Inverse Narrowing for the Inductive Inference of Functional Logic Programs *

J. Hernandez-Orallo § M.J. Ramirez-Quintana§

§ DSIC, UPV, Camino de Vera s/n, 46022 Valencia, Spain. Email: {jorallo,mramirez}@dsic.upv.es.

October 20, 2011

Abstract

We present a framework for the Induction of Functional Logic Programs (IFLP) from facts. This can be seen as an extension to the now consolidated field of Inductive Logic Programming (ILP). For that purpose we study the reversal of narrowing, the more usual operational mechanism for Functional Logic Programming. Also we fix the goal and heuristics in consilient programs rather than look for the shortest one as it is common in ILP. Initially, a simple non-incremental algorithm for the induction of functional programs is suggested for toy problems. Next, a more sophisticated incremental algorithm is presented to face more real problems. We discuss the advantages of IFLP in front of ILP, most of them inherited from the power of narrowing w.r.t. resolution. In the end, we comment the plausibility of extending the presented techniques to higher-order induction and its appropiateness for function invention, a topic which is difficult to incorporate homogeneously with the basic first-order inductive rules of inference in ILP.

Keywords: Functional Logic Programming, Inductive Logic Programming.

1 Introduction

1.1 Precedents

Inductive Logic Programming (ILP) has been a very important area of research from the beginning of this decade as an appropriate framework for the inductive inference of first-order clausal theories from facts. ILP was 'wakened' around the works of Muggleton and the fresh name ILP [23]. However, the ideas are much older and can be dated to the works of Plotkin [25, 26] and Shapiro [31]. Muggleton [23] defined ILP as the intersection of inductive learning and logic programming. As a machine learning paradigm, the general aim of ILP is to develop tools, theories and techniques to induce hypothesis from examples and background knowledge. From logic programming, ILP inherits its representational formalism, its semantical orientation and, its well-established techniques. From a proof theory point of view, ILP can also be considered as the dual paradigm of Logic Programming (LP): whereas ILP describes the process of the induction of logic programs from logic formulae, LP deals with the deduction of logic formulae from logic programs provided by the user, i.e., the induction can be think over as the inverse process to deduction. Therefore, inductive inference rules can be obtained by inverting deductive ones. Several approaches corresponding to different assumptions about the deductive rule and the format of background theory and examples have been proposed and investigated [7, 25, 36]. The most interesting is based on the inversion of the resolution principle [29, 34, 38]. Although inverse resolution has been proposed in [22] as an inference system which consists of four rules (Absorption, Identification and two rules for the introduction of new predicate symbols), most specific forms of them have been implemented by having a two-stage operation: first, inverse resolution operators are applied to examples, and then clauses are reduced by generalization. As we will show, our proposal induces equational clauses in a quite similar way.

^{*}This work has been partially supported by CICYT under grant TIC 95-0433-C03-03.

Inside the general framework of learning and induction, the importance of ILP may be justified by many reasons. First, one of the advantages of ILP is the ability of using background knowledge and the understandability of theories, differing radically with other novel approaches like fuzzy systems or neural networks. Second, ILP is a more tractable and natural framework for many problems and has all the hypothesis validation efficiency of SLD-resolution. Third, it is easier to state formal considerations about the hypotheses, the evidence and their relationship.

ILP has supposed an outstanding advantage in the inductive machine learning field increasing the applicability of learning systems to theories not only propositional; however, ILP has also inherited the main limitations of the computational logic: the imposibility of defining functions in a natural way and the absence of higher-order constructs.

There are some previous works on the learning of functions and the induction of functional programs, usually combining very different techniques (evolutionary programming, MDL principle, folding) to synthesize recursive Standard ML programs as in [24], flattening the logic program with function symbols to transform it into an equivalent program without functions [30], using extensions of the least general generalization technique used in ILP (see for instance [1, 16, 20]) or a similar approach to Shapiros MIS [31] for inducing term rewriting systems [35]. Also, there are some early works on the induction of LISP programs in the seventies (see [33] for a survey), although we do not consider them much related to our approach because they learn from execution traces.

During the last decade, it has been shown theoretically and experimentally that functional logic languages have more expressive power in comparison to functional languages and a better operational behavior in comparison to logic languages [11]. One relevant approach [13, 17] to the integration is the functional logic programming where the programs are logic programs augmented with Horn equational theories. The main semantic properties of logic programs hold also for functional logic programs. Thus, these programs admit least model and fixpoint semantics. The operational semantics of a functional logic language is defined in terms of semantic unification or \mathcal{E} -unification [32] (i.e., general unification w.r.t. an equational theory \mathcal{E}) requiring a complete \mathcal{E} -unification procedure to determine whether two terms, t and s, are equal under an equational theory. A sound and complete \mathcal{E} -unification method is narrowing [14, 15, 28]. Several strategies have been proposed in order to improve the efficiency of the narrowing algorithm (basic [14], innermost [10], ...).

The induction of functional logic programs has been discussed in [2, 3], but as a restricted variant of logic programs such that each n-ary predicate can be associated to a total function as follows: m of its arguments are labeled as input, while the remaining n-m are labeled as output, and for every given sequence of input values, there is one and only one sequence of output values that makes the predicate true. The programs are not in other way functional. Also, in [6] a framework for the induction of Escher programs is presented. Escher [21] is an integrated logic and functional programming language based on the Church theory of types that incorporates some higher-order concepts. The syntax of programs is functional (as in the Haskell language) and the computational model of Escher is based on the rewrite mechanism. Since functions operate on data types with several data constructors, for the induction of a function the proposed algorithm chooses one of its arguments as pattern and partitions the examples according to the constructor appearing in them in this argument. Then, one statement is learned for each case. On the contrary, our approach does not consider pattern scheme and it is oriented to languages based on narrowing.

1.2 IFLP Motivations

In this work we present a general framework for the induction of functional logic programs (IFLP) from examples, generalizing the scope of the ILP. At the moment, we will consider the unconditional case. For simplicity, the (positive and negative) examples are expressed as pairs of ground terms or ground equations where the right term is in normal form. Positive examples represent terms that will have to be proven equal using the induced program, whereas negative examples consist of terms that won't have to be proven equal. Our approach is inspired on the idea of the inverse resolution of ILP. We have defined an inverse narrowing mechanism such that, begining from the generalization of positive examples to include variables as arguments of functions, selects pairs of equations to obtain from them an equation more general than the original ones. The selection criteria is based on the number of positive examples that can be derived from the equation. Then, if the generated equation covers more positive examples or subsumes other equations, then it is added to the previous

 $^{^{1}}$ The completeness of this algorithm requires some additional requirements on equations, specially on conditional equations like the absence of extra variables in conditions.

selected equations (probably replacing some of them). This process is repeated until a program (or set of equations) is reached, as concise as possible, which covers all positive examples and none of the negative ones. One of the main differences between our approach and ILP is the meaning of 'concise' program. ILP looks for the shortest program [8, 19, 23] whereas we consider programs that are *consilient* [12]: a program is consilient if it has not exceptions, i.e. it does not 'discriminate' a part of its consequences in the sense these are out of the *main* rule.

Since an alternative approach to implement functional logic languages via SLD-resolution is based on the flattening of the program and the goal² [4, 5, 37], also for the induction of functional logic programs we could first apply such flattening and then use the well-studied techniques of ILP. Indeed, Left-to-right SLD-resolution combined with flattening is equivalent to leftmost innermost basic narrowing [4]. However, the flattening approach is limited as [11] points out: it is not ensured that functional expressions are reduced in a purely deterministic way if all arguments of a function are ground values. This important property of functional languages is not preserved since the information about functional dependencies is lost by flattening. Moreover, flattening restricts the chance to detect deterministic computations by the dynamic cut which is relevant especially in the presence of conditional equations. The result of flattening plus resolution in these cases is the appearance of infinite loops or duplicity of solutions, which did not exist in the original functional logic version.

Finally, in our opinion, other important reason to undertake the jump to IFLP is that once established the properties and behaviour of different inverted narrowing techniques, the step to higher order induction may be easier to bridge based on the deductive higher-order counterparts [9, 27].

The work is organized as follows. In Section 2 we recall the main concepts of ILP and we formalize the narrowing semantics we focus on. Section 3 presents the general IFLP framework and gives the overall strategy for searching the program space. The search is guided by measures of program quality just as its consilience and the length of the right hand side of the rules. Section 4 presents a non-incremental version of the algorithm which computes a solution program from the examples, including the definition of the inverse narrowing procedure. An example of the application of the algorithm is included, too. The extension for including incrementality is tackled in Section 5. In Section 6 we discuss the step for dealing with conditions and the plausibility of higher-order induction. Finally, Section 7 concludes the paper.

2 Preliminaries

2.1 Inductive Logic Programming

The problem addressed by ILP can be simply stated as the inference of a theory (a logic program) from facts (or evidence logic theory) using a background knowledge theory B (another logic program). Evidence can be only positive E^+ or both positive and negative (E^+,E^-) . The sets E^+ and E^- are usually given in an extensional manner (i.e., as facts) but the framework does not exclude intensional (i.e., theories) as evidence. More formally, ILP can be defined as

```
Given a set \mathcal{P} of possible logic programs, a set E^+ of positive examples, a set E^- of negative examples and a logic program B such that B \not\models E^+ (prior necessity) and B \not\models E^- (prior satisfiability)
```

Find a logic program $P \in \mathcal{P}$ such that

```
B \cup P \models E^+ (posterior sufficiency or completeness) B \cup P \not\models E^- (posterior satisfiability or consistency)
```

The program B contains the definitions of the predicates that are already known whereas the target program P constitutes an intensional definition of the target relation in terms of itself and the background relations. We say that the program P covers an example e if $P \cup B \vdash e$. A program P is the solution of the ILP problem if it covers all positive examples and not cover any negative examples. The set P defines the infinite search space of the ILP system. This space must be restricted as much as possible in order to have an effective learning algorithm.

²This flattening eliminates the nesting functional in the head of the rules of a conditional term rewriting system preserving the body of the clauses, along with their function symbols; whereas the flattening procedure in [30] (before mentioned) eliminates all the function symbols, converting each function term of arity n into a new predicate of arity n+1.

An atom g is a common generalization of the atoms a and b if and only if there exist substitutions θ and σ such that $a = g\theta$ and $b = g\sigma$. A clause G is a common generalization of the clauses C an D if and only if there exists a substitution θ such that $G\theta \subseteq C$ and $G\theta \subseteq D$. These definitions can be extended in the obvious way to sets of atoms and clauses.

2.2 Semantics of Functional Logic Programs

We briefly review some basic concepts about equations, Term Rewriting Systems and \mathcal{E} -unification. For any concept which is not explicitly defined the reader may refer to [11, 18].

Let be Σ a set of function symbols together with their arity³ and \mathcal{X} a countably infinite set of variables, then $\mathcal{T}(\Sigma, \mathcal{X})$ denotes the set of terms built from Σ and \mathcal{X} . The set of variables occurring in a term t is denoted Var(t). This notation extends naturally to other syntactic objects (like clause, literal, . . .). A term t is a ground term if $Var(t) = \emptyset$. A substitution is defined as an almost identical mapping from the set of variables \mathcal{X} into the set of terms $\mathcal{T}(\Sigma, \mathcal{X})$. $Dom(\theta) = \{x \in \mathcal{X} : \theta(x) \neq x\}$ defines the domain of a substitution θ . An occurrence u in a term t is represented by a sequence of natural numbers. O(t) and $\overline{O}(t)$ denote respectively the set of occurrences and non-variable occurrences of t. $t_{|u}$ denotes the subterm of t at the occurrence u and $t[t']_u$ denotes the replacement of the subterm of t at the occurrence u by the term t'.

Let \to be a binary relation on a set S. Then \to^* denotes the transitive-reflexive closure of \to . The relation \to is called confluent iff $\forall s_1, s_2, s_3 \in S$ such that $s_1 \to^* s_2$ and $s_1 \to^* s_3, \exists s \in S$ such that $s_2 \to^* s$ and $s_3 \to^* s$. The relation \to is called terminating if there is no infinite chain $s_1 \to s_2 \to s_3 \to \dots$

An equation is an expression of the form l = r where l and r are terms. l is called the left hand side (lhs) of the equation and r is the right hand side (rhs). An equational theory \mathcal{E} (which we call program) is a finite set of equational clauses of the form

 $l = r \iff e_1, \ldots, e_n$ with $n \ge 0$ where e_i is an equation, $1 \le i \le n$.

The theory (and the clauses) are called *conditional* if n > 0 and *unconditional* if n = 0.

An equational theory can be also viewed as a (Conditional) Term Rewriting System (CTRS) since the equation in the head is implicitly oriented from left to right and the literals e_i in the body are ordinary non-oriented equations. A function symbol $f \in \Sigma$ is *irreducible* iff there is no clause (rule) $(l = r \leftarrow e_1, \ldots, e_n) \in \mathcal{E}$ such that $l \in \mathcal{X}$ or f occurs as the outermost function symbol in l. f is a *defined* function symbol if it is not irreducible. In theories where the above distinction is made the signature Σ is partitioned as $\Sigma = \mathcal{C} \biguplus \mathcal{F}$, where \mathcal{C} is the set of irreducible symbols and \mathcal{F} is the set of defined function symbols.

Given a (C)TRS \mathcal{R} , $t \to_{\mathcal{R}} s$ is a rewrite step if there exists an ocurrence u of t, a rule $l = r \in \mathcal{R}$ and a substitution θ with $t_{|u} = \theta(l)$ and $s = t[\theta(r)]_u$. A term t is said to be in normal form w.r.t. \mathcal{R} if there is no term t' with $t \to_{\mathcal{R}} t'$. We say that an equation t = s is normalized w.r.t. \mathcal{R} if t and s are in normal form. \mathcal{R} is said to be canonical if the binary one-step rewriting relation $\to_{\mathcal{R}}$ is terminating and confluent.

An \mathcal{E} -unification algorithm defines a procedure to solve an equation t=s within the theory \mathcal{E} . Narrowing is a sound and complete method to solve equations w.r.t. confluent and terminating programs. Given a program P, a term t narrows into a term t' (in symbols $t \overset{u,l=r,\theta}{\hookrightarrow}_P t'^4$) iff $u \in \bar{O}(t)$, l=r is a new variant of a rule from P, $\theta=mgu(t_{|u},l)$ and $t'=\theta(t[r]_u)$. We write $t\hookrightarrow_P^n t'$ if t narrows into t' in n narrowing steps.

3 The IFLP framework

We have just outlined the purpose of ILP and its formal framework. Separatedly we have reviewed the basic concepts of functional logic programming. Consequently, IFLP can now be defined as the functional (or equational) extension of ILP⁵. The goal is the inference of a theory (a functional logic program P) from evidence (a set of positive and optionally negative equations E) using a background knowledge theory (a functional logic program B).

 $^{^3 \}text{We}$ assume that Σ contains at least one constant.

⁴Or simply $t \stackrel{l=r,\theta}{\hookrightarrow}_P t'$ or $t \stackrel{\theta}{\hookrightarrow}_P t'$ if the occurrence or the rule is clear from the context. Also, the subscript P will be usually dropped when clear from the context.

⁵It is trivial to see that any problem expressed in the ILP framework can also be expressed in the IFLP framework, because all the positive facts e_i^+ of an ILP problem can be converted into equations of the form $e_i^+ = true$ and all the negative facts e_j^- can be expressed as $e_j^- = false$.

3.1 Sample Presentation and Other Assumptions

We will consider evidence composed of positive E^+ and negative E^- examples (equations)⁶ and their rhs normalized w.r.t. the background theory B and the theory P which is pretended to be discovered (hypothesis), being $B \cup P$ canonical. E must always be consistent with B. In any case, we can make some preprocessing to E, which includes well known equation simplifications: (i) any equation of the form $f(x_1, x_2, \ldots, x_n) = f(y_1, y_2, \ldots, y_n)$ is replaced by the n equations $x_1 = y_1$, $x_2 = y_2, \ldots, x_n = y_n$, and (ii) the elimination of all redundant equations. It is illustrated in the following example:

Example 1: Consider the following background theory $B = \{s(X) < s(Y) = X < Y, 0 < s(Y) = true, X < 0 = false\}$ along with the incomplete positive and negative evidence E^+ and E^- :

As we have just said, example E_4^+ can be simplified into s(0) + s(0) = s(0) (by (i)), because of which it becomes equal to E_2^+ and it is eliminated (by (ii)). In the same way, the last positive example is simplified into s(s(0)) + s(0)) = s(s(s(0))) and the negative example E_5^- is removed because it is redundant with E_2^- .

3.2 Hypothesis Selection

As in ILP, from all the many possible valid programs \mathcal{P} ensuring posterior sufficiency and satisfability, we have to select "the optimal one". The problem is that there are not such a thing as "the right hypothesis" so an optimality criterion must be arbitrarily selected depending on the application or purpose of the induction: prediction, scientific discovery, program synthesis, function invention, program transformation, abduction or explanation based learning (EBL). Moreover, some of them drastically diverge for different kinds of samples: (perfect / imperfect), (complete / incomplete) and (positive evidence only / positive and negative evidence).

Despite this undeniable fact, the Minimum Description Length (MDL) principle, the modern view of Occam's Razor, is the most popular selection criteria in ILP, supported by the classical view of unsupervised learning as compression, the effectiveness of its use in many applications of machine learning, and its recent formal justification [19] in relation with Bayesian learning, assuming the universal distribution $2^{-K(x)}$. The MDL principle has been successfully applied mainly where the source has a statistical character and it might contain errors. But in other applications where no errors are expected from the source [19], like program synthesis from examples or, in *incremental* learning, the MDL principle sometimes fails.

For our purposes we will compute the length of the equations as $length(e) = 1 + n_v/2 + n_c + n_f$ being n_v , n_c and n_f the number of variables, constants and functors, respectively, of the rhs of the rules only, because it is desirable to obtain short equations with dimishing character⁷. Note that we promote variables over constants or functors. Finally, to make the factor positive, we can compute the length factor of a set of equations P as $\mathbf{LenF}(P) = -\sum_{e \in P} log_2 length(e)$.

But there are other selection criteria. The so-called **subset-principle**, being Plotkin's least general generalization (lgg) [25] its concretization for logic programs, means that the hypothesis must cover the smallest superset of the sample data.

In this paper we take up the classical concept of **coherence** of scientific theories [12] used as a selection criterion in some applications of machine learning, especially explanatory reasoning or abductive inference. The idea of intrinsecal coherence of a description can be adapted to the case of functional logic programs in many slightly different ways. We present just two of these ways. The first one deals with the concept of separation, i.e, the facts can be independently covered by parts

⁶If only boolean functions were to be induced, no negative sample would be required for IFLP. For general functions, however, it may be very useful to have also a negative sample.

⁷Theoretically, the length should be computed using a generating grammar for all the terms in the Herbrand Universe as in [8]. In our case, we give an approximation that works well in practice and it has the advantage to be independent on the total number of constants, variables and functors in the program or the Herbrand Universe.

of the programs. More formally, a program P is n-separable in a partition $\{P_1, P_2, \ldots, P_n\}$ from P being $P_i \not\subseteq P_j \quad \forall i \neq j$ iff for every equation e such that $P \models e$ there exists a P_i such that $P_i \models e$. Contrariwise, P is said to be robust iff it has no 2-separation. In order to give a more gradual value (a factor) of coherence, a related but different concept is known as the consilience factor of a functional logic program P w.r.t. some given examples E^+ can be computed effectively as

$$\mathbf{ConF}(P) = \left\{ \begin{array}{ll} 1 & \text{if P has only an equation} \\ 1 - \max(card(e \in E^+ : P_i \subset P \land P_i \models e)/card(E^+)) & \text{otherwise} \end{array} \right.$$

Also, in some cases, like abductive or explanatory learning, the consilience factor should be computed jointly with the background theory, i.e. $ConF(P \cup B)$.

In those cases where the data are approximate or noisy, it is interesting to compute a **covering** factor w.r.t. the positive evidence, defined simply as

 $\mathbf{CovF}^+(P) = card(e \in E^+ : P \models e)/card(E^+)$

i.e., the proportion of positive cases covered. In the same way it can be defined $CovF^-$.

Finally, the **efficiency** of a program is a very interesting criterion for program synthesis. Computing the number of narrowing steps is a good approximation for it, defined as **EffF**(P) = $\sum_{l=r\in E^+} n, l \hookrightarrow_P^n r$.

To illustrate the divergence of these criteria, let us consider some consistent $(CovF^-=0)$ and complete $(CovF^+=1)$ programs with Example 1:

```
\begin{split} P_1 &= E^+ \\ P_2 &= \{X+0=X, 0+X=X, s(X)+s(0)=s(s(X))\} \\ P_3 &= \{X+0=X, X+s(Y)=s(X+Y)\} \\ P_4 &= \{X+0=X, X+s(0)=s(X)\} \\ P_5 &= \{X+Y=X:-Y=0, X+s(Y)=s(X):-Y=0\} \\ P_6 &= \{X+Y=Y+X:-X<Y, X+0=X, s(X)+s(Y)=s(s(X+Y))\} \\ P_7 &= \{X+0=X, 0+X=X, s(X)+s(Y)=s(X+S(Y))\} \\ P_8 &= \{X+0=X, 0+X=X, s(X)+s(Y)=s(X+S(Y))\} \end{split}
```

According to the criteria we have just presented, P_4 is the shortest one, followed by P_3 . According to the subset principle, P_4 is also better than P_3 , but P_1 is the best hypothesis. However, P_1 is clearly separable, along with P_2 , P_4 , P_5 , P_7 , P_8 whereas P_3 and P_6 are robust. Both P_3 and P_4 have the greatest consilience factor 0.75. Finally, in most cases, P_7 will be more efficient than P_3 and always more efficient than P_8 .

In the light of this example, it seems even whimsical to select P_3 as the "right hypothesis". Only under a combination of criteria, and in the context of the purpose of the application, the idea of "the best hypothesis" makes sense.

3.3 Hypothesis Generation and Heuristics

For the present paper, we will consider the data perfect (no transmission errors) and we will be especially interested in program synthesis of only a concept at a time, so, for the moment, the stop criterion consists only of the completeness condition $CovF^+=1$ and a threshold for the consilient factor, usually 0.5. However, since consilience is favoured by short programs and a length factor is considered in the search heuristics, the syntactical length criterion is implicitly present. Also, due to the character of the search, efficiency is also implicitly taken into account.

As we will see in the next section, the search is initially bottom-up but then there is not a definite trend, because it works with populations of programs and "merges" them using inverse narrowing. From this population, a rating is made according to an optimality value, in a way resembling genetic programming.

Concretely, our optimality measure is constructed simply as⁸: $Opt(P) = \alpha \times LenF(P) + \beta \times CovF^+(P) + \gamma \times ConF(P)$.

These combinated heuristics reduce considerably the size of the sample necessary to induce the *intended hypothesis* over other approaches exclusively based on the MDL principle. Anyway, once the hypotheses selection criteria is settled, the algorithm drives their generation in a proper way, using the optimality as a search heuristic along with the stop criterion selected. This makes our approach very generic, easily adaptable to quite different applications.

⁸For the examples we will consider just $\alpha = 1$, $\beta = 1$, $\gamma = 1$ but in the future these values could be parametrised for different kind of problems.

4 Non-incremental Algorithm for IFLP

In this Section we discuss the general form of the algorithm for the inductive inference of functional logic programs. As already pointed out, our learning problem consists of an inductive search in hypothetical equations and a selection of programs constructed from them, until one of them is evaluated as a good solution.

For instance, in a logic program, given only the positive data $\{p(a,b,a,a), p(b,c,b,c), q(a,f(a),c), q(b,f(b),c)\}$ we can compute the most general program $\{p(X,Y,Z,W), q(X,Y,Z,W)\}$ and refine it by specialization. Alternatively, we can begin from the positive data as a program and proceed by generalization.

In the case of functional logic programs, we cannot start from the most general program because the examples are equations, and the most general program X=Y would make the program neither finite nor confluent. The most specific generalization in this case is just the program. Contrastedly, our approach starts from almost all possible generalizations of the sample equations, with a very slight and reasonable restriction:

Definition 1 Restricted Generalization (RG)

Given an equation $e \equiv \{t = s\}$, the equation t' = s' is a restricted generalization of e if it is a generalization of e (i.e. $\exists \theta : t'\theta = t \land s'\theta = s$) such that $\forall x(x \in Var(s') \Rightarrow x \in Var(t'))$.

In other words, RG does not introduce extra variables on the rhs of the equations. RG makes that no meaningless generalizations will be taken in consideration when we search the intended program for the given examples.

Straightforwardly, since narrowing is a sound and complete method for \mathcal{E} -unification, we will study an inverse method of it, that we will call *inverse narrowing*. Let us illustrate the concept with an example.

Example 2 Suppose we are inducing a program P from the positive examples in Example 1. At the n-th step, suppose we select as good for P the RG $S = \{X' + 0 = X'\}$ and we select luckily the rhs of another RG $R = \{X + s(0) = s(X)\}$, i.e., s(X). The first rule can be used inversely in the second term in different positions. In this case, there are different variable or non-variable possible applications:

```
(t1') s(X+0)
(t2') s(X)+0
```

That is to say t1' and t2' can be narrowed to s(X) using a rule of P. The resulting equations are X + s(0) = s(X + 0) and X + s(0) = s(X) + 0.

Definition 2 Inverse Narrowing

Given a functional logic program P, we say that a term t conversely narrows into a term t', and we write $t \overset{u,l=r,\theta}{\hookleftarrow}_P t'$, iff $u \in O(t)$, l=r is a new variant of a rule from P, $\theta = mgu(t_{|u},r)$ and $t' = \theta(t|l|_u)$. The relation \hookleftarrow_P is called inverse narrowing relation.

Since we have to ensure posterior satisfiability we begin generating all possible restricted generalizations on each positive example such that they are consistent with both the positive and negative examples. More formally,

Definition 3 Consistent Restricted Generalization CRG

An equation $e = \{l_1 = r_1\}$ is a consistent restricted generalization (CRG) w.r.t. E^+ and E^- and an existing theory $T = B \cup P$ if and only if e is a RG for some equation of E^+ (always oriented left to right) and there does not exist:

- a narrowing chain using e and T that yields some equation of E^- .
- a narrowing chain using e and T that yields a different normal form for some lhs different of the rhs appeared in the equations of E^+ .

Also, by this definition, trivial RG's like X = X are not allowed.

Althought we use a generalization notion for the inference process, our algorithm is not strictly a generalization algorithm because we do not refine a program, but rather we work with sets of equations and programs.

4.0.1 The IFLP algorithm

As we have already commented, we start the inductive process from positive and negative evidence E^+ and E^- . Additionally a background theory B can be used to induce the target program P. In the following, we will denote BF (Basic Functions) the subset of functions from B, determined by the user, which can be used in the definition of the learned functions of P. The IFLP algorithm is also parametrizaded by three more input parameters: min indicates the maximal number of CRG's that must be generated from one example at each algorithm step, step is a measure that indicates the increase of the min parameter (as we will see, min value must be increased when no program solution is found using the current min value), and inarcomb shows the maximal number of inverse narrowing steps that can be carried out with a pair of programs. These parameters are provided in order to improve the efficiency and performances of the algorithm.

The basic IFLP algorithm learns programs by generating two sets of hypothesis: a set of equations (we denote EH, Equation Hypothesis) where the equations are mainly generated by means of CRG, and a set of programs (we denote PH, Program Hypothesis) composed exclusively from equations of EH. At each step of the algorithm, new equations and programs are generated by inverse narrowing. So, the kernel of the algorithm is constituted by two auxiliar procedures: G and InverseNarrowing.

The GenerateCRG procedure (Procedure GenerateCRG(input: E^+ , E^- , EH, min; output: EH_f)) returns the set EH_f which is obtained adding to EH the set of equations that are CRG's wrt. E^+ and E^- constructed from each equation in E^+ . Also, the optimality of each equation is computed as well as the number of examples which are covered by it. The size of the generated set EH_f is limited by the min value.

The *InverseNarrowing* procedure returns a set of equations (EH) and a set of programs (PH) obtained of the following way: first, inverse narrowing is applied between equations of two input programs and, next, the sets are pruned to eliminate redundancy and inconsistency.

```
Procedure InverseNarrowing(input:P_1, P_2, BF, inarcomb;output:EH, PH)

Calculate the set \{e_i\}_{i\in I} applying inverse narrowing steps between a deterministically selected equation e from P_1 (or P_2) and all possible equations e' from P_2 (or P_1). When BF \neq \emptyset then e \in P_1 and e' \in P_2. Then we compute all the CRG's e_{i_j}, j \in J, from e_i

Let EH be \bigcup_{j \in J, i \in I} \{e_{i_j}\}

Let PH be \{P_1 \cup P_2 \cup \{e_{i_j}\}/\{e\}\}_{j \in J, i \in I}

Calculate coverings and optimalities of each set in PH

while some program p in PH is inconsistent or not confluent

Remove p from PH if p is not consistent.

Replace p by each of its confluent subsets, if p is not confluent.
```

endwhile
Clean the sets in *PH* removing redundant rules
endprocedure

The first step of the algorithm determines the initial EH set, generating the CRG from E^+ . Next, PH is initialized to the set of all possible programs containing only one equation from EH. Then, at each iteration we recalculate RH and PH until to find a program P which covers E^+ and whose ConF factor must be better than certain desired consilience value (that we call dc). At every step, the theory B is only used if there does not exist any program in PH which covers some example with an acceptable optimality Op.

Finally, we would like to note that the parameters dc, min, step, Op and inarcomb are heuristical, as well as the coefficients for Opt(P). So, they must be calculated depending on several factors (like the complexity of the theory B, the expected complexity of P, the number of examples, ...). Our experiments show that performances of the algorithm are good enough when the following values are used: dc = 0.5, min = 2 - 3, step = 2 - 3, Op = 0 and inarcomb = 3. Some of them can be modified if no solution is found (for instance, we can generate more programs to be considered if the inarcomb parameter is increased).

Next, we outline the IFLP algorithm.

```
Input: E^+, E^-, B, BF, dc, min, step, inarcomb
Output: a program P
begin
```

⁹Beginning with the pair of equations with best optimality until inarcomb = card(PH)

```
Let EH be \emptyset
           Let PH be \emptyset
           GenerateCRG(input:E^+, E^-, \emptyset; output: EH)
           Let BestSolution be Select\_best(PH)
           while not stop_criterion(BestSolution) do
               if using B then {using background knowledge}
                   if there is a set of examples E' covered exclusively by programs
                   P' \in PH with Opt(P') < Op then begin
                      for each e \in E' do Let P be \{e\}
                      InverseNarrowing(input:P, B, BF; output:EH', PH')
                      Update\_all(BestSolution, EH, PH, EH', PH')
                      endfor
                    endif
               endif { using background knowledge}
           {Select P_1, P_2 as the most weighted pair of programs from PH in this way}
           Let n be card(E^+)
           while n > 0 do
               if there is one or more pairs of programs (P_1, P_2) that cover n examples
                    then select the pair maximizing Opt(P_1) + Opt(P_2) and break
                    while
                   else n = n - 1
               endif
           endwhile
           if n = 0 then begin
               min = min + step
               GenerateCRG(input:E^+, E^-, EH, min; output: EH')
               if EH' = EH then halt {No more programs to essay. No solution.}
           endbegin
           else begin
               InverseNarrowing(input:P_1, P_2, \emptyset; output:EH', PH')
               Update\_all(BestSolution, EH, PH, EH', PH')
           endbegin
      endif
endbegin
```

where:

- Select_best(PH) selects the program with the best covering, the greatest consilience and, finally, the best optimality.
- $Update_all(S, E, P, E', P')$ makes the following actions:

```
-E = E \cup E' and P = P \cup P'
-S = Select\_best(P)
```

The following example illustrates the use of the algorithm for a problem of average complexity, the induction of the function append.

Example 3 To make the search manageable the following parameters are selected: min = 2, step = 2, inarcomb = 3. The stop-criterion is settled at consilience > dc = 0.5. Using Prolog notation for lists, the evidence is as follows:

```
(E_1^+) append([1,2],[3]) = [1,2,3]
                                                       (E_1^-) append([3],[4]) = [4,3]
(E_2^+) \quad append([c], [a]) = [c, a]
                                                       (E_2^-) \quad append([1,2],[]) = [1]
(E_3^+) append([], [4]) = [4]
                                                       (E_3^-) \quad append([1,2,3],[4]) = [1,2,3,4,5]
(E_4^+) \quad append([a,b],[]) = [a,b]
                                                      (E_4^-) append([], [a, b]) = [b, a]
(E_5^+) append([a, b, c], [d, e]) = [a, b, c, d, e]
```

Since min = 2 we generate only the two CRG with best optimality from each example:

```
\begin{array}{ll} CRG(E_1^+) = & \{append(.(X,.(Y,[])),Z) = .(X,.(Y,Z)),\\ & append(.(X,.(Y,Z)),.(W,Z)) = .(X,.(Y,.(W,Z)))\}\\ CRG(E_2^+) = & \{append(.(X,[]),Y) = .(X,Y),append(.(X,Y),.(Z,Y)) = .(X,.(Z,Y))\}\\ CRG(E_3^+) = & \{append([],X) = X,append(X,.(Y,X)) = .(Y,X)\}\\ CRG(E_4^+) = & \{append(X,[]) = X,append(.(X,.(Y,Z)),Z) = .(X,.(Y,Z))\}\\ CRG(E_5^+) = & \{append(.(Y,.(Z,.(W,V))),X) = .(Y,.(Z,.(W,X))),\\ & append(.(Y,.(Z,.(W,[]))),X) = .(Y,.(Z,.(W,X)))\}\\ \end{array}
```

The first EH and PH are composed of 10 equations and the corresponding 10 programs. The first BestSolution covering all the examples can be constructed from 4 equations with consilience = 0.2 and optimality = -5.7. Next we begin the inverse narrowing combinations. Since there is no pair of programs covering 5 or 4 examples, with n = 3 we find $P_1 = \{append(.(X,.(Y,[])), Z) = .(X,.(Y,Z))\}$, covering $\{E_1^+, E_4^+\}$ and optimality = -0.76 and $P_2 = \{append([], X) = X\}$, covering E_3^+ and optimality = +0.62. We have 3 possible inverse narrowing combinations (which is just equal than inarcomb), all using $e_1 = \{append(.(X,.(Y,[])), Z) = .(X,.(Y,Z))\}$ and $e_2 = \{append([], X) = X\}$, giving three consistent programs, that are added to PH:

```
\begin{split} P_a &= \{append(.(X,.(Y,W)),Z) = .(append(W,X),.(Y,Z)),append([],X) = X\} \\ P_b &= \{append(.(X,.(Y,W)),Z) = .(X,.(append(W,Y),Z)),append([],X) = X\} \\ P_c &= \{append(.(X,.(Y,W)),Z) = .(X,.(Y,append(W,Z))),append([],X) = X\} \end{split}
```

In the same way, the second EH and PH are computed with 3 more equations and programs, respectively. Now, there is no pair of programs covering 5 examples. With n=4 we find two programs $P_1 = \{append(.(X,.(Y,W)),Z) = .(append(W,X),.(Y,Z)),append([],X) = X\}$ covering $\{E_1^+,E_3^+,E_4^+\}$ and $P_2 = \{append(.(X,[]),Y) = .(X,Y)\}$ covering $\{E_2^+\}$. We select the two rules with higher optimaly, i.e., $\{append([],X) = X\}$ and $\{append(.(X,[]),Y) = .(X,Y)\}$ that generate some new programs by inverse narrowing. Most of them result to be inconsistent, others are not confluent and then splitted into inconsistent programs. Finally, only one of them results in a consistent and confluent program:

```
P_d = \{append(.(X,Z),Y) = .(X,append(Z,Y)), append([],X) = X\}
```

which covers all E^+ and has optimality = -2.7. A fourth combination could be made between $\{append(.(X,.(Y,W)),Z) = .(append(W,X),.(Y,Z))\}$ and $\{append(.(X,[]),Y) = .(X,Y)\}$ giving some other new programs. Sooner or later, the value of inarcomb = 3 forces the exit from the procedure InverseNarrowing. Since P_d covers all the examples, it is consistent and has consilience > 0.5, the algorithm stops and outputs P_d .

It is straightforward to prove the following correctness theorem for the learning algorithm.

Theorem 1 Given an evidence E^+, E^- and a background theory B, if a program P is a solution of the IFLP algorithm then it is canonical and $B \cup P \models E^+$ and $B \cup P \not\models E^-$.

5 Incremental Version

Since the complexity of induction depends mostly (and not polynomially) on the number of examples, any non-incremental algorithm would be useless for non-toy problems. In general, incremental learning is necessary when the number of examples is infinite and presented one by one. Here are two new phenomena: the hypothesis cannot be absolutely validated since any new example can make it inconsistent, and, the goal is to obtain "the intended hypothesis" the sooner the better and not in the limit 10 . In this case, the algorithm can present always a selection of the k best programs or make guesses to the user when the optimality of the best one is high and much greater than the second one.

With all this in mind, an 'operative' adaptation of the preceding algorithm to the incremental case is straightforward, using a memory M to store the presented evidence so far. With the first positive example, the algorithm behaves exactly as in the non-incremental case, although it may be preferable to wait some examples to start the algorithm. For each new example presented, we work as follows:

- If it is a positive example: E_n^+ , we check for every program $P_i \in PH$:
 - 1. HIT: if it is correctly covered by P_i we recompute its new consilience and covering factor (this is very efficient because we can use the old values for it). Eventually, the consilience factor may diminish.

¹⁰Here the consilience factor is more appropriate because it is less conservative than MDL for perfect data.

- 2. UNCOVERED: if it is not covered by P_i but consistent (still confluent because there is no narrowing chain for the lhs of E_n^+), we recompute the optimality factor as in the HIT case.
- 3. ANOMALY: if it is covered *erroneously* by P_i we remove P_i from PH.

and we generate all the CRG's for it into RH constructing the corresponding unary programs in PH.

• If it is a negative example: E_n^- , we check for every program $P_i \in PH$ its consistency and we act in the same way either as in the UNCOVERED or the ANOMALY cases.

In any case, if the best program does not comply with the stop-criterion, the algorithm of the preceding section is 'reactivated' and works in the same way until a new program makes the stop-criterion true again.

When the number of examples increases, the memory gets too large to compute consistency of new generated programs using combinations (inverse narrowing). If the target program has many rules, both PH and EH may be huge. In both situations, the performance of the algorithm may decrease considerably. There is no easy solution for this, although some 'cautious' pruning could be done in M (forgetting), PH and EH using extra programs (along with the programs in PH) to describe intensionally (but with strict covering) the past evidence.

Example 4 Now, we present an example to see the adaptation of the algorithm to incremental learning and to illustrate also the use of background knowledge.

Let us consider the example of inducing the power function from the product function, which consists of $B = \{0 \times X = 0, sX \times Y = X \times Y + Y, X + 0 = X, X + s(Y) = s(X + Y)\}$ and the following evidence:

The examples are given one by one in this order: $(E_1^+),(E_1^-),(E_2^+),(E_2^-),(E_3^+),(E_3^-),(E_4^+),(E_4^-),(E_5^+),(E_5^-),(E_6^+),(E_6^-),(E_7^+).$

The additional inputs of the algorithm are $BF = \{\times\}$ and Op = 0, suggesting the use of the functor \times from B, but not +.

An interactive session of the algorithm would go like this:

- After the first example (E₁⁺) the first EH and the corresponding PH are enormous because there are no evidence to restrict the generalizations. Since there are many programs with great consilience and total covering, we do not 'activate' the algorithm. But as none of them is especially better than the other, the algorithm waits for more examples.
- 2. After the second example E_1^- , which is negative, no program is inconsistent, so there are still many good programs; we continue.
- 3. The third example E_2^+ is not covered by any program. New equations are generated from it like $X \uparrow Y = sssss X$ or $sX \uparrow X = sssss X$ but all of them have poor optimality (< OpB) so we make inverse narrowing between E_2^+ and B, generating new equations: one of them is $X \uparrow ss0 = X \times X$ covering the two examples with good optimality, much better than the other programs, so it is guessed to the user. The user consider that it is too soon to make any guess and continues with the algorithm.
- 4. Example E_2^- prunes some uninteresting programs.
- 5. Example E_3^+ is not covered by any program. New equations are generated from it like $X \uparrow s0 = X$ and $ssX \uparrow X = ssX$. After some iterations, the algorithm stops because it does not find a consilient program. The best one is, for the moment, $P = \{X \uparrow s0 = X, X \uparrow ss0 = X \times X\}$ which is inconsilient but covers all examples.
- 6. Example E_3^- prunes some uninteresting programs.
- 7. Example E_4^+ is not covered by any program. New equations are generated from it like $0 \uparrow X = 0$ generating many combinations but no optimal program is found.
- 8. Example E_4^- prunes some uninteresting programs.

9. Example E_5^- is not covered by any program. New equations are generated from it like $X \uparrow 0 = s0$ or $ss0 \uparrow s0 = s0$. The first one combined with a program which contained $X \uparrow ss0 = X \times X$ results in new equations like $X \uparrow sY = (X \uparrow Y) \times X$, $X \uparrow sY = X \times (X \uparrow Y)$ and $X \uparrow sY = (X \uparrow X) \times Y$. Using the first one a consistent program is constructed, with very good optimality and consilience. The algorithm stops, quessing it to the user.

With just 5 positive and 4 negative examples, the following program for exponentiation is induced by the algorithm:

$$\begin{array}{l} X\uparrow sY=(X\uparrow Y)\times X\\ X\uparrow 0=s0 \end{array}$$

6 Future Work

6.1 Conditional Version

In incremental learning, conditions are a powerful tool to make inconsilient programs (just patch the previous hypothesis adding the new anomaly as a negated condition) if syntactic length is the prevailing criterion. So, if functional logic programs have advantages over functional ones, we have to introduce conditions only when necessary provided the program is shortened and consilience is conserved or increased. Also there are other restrictions depending of the kind of conditional narrowing (e.g. simple conditional narrowing does not allow extra variables in conditions).

Besides the difficulty to extend the techniques we have introduced for unconditional theories, we have to deal with the question of selecting when it is convenient to introduce conditions to make a program better according to some criteria.

For instance, with B defining the greater function > we have two short ways of defining max.

$$P_{1} = \left\{ \begin{array}{ll} max(X,Y) = X & :- & X > Y = true \\ max(X,Y) = Y & :- & X > Y = false \end{array} \right\}$$

$$P_{2} = \left\{ \begin{array}{ll} max(s(X),s(Y)) = max(X,Y) \\ max(X,0) = X \\ max(0,Y) = Y \end{array} \right\}$$

The first one is more explanatory because it is consilient jointly with B but the second one is more efficient. Again, the user must have some parametrised selection criteria to request what kind of hypotheses she expects.

We are currently working on an extension of the algorithm for conditional theories. We have added an extra set CH of conditions, written as sets of equations. We now allow inconsistent generalizations in the way that if a generalization covers most cases but it is inconsistent with a few examples, a new condition can be generated 'inspired' in some program from PH (or its negation) that covers these examples.

6.2 Higher-order and Function Invention

The power of higher-order languages for induction of theories from facts has not been fully exploited so far. The issue here is that if higher-order unification is difficult and deduction very problematic, what can we expect from a much harder problem like induction?

The first steps towards Higher-Order Induction are being taken by Bowers et al. [6]. A pretended higher-order inverse narrowing requires first the election of a proper "higher-order narrowing" from some higher-order unification methods presented to date [9][27].

Albeit the greater expressible power of higher-order logic can make hypotheses shorter and more consilient, it is function invention the problem that highlights the necessity of higher-order representation languages for induction. Of course, we lose the commodities of first-order, mainly its complete deduction methods, but we acquire benefits for inductive tasks. Fortunately, a good premise to start up is that, whatever the selected higher-order deductive mechanism, any higher-order inductive algorithm should be required to construct terminating programs for the evidence.

7 Conclusions

We have presented a general framework for the Induction of Functional Logic Programs as an extension of ILP, including a discussion of selection criteria for equational theories and an algorithm

that is guided by a adaptable optimality factor based on these criteria. The kernel of the algorithm is an inverse narrowing procedure which is used for the induction of equational clauses. We have not studied in this paper how selection strategies of narrowing can affect to the inference process.

In the future, classical problems of ILP could be addressed under the higher-order extension, like function invention or the induction (and not an ad-hoc use) of schemata for complex problems.

Our approach seems very promising since the algorithm is quite generic and powerful enough to be used for different tasks: program synthesis, abduction, explanation based learning (EBL) and prediction. More work is needed to reach these objectives.

References

- [1] H. Arimura, H. Ishizaka, T. Shinohara, and S. Otsuki. A generalization of the least generalization. *Machine Intelligence*, 13:59–85, 1992.
- [2] F. Bergadano and D. Gunetti. Functional Inductive Logic Programming with Queries to the User. In *Proceedings of the European Conference on Machine Learning*, 1993.
- [3] F. Bergadano and D. Gunetti. An Interactive System to Learn Functional Logic Programs. In *Proceedings of the 13th International Joint Conference on Artificial Intelligence*. Morgan Kaufmann, 1993.
- [4] P. Bosco, E. Giovannetti, and C. Moiso. Narrowing vs. SLD-resolution. Theoretical Computer Science, 59:3–23, 1988.
- [5] P.G. Bosco, E. Giovannetti, G. Levi, and C. Palamidessi. A complete semantic characterization of K-leaf, a logic language with partial functions. In *Proceedings of the IEEE Symposium on Logic Programming*, pages 318–327, 1987.
- [6] A.F. Bowers, C. Giraud-Carrier, C. Kennedy, J.W. Lloyd, and R. Mackinney-Romero. A framework for Higher-Order Inductive Machine Learning. In *Representation issues in reasoning and learning*. Area meeting of CompulogNet Area 'Computational Logic and Machine Learning, 1997.
- [7] W. Buntine. Generalised Subsumption and Its Applications to Induction and Redundacy. *Artificial Intelligence*, 36(2):149–176, 1988.
- [8] D. Conklin and I.H. Witten. Complexity-Based Induction. Machine Learning, 16:203–225, 1994.
- [9] Daniel J. Dougherty. Higher-order unification via combinators. *Theoretical Computer Science*, 114(2):273–298, 21 1993.
- [10] L. Fribourg. Slog: a logic programming language interpreter based on clausal superposition and rewriting. In Proc. Second IEEE Int'l Symp. on Logic Programming, pages 172–185. IEEE, 1985.
- [11] M. Hanus. The Integration of Functions into Logic Programming: From Theory to Practice. Journal of Logic Programming, 19-20:583-628, 1994.
- [12] J.H. Holland, K.J. Holyoak, R.E. Nisbett, and P.R. Thagard. Induction. Processes of Inference, Learning, and Discovery. The MIT Press, 1989.
- [13] S. Hölldobler. Equational Logic Programming. In *Proc. Second IEEE Symp. on Logic In Computer Science*, pages 335–346. IEEE Computer Society Press, 1987.
- [14] J.M. Hullot. Canonical Forms and Unification. In 5th Int'l Conf. on Automated Deduction, volume 87 of Lecture Notes in Computer Science, pages 318–334. Springer-Verlag, Berlin, 1980.
- [15] H. Hussmann. Unification in conditional-equational theories. Technical report, Fakultät für Mathematik und Informatik, Universität Passau, 1986.
- [16] A. Ishno and A. Yamamoto. Generalizations in Typed Equational Programming and Their Application to Learning Functions. New Generation Computing, 15:85–103, 1997.
- [17] J. Jaffar, J.-L. Lassez, and M.J. Maher. A logic programming language scheme. In D. de Groot and G. Lindstrom, editors, *Logic Programming, Functions, Relations and Equations*, pages 441–468. Prentice Hall, Englewood Cliffs, NJ, 1986.
- [18] J.W. Klop. Term Rewriting Systems. Handbook of Logic in Computer Science, I:1–112, 1992.
- [19] M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and its Applications. 2nd Ed. Springer-Verlag, 1997.
- [20] C.X. Ling and L. Ungar. Inventing theoretical terms in inductive learning of functions. In Zbigniew W. Ras, editor, *Methodologies for Intelligent Systems*, volume 4, pages 323–331. Elsevier Science Publishing, North-Holland, 1989.
- [21] J.W. Lloyd. Declarative programming in Escher. Technical Report CSTR-95-013, Department of Computer Science, University of Bristol, 1995.

- [22] S. Muggleton. Duce, An Oracle Based Approach to Constructive Induction. In *Proc. 10th Int'l Joint Conference on Artificial Intelligence*, pages 287–292. Morgan Kaufmann, 1987.
- [23] S. Muggleton. Inductive Logic Programming. New Generation Computing, 8(4):295–318, 1991.
- [24] R. Olson. Inductive functional programming using incremental program transformation. *Artificial Intelligence*, 74(1):55–81, 1995.
- [25] G. Plotkin. A note on inductive generalization. Machine Intelligence, 6, 1970.
- [26] G. Plotkin. A further note on inductive generalization. Machine Intelligence, 6, 1971.
- [27] Z. Qian. Higher-order equational logic programming. In Proc. 21st ACM Symposium on Principles of Programming Languages, pages 254–267, 1994.
- [28] U.S. Reddy. Narrowing as the Operational Semantics of Functional Languages. In *Proc. Second IEEE Int'l Symp. on Logic Programming*, pages 138–151. IEEE, 1985.
- [29] C. Rouveirol. Extensions of Inversion of Resolution Applied to Theory Completion. In S. Muggleton, editor, *Inductive Logic Programming*. Academis Press, London, 1992.
- [30] C. Rouveirol. Flattening and Saturation: Two Representation Changes for Generalization. Machine Learning, 14:219–232, 1994.
- [31] E.Y. Shapiro. Inductive inference of theories from facts. Computational Logic: Essays in Honor of Alan Robinson, 1991.
- [32] J.H. Siekmann. Universal unification. In 7th Int'l Conf. on Automated Deduction, volume 170 of Lecture Notes in Computer Science, pages 1–42. Springer-Verlag, Berlin, 1984.
- [33] D.R. Smith. The synthesis of LISPprograms from examples: A survey. Automatic Program Construction Techniques, pages 307–324, 1984.
- [34] K. Taylor. Inverse Resolution of Normal Clauses. In S. Muggleton, editor, Proc. of 3rd International Workshop on Inductive Logic Programming, pages 165–178, 1993.
- [35] A. Togashi and S. Noguchi. Inductive Inference of Term Rewriting Systems Realizing Algebras. In S. Arikawa, S. Goto, S. Ohsuga, and T. Yokmori, editors, *Proceedings of the First International Work-shop on Algorithmic Learning Theory*, pages 411–424. Japanese Society for Artificial Intelligence, 1990.
- [36] P.R. van der Laag and Nienhuys-Cheng. Subsumption and Refinement in Model Inference. In P. Brazdil, editor, *Proc. 6th European Conference on Machine Learning*, volume 667 of *Lecture Notes in Artificial Intelligence*, pages 95–114. Springer-Verlag, Berlin, 1993.
- [37] M.H. van Emden and K. Yukawa. Logic Programming with Equations. *Journal of Logic Programming*, 4:265–288, 1987.
- [38] R. Wirth. Completing Logic Programs by Inverse Resolution. In *Proc. of 4th European Workshop Session on Learning*, pages 239–250, 1989.