
From Ensemble Methods To Comprehensible

Models⋆

C. Ferri J. Hernández-Orallo M.J. Ramı́rez-Quintana

DSIC, UPV, Camino de Vera s/n, 46020 Valencia, Spain.
{cferri,jorallo,mramirez}@dsic.upv.es

Abstract. Ensemble methods improve accuracy by combining the pre-
dictions of a set of different hypotheses. However, there are two impor-
tant shortcomings associated with ensemble methods. Huge amounts of
memory are required to store a set of multiple hypotheses and, more im-
portantly, comprehensibility of a single hypothesis is lost. In this work,
we devise a new method to extract one single solution from a hypothesis
ensemble without using extra data, based on two main ideas: the selected
solution must be similar, semantically, to the combined solution, and this
similarity is evaluated through the use of a random dataset. We have im-
plemented the method using shared ensembles, because it allows for an
exponential number of potential base hypotheses. We include several ex-
periments showing that the new method selects a single hypothesis with
an accuracy which is reasonably close to the combined hypothesis.

Keywords: Ensemble Methods, Decision Trees, Comprehensibility in
Machine Learning, Classifier Similarity, Randomisation.

1 Introduction

Comprehensibility has been the major advantage that has been advocated for
supporting some machine learning methods such as decision tree learning, rule
learners or ILP. One major feature of discovery is that it gives insight from
the models, properties and theories that can be obtained. A model that is not
comprehensible may be useful to obtain good predictions, but it cannot provide
knowledge about how predictions are made.

With the goal of improving model accuracy, there has been an increasing
interest in constructing ensemble methods that combine several hypotheses [4].
The effectiveness of combination is further increased the more diverse and nu-
merous the set of hypotheses is [10]. Decision tree learning (either propositional
or relational) is especially benefited by ensemble methods [18, 19]. Well-known
techniques for generating and combining hypotheses are boosting [9, 18], bagging
[1, 18], randomisation [5], stacking [22] and windowing [17].

⋆ This work has been partially supported by CICYT under grant TIC2001-2705-C03-
01, Generalitat Valenciana under grant GV00-092-14 and Acción Integrada Hispano-
Alemana HA2001-0059.

Although ensemble methods significantly increase accuracy, they have some
drawbacks, mainly the loss of comprehensibility of the model and the large
amount of memory required to store the hypotheses [13].

Recent proposals have shown that memory requirements can be considerably
reduced (in [16], a method called miniboosting reduces the ensemble to just three
hypotheses, with 40% less of the improvement that would be obtained by a 10-
trial AdaBoost). Nonetheless, the comprehensibility of the resulting combined
hypothesis is not improved. A combined hypothesis is usually a voting of many
hypotheses and it is usually treated as a black box, giving no insight at all.

However, one major goal of the methods used in discovery science is com-
prehensibility. The question is how to reduce to one single hypothesis from the
combination of m hypotheses without losing too much accuracy with respect to
the combined hypothesis. Instead of using classical methods for selecting one
hypothesis, such as the hypothesis with the lowest expected error, or the one
with the smallest size (Occam’s razor), we will select the single hypothesis that
is most similar to the combined hypothesis. This single hypothesis will be called
an archetype or representative of the ensemble and can be seen as an ‘explanation’
of the ensemble.

To do this, the main idea is to consider the combination as an oracle that
would allow us to measure the similarity of each single hypothesis with respect
to this oracle. More precisely, for a hypothesis or solution h and an unlabelled
example e, let us define h(e) as the class or label assigned to e by h. Consider
an ensemble of solutions E = h1, h2, · · ·hm and a method of combination χ.
By Σχ,E we denote the combined solution formed by using the method χ on
E . Thus, Σχ,E(e) is the class assigned to e by the combined solution. Now, we
can use Σχ,E as an oracle, which, generally, gives better results than any single
hypothesis [4]. The question is to select a single hypothesis hi from E such that
hi is the most similar (semantically) to the oracle Σχ,E .

This rationale is easy to understand following the representation used in
a statistical justification for the construction of good ensembles presented by
Dietterich in [4]. A learning algorithm is employed to find different hypotheses
{h1, h2, · · · , hm} in the hypothesis space or language H. By constructing an
ensemble out of all these classifiers, the algorithm can “average” their votes and
reduce the risk of choosing a wrong classifier. Figure 1 depicts this situation.
The outer curve denotes the hypothesis space H. The inner curve denotes the
set of hypotheses that give a reasonably good accuracy on the training data and
hence could be generated by the algorithm. The point labelled by F is the true
hypothesis.

h1
h2

h3
hc

h5
h4

F

H

Fig. 1. Representation of an ensemble of hypotheses

If an ensemble hc is constructed by combining the accurate hypotheses, hc

is a good approximation to F . However, hc is an ensemble, which means that
it needs to store {h1, h2, · · · , h5} and it is not comprehensible. For this reason,
we are interested in selecting the single hypothesis from {h1, h2, · · · , hm} that
would be closest to the combination hc. Following the previous rationale, this
single hypothesis would be close to F . In the situation described in Figure 1, we
would select h4 as the archetype or representative of the ensemble.

A final question, also pointed out by [4], is that a statistical problem arises
when the amount of training data available is too small compared to the size of
the hypothesis space H. The selection of a good archetype would not be possible
if a sufficient amount of data is not available for comparing the hypotheses. The
reserve of part of the training data is generally not a good option because it would
yield a smaller training dataset and the ensemble would have a lower quality. This
problem has a peculiar but simple solution: the generation of random unlabelled
datasets.

Although the technique presented in this work is applicable to many kinds
of ensemble methods, we will illustrate it with shared ensembles, because the
number of hypotheses, in this kind of structure, grows exponentially wrt. the
number of iterations. Therefore, there is a much bigger population which the
representative can be extracted from.

The paper is organised as follows. First, in section 2, we discuss the use of a
similarity measure and we adapt several similarity metrics we will use. Section
3 explains how artificial datasets can be employed to estimate the similarity
between every classifier and their combination. Section 4 presents the notion of
shared ensemble, its advantages for our goals and how it can be adapted for
the selection of the most similar hypothesis with respect to the combination.
A thorough experimental evaluation is included in Section 5. Finally, the last
section presents the conclusions and proposes some future work.

2 Hypothesis Similarity Metrics

As we have stated, our proposal is to select the single hypothesis which is most
similar to the combined one. Consequently, we have to introduce different mea-
sures of hypothesis similarity. These metrics and an additional dataset will allow
the estimation of a value of similarity between two hypotheses. In the following,
we will restrict our discussion to classification problems.

Several measures of hypothesis similarity (or diversity) have been considered
in the literature with the aim of obtaining an ensemble with high diversity [12].
However, some of these are defined for a set of hypotheses and others for a pair
of hypotheses. We are interested in these “pairwise diversity measures”, since we
want to compare a single hypothesis with an oracle. However, not all of these
measures can be applied here. First, the approach presented by [12] requires
the correct class to be known. The additional dataset should be labelled, which
means that part of the training set should be reserved for the estimation of
similarities. Secondly, some other metrics are only applicable to two classes. As

a result, in what follows, we describe the pairwise metrics that can be estimated
by using an unlabelled dataset and that can be used for problems with more
than two classes.

Given two classifiers ha and hb, and an unlabelled dataset with n examples
with C classes, we can construct a C ×C contingency or confusion matrix Mi,j

that contains the number of examples e such that ha(e) = i and hb(e) = j. With
this matrix, we can define the following similarity metrics:

– θ measure: It is just based on the idea of determining the probability of
both classifiers agreeing:

θ =

C∑

i=1

Mi,i

n

Its value is between 0 and 1. An inverse measure, known as discrepancy is
also considered by [12].

– κ measure: The previous metric has the problem that when one class is
much more common than the others or there are only two classes, this mea-
sure is highly affected by the fact that some predictions may match just by
chance. Following [13], we define the Kappa measure, which was originally
introduced as the Kappa statistic (κ) [3]. This is just a proper normalisation
based on the probability that two classifiers agree by chance:

θ2 =

C∑

i=1

(

C∑

j=1

Mi,j

n
·

C∑

j=1

Mj,i

n
)

As a result, the Kappa statistic is defined as:

κ =
θ − θ2

1 − θ2

Its value is usually between 0 and 1, although a value lower than 0 is possible,
meaning that the two classifiers agree less than two random classifiers agree.

– Q measure: The Q measure is defined as follows [12]:

Q =

∏C
i=1

Mi,i −
∏C

i=1,j=1,i6=j Mi,j
∏

C
i=1

Mi,i +
∏

C
i=1,j=1,i6=j Mi,j

This value varies between -1 and 1. Note that this measure may have prob-
lems if any component of M is 0. Thus it is convenient to apply smoothing
in M to compute the measure. We will add 1 to every cell.

Obviously, the greater the reference dataset is, all of the previous metrics give
a better estimate of similarity. In our case, and since the previous measures use
the contingency matrix, we can have huge reference datasets available: random
invented datasets.

3 Random Invented Datasets

In many situations, a single hypothesis may be the one which is the most similar
to the combined hypothesis with respect to the training set, however it may not

be the most similar one in general (with respect to other datasets). In some cases,
e.g. if we do not use pruning, then all the hypotheses (and hence the combined
solution) may have 100% accuracy with respect to the training set, and all the
hypotheses are equally “good”. Therefore, it is suitable or even necessary to
evaluate similarity with respect to an external (and desirably large) reference
dataset. In many cases, however, we cannot reserve part of the training set for
this, or it could be counterproductive.

The idea then is to use the entire training set to construct the hypotheses
and to use a random dataset to select one of them. In this work, we consider
that the examples in the training set are equations of the form f(· · ·) = c, where
f is a function symbol and c is the class of the term f(· · ·). Given a function
f with a arguments, an unlabelled random example is any instance of the term
f(X1, X2, · · · , Xa), i.e., any term of the form f(v1, v2, · · · , va) obtained by replac-
ing every attribute Xi by values vi from the attribute domain (attribute type).
Note that an unlabelled random example is not an equation (a full example)
because we include no information about the correct class.

We will use the following technique to generate each random unlabelled ex-
ample: each attribute Xi of a new example is obtained as the value vi in a
different example f(v1, . . . , vi, . . . , va) selected from the training set by using a
uniform distribution. This procedure of generating instances assumes that all the
attributes are independent, and just maintains the probabilities of appearance
of the different values observed in each attribute of the training dataset.

4 Shared Ensembles

A multi-tree is a data structure that permits the learning of ensembles of trees
that share part of their branches. These are called “shared ensembles”. In the
particular case of trees, a multi-tree can be based on an AND/OR organisation,
where some alternative splits are also explored. Note that a multi-tree is not
a forest [10], because a multi-tree shares the common parts of different trees,
whereas a forest is just a collection of trees.

In a previous work [6], we presented an algorithm for the induction of multi-
trees which is able to obtain several hypotheses, either by looking for the best one
or by combining them in order to improve accuracy. To do this, once a node has
been selected to be split (an AND-node) the possible splits below (OR-nodes)
are evaluated. The best one, according to the splitting criterion is selected and
the rest are suspended and stored. After is completed the first solution, when a
new solution is required, one of the suspended nodes is chosen and ‘woken’, and
the tree construction follows under this node. This way, the search space is an
AND/OR tree [14] which is traversed, thus producing an increasing number of
solutions as the execution time increases. In [7], we presented several methods for
growing the multi-tree structure. Since each new solution is built by completing a
different alternative OR-node branch, our method differs from other approaches
such as the boosting or bagging methods [1, 9, 18] which would induce a new
decision tree for each solution.

Note that in a multi-tree structure there is an exponential number of pos-
sible hypotheses with respect to the number of alternative OR-nodes explored.
Consequently, although the use of multi-trees for combining hypotheses is more
complex, it is more powerful because it allows us to combine many more hypothe-
ses using the same resources. Other previous works have explored the entire the
search space of the AND/OR tree to make the combination [2], inspired by Con-
text Tree Weighting (CTW) models [20], whereas we only explore a subset of
the best trees.

4.1 Shared Ensemble Combination

Given several classifiers that assign a probability to each prediction (also known
as soft classifiers) there are several combination methods or fusion strategies that
can be applied. Let us denote by pk(cj |x) an estimate of the posterior probability
that classifier k assigns class cj for example x.

If we consider all the estimates equally reliable we can define several fusion
strategies: majority vote, sum or arithmetic mean, product or geometric mean,
maximum, minimum and median. Some works have studied which strategy is
best. In particular, [11] concludes that, for two-class problems, minimum and
maximum are the best strategies, followed by average (arithmetic mean).

In decision tree learning, the pk(cj |x) depend on the leaf node where each
x falls. More precisely, these probabilities depend on the proportion of training
examples of each class that have fallen into each node during training. The
reliability of each node usually depends on the cardinality of the node.

Let us define a class vector vk,j(x) as the vector of training cases that fall in
each node k for each class j. For leaf nodes the values would be the training cases
of each class that have fallen into the leaf. To propagate upwards these vectors to
internal nodes, we must clarify how to propagate through AND and OR nodes.
This is done for each new unlabelled example we want to make a prediction for.
For the AND-nodes, the answer is clear: an example can only fall through an
AND-node. Hence, the vector would be the one of the child where the example
falls. OR-nodes, however, must do a fusion whenever different alternative vectors
occur. This is an important difference in shared ensembles: fusion points are
distributed all over the multi-tree structure.

We have implemented several fusion strategies. Nonetheless, it is not the
goal of this paper to evaluate different methods for combining hypotheses but
to select a single hypothesis. Thus, for the sake of simplicity, in this paper we
will only use the maximum strategy because it obtains the best performance,
according to our own experiments and those of [11].

4.2 Selecting an Archetype from a Shared Ensemble

In a shared ensemble, we are not interested (because it would be unfeasible)
to compute the similarity of each hypothesis with respect to the combined hy-
pothesis, because there would be an exponential number of comparisons. What
we are interested in is a measure of similarity for each node with respect to the

combined solution, taking into account only the examples of the invented dataset
that fall into a node.

The general idea is, that once the multi-tree is constructed, we use its com-
bination to predict the classes for the previously unlabelled invented dataset.
Given an example e from the unlabelled invented dataset, this example will fall
into different OR-nodes and finally into different leaves, giving different class
vectors. Then, the invented dataset is labelled by voting these predictions in the
way explained in the previous subsection.

After this step, we can calculate a contingency matrix for each node, in the
following way. For each node (internal or leaf), we have a C × C contingency
matrix called M , initialised to 0, where C is the number of classes. For each
example in the labelled invented dataset, we increment the cell Ma,b of each
leaf where the example falls by 1, with a being the predicted class by the leaf
and b being the predicted class by the combination. When all the examples have
been evaluated and the matrices in the leaf nodes have been assigned, then we
propagate the matrices upwards as follows:

– For the contingency matrix M of AND-nodes we accumulate the contingency
matrix of their m children nodes: (M1 +M2 + · · ·+Mm).

– For the contingency matrix M of OR-nodes, the node of their children with
greater Kappa (or other similarity measure) is selected and its matrix is
propagated upwards. The selected node is marked.

This ultimately generates the hypothesis that is most similar to the combined
hypothesis, using a particular invented dataset and a given similarity measure.

7

7 0

1

6 1

0 8 2 2

42 38

8 1

10 3

52

6 4

46

4 1

1 4

10 3

52

24 7

5 14

19 5

7 19

13 1

1 15

14 4

3 9

14 4

3 9

13 1

1 15

10 7

10 3

K=−0.18K=0.87K=0.52

K=0.52K=0.5

X<6X>6

Y=bY=a

Y=a Y=b

X>3 X<3 X>9 X<9

Fig. 2. Selection of a single decision tree from the multi-tree structure.

Figure 2 shows the selection of one hypothesis from a multi-tree according to
the contingency matrix. The AND-nodes are represented with an arc. The leaves
are represented by rectangles. First, we fill the matrices of the leaves. Then,
we propagate these upwards as has been detailed previously. Finally, when we
reach the top of the tree, it is straightforward to extract the solution by simply
descending the multi-tree by the marked nodes. In the figure, the marked nodes

are represented by the dashed lines, and the leaves of the selected hypothesis are
shadowed.

Therefore, we can summarise the approach in five different steps:

1. Multi-tree generation: The first step consists in the generation of a multi-
tree from a training dataset. There are some criteria which affect the quality
of the multi-tree: the splitting criterion, the pruning method, and the crite-
rion for the selection of the suspended node to be woken.

2. Invented dataset: In this phase, an unlabelled invented dataset is created,
by a random dataset.

3. Multi-tree combination: The invented dataset is labelled by the combi-
nation of the shared ensemble. A method of combination of hypotheses can
be specified.

4. Calculation and propagation of contingency matrices: A contingency
matrix is assigned to each node of the multi-tree, using the labelled invented
dataset and a similarity metric.

5. Selection of a solution: An archetype hypothesis is extracted from the
multi-tree by descending the multi-tree through the marked nodes.

5 Experiments
In this section, we present an experimental evaluation of our approach, as it
is implemented in the SMILES system [8]. SMILES is a multi-purpose machine
learning system which includes (among many other features) the implementation
of a multi-tree learner. For the experiments, we used GainRatio [17] as splitting
criterion. We chose a random method [7] for populating the shared ensemble
(after a solution is found, a suspended OR-node is woken at random) and we
used the maximum strategy for combination.

We used several datasets from the UCI dataset repository [15]. Table 1 shows
the dataset name, the size in number of examples, the number of classes, the
nominal and numerical attributes.

Dataset Size Classes Nom.Attr. Num.Attr.
1 monks1 566 2 6 0
2 monks2 601 2 6 0
3 monks3 554 2 6 0
4 tic-tac 958 2 8 0
5 house-votes 435 2 16 0
6 post-operative 87 3 7 1
7 balance-scale 625 3 0 4
8 soybean-small 35 4 35 0
9 dermatology 358 6 33 1
10 cars 1728 4 5 0
11 tae 151 3 2 3
12 new-thyroid 215 3 0 5
13 ecoli 336 8 0 7

Table 1. Information about datasets used in the experiments.

Since there are many sources of randomness, we have performed the exper-
iments by averaging 10 results of a 10-fold cross-validation. This makes a total
of 100 runs (each one with a different multi-tree construction, random dataset
and hypothesis selection process) for each pair of method and dataset.

In the experiments, we will use the following notation:

– First Solution: this is the solution given by just one hypothesis (the first
hypothesis that is obtained). This is similar to C4.5 [17].

– Combined Solution: this is the solution given by combining the results of the
ensemble (in our case, the multi-tree, as described in the previous section).

– Archetype Solution: this is the single solution which is most similar to the
combined solution.

– Occam Solution: this is the single solution with the lowest number of rules,
i.e., the shortest solution.

It is not our purpose to evaluate the improvement of the Combined Solution
over the First Solution using shared ensembles. We have done that in previous
works [7]. We have not included the results using post-pruning because it does
not improve the performance of any of the four kinds of solutions.

Our goal is to show that a significant gain can be obtained from the First
Solution to the Archetype and Occam methods as long as the size of the ensemble
increases. Another question to be answered is to determine which method to
extract a single solution from an ensemble is better: Archetype or Occam.

5.1 Evaluating Similarity Metrics

Table 2 shows the accuracy for each pair composed of a dataset and a method and
the geometric means for each method. The methods studied are First, Combined
and Archetype. The latter uses three different similarity metrics κ, θ and Q. The
multi-tree has been generated exploring 100 suspended OR-nodes.

1st Comb Arc. κ Arc. θ Arc. Q
1 92.3 100 100 100 100
2 74.8 77.4 76.1 76.2 75.8
3 97.5 97.5 97.6 97.6 97.6
4 78.2 82.7 78.2 78.3 78.5
5 93.6 96.0 94.4 93.9 94.2
6 60.9 66.3 63.8 64.3 61.9
7 76.8 83.1 80.1 80.1 79.8
8 97.3 96.5 96.5 91.0 47.0
9 89.8 93.6 90.6 89.9 74.3
10 89.0 91.0 89.6 89.6 89.3
11 62.9 64.5 61.9 62.9 49.8
12 92.6 92.6 92.8 92.9 91.4
13 77.5 79.9 79.4 78.9 76.7

gmeans 82.41 85.45 83.78 83.45 76.24

Table 2. Comparison between measures of similarity.

As expected, hypothesis combination improves the accuracy w.r.t. the first
single tree. The use of the Archetype method also obtains good results. On the
other hand, the results show that the Archetype method is very dependent on
the measure of similarity used: κ seems to be the best metric and Q the worst
(it even obtains lower accuracy than the first single hypothesis).

5.2 Influence of the Size of the Invented Dataset

Similarity is approximated through the use of an invented dataset. Let us study
the influence of its size, varying from 10 to 100,000 examples. The similarity

10 100 1000 10000 100000
Comb Arc Arc Arc Arc Arc
1 99.8 72.3 93.3 99.8 100 99.9
2 77.3 64.6 61.0 75.2 76.1 76.2
3 97.6 82.9 94.5 97.6 97.6 97.6
4 82.9 65.9 70.3 78.0 78.2 78.6
5 95.8 73.7 92.4 94.4 94.4 93.8
6 67.5 69.1 63.6 63.9 63.8 63.5
7 83.0 62.5 75.4 79.4 80.1 79.9
8 95.0 68.8 93.3 95.0 96.5 96.5
9 93.6 45.6 84.7 90.5 90.6 89.9
10 91.0 71.0 75.4 88.1 89.6 89.8
11 63.7 44.3 54.3 59.1 61.9 61.2
12 92.5 73.8 89.3 91.3 92.8 92.6
13 80.0 46.8 73.9 77.9 79.4 79.0

gmeans 85.36 63.57 77.40 82.88 83.78 83.57

Table 3. Influence of the size of the invented dataset.

metric and the size of the multi-tree are fixed to κ and 100 alternative opened
OR-trees, respectively.

Table 3 shows that in order to obtain a good archetype hypothesis, the simi-
larity metric has to be computed as accurately as possible. Although it depends
on the dataset, a size of 10,000 invented examples seems to be sufficient.

5.3 Influence of the Size of the Ensemble

The effect of the size of the multi-tree is evaluated in Table 4. In this table, we
show the accuracy of the first single solution and the accuracy of the combi-
nation, the archetype solution and the Occam solution for multi-trees created
by exploring 10, 100, and 10001 alternative OR-nodes. We also include the geo-
metric average number of solutions in the multi-tree (#Sol). Note that with 100
OR-nodes, we obtain millions of solutions with much less required memory than
100 non-shared hypotheses.

The results are quite encouraging: by simply exploring 10 OR-nodes, the
archetype solution surpasses the first solution and the Occam solution. This
difference is increased as long as the multi-tree is populated. This is mainly
due to the improvement in the accuracy of the combined solution and the fact
that the archetype hypothesis can actually get close to it. The Occam solution
does not seem to be improved by larger multi-trees. Nevertheless, the Occam
hypothesis can also be regarded as a way to obtain more and more compact
solutions without losing accuracy.

6 Conclusions

This work has presented a novel method for extracting a single solution from an
ensemble of solutions without removing training data for validation. The most
closely related work is Quinlan’s miniboosting [16]. However, Quinlan’s method
can be considered an ensemble method which generates three trees, followed
by a merging stage where a single but quite complex tree could be obtained.
Moreover, as he recognises, “although it is (usually) possible to construct a

1 The experiments for datasets 9 and 13 have been performed exploring only 300 and
500 alternative OR-nodes, respectively.

1 10 100 1000
1st Comb Arc Occ #Sol Comb Arc Occ #Sol Comb Arc Occ #Sol

1 92.3 96.1 96.0 96.5 107 100 100 100 8.7 × 108 100 100 100 1.6 × 1019

2 74.8 74.9 74.3 74.3 148 77.4 76.1 72.5 2.6 × 1010 82.3 82.1 70.4 3.2 × 1020

3 97.5 97.7 97.7 97.6 46 97.5 97.6 97.5 80 × 104 97.7 97.7 97.6 7.1 × 1014

4 78.2 79.0 78.1 78.3 257 82.7 78.2 78.6 2.7 × 1012 84.6 79.8 79.5 3.1 × 1038

5 93.6 94.9 94.2 93.9 63 96.0 94.4 93.6 26 × 105 95.7 94.1 93.9 5.6 × 1011

6 60.9 63.8 61.8 60.0 55 66.3 63.8 62.3 59674 68.5 65.9 62.1 2.1 × 109

7 76.8 77.9 77.2 76.8 131 83.1 80.1 76.7 3.4 × 108 88.0 83.5 76.8 1.2 × 1018

8 97.3 97.0 98.0 97.5 23 96.5 96.5 96.8 38737 95.0 93.3 96.3 1.8 × 1018

9 89.8 91.3 90.6 90.1 92 93.6 90.6 90.2 3.3 × 107 93.8 91.1 90.8 1.2 × 1010

10 89.0 89.6 89.1 89.0 151 91.0 89.6 89.1 1.7 × 109 91.6 90.0 89.1 2.8 × 1024

11 62.9 62.5 62.3 61.9 97 64.5 61.9 62.1 1.5 × 106 64.5 60.9 61.1 4.6 × 1014

12 92.6 93.2 92.6 92.6 26 92.6 92.8 93.0 3392 90.7 92.6 93.7 6.1 × 107

13 77.5 79.1 77.6 77.8 57 79.9 79.4 78.4 1134750 80.3 78.2 77.0 3.8 × 108

gm. 82.41 83.49 82.85 82.55 78.31 85.45 83.78 82.91 4.3 × 107 86.44 84.49 82.65 6.2 × 1014

Table 4. Influence of the size of the multi-tree.

single merged decision tree that induces the same partition as a small ensemble,
the tree is so large that it conveys no insight. This is a pity, as insight was the
prime motivation for producing a single tree”.

We overcome the previous problem by producing a single tree that is based
on a selection, using the combination as an oracle. Consequently, the result is a
single comprehensible solution, an archetype or representative of the ensemble.
As we have shown, the single solution obtained by our method is not 100%
equivalent to the combination, but in general it gets reasonably close. On the
other hand, it is clear that a similar technique could be used for regression
models, using, e.g., minimum squared error as a discrepancy (similarity) metric.

From a more general point of view, ensemble methods have been used as
an argument in favor of the Epicurus criterion (all consistent models should
be retained) and against Occam’s razor, because complex combined hypotheses
usually obtain better results than the simplest solution [21]. A counterargument
may be that the combination is usually expressed outside the hypothesis lan-
guage. With our work, we have shown that even inside the hypothesis language,
the shortest solution is not the best one.

With regard to future work, a mixture of the archetyping method and Oc-
cam’s razor could also be investigated. Another idea is that the oracle does not
need to be an internal combined hypothesis but it can be any external source,
such as a neural network. Therefore, this could be regarded as a new method to
“convert” incomprehensible neural networks (or other models) to comprehensi-
ble models (with possibly a slight loss in accuracy), which could also be seen as
an ‘explanation’ of the original model.

Finally, it is important to clarify that an archetype solution cannot be ob-
tained without an ensemble, and the quality of the representative would depend
on the number of individual hypotheses in the ensemble. Note that this num-
ber is exponentially increased by the use of shared ensembles, in particular our
multi-tree structure, without requiring a huge amount of memory. Nonetheless,
a quite interesting open work would be to study specific methods to generate
the ensemble (in our case, to construct the multi-tree) or to investigate the
combination method that would produce better oracles for the selection of the
archetype.

Acknowledgements

We would like to thank the anonymous reviewers for suggesting the idea of using
the archetype as an explanation of the ensemble.

References

1. Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.
2. J.G. Cleary and L.E. Trigg. Experiences with ob1, an optimal bayes decision tree

learner. Technical report, Department of Computer Science, Univ. of Waikato,
New Zealand, 1998.

3. J. Cohen. A coefficient of agreement for nominal scales. Educational and Psycho-
logical Meas., 20:37–46, 1960.

4. T. G Dietterich. Ensemble methods in machine learning. In First International
Workshop on Multiple Classifier Systems, pages 1–15, 2000.

5. Thomas G. Dietterich. An experimental comparison of three methods for construct-
ing ensembles of decision trees: Bagging, Boosting, and Randomization. Machine
Learning, 40(2):139–157, 2000.

6. C. Ferri, J. Hernández, and M.J. Ramı́rez. Induction of Decision Multi-trees using
Levin Search. In Int. Conf. on Computational Science, ICCS’02, LNCS, 2002.

7. C. Ferri, J. Hernández, and M.J. Ramı́rez. Learning multiple and different hypothe-
ses. Technical report, Department of Computer Science, Universitat Politécnica de
Valéncia, 2002.

8. C. Ferri, J. Hernández, and M.J. Ramı́rez. SMILES system, a multi-purpose learn-
ing system. http://www.dsic.upv.es/~flip/smiles/, 2002.

9. Y. Freund and R.E. Schapire. Experiments with a new boosting algorithm. In the
13th Int. Conf. on Machine Learning (ICML’1996), pages 148–156, 1996.

10. Tim Kam Ho. C4.5 decision forests. In Proc. of 14th Intl. Conf. on Pattern
Recognition, Brisbane, Australia, pages 545–549, 1998.

11. Ludmila I. Kuncheva. A Theoretical Study on Six Classifier Fusion Strategies.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 24(2):281–286, 2002.

12. Ludmila I. Kuncheva and Christopher J. Whitaker. Measures of diversity in clas-
sifier ensembles and their relationship with the ensemble accuracy. Submitted to
Machine Learning, 2002.

13. Dragos D. Margineantu and Thomas G. Dietterich. Pruning adaptive boosting. In
14th Int. Conf. on Machine Learning, pages 211–218. Morgan Kaufmann, 1997.

14. N.J. Nilsson. Artificial Intelligence: a new synthesis. Morgan Kaufmann, 1998.
15. University of California. UCI Machine Learning Repository Content Summary.

http://www.ics.uci.edu/~mlearn/MLSummary.html.
16. J. Quinlan. Miniboosting decision trees. Submitted to JAIR, 1998.
17. J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
18. J. R. Quinlan. Bagging, Boosting, and C4.5. In Proc. of the 13th Nat. Conf. on

A.I. and the 8th Innovative Applications of A.I. Conf., pages 725–730. AAAI/MIT
Press, 1996.

19. Ross Quinlan. Relational learning and boosting. In Saso Dzeroski and Nada Lavrac,
editors, Relational Data Mining, pages 292–306. Springer-Verlag, September 2001.

20. P. Volf and F. Willems. Context maximizing: Finding mdl decision trees. In
Symposium on Information Theory in the Benelux, Vol.15, pages 192–200, 1994.

21. Geoffrey I. Webb. Further experimental evidence against the utility of Occam’s
razor. Journal of Artificial Intelligence Research, 4:397–417, 1996.

22. David H. Wolpert. Stacked generalization. Neural Networks, 5(2):241–259, 1992.

