

Chapter 7

DECISION SUPPORT FOR DATA MINING
An introduction to ROC analysis and its applications

Peter Flach, Hendrik Blockeel, Cèsar Ferri, José Hernández-Orallo, and Jan Struyf

Abstract: In this chapter we give an introduction to ROC (�receiver operating
characteristics�) analysis and its applications to data mining. We argue that
ROC analysis provides decision support for data mining in several ways. For
model selection, ROC analysis establishes a method to determine the optimal
model once the operating characteristics for the model deployment context are
known. We also show how ROC analysis can aid in constructing and refining
models in the modeling stage.

1. INTRODUCTION

Consider the following, fairly standard scenario for solving a particular data
mining problem. The end-user provides the data miner with training data; the data
miner builds a number of models from the training data; the data miner evaluates the
models by means of cross-validation or a hold-out test set; finally, the best model is
selected and presented to the end-user to provide predictions on new data. In this
scenario we can distinguish the phases of model construction and model evaluation
and selection. A variant of this scenario occurs when we allow approaches such as
bagging, which effectively build new models by model combination.

In this chapter we consider a different scenario: the end-user is presented not
with a single model, but with a collection of models together with their operating
characteristics. These operating characteristics describe, for instance, whether a
model is more accurate on the positives or more accurate on the negatives. Once the
operating characteristics of the deployment context are known, i.e., the class
distribution and the misclassification costs associated with each class, the end-user
decides which model in the collection is optimal for that deployment context. The
decision as to which model is best is thus taken out of the data mining stage and
delayed until the deployment stage. Support for making this decision is provided by
ROC analysis, where ROC stands for �receiver operating characteristics�.

82 Chapter 7

From this point of view, ROC analysis is a decision support technique. However,
it is possible to utilize it while building models; more precisely, to have the data
mining process build models with the specific aim of obtaining good ROC analysis
performance. Thus, the decision support technique is integrated into the data mining
process, instead of being used merely as a post-processing technique. This can
significantly improve model performance, and as such it is a concrete illustration of
the �decision support for data mining� approach mentioned in Chapter 4, and of the
claim made there that such integration can lead to improved overall performance.

The chapter is structured as follows. In Section 2 we give a brief introduction to
ROC analysis. Section 3 describes how ROC analysis provides support for model
selection. In Section 4 we describe some novel applications of ROC analysis in the
areas of model construction, combination and refinement. Section 5 concludes the
chapter.

2. WHAT IS ROC ANALYSIS?

Consider a set of examples labeled positive and negative, and a classifier
predicting the label for each example (the choice of which class is called positive is
arbitrary from the point of view of ROC analysis). A positive (negative) example
that is correctly classified by the classifier is called a true positive (true negative); a
positive (negative) example that is incorrectly classified is called a false negative
(false positive). These numbers can be organized in a contingency table (Table 7-1).
If we fix the number of examples (or if we replace absolute frequencies � counts �
with relative frequencies) such a table has three degrees of freedom; that is, three out
of four numbers can be freely chosen. Notice that the descending diagonal (left-to-
right) in the table represents correct predictions, while the ascending diagonal
represents incorrect predictions. Clearly, the best situation we can get is to have only
0�s on the ascending diagonal.

Table 7-1. A contingency table or confusion matrix.
 Predicted positives (PPos) Predicted negatives (PNeg)
Actual positives (Pos) True positives (TP) False negatives (FN)
Actual negatives (Neg) False positives (FP) True negatives (TN)

From the contingency table we can calculate other metrics, which can be used in

various ways to evaluate the performance of the classifier on the dataset. The true
positive rate (true negative rate) is the proportion of positives (negatives) correctly
classified. Similarly, the false positive rate (false negative rate) is the proportion of
negatives (positives) incorrectly classified. So, the false positive (negative) rate is 1
minus the true negative (positive) rate. All these metrics range from 0 to 1 and can
be interpreted as probabilities � for instance, the true positive rate is the probability
that a randomly drawn positive example is correctly classified. In terms of these
numbers, the best situation we can have is a true positive rate of 1 (and therefore a
false negative rate of 0) and a true negative rate of 1 (and therefore a false positive
rate of 0). The true positive rate is sometimes called recall or sensitivity, and the true
negative rate is sometimes called specificity. Another proportion that is often used is

 Decision support for data mining 83

precision: the proportion of positive predictions that are correct (TP/PPos =
TP/(TP+FP)).

In its most common form, ROC space is the two-dimensional co-ordinate system
with false positive rate on the X-axis and true positive rate on the Y-axis (Figure 7-
1). Each point in ROC space fixes two of the three degrees of freedom of the
contingency table. The remaining degree of freedom is the class distribution (e.g.,
the number of positives divided by the number of negatives, or by the total number
of examples). It makes sense to ignore the class distribution, because it may not be
representative, or because different classifiers have been trained with different class
distributions. In a way, this is the whole point of ROC analysis, but there are other
possibilities. For instance, in information retrieval one wants to ignore the true
negatives, which in the case of a search engine would be the number of non-answers
that are not returned � we don�t really care whether there are 5 thousand or 500
million of those. Ignoring the true negatives can be achieved by using precision (the
proportion of positive predictions that are correct) instead of the false positive rate,
leading to so-called precision-recall diagrams. Globally speaking precision-recall
analysis has a similar purpose as ROC analysis, namely to study the operating
characteristics of different search engines, but the specifics of the analysis are
different because the degree of freedom being ignored is different.

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

False positive rate

Tr
ue

 p
os

it
iv

e
ra

te

ROC heaven

ROC hellAllNegative

AllPositive

A random classifier (p=0.5)

Figure 7-1. Classifiers in ROC space.

We will now have a look at a few special points in ROC space. The origin (0,0)
represents a true positive rate of 0 (i.e., all positives are classified as negative) and a
false positive rate of 0 (i.e., all negative are classified as negative). In other words,
(0,0) represents the classifier which predicts all instances to be negative; we�ll call
this the AllNegative classifier. Analogously, (1,1) represents the AllPositive
classifier. Jointly, these are called the default classifiers. Note that in ROC analysis,
the choice of positive and negative class is irrelevant and has nothing to do with the

84 Chapter 7

majority class. Hence while these two extreme classifiers resemble the decision to
classify all examples based on the majority class, these classifiers do not represent
such a solution. Moreover, in order to know which of the two default classifiers is
the majority class classifier requires knowledge of the class distribution, which we
do not have since it has been deliberately factored out.

The point (0,1) corresponds to a true positive rate of 1 (so all positives have been
correctly classified) and a false positive rate of 0 (so no negatives are incorrectly
classified). In other words, the top left-hand corner represents the classifier that gets
it all right. We will sometimes call this point ROC heaven, since this is the best
possible place to be in ROC space. Analogously, the point (1,0) is the worst possible
place: ROC hell. However, there is a very easy way to move from hell to heaven:
simply flip all predictions from positive to negative, and vice versa. In ROC
analysis, it is common to change a given classifier into another one by manipulating
its predictions, either deterministically or stochastically � ROC analysis does not
evaluate learning algorithms, but the classifiers they produce. A learning algorithm
that yields the ROC hell classifier is a pretty lousy learning algorithm; but the ROC
hell classifier itself is actually not bad at all, since it can be turned into the ROC
heaven classifier by a simple trick.

Now take a look at the two default classifiers again, and consider the diagonal
connecting them (the positive diagonal). Any point on the diagonal represents a
certain true positive rate p and an equal false positive rate. Such behavior can be
achieved by a random classifier, which randomly predicts an example to be positive
with probability p and negative with probability (1�p). Random classifiers can be
constructed without inspecting the dataset at all, i.e., without training. This
represents a very useful baseline for learning algorithms, because a learning
algorithm is no good if it doesn�t result in a classifier above the positive diagonal.
Remember, however, that a classifier below the diagonal can easily be transformed
in one above the diagonal: for instance, the point (0.7,0.25), i.e., a classifier which
correctly classifies half of the negatives but only one quarter of the positives, can be
transformed to the point (0.3,0.75) by inverting all predictions. Technically
speaking, inverting predictions corresponds to point-mirroring the original point
through (0.5,0.5) in ROC space.

Another point worth noting is that, while a random classifier can be seen as
making random predictions, it can equally be seen as choosing one of the default
classifiers (the extreme points on the positive diagonal) at random. This is a useful
perspective because it can be applied to any two points in ROC space. Thus, given
two classifiers any behavior on their connecting diagonal can be achieved by making
a weighted random choice between the given classifiers for each example to be
classified. So, in order to obtain the midpoint between two classifiers we randomly
choose between them with equal probability. But even if we do not care about
random combinations of classifiers, the connecting diagonal is important for another
reason. Consider three classifiers such that the third classifier is below the diagonal
connecting the first two. In that case, the third classifier can never outperform both
the first and the second, not even if we change the misclassification costs. This can
easily be generalized to arbitrary numbers of classifiers, leading to a key concept in
ROC analysis: the construction of the ROC convex hull.

 Decision support for data mining 85

3. ROC ANALYSIS FOR MODEL SELECTION

The convex hull of a set of points in ROC space is a piecewise linear curve
connecting a selection of points such that all other points are below it � the curve is
a hull. The resulting curve will not have any �dents�, i.e., each line segment has a
slope not steeper than the previous segment � it is convex. The convex hull can
easily be constructed as follows: starting with (0,0), find the point so that the
connecting line segment will be steepest, and continue from that point until you
reach (1,1). Computationally this is comparable to sorting n items and hence has a
complexity of O(n log n). Figure 7-2 shows an example of a convex hull.

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%
False positive rate

Figure 7-2. The ROC convex hull.

The classifiers on the convex hull are the best classifiers of the entire group, the

others can be discarded because they will always be outperformed. The best convex
hull possible is the �curve� formed by the three points (0,0)�(0,1)�(1,1), so the larger
the area under the curve, the better it is. If some points we start with are below the
diagonal, the procedure just sketched will ensure that they never end up on the
convex hull (if all points are below the diagonal, our ROC convex hull will simply
be the diagonal itself). In some situations it will be useful to form a separate
negative convex hull from the points below the diagonal, e.g., in subgroup
discovery. In other situations it may be useful to point-mirror all points below the
diagonal through (0.5,0.5), so that some of the mirrored points may actually end up
on the (positive) convex hull.

The ROC convex hull is sometimes called a ROC curve, but the latter is a more
general concept. A ROC curve similarly connects (0,0) and (1,1) through a number
of intermediate points, but it is not necessarily convex (it is monotonically non-
decreasing, i.e., no line segment has a negative slope). There are various reasons
why a ROC curve may be non-convex, for instance when we re-evaluate the chosen
classifiers on a new test set, or when a curve is constructed by setting different
thresholds on a probabilistic classifier.

86 Chapter 7

The ROC convex hull is a simple method to select the best ones among a set of
given classifiers characterized by their true and false positive rates on a given
dataset. If one wants to select a single classifier, one has to know the operating
characteristics, i.e., class and cost distributions. From left to right (or from bottom to
top, because of convexity) the classifiers on the convex hull become progressively
less accurate on the negatives and more accurate on the positives. In order to decide
which classifier to use, we need to know the class distribution in the test set (i.e., the
context where we want to use the classifier). Suppose the class distribution is 50-50,
i.e., equal amounts of positives and negatives. This means that an increase of x in the
true positive rate while keeping the false positive rate constant will give the same
improvement on the test set as a decrease of x in the false positive rate while keeping
the true positive rate constant. So if we draw an imaginary line with slope 1 (i.e.,
parallel to the diagonal) somewhere in ROC space, all points on that line represent
the same test set accuracy. All we need to do is to slide this line in the northwest
direction towards ROC heaven, until it touches the ROC curve in a single point: this
will be the optimal classifier on the test set. Equivalently, we can select the two line
segments with slope closest to 1 (i.e., a slightly steeper segment followed by a
slightly less steep segment) and choose the point connecting them.

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

False positive rate

Tr
ue

 p
os

it
iv

e
ra

te

Figure 7-3. Selecting the optimal classifier under given operating characteristics.

The same procedure can be followed for other class distributions: e.g., if we
have twice as many negatives in the test set as positives we use a line segment with
slope 2, which will force us towards the lower left-hand corner; if we have three
times as many positives as negatives, we use a line segment with slope 1/3, and so
on. This can be very easily generalized to include misclassification costs: for
instance, if we have two times more negatives than positives but false negatives are
10 times as expensive as false positives, we use a slope of 1/5, which naturally
selects a classifier that is more accurate on positives than it is on negatives. In
general, the slope of a line of equal cost is (CFP / CFN) (Neg / Pos) with Pos and Neg
as defined above, and CFP / CFN denoting the cost ratio of false positives versus false

 Decision support for data mining 87

negatives. Class distribution and misclassification costs in the test set are combined
to obtain the slope of the tangent to the convex hull that will select the optimal
classifier. (If it happens that a line segment has exactly the desired slope, we can
choose the classifier on either end, or a random combination of them as discussed
earlier.) Figure 7-3 shows a number of different slopes and the classifiers that are
selected for these slopes.

The previous analysis is not restricted to models that are classifiers. For instance,
in subgroup discovery we are looking for subgroups of the population that have a
significantly different target distribution (e.g., subgroups of patients for which a
particular therapy�s success rate is much higher than average). ROC space is
appropriate for measuring the success of subgroup discovery, since subgroups
whose TP/FP tradeoff is close to the diagonal can be discarded as insignificant.
Conversely, significant subgroups are those sufficiently distant from the diagonal. In
(Lavrač, et al., 2002) the weighted relative accuracy metric was proposed for
measuring the significance and interestingness of subgroups. The significant
subgroups define the points in the ROC space from which a convex hull can be
constructed. In (Flach and Gamberger, 2001) this convex hull was used to select the
best subgroups in a practical study aimed at target selection for a direct mailing
marketing campaign. In order to make decisions easier and to show the expected
profit explicitly, ROC curves were transformed into normalized profit curves; we
refer the reader to Chapter 8 for details.

4. ROC ANALYSIS FOR MODEL CONSTRUCTION

So far, we have assumed that a fixed set of classifiers is given, for which a ROC
convex hull is then constructed. Each of these classifiers is typically obtained by
using some off-the-shelf learning algorithm. Most of these algorithms try to
optimize some performance criterion such as predictive accuracy. Thus, we are
faced with the fact that while we really want to obtain a good ROC convex hull, the
classifiers for which we construct this hull are constructed based on entirely
different objectives. The question naturally arises whether we can adapt learning
algorithms, explicitly incorporating into them the objective of generating (sets of)
classifiers that will have good ROC performance.

A first step in this direction was made by (Blockeel and Struyf, 2002), who
noted that a decision tree can equally be seen as a set of models by varying the
labeling of its leaves. They reason as follows. A tree leaf can be interpreted as
predicting positive or negative with a degree of certainty that is related to the class
distribution in that leaf. For instance, if the leaf contains 90% positives and 10%
negatives, it is reasonable for a new instance belonging to this leaf to be predicted
positive, but if the instance had belonged to a leaf with 99% positives we would
have been more certain of this prediction. Now, assume that class distribution or
misclassification costs are such that we are taking a higher risk when predicting
positive than when predicting negative, then we want to predict positive only when
we are very sure, e.g., when the instance belongs to a leaf with at least 95%
positives. Thus, from a given decision tree we can derive a set of decision trees,
starting with a tree that predicts negative everywhere and gradually introducing

88 Chapter 7

positive predictions in those leaves that have the next highest proportion of
positives, until for the final tree all leaves predict positive. We say that the original
tree has no bias towards positives or negatives (it is optimal for symmetric
misclassification costs and class distributions), whereas the derived trees are biased
to a different extent towards positive or negative predictions.

In an experimental evaluation of this procedure, a comparison was made
between the convex hull of (a) a set of classifiers built using various procedures, one
of which was a decision tree, and (b) the same set of classifiers extended with
classifiers derived from the tree. A clear improvement of the ROC convex hull was
obtained in the latter case (Blockeel and Struyf, 2002).

(Ferri, et al., 2002) take this idea further in two different directions. First, they
provide a theoretical motivation for the procedure just described. They consider all
possible re-labelings of a tree instead of just those considered by Blockeel and
Struyf. This gives a set of 2n different trees, for which they next prove that the
convex hull consists of n+1 specific labelings, exactly those used by Blockeel and
Struyf.

Second, they extend the procedure in the following way. Instead of generating a
set of trees from a single given tree, which is typically grown using a standard tree
induction algorithm, they propose to adapt the tree induction algorithm itself in such
a way that a tree is built for which the derived set will have optimal ROC properties,
that is, will have a maximal area under the convex hull (AUC). Note how the ROC
analysis criterion is in a sense consecutively pushed deeper into the generation of the
set of classifiers: whereas ROC analysis assumes a set of classifiers given, and
Blockeel and Struyf assume a single classifier given and generate a set from it, Ferri
et al. generate this single classifier with the aim of obtaining a good ROC
evaluation.

+ −
LEAF 1 3 5
LEAF 2 5 1
LEAF 3 4 2

FALSE POSITIVE RATE

0.20 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 7-4. A decision tree with all its possible labelings in ROC space.

The following example, taken from Ferri et al., illustrates these issues. Suppose
we have a decision tree with three leaves and the training set distribution as in
Figure 7-4, which also depicts the ROC points of the 2n=8 (where n is the number of
leaves in the tree) possible labelings As can be seen in the figure, the points are

 Decision support for data mining 89

mirrored through the point (0.5, 0.5), because for each labeling there is another
labeling assigning the opposite class to each leaf. To obtain the optimal labelings on
the convex hull, we order the leaves by their accuracy on the positives, and then we
generate the set of n+1=4 optimal labelings (referred to as S0�S3) as follows:

 + − S0 S1 S2 S3

LEAF 2 5 1 - + + +
LEAF 3 4 2 - - + +
LEAF 1 3 5 - - - +

The aim of decision tree construction then is to construct a tree that performs

well for any of its ROC-optimal labelings. For evaluating the quality of such an
unlabelled tree the area under the ROC curve (AUC) metric is very natural. (Ferri, et
al., 2002) use a local version of the AUC metric as a novel splitting criterion for
deciding how to grow the tree, and show that it outperforms other splitting criteria
both with respect to classification accuracy and area under the ROC curve. The
AUC-based splitting criterion is interesting because, unlike traditional splitting
criteria (e.g., information gain), it does not perform a comparison between the
impurity of the parent node with the weighted impurity of the children after splitting.
For instance, in the case of a binary split of a parent with p positives and n negatives
into two children with p1 and p2 positives and n1 and n2 negatives, respectively, the
AUC-based splitting criterion evaluates the quality of this split as (p1n+pn2)/2pn.

5. CONCLUDING REMARKS

In this chapter we have given a general introduction to ROC analysis and its
applications in decision support for data mining (model selection) as well as some
novel applications in model construction and combination. In our opinion, ROC
analysis is an important subject with wide-ranging applications across the board in
data mining. Further background on ROC analysis in machine learning and data
mining can be found in (Provost and Fawcett, 2001) and (Fawcett, 2003).

We have restricted attention to two-class problems. In a multi-class setting with
c classes, a full ROC plot would have c(c�1) dimensions � one dimension for each
possible misclassification (class 1 predicted as class 2, as class 3, etc.). This is often
approximated by combining all possible misclassifications for a particular class,
leading to c dimensions. Recent work includes an algorithm for calculating the
convex hull in full ROC space (Srinivasan, 1999) and approximating the area under
the ROC curve (Hand and Till, 2001).

REFERENCES

Blockeel, H. and Struyf, J. (2002). Deriving biased classifiers for improved ROC
performance, Informatica, Vol. 26, No. 1, 77�84.

90 Chapter 7

Fawcett, T. (2003). ROC Graphs: Notes and Practical Considerations for Data Mining

Researchers, Hewlett-Packard Laboratories.
Ferri, C., Flach, P. and Hernández-Orallo, J. (2002). Decision tree learning using the area

under the ROC curve. Proc. 19th International Conference on Machine Learning
(ICML'02). (eds. Sammut, C. and Hoffman, A.), Morgan Kaufmann, 139�146.

Flach, P. and Gamberger, D. (2001). Subgroup evaluation and decision support for a direct
mailing marketing problem. Proc. ECML/PKDD-2001 Workshop Integrating Aspects of
Data Mining, Decision Support and Meta-Learning (IDDM-2001). (eds. Giraud-Carrier,
C., Lavrač, N., Moyle, S. A. and Kav�ek, B.), Freiburg, Germany, 45�56.

Hand, D. J. and Till, R. J. (2001). A Simple Generalisation of the Area Under the ROC Curve
for Multiple Class Classification Problems, Machine Learning, Vol. 45, No. 2, 171�186.

Lavrač, N., Flach, P., Kav�ek, B. and Todorovski, L. (2002). Adapting classification rule
induction to subgroup discovery. Proc. 2002 IEEE International Conference on Data
Mining. IEEE Press, 266�273.

Provost, F. and Fawcett, T. (2001). Robust classification for imprecise environments,
Machine Learning, Vol. 42, No. 3, 203�231.

Srinivasan, A. (1999). Note on the location of optimal classifiers in n-dimensional ROC
space, Oxford University Computing Laboratory.

