t(X,Y) :- s(X,Y) : ρ = 0.9375 

               t(X,Y) :- s(X,Z), t(Z,Y) : ρ = 0.75} 

χ(e+
1)= χ(e+

2)= 0.8789, χ(e+
3)= χ(e+

4) = 0.6592 

 mχ = 0.77, µχ= 0.76 

P5’ is slightly reinforced 

   P5’ = { r(X,Y,Z) :- t(X,Y) : ρ = 0.9375.  

               t(X,Y) :- s(X,Y) : ρ = 0.9375 

               t(X,Y) :- s(X,Z), t(Z,Y) : ρ =  0.5}  

χ(e+
1)=χ( e+

2)=0.8789, χ(e+
3)=0.4395, χ(e+

4)=0.8789 

 mχ = 0.77, µχ= 0.74 

At this moment, P1b’ and P3’ are the best options. Now P4’ 

and P5’ seem more grounded. 

⌦ We add e--
3
 = ¬r(a,d,d) 

P1a’ remains the same and P1b’ and P2’ are inconsis-

tent, motivating the following 'patches' for them: 

P2a’ = {r(X,c,Z) : ρ = 0.75.  

           r(X,b,Z) : ρ = 0.75} 

χ(e+
1)= χ(e+

2)= χ(e+
3)= χ(e+

4) = 0.75 

P2b’ = {r(X,Y,Z) :- e(Y) : ρ = 0.9375.  

           e(b) : ρ = 0.75 

         e(c) : ρ = 0.75} 

χ(e+
1)= χ(e+

2)= χ(e+
3)= χ(e+

4) = 0.7031 

P3’ and P4’ remain the same. P5’ becomes inconsistent.  

⌦ We add e+
5
 = r(a,d,e) 

P1a’, P2a’, P2b’ can only be patched with e+
5
 as an ex-

ception because abduction is not possible. 

P3’ has abduction as a better option. 

       P3’’ = {s(d,e) : ρ = 0.5 

                  r(X,Y,Z) :- s(X,Y) : ρ = 0.875  

                r(X,Y,Z) :- s(Y,Z) : ρ = 0.9375} 

χ(e+
1)= χ(e+

2)= χ(e+
3)= 0.9375, 

χ(e+
4) = 0.875, χ(e+

5) = 0.46875  

 mχ = 0.831, µχ= 0.805 

P4’ makes the same abduction 

    P4’’ = { s(d,e) : ρ = 0.5 

                r(X,Y,Z):-t(X,Y),t(Y,Z): ρ=0.96875 

                t(X,Y) :- s(X,Y) : ρ = 0.96875 

                t(X,Y) :- s(X,Z), t(Z,Y): ρ = 0.875} 

χ(e+
1)=χ(e+

2)=0.939,χ(e+
3)=χ(e+

4)=0.82,χ(e+
5)=0.41 

 mχ = 0.786, µχ= 0.754 

At this moment, P3’’ and P4’’ are the best options. 

Further examples would be required to distinguish which 

is the 'intended' one with more reliability. 
 

The example illustrates that in general, and using this 

new recknoning of reinforcement, the shortest theories 

are not the best ones. More importantly, it also shows 

that as soon as a theory gains some solidity, abduction 

can be applied. 

The way reinforcements are calculated makes that 

very complex programs are avoided, but redundancy is 

possible. But now there is not any risk of fantastic con-

cepts. As said before, for any program P composed of 

rules ri of the form { h :- t1, t2, .. ts }, which covers m 

examples E = { e1, e2, ...  en } and their reinforcements 

ρi, a fantastic rule rf  could be added to the program 

and all the rules could be modified in the following 

way ri = { h :- t1, t2, .. ts , rf }. The following theorem 

shows that now it is not reinforced over the original 

one: 

THEOREM 5.1 

The course of any example cannot be increased by 

the use of fantastic concepts. 

PROOF 

Since the fantastic concept rf now appears in all the 

proofs of the n examples, the reinforcement of rf is 

exactly 1 − 2−n and the reinforcements of all the ri 

remain the same. Hence, the course of all the m ex-

amples is modified to χ’(ej) = χ(ej) · rf = χ(ej) − χ(ej) · 

2−n. Since n is finite, for all ej ∈ E, χ’(ej) can never 

be greater than χ(ej) .� 

These ideas are being used by [17] in an incremental 

learning system using Curry as a representation lan-

guage (a logic functional programming language based 

on narrowing with some higher-order constructs). The 

results demonstrate that the intended hypothesis is 

found sooner than when using the MDL principle. 



Another advantage of this approach is that a ‘rated’ 

ontology can be derived directly from the theory. In 

this way, the parts which are sound or weak are easy to 

detect. Intuitively, if a rule only covers just one exam-

ple, it suggests that the rule is not very real. 

6 Rewarded Reinforcement 

In reinforcement learning, it is usually assumed that the 

learner receives some reward (or penalty) value of its 

actions. In other words, prediction hits can receive 

different degrees of reward and prediction errors (in-

cluding novelties and anomalies) can receive different 

degrees of penalty (or negative reward). 

Usually, this broader view of reinforcement is suit-

able for frameworks where reasoning about action is 

necessary. The rewards are assigned depending on the 

actions that the agent performs for each situation. 

Temporal languages are used for representation, like 

event calculus or situation calculus [22]. The important 

issue here is that our model can be used in these cases, 

by asking the learning system to predict the following 

situation sn+1 after every possible action it can perform 

in a certain situation sn. The task of the system is just 

selecting the one with the greatest reward. In the case 

the result of the action matches with the evidence, a 

positive hit happens with the predicted reward. In the 

case a prediction error occurs, the action may have no 

awful consequences (no penalty) or it may be fatal. 

The question is how ontology and ‘hedonism’ must be 

combined. It is commonly accepted in psychology the 

claim that hedonism motivates ontology, and this is 

stronger the earlier the stage of development of a cog-

nitive system. In our opinion, this motivation does not 

imply that they must be mixed. Moreover, rewards 

should be learned as well because they may change. 

From here, the choice of the best action must take 

into account both the reliability of the prediction (i.e. 

the reinforcement) weighted with the reward, not the 

action with the best reward alone (because it may be a 

very weak guess). 

Finally, there can be degrees of reliability in the 

evidence. This degree may come from different reli-

abilities of the sensors of the system or from interme-

diate recognition or sensor preprocessing subsystems. 

Indeed, this should affect ontology in the following 

way: every fact of the evidence is assigned a real num-

ber as a reliability degree, −1 ≤ df ≤ 1. In this frame-

work, the completely reliable positive examples are 

assigned a value of df = 1 and the completely reliable 

negative examples are assigned a value of df = −1. 

DEFINITION 6.1 

The 'grounded' course χ'( f ) of a given fact f wrt. to 

a theory is computed as the normal course χ( f ) 

multiplied by the reliability degree of f. More for-

mally, χ'( f ) = χ( f ) · df. 

7 Balanced Reinforcement 

With the approaches introduced in section 5 and sec-

tion 6 there is a tricky way of increasing reinforcement: 

joining rules. If a high-level representation mechanism 

allows very expressive rules, larger rules can be made 

in order to stand for the same that was expressed with 

separated rules, with the advantage of increasing rein-

forcement:  

EXAMPLE 7.1 
For instance, the following extended functional programs 

are equivalent: 

Ta =  { r1 = { f(X,a)    → g(b) }, 

 r2 = { f(X,c)    → i(d) } } 

Tb =  {  r  = { f(X,Y)   → if (Y=a) then g(b) 

  if (Y=c) else i(d) } } 

but Tb would be more reinforced than Ta. 
 

The solution to this problem requires the introduction 

of a factor inversely related with the syntactical length 

of a rules. It is important to clarify that this syntactical 

measure is not a prior and it can be effectively com-

puted, in contrast to the MDL principle. 

With length(r) we denote the length of a rule r for 

the concrete language which would be used. The only 

restriction for length is that for all r, length(r) ≥ 1. Thus 

we extend the definitions of section 5: 

DEFINITION 7.1 

The extended pure reinforcement is defined as: 

ρρ*(r) = ρρ(r) / length(r). 

The extended normalised reinforcement ρ*(r) and the 

extended courses χ*(r) are defined in the obvious way 

using ρρ*(r) and ρ*(r). 

It is obvious that if length(r) simply assigns 1 to 

every rule of the program, these definitions are equiva-

lent to those of section 3. 

With this extension, it is easy to show that —in the 

limit [11]— the MDL principle is an excellent princi-

ple for achieving reinforcement: 

THEOREM 7.2 

If the data E are infinite and a theory T is finite, the 

mean course mχ*(T, E) = 1. 



PROOF 

Given some infinite data as evidence E = { e1, ..., en 

}, without loss of generality, consider that T can be 

exclusively composed of two rules: r1, which covers 

all E except ei and, independently, r2, which covers 

ei. The reinforcements are ρ*(r1) = (1−2(1−n)/length(r1)) 

and ρ*(r2) = (1−2−1/length(r2)) and the mean course 

mχ*(T, E) =  [(n−1) · (1−2(1−n)/length(r1)) + 

(1−2−1/length(r2))] / n. For infinite data, we have that 

limn
�

∞ mχ*(T, E)= 1. � 

This theorem shows that maximum reinforcement 

matches with maximum compression in the limit (sim-

ply because both are saturated). However, when the 

data are finite we have many cases where they differ. 

The most blatant case occurs when some exception is 

covered extensionally (as r2 which covers di in the 

proof of theorem 7.2) and there is an important loss of 

reinforcement vs. a slight loss of compression. The 

following example illustrates this point: 

EXAMPLE 7.2 
Consider the following evidence e1–e10: 

 E = { e1: e(4) → true, e2: e(12) → true, 

  e3: e(3) → false, e4: e(2) → true, 

  e5: e(7) → false, e6: e(7) → false, 

  e7: e(20) → true, e8: e(0) → true, 

  e9: o(3) → true, e10: o(2) → false } 

and that natural numbers are represented using the func-

tor s as the symbol for succesor, e.g. s(s(s(0)))  means 3. 

The length (denoted l) of a rule is computed as 1+nf+nv, 

where nf means the number of functors (including con-

stants as functors with arity 0) and nv the number of vari-

ables. 

 From here, the following theories are evaluated: 
 

   : l ρρ ρρ* ρ* 

 Ta= { e(s(s(X)) → e(X) : 7 7 1 0.5 

  e(0) → true : 4 5 1.2 0.5647 

  e(s(0)) → false : 5 3 0.6 0.3402 

  o(s(s(s(0)))) → true : 7 1 0.1429 0.0943

  o(s(s(0))) → false  : 6 1 0.1667 0.1091} 
 

The extended courses are mχ*(e1, e2, e4, e7, e8) = 0.5 · 

0.5647 = 0.28235, mχ*(e3, e5, e6) = 0.5 · 0.3402 = 0.1701, 

mχ*(e9) = 0.0943 and mχ*(e10) = 0.1091. 

The mean extended course mχ*’ is 0.2125. 
 

   : l ρρ ρρ* ρ* 

 Tb= { e(s(s(X)) → e(X) : 7 7 1 0.5 

  e(0) → true : 4 5 1.2 0.5647 

  e(s(0)) → false : 5 3 0.6 0.3402 

  o(s(s(X)) → o(X) : 7 2 0.2857 0.1797 

  o(0) → false : 4 1 0.25 0.1591 

  o(s(0)) → true  : 5 1 0.2 0.1294} 
 

The extended courses are mχ*(e1, e2, e4, e7, e8) = 0.5 · 

0.5647 = 0.28235, mχ*(e3, e5, e6) = 0.5 · 0.3402 = 0.1701, 

mχ*(e9) = 0.1797 · 0.1294 = 0.02325 and mχ*(e10) = 

0.1797 · 0.1591 = 0.02859. 

The mean extended course mχ*’ is 0.1974.  
 

   : l ρρ ρρ* ρ* 

 Tc= { e(s(s(X)) → e(X) : 7 9 1.2857 0.5898 

  e(0) → true : 4 6 1.5 0.6464 

  e(s(0)) → false : 5 4 0.8 0.4257 

  o(X) → not(e(X)) : 6 2 0.3333 0.2063 

  not(true) → false : 4 1 0.25 0.1591 

  not(false) → true  : 4 1 0.25 0.1591} 
 

The extended courses are mχ*(e1, e2, e4, e7, e8) = 0.5898 · 

0.6464 = 0.3813, mχ*(e3, e5, e6) = 0.5898 · 0.4257 = 

0.2511, mχ*(e9) = 0.2063 · 0.5898 · 0.4257 · 0.1591 =  

0.00824 and mχ*(e10) = 0.2063 · 0.5898 · 0.6464 · 

0.1591 = 0.0125.  

The mean extended course mχ*’ is 0.2681. 

 

Note that the lengths (l(Ta)=29, l(Tb)=32, l(Tc) = 30) 

would not give many hints about which theory to select. 

The example also shows the advantages of this ap-

proach for explanation-based learning. Since all the 

data must be explained, if a part is left in an exten-

sional way (or unrelated with the rest), it is penalised. 

On the other hand, we have seen in the preceding sec-

tions that fantastic concepts are also avoided, so it re-

sults to be a balanced criterion for the 'intensionality' 

of theories, without falling into fantasy.  

Regarding Tc of example 7.2, our measure can be 

adapted to situations where a more compensated theory 

is required, using a geometric mean instead of an 

arithmetic mean. In addition, and concerning Ta, if we 

do not want exceptions (extensional parts) at all, we 

can discard theories where a fact has a course value 

less than the mean divided by a constant. Moreover, 

this case should trigger theory revision in an incre-

mental framework in order to integrate (or reconcile) 

the example with the theory. 

Finally, another straightforward extension to our 

approach is considering the length of the examples, 

too. However, it could also be included in the reliabil-

ity value which was discussed in section 6. 

8 Computing Reinforcement 

First of all, it should be stated clear that our theory of 

reinforcement is not an inductive learning method. We 

have not dealt about how the theory could be con-

structed from the evidence. On the contrary, this paper 

presents a set of measures that allow a detailed study of 

the relation between the theory and the evidence, as-

sisting the evaluation, the selection, and the revision of 

theories. 



A general method of computing reinforcement is as 

it has been used in the examples: 

GENERAL METHOD: 

Consider the theory T, with m rules r1..rm, and the 

evidence E, with n examples e1..en, such that T=E. 

First we must prove all the examples and compute 

ρρ* and ρ* for each rule. In a second stage, we 

prove again the n examples, computing χ* from the 

ρ* obtained in the first stage. 

The complexity of the previous method seems to be, in 

the worst case, in O(m·n). However it is not, because 

we have not stated any restriction about the computa-

tional cost of the theory, and each proof has its cost. 

However, it would be more realistic to consider the 

computing of reinforcement in an incremental setting: 

INCREMENTAL METHOD: 

We will use four arrays: l1..m, ρρ*
1..m, ρ*

1..m, χ*
1..n for 

the lengths, the pure and normalised reinforcements 

and the courses, respectively. An additional boo-

lean bidimensional array U1..m,1.. n assigns true to Uj,i 

iff ei uses rm in its proof and false otherwise. 

For each new example en+1 which is received we 

have different possibilities: 

1. If it is a hit, we remake ρρ*
1..m, ρ*

1..m, according 

to the proof of en+1, U is extended with U·,n+1 

and χ*
1..n+1 is updated using U. 

2. If it is a novelty and no revision is made to T, 

only an extension T'= T  ∪ {rm+1, ..., rm+k}, the 

steps are very similiar to the previous case, ex-

cept that the arrays must be extended to m+k. 

3. Finally, if it is a novelty or an anomaly and the 

theory is revised in some rules {r1, ..., rp} and ex-

tended in others {rm+1, ..., rm+k}, only the U·,j 

which does not use any rule from {r1, ..., rp} can 

be preserved. The rest must be remade. 

The previous method ignores two exceptional cases: 

that a hit could trigger a revision of the theory to read-

just reinforcements and that case 2. could produce al-

ternative proofs for previous examples. 

Further optimisation could come from a deeper 

study of the static dependencies (i.e.  some rule always 

depends on others) and the topology of dependencies 

that the theory generates. On the other hand, an appro-

priate approximation could be used. Even more, some 

of the past evidence can be ‘forgotten’ if it is covered 

by very reinforced rules, so minimising the cost. 

However, in the case that an inductive learning 

method uses reinforcement for evaluating the theories 

it is constructing, the complexity of these methods 

would surely be very modest compared to the usual 

huge costs of machine learning algorithms. 

Moreover, reinforcement measures are a very ade-

quate tool to guide a learning algorithm. For instance, 

in [17], the examples and rules with low reinforcement 

were mixed in order to ‘conciliate’ them and to obtain 

more compact and reinforced theories. 

9 Conclusions 

We have presented a framework to distribute or propa-

gate reinforcement into a theory depending on the ob-

servation (or evidence). The advantage of this ap-

proach is that it makes no assumptions about the prior 

distribution. Also in this framework, knowledge can 

have alternative descriptions, without reducing the 

evidence’s courses. Moreover, “deduction in the 

knowledge” can affect positively to reinforcement, 

something that the MDL principle or other syntactic 

priors avoid because the theory cannot change its syn-

tax without changing its a posteriori probability. 

Reinforcement allows a more detailed treatment of 

exceptions and provides different ratings for different 

parts of a theory, not the single probability value given 

by the priors which is assigned to the whole theory. 

Moreover, different predictions or assumptions are 

provided with different reliability values. 

We have seen it working in the context of knowl-

edge construction, showing that abduction is feasible 

as long as the theory gets reinforced. We think that the 

role of reinforcement in induction and abduction in 

knowledge acquisition is portable even from expert 

systems and diagnostic systems to neural networks 

(training=induction, recognition=abduction). It is more 

obvious the relation of this work with the distribution 

of reinforcement in neural networks, and the problems 

of overfitting and underfitting in the learning of linear 

functions. It even resembles some popular algorithms, 

like back-propagation. However, a symbolical frame-

work seems an extremely adequate tool to advance and 

combine different areas and applications: ILP, EBL, 

Analogical Reasoning, Reinforcement Learning and 

some kinds of non-monotonic reasoning. 

As future work, the measures could be extended to 

consider time-complexity and/or negative cases in the 

courses. In addition, a deeper study of how deduction 

affects reinforcement could be of capital interest in 

knowledge-based systems which use inductive and 

deductive reasoning techniques. Finally, we plan to 

apply our ideas in domains with actions, probably us-

ing situation or event calculus [22][37], and treating 

rewards in a more direct way (connecting with the 

work of [7]), in order to re-associate our notion of rein-

forcement with more classical notions of reinforcement 

learning.  



Acknowledgements 

Voldria agrair als revisors de la CCIA’98 per llurs 

comentaris, especialment per suggerir el millorament 

de la secció 7 i la introducció de la secció 8.  

References 

[1] David W. Aha, “Lazy Learning. Editorial” Special Issue 

about “Lazy Learning” AI Review, v.11, Nos. 1-5, Feb. 1997. 

[2] Aliseda, A. “A Unified Framework for Abductive and Induc-

tive Reasoning in Philosophy and AI” in M. Denecker, L. De 

Raedt, P. Flach and T. Kakas (eds) ECAI’96 Workshop on 

Abductive and Inductive Reasoning, pp. 7-9, 1996.  

[3] Barker, S.F. Induction and Hypothesis Ithaca, 1957. 

[4] Blumer, A.; Ehrenfeucht, A.; Haussler, D.; Warmuth, M.K. 

“Occam’s razor” Inf. Proc. Letters, 24, pp. 377-380, 1987. 

[5] Botilier, C.; Becher, V. "Abduction as belief revision" Artifi-

cial Intelligence 77, 43-94, 1995. 

[6] Bylander, T.; Allemang, M.C.; Tanner, M.C.; Josephson, J.R. 

“The computational complexity of abduction” Artificial Intel-

ligence, 49:25-60, 1991 

[7] Dietterich, T.G.; Flann, N.S. “Explanation-Based Learning 

and Reinforcement Learning: A Unified View” Machine 

Learning, 28, 169-210, 1997. 

[8] Ernis, R. “Enumerative Induction and Best Explanation” J. of 

Philosophy, LXV (18), 523-529, 1968. 

[9] Flach, P. “Abduction and Induction: Syllogistic and Inferen-

tial Perspectives” in M. Denecker, L. De Raedt, P. Flach and 

T. Kakas (eds) Working Notes of the ECAI’96 Workshop on 

Abductive and Inductive Reasoning, pp. 7-9, 1996. 

[10] Flach, P.; Kakas, A. (eds) Abduction and Induction. Essays 

on their relation and integration, in press, Kluwer 1998. 

[11] Gold, E.M. “Language Identification in the Limit” Inform. 

and Control., 10, pp. 447-474, 1967. 

[12] Grünwald, P. “The Minimum Description Length Principle 

and Non-Deductive Inference” in Peter Flach and Antonis 

Kakas (eds), Proceedings of the IJCAI’97 Workshop on Ab-

duction and Induction in AI,  Nagoya, Japan 1997. 

[13] Harman, G. “The inference to the best explanation” Philoso-

phical Review, 74, 88-95, 1965. 

[14] Hempel, C.G. Aspects of Scientific Explanation, The Free 

Press, New York, N.Y. 1965. 

[15] Hernández-Orallo, J.; García-Varea, I. "Distinguishing Ab-

duction and Induction under Intensional Complexity" in 

Flach, P.; Kakas, A. Proc. of the ECAI'98 Ws. on Abduction 

and Induction in AI, to appear 1998. 

[16] Hernández-Orallo, J.; García-Varea, I. “On Autistic Interpre-

tations of Occam’s Razor”, http://www.dsic.upv.es/ 

~jorallo/escrits/autistic21.ps.gz, 1998. 

[17] Hernández-Orallo, J.; Ramírez-Quintana, M.J. “Inductive 

Inference of Functional Logic Programs by Inverse Narrow-

ing” J. Lloyd (ed) Proc. JICSLP'98 CompulogNet Meeting on 

Comp. Logic and Machine Learning, pp. 49-55, 1998. 

[18] Holland, J.H.; Holyoak, K.J.; Nisbett, R.E.; Thagard, P.R., 

Induction, Processes of Inference, Learning and Discovery,  

The MIT Press, 1986. 

[19] Kaelbling, L.; Littman, M.; Moore, A. “Reinforcement Learn-

ing: A survey” J. of AI Research, 4: 237-285, 1996. 

[20] Karmiloff-Smith, A., Beyond Modularity: A Developmental 

Prespective on Cognitive Science, The MIT Press 1992. 

[21] Kolmogorov, A.N. “Three Approaches to the Quantitative 

Definition of Information” Problems Inform. Transmission, 

1(1): 1-7, 1965. 

[22] Kowalsi, R.; Sachi, F. "Reconciling the Event Calculus with 

the Situation Calculus"  J. Logic Prog. 31 (1-3): 39-58, 1997. 

[23] Kuhn, T.S., The Structure of Scientific Revolution, University 

of Chigago 1970. 

[24] Levin, L.A. “Universal search problems” Problems Inform. 

Transmission, 9, pp. 265-266, 1973. 

[25] Levinson, R. “General game-playing and reinforcement learn-

ing” Computational Intelligence, 12(1): 155-176, 1996. 

[26] Li, M.; Vitányi, P., An Introduction to Kolmogorov Complex-

ity and its Applications, 2nd Ed. Springer-Verlag 1997. 

[27] López de Mántaras, R.; Armengol, E. “Machine Learning 

from examples: Inductive and Lazy Methods” Data & 

Knowledge Engineering 25, 99-123, 1998. 

[28] Michalski, R.S. "Concept Learning" in S.C. Shapiro (ed). 

Encyclopedia of AI, 185-194, John Wiley , 1987. 

[29] Mitchell, T.M. Machine Learning, McGraw-Hill Series in 

Computer Science, 1997. 

[30] Mooney, R.J. “Integrating Abduction and Induction in Ma-

chine Learning” in Peter Flach and Antonis Kakas (eds), Pro-

ceedings of the IJCAI’97 Workshop on Abduction and Induc-

tion in AI,  Nagoya, Japan 1997. 

[31] Muggleton, S.; De Raedt L. “Inductive Logic Programming 

— theory and methods” J.Logic Prog., 19-20:629-679, 1994. 

[32] Muggleton, S.; Page, C.D. “A Learnability Model for Univer-

sal Representations” Unpublished Manuscript, Oxford Uni-

versity Computing Laboratory, 1995. 

[33] Popper, K.R., Conjectures and Refutations: The Growth of 

Scientific Knowledge, Basic Books, 1962. 

[34] Rissanen, J. “Modelling by the shortest data description” 

Automatica-J.IFAC, 14:465-471, 1978. 

[35] Rissanen, J. “Fisher Information and Stochastic Complexity” 

IEEE Trans. Inf. Theory, 1(42): 40-47, 1996. 

[36] Schmidhuber, J.; Zhao, J.; Wiering, M. “Shifting Inductive 

Bias with Success-Story Algorithm, Adaptive Levin Search, 

and Incremental Self-Improvement” Machine Learning, 28, 

105-132, 1997. 

[37] Shanahan, M. “Explanation in the Situation Calculus” Pro-

ceedings of IJCAI’93, pp. 160-165. 

[38] Shapiro, E. “Inductive Inference of Theories form Facts” 

Research Report 192, Dep. of Computer Science, Yale Univ., 

1981, also in Lassez, J.; Plotking, G. (eds.) Computational 

Logic, The MIT Press 1991. 

[39] Solomonoff, R.J. “A formal theory of inductive inference” 

Inf. Control v.7, 1-22,Mar., 224-254,June 1964. 

[40] Sutton, R.S. “Special issue on reinforcement learning” Ma-

chine Learning, 1991. 

[41] Valiant, L. “A theory of the learnable” Communication of the 

ACM, 27 (11), pp. 1134-1142, 1984. 

[42] van den Bosh, Simplicity and Prediction, Master Thesis, 

Dep. of Science, Logic & Epistemology of the Fac. of Phi-

losophy at the Univ. of Groningen, 1994. 

[43] Vitányi, P.; Li, M. “On Prediction by Data Compression”, 

Proc. 9th European Conference on Machine Learning, Lec-

ture Notes in AI, Vol. 1224, Springer-Verlag, 14-30, 1997. 


