
-1-

 Formal Modelling of Cryptographic Protocols in Situation
Calculus

Preliminary Draft August 20th 1996

Minor Corrections January 18th 1997
Translation to English February 9th 1997

José Hernández
Universitat de València

Dpt. de Lògica
Aptat. 22109, E-46071 València, Spain

Email: Jose.Hernandez@uv.es

Javier Pinto
Pontificia Universidad Católica de Chile

Escuela de Ingeniería
Depto. de Ciencia de Computación

Casilla 306, Santiago 22, Chile
Email: jpinto@ing.puc.cl

Abstract

We present here a generic model in Situation Calculus (S.C.) to

formalise several cryptographic protocols. It distinguishes from other

logics of cryptographic modelling using the concepts of believing or secret

because it is based on the concepts of knowledge and it will not be

required any special construct out of S.C. As a working example, we take

the ISO/IEC 9798-2 5.1.2 protocol, which we specify formally.

Subsequently we prove some correction properties of it.

Expecting the range of applications and a possible semi-automatisation

of proofs, maybe the most promising result till now is that the protocol

specification remains in an extremely plain and explicit manner, justifying

per se the formalisation.

In the end, we comment a set of requirements that are necessary to the

general goal of fully formalising cryptographic protocols.

† Most of this research was established and developed during the cooperation originated by a grant
from the Iberoamerican Cooperation Institute (ICI). Current address is Universitat Politècnica de
València, Departament. de Sistemes Informàtics i Computació, Camí de Vera 14 Aptat. 22.012 E-
46071 València, Spain. Email: jorallo@dsic.upv.es

-2-

1 Introduction

We present here a generic model in Situation Calculus (S.C.) to formalise several cryptographic

protocols1. To attain it, we start from the indexical knowledge model introduced by Scherl and

Levesque [Scherl et al. 1993] and elaborated in following articles [Scherl et al. 1996]. Then we add

the necessary predicates and actions to build a theory that allows to constitute a theory that will make

possible to formalise cryptographic protocols. As a distinguishing remark from other logics of

cryptographic modelisation, we can point out that it is based on the concepts of knowledge (and not

in believing or secret) and it will not be required any special construct out of S.C.

For the cryptographic fundamentals, we shall follow the lines, notations and some classical

examples from the literature, mainly [Abadi et al. 1996] and [Gürgens 1996]. From the former, we

have extracted some informal principles, making them requisites of our formalisation, what may

facilitate the design of protocols using it. From the latter we have taken out ideas from her extended

and improved formalisation, in our view, of BAN logic [Burrows et al 1989], which, at the same

time, we have adapted and extended to our needs.

As an example we introduce the ISO/IEC 9798-2 5.1.2. protocol, which we specify formally and

from here we prove some correction properties, adopting some assumptions. As is commented in

[Gürgens 1996] about the same protocol, this one may bring problems if there are several runs of it;

even though it is not presented here, the model we introduce allows to prove these cases adapting

Gürgens’s axioms.

The constructs and axioms that we present in this article are an extract of what we have

considered most significant to illustrate the theory; a more thorough and detailed exposition can be

found in the extended preliminary version of this text [Hernandez 1996].

2 Example

To see the necessity of the different formalisms and constructs that will be introduced, we are going

to present a simple protocol, the ISO/IEC 9798-2 5.1.2 protocol, described in [ISO9798-2 1994]. We

shall try to make a similar analysis of the one made by [Gürgens 1996].

2.1. The informal description of a run of the protocol is:

0. Both principals, A and B, share a symmetric key called KAB.

1. B sends to A a nonce (random number) NB and, optionally, a textfield text1.

2. When A receives the message, A calculates the nonce NA and sends a text text3, followed by

the message (NA, NB, B, text2) encrypted with KAB.

1 We shall not undertake here problems with the encryption algorithm, such as RSA, DSS or any
others, which we shall suppose infallible, although cases like [Goldberg et al. 1996] and studies
like [Kocher 1995] about Timing Attacks may have called them into question. It is possible that in

order to avoid these lacks, it may be necessary considering jointly the algorithm, the protocol and
the code implementation of both.

-3-

3. On receiving message 2, B verifies the cyphered text, decyphering it and checking the

correction of the identifier B that distinguishes it and that the nonce NB sent in step 1,

matches the one that is in the cyphered text.

4. B sends a text text5, followed by the message (NB, NA, text4) encrypted with KAB.

5. On the arrival of message 3, A verifies the cyphered message, decyphering it and checking

that the nonce NB received from B in message 1 matches the nonce inside the message and

that the nonce NA sent to B in message 2 matches the nonce inside the message.

6. The goal of the protocol is that, both principals —not using a key server— would be

convinced that, once finished the run, they have talked to each other.

2.2. Using the classical notation, which clarifies quite the process, the protocol stands as follows:

1. B → A: NB,text1

2.
A → B:text3, NA, NB, B,text2{ }

KAB

3.
B → A:text5, NB, NA,text 4{ }

K AB

The problem of this notation is that there is no indication of the checkings made by the principals.

2.3. Thereto we present an extended notation introducing some preconditions or checkings before

taking any action. So it is:

-4-

With this we have completed the informal especification of an ISO 9798-2 protocol run.

Now we may ask ourselves whether the protocol carry out its function and if not, to which attacks

it is vulnerable. Do we have any way of making sure when this kind of things may or not happen?

The only way to be completely sure that some fact cannot happen consists in formalising the protocol

and posing the question in this frame, showing that is not the case.

0. INITIAL PRECONDITIONS:

 KAB is a symmetic key shared by A and B.

1. PRECONDITIONS of B:

 None

 ACTIONS:

 B → A: NB,text1

2. PRECONDITIONS of A:

 Receives a message (x1,x2)

 ACTIONS:

A → B:text3, NA,x1, B,text2{ }

K AB

3. PRECONDITIONS of B:

 Receives a message (x3,x4)

 Decrypts x4 with KAB into a message (x5,x6,x7,x8)

 Verifies that x7=B

 Verifies that x6= NB

 ACTIONS:

B → A:text5, NB, NA,text 4{ }

K AB

4. PRECONDITIONS of A:

 Receives a message (x9,x10)

 Decrypts x10 with KAB into a message (x11,x12,x13)

 Verifies that x11= x1

 Verifies that x12= NA

5. GOALS:

 A knows that she has talked with B

 B knows that she has talked with A

6. RESTRICTIONS OF EXECUTION:

 A and B must not communicate KAB in any other message.

 A and B must not communicate NA and NB in any other message but these.

 A and B must not communicate text2 and text4 in any other message.

-5-

On that account it is necessary to be able to express the previous scheme with a formal notation.

As we have already pointed out, apart from other approaches that have achieved it partially (proving

some properties) we are going to make use of situation calculus. S.C. has two advantages: it will not

required —as we shall see— any construct out of it and, afterwards we may essay a semi-

automatisation of proofs.

To sum up, we shall have to formalise how the messages are sent and received, how they are

encrypted, what kind of keys can be used, what a protocol run is, and even we shall have to introduce

formally concepts that have been vaguely formalised in the literature such as nonces or timestamps.

3 Assumptions

Before starting with, it is necessary supposing some assumption within which we are going to study

the protocols, many of them habitual in the cryptographical literature.

1.Encryption Algorithm: the presented modelisation works independently of which

encryption algorithms might be used, for instance DES, RSA or others. It is not taken account

of the possibility that these algorithms may be broken into by brute force after some time,

since we shall suppose that keys have enough bits to render this probabilisticly impossible. In

fact, we have made a simplification in the presented model, since it is supposed that there is

only one encryption algorithm, so an agent can decrypt a message just knowing the key and

that that message is encrypted with that key. The model could be extended easily to cover

different algorithms.

2.Protocol Interleaving: we shall be specially aware with the problems that may appear from

the fact that several runs of the same or different algorithms may go on at the same time. The

ISO 9798-2 protocol and many others have shown failures in the case of interleaved runs of

the same protocol. The main obstacle for studying these questions is that the set of possible

messages and their occurences is infinite. This is one of the latent problems in [Gürgens

1996].

3.Communication Stream: we shall suppose a single communication stream or channel, with

possibility of message loss, duplication o erroneus arrival. Since there is no certainty about

the authenticity of the origin of a message, the better way results in modeling the stream as a

broadcasted channel, in which all principals receive and can read the messages. Besides, any

principal may send the message she wants in any moment. Although this is the classical

approach, we shall make out a special predicate SecureComm(a,b) to represents the cases

where we can sharply affirm that the communication between two principals can be made

privately, without tappling. We shall use, in the same way, a predicate ReliableComm(a,b)

when we would want express that communication never fails; i.e., with independence from

whether there have been tappling or not, a sent message implies a received message without

any error.

4.Keys and Privacity: we shall not assume however certain common properties of public and

private keys, not because we want to make a very general model, but because by the means of

the fluent Knows, we can perfectly express which keys each agent knows and which ones

-6-

does not, as well as those that are shared. For the same reason, we do not need the

introduction of predicates to model secretness.

5.Messages: messages do not contain more information than that which is explicit (this is more

or less the first principle of [Abadi et al. 1996]). Therefore, any information that is supposed

implicitly will not be considered in the model, so ignoring its order, run, origin, destination

and whether it is encrypted or not. All of this should be known or deduced by the addressee

of the message. The only thing that could be noted will be the type of the components that go

packed according to their order and structure.

4 Fundamentals

The Language:

Next we shall present briefly Situation Calculus (S.C.), where all the logic constructs come from. For

the moment, we introduce the classes of objects which we are going to work with. We shall use

lowercase letters for the variables belonging to these classes in order to avoiding using permanently

the belongs-to symbol (i.e. when we indicate a variable t, it is supposed from class T).

• A: class of agents (also known as principals). The agents are the individuals who

communicate through the channel. In our model, they match with agents as known in S.C.

The lowercase letters b and c will also be used as belonging to this class.

• M: class of messages. A message is the object that may be sent or received by an agent.

• P: class of protocols.

• R: class of runs. A run is the execution of a protocol from the beginning to the end. As we

have said, we shall allow several runs occurring sequentially or concurrently.

• E: class of steps. Each protocol run is composed of some steps, identified with natural

numbers.

• K: class of keys. Used to encrypt or decrypt messages. There are several kinds of keys, as we

shall see.

• S: class of situations. They are the moments or states in S.C. and here they will take the same

role that time points in other formalisations.

• Q: class of actions. They are also those from S.C. and allow moving between two situations.

• N: class of nonces. A nonce is a random number generated by an agent and we shall suppose

impossible that any other agent could ever repeat it provided it is not communicated before.

They are used frequently in authentification protocols, as we shall see.

• W: class of propositions. The are useful for the parameters type of metapredicates, like

Knows.

To make easier the use of messages, we shall assume that M is a non-strict superset of any other

class; this would allow to pack keys, agents, nonces, etc., directly inside the messages. It is the

-7-

agent’s matter to guess the type of each component when receiving a message. This would be

implemented easily identifying the parts of the messages but not doing so allows considerating the

errors produced by intruders changing fields of order, even though they would be of different type.

Situation Calculus and Knowledge

Due to the objectives and extension of this text, we shall not make a proper introduction to Situation

Calculus (S.C.). We shall recall superficially its elements. The first one is the initial situation s0, to

which it is possible to apply certain actions to arrive to other situations. The accessibility relation

between situations is represented by < sign (e.g. s1 < s2 means s2 is accessible from s1). Those

predicates whose truth value may vary according to the situation are known as fluents, and

consequently they have a last parameter of type S.

The actions have some preconditions to be applied, noted by Poss. If the action is possible, the

result of doing an action a in a situation s is a new situation s’. That is,

Poss acc s s do acc((...),) ((...))∧ ′ = ⊃ Fluents that must be true in s'

Those who are not familiarised with S.C. can consult the bibliography, specially [Scherl et al.

1993], since this one does a quick summary and introduces the model of knowledge based on

possible worlds of [Moore 1985], which we shall work with. It is also introduced the possibility of

indexical knowledge which may be necessary to model more complex protocols.

The concept of agent was added afterwards, following the formalisation presented in [Scherl et al.

1996] which combines both into the notation Knows(A, P(now), s), read as “the agent A knows P in

situation s”. This allows to express some very useful sentences for cryptographic modelling, like: “a1

knows (in s1) that a2 knew (in s2) something (w)”:

Knows(a1, Knows(a2, w,s2),s1)

 The formalisation and the resolution of the frame problem for this notation can be found in the same

article from Scherl et al. and may also be very useful when proving properties of protocols.

To ease the following task, we are extracting a reduced set of formulae from the definition of

Knows in [Scherl et al. 1996]:

Knows a w s w s(, ,) ⊃ is true in situation

 (KNO1)

That is to say, the knowledge is infallible; an agent knows a subset (generally a strict subset) of all

that is true in a given situation, but she never knows anything that is false.

In the definition of Knows of [Scherl et al. 1996], it is supposed the closure property, i.e., there is

no knowledge whose logic consequences are not known as well. From this property we are specially

interested in these axioms:

Knows(a, p1 ∨ p2 ∨. ..∨ pn ,s) ∧
∧Knows(a,¬p1 ∧ ¬p2 ∧. ..∧¬pi −1 ∧ ¬pi +1∧. ..∧¬pn ,s)

⊃ Knows(a, pi ,s)

 (KNO2)

Knows(a, p,s) ∧ (p ⊃ q) ⊃ Knows(a,q,s)

-8-

(KNO3)

To avoid a type problem when trying to know something that is not of propositional type, (e.g.

messages, keys, etc.), it is useful to create a new fluent KRef from Knows in the following manner:

Kref (a,t,s) =
def

(∃x)Knows(a,t = x,s)

 where x does not appear in t

 (KREF)

From here, obviously,

Knows(a, x = y,s) ⊃ KRef (a, x, s) ∧ KRef (a, y, s)

 (KNO5)

Now we are adding a frame axiom which tells that we do not know anything new if we do not have

received it in some message:

¬KRef (a, ′ m ,s) ∧ (∀m)(∀ ′ s)(′ ′ s > ′ s > s)Received(a,m, ′ s) ⊃ ¬FullIn(′ m ,m)[]⊃

⊃ (∀ ′ s < ′ ′ s)¬KRef (a, ′ m , ′ s)

 (KNO6)

The definition of the predicate FullIn(m’,m) can be found in [Hernández96] but, succintly, it means

that the message m’ is in m, allowing nested encryptions.

5 Actions

From the model of knowledge presented in the previous point, we introduce the following actions

inside S.C.:

• pack(a,m1,m2,m)

• unpack(a,m,m1,m2)

• encrypt(a,m1,m2,k)

• decrypt(a,m1,m2,k)

• send(a,m)

• receive(a,m)

• createNonce(a,n)

• verify(a,b)

Packing

The actions pack and unpack allow us to give form to the messages and allow distinguishing the

order of the components when comparing messages. Thus it is not necessary introducing the concept

of type of messages (according to their structure).

Let’s begin with the precondition and effect axioms of pack and unpack:

-9-

Poss(pack(a,m1,m2,m),s) ≡ KRef (a,m1,s) ∧ KRef (a,m2,s)

 (PAC2)*

Poss(pack(a,m1,m2,m),s) ⊃ KRef (a, m,do(pack(a,m1,m2,m),s))

 (PAC3)*

Poss(unpack(a, m,m1, m2),s) ≡ Packed(m1, m2,m) ∧ KRef (a,m,s)

 (UNP1)

Poss(unpack(a, m,m1, m2),s) ∧ ′ s = do(unpack(a,m,m1,m2),s) ⊃
⊃ KRef (a, m1, ′ s) ∧ KRef (a,m2, ′ s)

 (UNP2)

In the following, to shorten, we shall use the same predicate with more parameters to pack more than

two messages.

Encryption

Now let’s get in touch with actions encrypt and decrypt, which will be the ground, jointly with

Knows, of our model. Both will take the same type and number of arguments:

• encrypt(a, m, m’, k) means “agent a encrypts m using key k resulting in the cyphered

message m’”.

In a similar way,

• decrypt(a, m’, m, k) means “agent a decrypts m’ using key k resulting in the plain message

m”.

Firstly, we shall see the preconditions that allow to execute both actions. In order to begin encryption

we require the plain information and the key which we are going to code with.

Poss(encrypt(a,m, ′ m ,k),s) ≡ KRef (a, m,s) ∧ KRef (a,k,s) ∧ EncodingKey(k)

(ENCP)*

Let’s remark that it is not necessary that agent a knows that k is a coding key, therefore allowing the

possibility that one may be doing essays withe her set of keys.

We need something similar to decode, but an additional condition is required; decryption will

only be possible in the case the information we are supplied has been encrypted previously and that

the decryption key is compatible with the encryption key (i.e., they both form a key pair).

Poss(decrypt(a, ′ m ,m,k),s) ≡ KRef (a, ′ m ,s) ∧ KRef (a,k,s) ∧
∧(∃ ′ s , ′ ′ s < s, ′ a , ′ k)do(encrypt(′ a ,m, ′ m , ′ k), ′ s) = ′ ′ s ∧ KeyPair(k, ′ k)

 (DECP)

Seen these both preconditions of encryption and decryption, the results from the encryption action

are very simple: the agent gets knowledge of what she has just done, i.e., that m’ is the result of

encrypting m with key k:

Poss(encrypt(a,m, ′ m ,k),s) ∧ ′ s = do(encrypt(a,m, ′ m , k), s) ⊃
⊃ Knows(a, Encrypted(m, ′ m ,k,s), ′ s)

-10-

(ENC2)*

And those from decryption are more apparent concerning knowledge:

Poss decrypt a m m k s s k s do(decrypt a m m k s

s s Knows a Encrypted m m k s s KRefs a m s

Knows a Decrypted m m k s s Knows a KeyPair k k s

((, , ,),) (,) (, , ,),)

() (, (, , ,),) (, ,)

(, (, , ,),) (, (,),)

′ ⊃ ∃ ′ ′ ′ = ′ ∧
∧ ∃ ′′ < ′ ′ ′′ ′ ∧ ′ ∧
∧ ′ ′ ′ ∧ ′ ′

(DEC2)

That is to say, it happens that, besides knowing the plain information m (what she pretends), the

agent knows —and it is possible that this was not known in s, because we allow the possibility of

essays, as we have pointed out before— that the information was encrypted in m using a k’ —most

of cases unknown— and that it constitutes a pair with k.

Sending and Receiving Messages

We introduce straightaway the action send(a1, m) representing “agent a1 sends message m”. It

should be noticed that the destination is not specified so following what we indicated in the

assumption of a broadcasted channel. So we have:

Poss(send(a,m),s) ≡ KRef (a, m, s)

 (SENP)*

As we said, the action receive is completely independent to send because generally the channel is

neither sure nor reliable2, therefore send has no effect besides knowing that it has been sent:

Poss a m s s do(sen d a m s Knows a Sent a m s s(send(,),) (,),) (, (, ,),)∧ ′ = ⊃ ′

(SENE)

Action receive(a,m) means “agent a receives message m” and happens in the following way:

Poss(receive(a,m),s) ∧ ′ s = do(receive(a, m),s) ⊃
⊃ KRef (a, m, ′ s) ∧ Knows(a,Received(a,m, ′ s), ′ s)

 (RECE)*

Poss receive a m s a s s s KRefs a m s s do send a m s((,),) (, ,) (, ,) (((,),))≡ ∃ ′ ′ ′′ < ′ ′ ∧ ′′ = ′ ′
 (RECP)

Nonces

Nonces are some random marks that are necessary to identify messages in many protocols. To give

an agent the possibility to create them we need a new action:

Poss(createNonce(a,n),s) ≡ (∀ ′ a)¬KRef (′ a , n, s)

2 The result in a reliable stream would be:

Poss(send(a1, a2,i),s) ⊃ Knows(a2, i,do(send(a1,a2,i)))

 But this definition is far from suitable because it does not allow to model the main problem which
cryptographic protocols must face up to: the possibility of intruders or message errors.

-11-

(NONP)

That is, a nonce is newly created, without the possibility that the same number would have existed in

other agent’s knowledge (or in hers), considering the number of bits of the nonce great enough to

desestimate a casual probability or brute-force hit. The action results are quite obvious:

Poss(createNonce(a,n),s) ⊃ KRef (a,n,do(createNonce(a, n),s))

 (NONC)*

Checks

Finally we add an action verify that will make possible to introduce checkings carried out by agents.

Despite its importance, it is defined in a very simple way, one precondition and no action results.

Poss(verify(a,w),s) ≡ Knows(a, w,s)

 (VERP)

That is, it only can be executed if it is known what is to be verified.

6 Protocol Specification

Once we have introduced the actions that agents can make, it remains to be concretised a crucial part:

how do we specify protocols, which actions they are composed of, which preconditions they need,

etc.

Independently of whether certain actions would be done or not, whether the agent would behave

properly or not, the protocol must specify what actions and preconditions are required in every step

of each protocol, for any run and agent. Hence, we shall introduce a predicate CPPreconds(p, a, r, e)

that expresses the preconditions of protocol p in order that a, in run r, can begin step e (a and r will

be, generally, free variables).

Given the preconditions of every step, we must indicate which are the actions that can be done.

This will be achieved through an action array named CPActions, relating preconditions and actions

in the following way:

Poss(CPActions(p, a,r,e),s) ≡ CPPreconds(p,a,r,e)

 (CPPR)

Poss(CPActions(p, a,r,e),s) ⊃ AtStep(a, p,r,e, Do(CPActions(p, a, r,e),s)

 (CPAC)

The actions in CPActions must be fulfilled sequentially. We shall use the classic notation in S.C.:

CPActions(p,a,r,e) ≡ q1;q2 ;. ..; qn[]
 What makes the difference between an action array and a sequence of actions is that whenever an

action precondition does not hold, the process is stopped and it will be assumed that the action array

-12-

CPActions has not tried any of them (i.e. all or naught). For that reason, we define a Do similar to

GOLOG [Levesque et al. 1996]:

Do(q1;q2;.. .;qn[], s, sn) ≡

≡ Poss(q1,s) ∧ s1 = do(q1,s1) ∧ Poss(q2, s) ∧ s2 = do(q2, s1)∧. ..Poss(qn,sn−1) ∧ sn = do(qn,sn−1)

 (DO)

Finally, we specify an auxiliar fluent Finished from a new action end, which we shall use later.

Poss(end(a, p,r), s) ≡ (∃e)LastStep(a, p,e) ∧ DoneStep(a, p,r,e,s)

 (END1)

Poss(end(a, p,r), s) ⊃ Finished(a, p,r,do(end(a, p,r), s)

 (END2)

Let’s regard, that in order to finish the protocol we must be at the LastStep, which must be indicated

in the protocol. The action end is not introduced in the protocol specification.3

7 Specification of the ISO 9798-2 Protocol

To illustrate the formalism we give a formal specification of our example, the ISO 9798-2 protocol.

Firstly, in view of the preconditions, we can establish the axioms referring to the shared key:

Symmetric(Kab , ′ K ab)

 (EX1.SYM)

Later we shall indicate who knows and who does not these keys, but now we shall confine to the

protocol specification, which we shall call ISO9798.2, constructed from the extended notation seen

in point 2.3.

STEP 1:

CPPreconds(ISO9798.2,b,r,1) ≡ (∃s)Started(b, ISO9798.2,r,s)

CPActions(ISO9798.2, b, r,1) =
createNonce(b,nb);

pack(b,nb,text1, m1);

send(b,m1)















 STEP 2:

CPPreconds(ISO9798.2,a,r,2) ≡ (∃s)Received(a,m2,s)

3 It also may be heeded the introduction of an action begin to complement an eventual set of
preconditions required to start a run, binding it to a fluent Started in a similar way as how is
bound end with Finished.

-13-

CPActions(ISO9798.2, a,r,2) =

unpack (a,m2, m3,m4);

createNonce(a, Na);

pack(a, Na,m3,b,text2,m5);

encrypt(a, m5,m6, Kab);

pack(a,text3,m6,m7);

send(a,m7)





















 STEP 3:

CPPreconds(ISO9798.2,b,r,3) ≡ (∃s, ′ s , s < ′ s DoneStep(b,ISO9798.2, r,1,s) ∧ Received(b, m ′ 7 , ′ s)

CPActions(ISO9798.2, b, r,3) =

unpack(b,m ′ 7 ,m8,m9);

decrypt(b,m9,m10, Ka ′ b);

unpack(b,m10, m11,m12,m13,m14);

verify(b, m13 = b);

verify(b, m12 = nb);

pack(b, nb,na,text4,m15);

encrypt(b, m15,m16, Kab);

pack(b,text5,m16,m17);

send(b,m17)





























 STEP 4:

CPPreconds ISO a r s s s s DoneStep a ISO r s Received a m s(. , , ,) (, , (, . , , ,) (, ,)9798 2 4 9798 2 2 18≡ ∃ ′ < ′ ∧ ′

CPActions(ISO9798.2, a,r,4) =

unpack(a,m18,m19,m20);

decrypt(a,m20,m21, Ka ′ b);

unpack(a,m21, m22,m23, m24);

verify(a,m22 = m3);

verify(a,m23 = na)



















 EXECUTION RESTRICTIONS:

(∀m, s)Sent(a,m, s) ⊃ ¬FullIn(Kab , m)

 (EX1.RES1)

(∀m, s)Sent(b, m, s) ⊃ ¬FullIn(Kab , m)

 (EX1.RES2)

(∀m, s)Sent(a,m, s) ∧ FullIn(Na ,m) ⊃ m = m7

 (EX1.RES3)

(∀m, s)Sent(b, m, s) ∧ FullIn(Na ,m) ⊃ m = m17

 (EX1.RES4)

(∀m, s)Sent(a,m, s) ∧ FullIn(Nb ,m) ⊃ m = m7

 (EX1.RES5)

-14-

(∀m, s)Sent(b, m, s) ∧ FullIn(Nb ,m) ⊃ m = m1∨ m = m17

 (EX1.RES6)

(∀m, s)Sent(a,m, s) ∧ FullIn(text2,m) ⊃ m = m7

 (EX1.RES7)

(∀m, s)Sent(b, m, s) ∧ FullIn(text4,m) ⊃ m = m17

 (EX1.RES8)

Finally, we specify the last steps of the protocol:

LastStep(ISO9798.2,a,r, 4)

 (EX1.LSTA)

LastStep(ISO9798.2,b,r,3)

 (EX1.LSTB)

8 Protocol Instances

Let’s observe that variables are in fact shared (e.g. messages and nonces). This is open to the

implementation whenever it is introduced in a logic or computational system. One suggerence would

be to parametrise the protocol and then specify which are its variables. In this case, the parameters

are:

a, b, Kab, Kab’, text1, text2, text3, text4, text5

and the variables:

m1 .. m23, na, nb

This may be solved in a simpler way using parametrising predicates in the following way:

Par(ISO9798.2,r,a) would be placed instead of agent a.

Par(ISO9798.2,r,Kab) would be placed instead of key Kab.

...

And the same for variables:

Var(ISO9798.2,r,m1) would be placed instead of m1.

Var(ISO9798.2,r,Na) would be placed instead of Na.

...

The result would stay a less clear specification but completely formalised in S.C., without any

additional construction.

For instance, this allows to distinguish between m3 from protocol ISO9798.2 in its run 3

(Var(ISO9798.2, 3, m3)) from another m3 of protocol D&S in its run 2 (Var(D&S, 2, m3)). This

permits asking and showing properties for a protocol in general, for a concrete case of a protocol, for

two parallel runs of the same protocol, for the case where two given protocols coexist, etc.

Let’s see, enfin, a case of behaviour of this protocol.

-15-

Case 1:

In order to use the preceding specification we must create an instance, that is, we must say who is

effectively a, b, r and texts text1, text2, ... Choosing run 1, the rest of parameters will be as follows:

Par(ISO9798.2, 1, a) =A

Par(ISO9798.2, 1, b) =B

Par(ISO9798.2, 1, Kab) =KAB

Par(ISO9798.2, 1, Kab’) =KAB’

Par(ISO9798.2, 1, text1) =”Hi man”

Par(ISO9798.2, 1, text2) =”bet for horse 13”

Par(ISO9798.2, 1, text3) =”I insinuate you to ”

Par(ISO9798.2, 1, text4) =”you can manage that its jockey had an accident...”

Par(ISO9798.2, 1, text5) =”I’ll do if ”

Let’s suppose that everything begins in an ideal way, i.e., A and B know the keys and nobody else

does.

KRef(, ,)A K sAB 0

(EX1.KNO1)

KRef(, ,)B K sAB 0

(EX1.KNO2)

() KRef(, ,)∀ ⊃ = ∨ =a a K s a A a BAB 0

(EX1.KNO3)

9 Formalisation of Properties. Goals and Security

At this moment we should be able to pose the question about whether the goal is commited, i.e.:

Finished(A, ISO9798.2,r,s) ⊃

⊃
KRef (A, m24, s) ∧ KRef (A, Author(B,m24)) ∧
∧KRef (B,m14,s) ∧ KRef (B, Author(A, m14))


 


 

 (1)

that is to say, that the two important texts had been communicated and that their source and

authorship can be ensured. Whereas m24 should correspond to text4 and m14 to text2, we shall not

prove here both correspondences because it is possible that both messages come from the authentic

principal, but they may be misplaced or wrong. Obviously, the rest of texts are sent plainly and it

cannot be known if someone intercepted the message and changed simply the plain texts.

Also we would like to question if it is sure, i.e. if what should be kept secret is actually kept

secret:

-16-

Finished(A, ISO9798.2,r,s) ⊃
⊃ ¬(∃a,a ≠ A,a ≠ B)KRef (a,KAB) ∨ KRef (a, ′ K AB) ∨ KRef (a,text2) ∨ KRef (a,text4)

 (2)

Ultimately, we would like to prove even more; given a started protocol run with a reliable

communication and if the principals are complying to the protocol, does the run end?

Compliant A ISO Compliant B ISO Started B ISO r s

ReliableComm A B ReliableComm B A s s Finished A ISO r s

(, .) (, .) (, . , ,)

(,) (,) () (, . , , ')

9798 2 9798 2 9798 2

9798 2

∧ ∧ ∧
∧ ∧ ⊃ ∃ ′ >

 (3)

At last, is it possible, within our formalism, to prove these questions?

10 Domain Specific Axioms

As any other theory in S.C., aside from the introduction of the preconditions for the actions and their

effects, it is required further axioms to relate the predicates or fluents and at length give body to the

theory. Since the whole set is very extense, we present here only those axioms that we shall use

thereafter in the proof of (1). We neither give more than the necessary explanations for their

comprehension4. For a more complete set of axioms and more detailed introduction of them, we refer

to a preparatory and extended version of this work [Hernandez 96].

Packed(m1,m2, m) ∧ Packed(m3,m4 , ′ m) ∧ (m1 ≠ m3 ∨ m2 ≠ m4) ⊃ m ≠ ′ m

 (PANE)

Encryptable(′ m 1,m1,k1) ∧ Encryptable(′ m 2 ,m2,k2) ∧ m1 ≠ m2 ⊃ ′ m 1 ≠ ′ m 2

 (ENNE)

¬SameType(m1,m2) ⊃ m1 ≠ m2

 (STY2)

¬(∃m,a, ′ s < ′ ′ s)FullIn(m1,m) ∧ Sent(a,m, ′ s) ∧ ¬InsideEncryption(m1,m,k)[]∧

∧¬(∃ ′ ′ ′ s < ′ ′ s)KRef (a1,m1, ′ ′ ′ s) ∧ KeyPair(k, ′ k) ⊃

⊃ (∃s < ′ ′ s)KRef (a1,m1,s) ⊃ KRef (a1, ′ k ,s)[]
 (KRIE)

Equation (KRIE), though it may seem very tough, comes to express the following: if every message

sent containing m1, did it inside an encryption with key k (i.e., every message holding m1, holds it

protected with k) and a1 did not know m1 before s’’ then in order to a1 could get to know m1 before

4 This makes that the axioms may seem as introduced ad-hoc. Although their intuitive
correspondence should be an indication that this is not the case, the necessary conviction would
come from making the proofs of (1), (2), (3) and other properties of this and other protocols. The
extended set of axioms could be used to classify different protocols and situations in which they
may happen, according to the subset of axioms that are observed.

-17-

s’’, necessarily a1 had to know the key to decrypt some of the preceeding messages. Another axiom

that may look uncomfortable:

Received(a3,m,s) ∧ FullIn(′ m ,m) ∧

∧(∃a1,a2) (∀a, ′ s , ′ ′ s)(′ ′ s < ′ s < s)KRef (a, ′ m , ′ s) ⊃ (a = a1) ∨ (a = a2)[]⊃

⊃
(∃s1 < s)Sent(a1,m1,s1) ∧ FullIn(′ m ,m1)[]∨

∨ (∃s2 < s)Sent (a2, m2 ,s2) ∧ FullIn(′ m ,m2)[]








 (KNSE)

that means something quite obvious but formally necessary: “a message can only be sent by someone

who knew its content”, particularising to only two agents. Finally we shall require too:

((∀m, s)Sent(a,m,s) ⊃ m = m1) ∧ ¬FullIn(m2 ,m1) ⊃ ¬Author(a, m2 ,s)

 (AUT4)

Author(a,m,s) ∧ FullIn(′ m ,m) ⊃ Author(a, ′ m ,s)

 (AUT5)

11 Proving Properties

As a matter of sample, we shall prove the first of proprieties exposed in point 9, which matches with

the protocol goal. To ease the following proof, we shall suppose that there will not be any other

protocol run.

Proof of (1)

We start from Finished(A, ISO9798.2, r, sf) and with (END2) and (END1) results:

(∃e,s1 < sf)LastStep(A, ISO9798.2,r,e,s1) ∧ DoneStep(A, ISO9798.2,r,e,s1)

 using (EX1.CS1) we have:

DoneStep(A, ISO9798.2, r, 4, s1)

(1.0)

From (CPAC) we know that Do(CPActions(ISO9798.2, A, r, 4), s2’) took place in a s2’ < s1, and

from (DO) we know that the actions have been accomplished one by one and that their preconditions

have been satisfied. Going backwards we have that the last action is verify(a, m23=na) and as it has

been carried out there must have been the case, from (VERP) that:

Knows(A, m23=na, s2) in s2 < s1

(1.1)

From (KNO5) we have:

KRef(A, m23, s3) ^ KRef(A, na, s3)

If we go on with actions we see that if verify(a, m22=m3) has been done in s3, from (VERP) we get:

-18-

Knows(A, m22=m3, s3) in s3 < s2

(1.2)

From (KNO5) we have:

KRef(A, m22, s3) ^ KRef(A, m4, s3)

From the previous action unpack(A, m21, m22, m23, m24) in s4 we know with (UNP2) and (UNP1)

that:

KRef(A, m24, s3)

(1.3)

KRef(A, m21, s4) in s4<s3

Packed(A, m21, m22, m23, m24)

From decrypt(A, m20, m21, KAB’) in s5 we know with (DEC2) that:

() (, (, , ,),)∃ <s s Knows A Encrypted m m k s s5 20 21 4 in s5 < s4

 and from (DECP) we get:

(∃ ′ s , ′ ′ s < s4, ′ a ,k) ′ ′ s = do(encrypt(′ a , m21,m20,k), ′ s) ∧ KeyPair(k, ′ K AB)

 From (EX1.SYM) we can deduce that k=KAB and therefore we obtain:

(∃s, ′ k)Knows(A,Encrypted(m20,m21, KAB ,s),s4)

 Since initially the key KAB are only known by A and B —see (EX1.KNO1), (EX1.KNO2) and

(EX1.KNO3)— and since nobody might know it because it will never go in any message —see

(EX1.RES1) and (EX1.RES2)— and since (KNO6), (RECP) and (SENE) nobody but A and B know

it, we have:

(∀a,s)KRef (a, KAB ,s) ⊃ a = A ∨ a = B

 this implies with (AUT1) that:

(∀s)Author(A,m20,s) ∨ Author(B, m20,s)

 Moreover we suppose that A and B know (EX1.KNO1), (EX1.KNO2) and (EX1.KNO3). From here

and the preceeding implication, with (KNO3) we get:

Knows(A, Author(A, m20,s4) ∨ Author(B,m20,s4), s4)

 The only message that A sends in the whole protocol is:

A → B:text3, NA,x1, B,text2{ }
K AB

 Assuming that we work with this run and that there are not preceeding runs, it will suffice to check

that m22 (the first element of the encrypted part) is not NA to know sure that A has not sent it in this

run.

From (1.2) we have Knows(A, m22=m3, s4), and, since m3 ≠ NA —because in

CPActions(ISO9798.2,a,r,2) the action unpack(a,m2,m3,m4) goes before createNonce(a,Na)— with

(NONP) we have:

Knows(A, m22 ≠ NA, s3)

From (PANE) we have:

-19-

Knows(A, m21 ≠ m5, s3)

From (ENNE) we have:

Knows(A, m20 ≠ m6, s3)

And all together we have:

¬FullIn(m20, m7)

 Since m6 was the only message that A has sent in this run, i.e.,

(∀m, s)Sent(a,m, s) ⊃ m = m7)

 we have, from (AUT4):

Knows(A,¬Author(A, m20,s))

 considering, as we said, only the messages from A in this run and this protocol.

So we have, from (KNO2):

Knows(A, Author(B, m20), s4)

and from (AUT5) since FullIn(m24,m20) we have:

Knows(A, Author(B, m24), s4)

that jointly with (1.3) corresponds to one half of (1) which is what we pretend to prove.�

The other side will be proved in a similar way if we begin from the fact:

DoneStep(B, ISO9798.2, r, 3, s)

which comes out immediately from Finished(B, ISO9798.2, r, s), as the previous case. The problem

is that we have only supposed Finished(A, ISO9798.2, r, s) and we need:

Finished(A, ISO9798.2,r,s) ⊃ Finished(B, ISO9798.2,r,s)

 (4)

Let’s depart as before from (END2) and (END1) in (1.0):

DoneStep(A, ISO9798.2, r, 4, s1)

From here we see that DoneStep(A, ISO9798.2, r, 2, s) must be also true because it is a precondition

of step 4 of A. The action createNonce(a,Na) is inside step 2, so we know that A has generated NA,

i.e., just after its creation A is the only one who knows NA. We know that A has not sent NA in any

other message from (EX1.RES1), i.e.:

(∀s)FullIn(NA, m) ∧ Sent(A,m) ⊃ m = m6

 and we know:

InsideEncryption(NA, m6, KAB)

From (EX1.RES2) we know that B has not sent NA in any other message, i.e., the only message B has

sent containing NA is message m17:

(∀s)FullIn(NA, m) ∧ Sent(B,m) ⊃ m = m17

 and we know

InsideEncryption(NA, m17, KAB)

and from (EX1.KNO1), (EX1.KNO2), (EX1.KNO3) and (KRIE) we have:

-20-

(∀s, a)KRef (a, NA ,s) ⊃ a = A ∨ a = B

 Knowing that:

Received(A,m18,s) ^ FullIn(NA,m18)

from (KNSE) we get:

(∃ ′ s < s)Sent(A, ′ m , ′ s) ∧ FullIn(NA, ′ m , ′ s) ∨
∨(∃ ′ ′ s < s)Sent(B, ′ ′ m , ′ ′ s) ∧ FullIn(NA, ′ ′ m , ′ ′ s)

 Which only can be m17 or m7. But the message received in the precondition of step 4 is m18, and

since m18 ≠ m7 because they have not the same shape, with (STY2), we have:

(∃s)Sent(B, m17,s)

 and therefore the action sent(B, m17) was done and this is the last one of step 3, so we have:

DoneStep(B, ISO9798.2, r, 3, s)

and from here and from Finished(B, ISO9798.2, r, s), we show (4). As we said we did in the first half

of this proof we would do in the second one, proving that:

KRef(B,m14,s)

(∃s)Knows(B, Author(A,m14,s))

 and with this we have both parts of (1). �

12 Conclusion

The applications and real range of the model we have presented will not be estimated till it would be

applied to a broader number of protocols and once an automatisation of the theory would be tried.

Nonetheless, the theory is flexible and generic enough to make possible proofs of most of the

correction (or incorrection) properties of cryptographic protocols. Maybe the most promising result is

that the protocol specification remains in an extremely plain and explicit manner, justifying per se

the formalisation task.

In a wider manner, this work has needed the introduction of certain aspects and formalisms. These

could be summarised into a set of requirements that are necessary to the objection of formalising

cryptographic protocols:

• Assumptions: First of all, as it has been done here, it should be clarified the environment

where we would work in, the communication channel, what implicit information (if it is) is

known about a message beyond its content, what reliability about keys and cryptographic

protocol we shall have and, mainly, how far we want to arrive with the formalization. It is

also necessary see what kind of problems we want to detect or treat with our model and

consequently whether it is necessary to contemplate the possibility that some protocols or

some runs of the same one befall concurrently or sequentially.

• Situational Structuration: To study the behaviour of a cryptographic protocol one must

evaluate every possible situation we may come upon, realising that one leads to another

through certain actions. This idea is practically identical to Situation Calculus. This does not

-21-

mean that it is indispensable to use S.C. to model cryptographic protocols (in fact there are

many previous models) but it is something very similar to S.C. if it is pretended to study in

detail and in a dynamic way the situations in which the different principals may find as long

as actions occur.

• Fallible or Infallible Knowledge: Obviously, to model the principals we need independent

agents with respective independent knowledges and that each knowledge could evolve along

the situations. The model presented here is based on the concept of infallible knowledge, i.e.,

it is no possibility of mistake or falsity in agents’ knowledge. This makes impossible to

model situations where an agent thinks something and other agents thinks the contrary or

even, the very frequent case where an agent cheats another and make her think that something

is not true. This is, in our opinion, one of the great problems presented here. It is also difficult

to introduce the concept of trustness, from which if A trusts B and A knows that some

information comes from B, A gets to believe the given information, but if A does not trust B,

A will reject the information, knowing it but not believing it. This suggests that the model

could be extended, adding a fluent Believes in addition to Knows5. Possibly, most of the

found difficulties, may be resolved with a model based on believe (fallible knowledge). Thus

in the ISO protocol example, if a knows that b is the author of a message implies that b is the

author of the message, but if we would want to prove that it is possible that a would think

that b is the author of a message while b is not, we would have proven a failure in the

protocol, what cannot be done exclusively with Knows.

• Protocol Specification: The protocol specification must establish much more than the

habitual informal description of it, showing explicitly everything implicit in the latter. As we

have seen, we start up describing step by step which are the actions of each agent involved,

their preconditions to commit them, as well as certain restrictions that must be preserved by

the messages involved in the protocol (for instance revealing a key or some crucial message

in the protocol). Concretely, it has been seen the need of introducing actions for

encryption/decryption, packing/unpacking, sending/receiving, as well as how to model the

creation of nonces, essential in most of cryptographic protocols. One of the actions that has

been shown necessary to include as long as we have been working on the matter, is the one

that verifies that an agent knows something in a given moment or she is sure of something,

because if she is not, she cannot go on executing the rest of actions of a protocol step —in

our models this action is called verify—. It is possible that for more complex protocols, in

which different actions are possible, would be necessary to introduce some king of model

similar to programming languages, including bifurcations, loops, etc.6

Aside from nonces, many protocols include the so-called Timestamps to order sequentially

the messages. Accordingly it would be introduced the action createTimestamp whose

precondition and result axioms would be:

Poss(createTimestamp(a,t), s) ≡ (∀ ′ s < s)do(createTimestamp(a, ′ t), ′ s) ⊃ ′ t < t

 The result of createTimestamp is similar to that of createNonce:

5 The consequences of this and other knowledge extensions to S.C. are superficially treated in
[Hernandez 97].
6 Fortunately, the extension is already done in S.C. and is known as GOLOG [Levesque et al.
1996].

-22-

Poss(createTimestamp(a,t), s) ⊃ KRef (a,t,do(createTimestamp(a,t),s))

 • Case Instantiation: Once the protocol has been specified, it must be created an instance that

asserts that some real agent is going to make the role of agent a, b or c (or whoever she would

be) of the protocol, that certain parameters have some value and that the agent is going to

behave in a reliable way or not, i.e. whether she will follow rigorously the protocol steps and,

even if it is necessary that the agent will not be engaged in any other task or that she will not

send any other message. In this point, it would be interesting the inclusion of some extensions

to cover obligation in S.C, like those proposed by J.Pinto. It is also substantive to specify in

which moment the agent begins a protocol —by means of an action in some situation— and

in which moment cease following the steps of the protocol —also by means of an action—

even though the protocol had not successfully finished yet.

• Protocols Interleaving: Due to the multiple instantiation of the same or different protocols,

we face the possibility that several runs may be taking place simultaneously with some of the

agents making different roles in each of them. This means that it should be considered every

kind of message that may have been sent in the current protocol and any other, because if we

do not heed these situations, we get the more common errors in cryptographic protocols

(identity supplantation, cheatings, etc.). This question, that we have left outlined, is what

[Gürgens 1996] tries to undertake formally.

• Axiomatisation: the protocol actions must be related with the predicates that allow expressing

the protocol properties and it should be considered those axioms which, precisely because of

their obvious character, need to be introduced to carry out proofs. One must be very careful

when including new predicates or fluents, because thereafter the number of axioms required

blows up and the model gets harder in a non-linear progression, making even more difficult

the semiautomatisation of proofs.

In conclusion, albeit that the model may be refined and extended in the future, the most remarkable

thing of what we have exposed here is that it has been given a framework of how and what is

required to attain the formalisation, seeing where the pitfalls appear and showing that, in any case, it

seems impossible to model cryptographic protocols in detail with a dozen axioms. The question rests

on whether complexity can be maintained at a reasonable level to let the model be used in the design

and checking of cryptographic protocols.

13 References

[Abadi et al. 1996] Abadi, Martin; Needham, Roger “Prudent Engineering Practice for

Cryptographic Protocols” IEEE Transactions on Software Engineering, Vol. 22, No. 1, January

1996.

[Bertossi et al.] Bertossi, Leopoldo; Pinto, Javier; Sáez, Pablo; Kapur, Deepak; Subramaniam,

Mahadevan “Automating Proofs of Integrity Constraints in Situation Calculus”.

[Bertossi et al. 1996] Bertossi, Leopoldo; Arenas, Marcelo; Ferretti, Cristian; Delaporte, Alejandra;

Sáez, Pablo; Siu, Bernardo; Strello, Mauricio “El Razonador SCDBR: Manual de Uso e

-23-

Instalación. Versión 4.0”. LYRCC, Departamento de Ciencia de la Computación, Pontificia

Universidad Católica de Chile, marzo de 1996.

[Burrows et al. 1989] Burrows, M.; Abadi, M.; Needham, R. “A Logic of Authentication” Report 39

Digital Systems Research Center, Palo Alto, California, 1989. Also in Proc. Royal Soc. Londo A,

vol. 426, pp. 233-271, 1989.

[Goldberg 1996] Goldberg D.; Wagner, D. “Randomness and the Netscape Browser”, Dr Dobb’s J.,

Jan. 1996, pp. 66-70.

[Gong et al. 1990] Gong, L.; Needham, R.; Yahlom, R. “Reasoning about Belief in Cryptographic

Protocols” Proc. 1990 IEEE Symp. on Security and Privacy (Oakland, California), pp. 234-248.

[Gürgens 1996] Gürgens, Sigrid “A Formal Analysis Technique for Authentication Protocols”

Arbeitspapier der GMD 988, April 1996.

[Hernandez 1996] Hernández-Orallo, José “Modelando Protocolos Criptográficos en Cálculo de

Situaciones” Departamento de Computación, Pontificia Universidad Católica de Chile, agosto

1996. Available in Spanish on “http://www.dsic.upv.es/~jorallo/escritos/”.

[Hernandez 1997] Hernández-Orallo, José “Viabilidad de un Modelo de Conocimiento Falible en

Cálculo de Situaciones”. Available in Spanish on “http://www.dsic.upv.es/~jorallo/escritos/”.

[ISO9798-2 1994] ISO/IEC 9798-2: 1994(E) “Information technology - Security techniques - Entity

authentication - Part 2: Mechanism using encipherment algorithms” 1994.

[Kocher 1995] Kocher, P. “Cryptanalysis of Diffie-Hellman, RSA, DSS, and Other Systems Using

Timing Attacks”, extended abstract, http://www.cryptography.com, Dec. 1995.

[Levesque et al. 1996] Levesque, Hector J.; Reiter, Raymond; Lespérance, Yves; Lin, Fangzhen;

Scherl, Richard B. “GOLOG: A Logic Programming Language for Dynamic Domains”

[McCarthy 1968] McCarthy, J. “Situations, actions and causal laws” TR, Stanford University 1963.

Reprinted in Semantic Information Processing (M. Minsky ed.), MIT Press, Cambridge, Mass.,

1968, pp. 410-417.

[Moore 1985] Moore, Robert C. “A formal theory of knowledge and action” in Hobbs, J.R. and

Moore, R.C. editors 1985, Formal Theories of the Commonsense World Ablex, Norwood, NJ.

319-358.

[Reiter 1991] Reiter, R. “The frame problem in the situation calculus: a simple solution (sometimes)

and a completeness result for goal regression. In Vladimir Lifschitz, editor, Artificial Intelligence

and Mathematical Theory of Computation: Papers in Honor of John McCarthy, pages 359-380.

Academic Press, San Diego, CA, 1991.

[Reiter 1994] Reiter, R. “Proving Properties of States in the Situation Calculus”.

[Scherl et al. 1993] Scherl, Richard B.; Levesque, Hector J. “The Frame Problem and Knowledge-

Producing Actions” in Proceedings, Eleventh National Conference on Artificial Intelligence. 689-

695

[Scherl et al. 1996?] Scherl, Richard B.; Levesque, Hector J. ; Lespérance, Yves “The Situation

Calculus with Sensing and Indexical Knowledge” 1996?.

[Schneier 1996] Schneier, B. “Applied cryptography”, 2
nd

 ed., John Wiley & Sons, New York, 1996.

