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DECISION SUPPORT FOR DATA MINING 
An introduction to ROC analysis and its applications 

Peter Flach, Hendrik Blockeel, Cèsar Ferri, José Hernández-Orallo, and Jan Struyf 
  

Abstract: In this chapter we give an introduction to ROC (�receiver operating 
characteristics�) analysis and its applications to data mining. We argue that 
ROC analysis provides decision support for data mining in several ways. For 
model selection, ROC analysis establishes a method to determine the optimal 
model once the operating characteristics for the model deployment context are 
known. We also show how ROC analysis can aid in constructing and refining 
models in the modeling stage.  

1. INTRODUCTION  

Consider the following, fairly standard scenario for solving a particular data 
mining problem. The end-user provides the data miner with training data; the data 
miner builds a number of models from the training data; the data miner evaluates the 
models by means of cross-validation or a hold-out test set; finally, the best model is 
selected and presented to the end-user to provide predictions on new data. In this 
scenario we can distinguish the phases of model construction and model evaluation 
and selection. A variant of this scenario occurs when we allow approaches such as 
bagging, which effectively build new models by model combination.  

In this chapter we consider a different scenario: the end-user is presented not 
with a single model, but with a collection of models together with their operating 
characteristics. These operating characteristics describe, for instance, whether a 
model is more accurate on the positives or more accurate on the negatives. Once the 
operating characteristics of the deployment context are known, i.e., the class 
distribution and the misclassification costs associated with each class, the end-user 
decides which model in the collection is optimal for that deployment context. The 
decision as to which model is best is thus taken out of the data mining stage and 
delayed until the deployment stage. Support for making this decision is provided by 
ROC analysis, where ROC stands for �receiver operating characteristics�. 
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From this point of view, ROC analysis is a decision support technique. However, 
it is possible to utilize it while building models; more precisely, to have the data 
mining process build models with the specific aim of obtaining good ROC analysis 
performance. Thus, the decision support technique is integrated into the data mining 
process, instead of being used merely as a post-processing technique. This can 
significantly improve model performance, and as such it is a concrete illustration of 
the �decision support for data mining� approach mentioned in Chapter 4, and of the 
claim made there that such integration can lead to improved overall performance.  

The chapter is structured as follows. In Section 2 we give a brief introduction to 
ROC analysis. Section 3 describes how ROC analysis provides support for model 
selection. In Section 4 we describe some novel applications of ROC analysis in the 
areas of model construction, combination and refinement. Section 5 concludes the 
chapter.  

2. WHAT IS ROC ANALYSIS?  

Consider a set of examples labeled positive and negative, and a classifier 
predicting the label for each example (the choice of which class is called positive is 
arbitrary from the point of view of ROC analysis). A positive (negative) example 
that is correctly classified by the classifier is called a true positive (true negative); a 
positive (negative) example that is incorrectly classified is called a false negative 
(false positive). These numbers can be organized in a contingency table (Table 7-1). 
If we fix the number of examples (or if we replace absolute frequencies � counts � 
with relative frequencies) such a table has three degrees of freedom; that is, three out 
of four numbers can be freely chosen. Notice that the descending diagonal (left-to-
right) in the table represents correct predictions, while the ascending diagonal 
represents incorrect predictions. Clearly, the best situation we can get is to have only 
0�s on the ascending diagonal.  

Table 7-1. A contingency table or confusion matrix. 
 Predicted positives (PPos) Predicted negatives (PNeg) 
Actual positives (Pos) True positives (TP) False negatives (FN) 
Actual negatives (Neg) False positives (FP) True negatives (TN) 

 
From the contingency table we can calculate other metrics, which can be used in 

various ways to evaluate the performance of the classifier on the dataset. The true 
positive rate (true negative rate) is the proportion of positives (negatives) correctly 
classified. Similarly, the false positive rate (false negative rate) is the proportion of 
negatives (positives) incorrectly classified. So, the false positive (negative) rate is 1 
minus the true negative (positive) rate. All these metrics range from 0 to 1 and can 
be interpreted as probabilities � for instance, the true positive rate is the probability 
that a randomly drawn positive example is correctly classified. In terms of these 
numbers, the best situation we can have is a true positive rate of 1 (and therefore a 
false negative rate of 0) and a true negative rate of 1 (and therefore a false positive 
rate of 0). The true positive rate is sometimes called recall or sensitivity, and the true 
negative rate is sometimes called specificity. Another proportion that is often used is 
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precision: the proportion of positive predictions that are correct (TP/PPos = 
TP/(TP+FP)).  

In its most common form, ROC space is the two-dimensional co-ordinate system 
with false positive rate on the X-axis and true positive rate on the Y-axis (Figure 7-
1). Each point in ROC space fixes two of the three degrees of freedom of the 
contingency table. The remaining degree of freedom is the class distribution (e.g., 
the number of positives divided by the number of negatives, or by the total number 
of examples). It makes sense to ignore the class distribution, because it may not be 
representative, or because different classifiers have been trained with different class 
distributions. In a way, this is the whole point of ROC analysis, but there are other 
possibilities. For instance, in information retrieval one wants to ignore the true 
negatives, which in the case of a search engine would be the number of non-answers 
that are not returned � we don�t really care whether there are 5 thousand or 500 
million of those. Ignoring the true negatives can be achieved by using precision (the 
proportion of positive predictions that are correct) instead of the false positive rate, 
leading to so-called precision-recall diagrams. Globally speaking precision-recall 
analysis has a similar purpose as ROC analysis, namely to study the operating 
characteristics of different search engines, but the specifics of the analysis are 
different because the degree of freedom being ignored is different.  
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Figure 7-1. Classifiers in ROC space.  

We will now have a look at a few special points in ROC space. The origin (0,0) 
represents a true positive rate of 0 (i.e., all positives are classified as negative) and a 
false positive rate of 0 (i.e., all negative are classified as negative). In other words, 
(0,0) represents the classifier which predicts all instances to be negative; we�ll call 
this the AllNegative classifier. Analogously, (1,1) represents the AllPositive 
classifier. Jointly, these are called the default classifiers. Note that in ROC analysis, 
the choice of positive and negative class is irrelevant and has nothing to do with the 
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majority class. Hence while these two extreme classifiers resemble the decision to 
classify all examples based on the majority class, these classifiers do not represent 
such a solution. Moreover, in order to know which of the two default classifiers is 
the majority class classifier requires knowledge of the class distribution, which we 
do not have since it has been deliberately factored out. 

The point (0,1) corresponds to a true positive rate of 1 (so all positives have been 
correctly classified) and a false positive rate of 0 (so no negatives are incorrectly 
classified). In other words, the top left-hand corner represents the classifier that gets 
it all right. We will sometimes call this point ROC heaven, since this is the best 
possible place to be in ROC space. Analogously, the point (1,0) is the worst possible 
place: ROC hell. However, there is a very easy way to move from hell to heaven: 
simply flip all predictions from positive to negative, and vice versa. In ROC 
analysis, it is common to change a given classifier into another one by manipulating 
its predictions, either deterministically or stochastically � ROC analysis does not 
evaluate learning algorithms, but the classifiers they produce. A learning algorithm 
that yields the ROC hell classifier is a pretty lousy learning algorithm; but the ROC 
hell classifier itself is actually not bad at all, since it can be turned into the ROC 
heaven classifier by a simple trick.  

Now take a look at the two default classifiers again, and consider the diagonal 
connecting them (the positive diagonal). Any point on the diagonal represents a 
certain true positive rate p and an equal false positive rate. Such behavior can be 
achieved by a random classifier, which randomly predicts an example to be positive 
with probability p and negative with probability (1�p). Random classifiers can be 
constructed without inspecting the dataset at all, i.e., without training. This 
represents a very useful baseline for learning algorithms, because a learning 
algorithm is no good if it doesn�t result in a classifier above the positive diagonal. 
Remember, however, that a classifier below the diagonal can easily be transformed 
in one above the diagonal: for instance, the point (0.7,0.25), i.e., a classifier which 
correctly classifies half of the negatives but only one quarter of the positives, can be 
transformed to the point (0.3,0.75) by inverting all predictions. Technically 
speaking, inverting predictions corresponds to point-mirroring the original point 
through (0.5,0.5) in ROC space.  

Another point worth noting is that, while a random classifier can be seen as 
making random predictions, it can equally be seen as choosing one of the default 
classifiers (the extreme points on the positive diagonal) at random. This is a useful 
perspective because it can be applied to any two points in ROC space. Thus, given 
two classifiers any behavior on their connecting diagonal can be achieved by making 
a weighted random choice between the given classifiers for each example to be 
classified. So, in order to obtain the midpoint between two classifiers we randomly 
choose between them with equal probability. But even if we do not care about 
random combinations of classifiers, the connecting diagonal is important for another 
reason. Consider three classifiers such that the third classifier is below the diagonal 
connecting the first two. In that case, the third classifier can never outperform both 
the first and the second, not even if we change the misclassification costs. This can 
easily be generalized to arbitrary numbers of classifiers, leading to a key concept in 
ROC analysis: the construction of the ROC convex hull.  
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3. ROC ANALYSIS FOR MODEL SELECTION  

The convex hull of a set of points in ROC space is a piecewise linear curve 
connecting a selection of points such that all other points are below it � the curve is 
a hull. The resulting curve will not have any �dents�, i.e., each line segment has a 
slope not steeper than the previous segment � it is convex. The convex hull can 
easily be constructed as follows: starting with (0,0), find the point so that the 
connecting line segment will be steepest, and continue from that point until you 
reach (1,1). Computationally this is comparable to sorting n items and hence has a 
complexity of O(n log n). Figure 7-2 shows an example of a convex hull. 
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Figure 7-2. The ROC convex hull. 

 
The classifiers on the convex hull are the best classifiers of the entire group, the 

others can be discarded because they will always be outperformed. The best convex 
hull possible is the �curve� formed by the three points (0,0)�(0,1)�(1,1), so the larger 
the area under the curve, the better it is. If some points we start with are below the 
diagonal, the procedure just sketched will ensure that they never end up on the 
convex hull (if all points are below the diagonal, our ROC convex hull will simply 
be the diagonal itself). In some situations it will be useful to form a separate 
negative convex hull from the points below the diagonal, e.g., in subgroup 
discovery. In other situations it may be useful to point-mirror all points below the 
diagonal through (0.5,0.5), so that some of the mirrored points may actually end up 
on the (positive) convex hull.  

The ROC convex hull is sometimes called a ROC curve, but the latter is a more 
general concept. A ROC curve similarly connects (0,0) and (1,1) through a number 
of intermediate points, but it is not necessarily convex (it is monotonically non-
decreasing, i.e., no line segment has a negative slope). There are various reasons 
why a ROC curve may be non-convex, for instance when we re-evaluate the chosen 
classifiers on a new test set, or when a curve is constructed by setting different 
thresholds on a probabilistic classifier. 
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The ROC convex hull is a simple method to select the best ones among a set of 
given classifiers characterized by their true and false positive rates on a given 
dataset. If one wants to select a single classifier, one has to know the operating 
characteristics, i.e., class and cost distributions. From left to right (or from bottom to 
top, because of convexity) the classifiers on the convex hull become progressively 
less accurate on the negatives and more accurate on the positives. In order to decide 
which classifier to use, we need to know the class distribution in the test set (i.e., the 
context where we want to use the classifier). Suppose the class distribution is 50-50, 
i.e., equal amounts of positives and negatives. This means that an increase of x in the 
true positive rate while keeping the false positive rate constant will give the same 
improvement on the test set as a decrease of x in the false positive rate while keeping 
the true positive rate constant. So if we draw an imaginary line with slope 1 (i.e., 
parallel to the diagonal) somewhere in ROC space, all points on that line represent 
the same test set accuracy. All we need to do is to slide this line in the northwest 
direction towards ROC heaven, until it touches the ROC curve in a single point: this 
will be the optimal classifier on the test set. Equivalently, we can select the two line 
segments with slope closest to 1 (i.e., a slightly steeper segment followed by a 
slightly less steep segment) and choose the point connecting them.  
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Figure 7-3. Selecting the optimal classifier under given operating characteristics. 

The same procedure can be followed for other class distributions: e.g., if we 
have twice as many negatives in the test set as positives we use a line segment with 
slope 2, which will force us towards the lower left-hand corner; if we have three 
times as many positives as negatives, we use a line segment with slope 1/3, and so 
on. This can be very easily generalized to include misclassification costs: for 
instance, if we have two times more negatives than positives but false negatives are 
10 times as expensive as false positives, we use a slope of 1/5, which naturally 
selects a classifier that is more accurate on positives than it is on negatives. In 
general, the slope of a line of equal cost is (CFP / CFN) (Neg / Pos) with Pos and Neg 
as defined above, and CFP / CFN denoting the cost ratio of false positives versus false 
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negatives. Class distribution and misclassification costs in the test set are combined 
to obtain the slope of the tangent to the convex hull that will select the optimal 
classifier. (If it happens that a line segment has exactly the desired slope, we can 
choose the classifier on either end, or a random combination of them as discussed 
earlier.) Figure 7-3 shows a number of different slopes and the classifiers that are 
selected for these slopes. 

The previous analysis is not restricted to models that are classifiers. For instance, 
in subgroup discovery we are looking for subgroups of the population that have a 
significantly different target distribution (e.g., subgroups of patients for which a 
particular therapy�s success rate is much higher than average). ROC space is 
appropriate for measuring the success of subgroup discovery, since subgroups 
whose TP/FP tradeoff is close to the diagonal can be discarded as insignificant. 
Conversely, significant subgroups are those sufficiently distant from the diagonal. In 
(Lavrač, et al., 2002) the weighted relative accuracy metric was proposed for 
measuring the significance and interestingness of subgroups. The significant 
subgroups define the points in the ROC space from which a convex hull can be 
constructed. In (Flach and Gamberger, 2001) this convex hull was used to select the 
best subgroups in a practical study aimed at target selection for a direct mailing 
marketing campaign. In order to make decisions easier and to show the expected 
profit explicitly, ROC curves were transformed into normalized profit curves; we 
refer the reader to Chapter 8 for details.  

4. ROC ANALYSIS FOR MODEL CONSTRUCTION  

So far, we have assumed that a fixed set of classifiers is given, for which a ROC 
convex hull is then constructed. Each of these classifiers is typically obtained by 
using some off-the-shelf learning algorithm. Most of these algorithms try to 
optimize some performance criterion such as predictive accuracy. Thus, we are 
faced with the fact that while we really want to obtain a good ROC convex hull, the 
classifiers for which we construct this hull are constructed based on entirely 
different objectives. The question naturally arises whether we can adapt learning 
algorithms, explicitly incorporating into them the objective of generating (sets of) 
classifiers that will have good ROC performance. 

A first step in this direction was made by (Blockeel and Struyf, 2002), who 
noted that a decision tree can equally be seen as a set of models by varying the 
labeling of its leaves. They reason as follows. A tree leaf can be interpreted as 
predicting positive or negative with a degree of certainty that is related to the class 
distribution in that leaf. For instance, if the leaf contains 90% positives and 10% 
negatives, it is reasonable for a new instance belonging to this leaf to be predicted 
positive, but if the instance had belonged to a leaf with 99% positives we would 
have been more certain of this prediction. Now, assume that class distribution or 
misclassification costs are such that we are taking a higher risk when predicting 
positive than when predicting negative, then we want to predict positive only when 
we are very sure, e.g., when the instance belongs to a leaf with at least 95% 
positives. Thus, from a given decision tree we can derive a set of decision trees, 
starting with a tree that predicts negative everywhere and gradually introducing 
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positive predictions in those leaves that have the next highest proportion of 
positives, until for the final tree all leaves predict positive. We say that the original 
tree has no bias towards positives or negatives (it is optimal for symmetric 
misclassification costs and class distributions), whereas the derived trees are biased 
to a different extent towards positive or negative predictions.  

In an experimental evaluation of this procedure, a comparison was made 
between the convex hull of (a) a set of classifiers built using various procedures, one 
of which was a decision tree, and (b) the same set of classifiers extended with 
classifiers derived from the tree. A clear improvement of the ROC convex hull was 
obtained in the latter case (Blockeel and Struyf, 2002). 

(Ferri, et al., 2002) take this idea further in two different directions. First, they 
provide a theoretical motivation for the procedure just described. They consider all 
possible re-labelings of a tree instead of just those considered by Blockeel and 
Struyf. This gives a set of 2n different trees, for which they next prove that the 
convex hull consists of n+1 specific labelings, exactly those used by Blockeel and 
Struyf. 

Second, they extend the procedure in the following way. Instead of generating a 
set of trees from a single given tree, which is typically grown using a standard tree 
induction algorithm, they propose to adapt the tree induction algorithm itself in such 
a way that a tree is built for which the derived set will have optimal ROC properties, 
that is, will have a maximal area under the convex hull (AUC). Note how the ROC 
analysis criterion is in a sense consecutively pushed deeper into the generation of the 
set of classifiers: whereas ROC analysis assumes a set of classifiers given, and 
Blockeel and Struyf assume a single classifier given and generate a set from it, Ferri 
et al. generate this single classifier with the aim of obtaining a good ROC 
evaluation. 
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Figure 7-4. A decision tree with all its possible labelings in ROC space. 

The following example, taken from Ferri et al., illustrates these issues. Suppose 
we have a decision tree with three leaves and the training set distribution as in 
Figure 7-4, which also depicts the ROC points of the 2n=8 (where n is the number of 
leaves in the tree) possible labelings As can be seen in the figure, the points are 
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mirrored through the point (0.5, 0.5), because for each labeling there is another 
labeling assigning the opposite class to each leaf. To obtain the optimal labelings on 
the convex hull, we order the leaves by their accuracy on the positives, and then we 
generate the set of n+1=4 optimal labelings (referred to as S0�S3) as follows: 

 
 + − S0 S1 S2 S3 

LEAF 2 5 1 - + + + 
LEAF 3 4 2 - - + + 
LEAF 1 3 5 - - - + 

 
The aim of decision tree construction then is to construct a tree that performs 

well for any of its ROC-optimal labelings. For evaluating the quality of such an 
unlabelled tree the area under the ROC curve (AUC) metric is very natural. (Ferri, et 
al., 2002) use a local version of the AUC metric as a novel splitting criterion for 
deciding how to grow the tree, and show that it outperforms other splitting criteria 
both with respect to classification accuracy and area under the ROC curve. The 
AUC-based splitting criterion is interesting because, unlike traditional splitting 
criteria (e.g., information gain), it does not perform a comparison between the 
impurity of the parent node with the weighted impurity of the children after splitting. 
For instance, in the case of a binary split of a parent with p positives and n negatives 
into two children with p1 and p2 positives and n1 and n2 negatives, respectively, the 
AUC-based splitting criterion evaluates the quality of this split as (p1n+pn2)/2pn.  

5. CONCLUDING REMARKS  

In this chapter we have given a general introduction to ROC analysis and its 
applications in decision support for data mining (model selection) as well as some 
novel applications in model construction and combination. In our opinion, ROC 
analysis is an important subject with wide-ranging applications across the board in 
data mining. Further background on ROC analysis in machine learning and data 
mining can be found in (Provost and Fawcett, 2001) and (Fawcett, 2003).  

We have restricted attention to two-class problems. In a multi-class setting with 
c classes, a full ROC plot would have c(c�1) dimensions � one dimension for each 
possible misclassification (class 1 predicted as class 2, as class 3, etc.). This is often 
approximated by combining all possible misclassifications for a particular class, 
leading to c dimensions. Recent work includes an algorithm for calculating the 
convex hull in full ROC space (Srinivasan, 1999) and approximating the area under 
the ROC curve (Hand and Till, 2001).  
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