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Abstract. One of the main drawbacks of many machine learning 
techniques, such as neural networks or ensemble methods, is the 
incomprehensibility of the model produced. One possible solution to 
this problem is to consider the learned model as an oracle and 
generate a new model that “mimics” the semantics of the oracle by 
expressing it in the form of rules. In this paper we analyse 
experimentally the influence of pruning, the size of the invented 
dataset and the confidence of the examples in order to obtain shorter 
sets of rules without reducing too much the accuracy of the model. 
The experiments show that the factors analysed affect the mimetic 
model in different ways. We also show that by combining these 
factors in a proper way the quality of the mimetic model improves 
significantly wrt. other previous reports on the mimetic method. 

 

1. Introduction 
 
In this paper we analyse and improve a general method for converting the output 
of any incomprehensible model into one simple and comprehensible 
representation: set of rules. The goal of converting any data mining model into a 
set of rules may seem a chimera, but there are two feasible ways of achieving it. 
First, using many specific “translators” to convert each kind of model into rules. 
Secondly, using a general “translator” to convert any model into sets of rules. 

There have been many techniques developed for the first approach, especially 
to convert neural networks into rules (rule extraction techniques), and also for 
other representations, such as support-vector machines. The second approach, 
even though it would be more generally applicable, it has not been analysed in the 
same extent, probably because it was unclear in which way a set of rules could be 
extracted from any kind of model, independently of its representation. 

The solution to this problem cannot be easier, but it was recently been 
presented by Domingos [2][3]: we can treat the learned model as an oracle and 
generate a new labelled dataset with it (invented dataset). Next, the labelled 
dataset is used for learning a decision tree, such as C4.5, which ultimately 
generates a model in the form of rules. The process is shown in Figure 1. The first 
learning stage (top) uses any data mining modelling technique to obtain an 
accurate model, called the oracle. With this model we label a random dataset R, 
and jointly with the training set T, we train a second model, using a 
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comprehensible data mining technique. The second model is called the mimetic 
model. 
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Fig.1. Mimetic Technique 

 

The inventor of the technique, Domingos called it CMM (Combined Multiple 
Models) and used bagging [2] as oracle and C4.5rules as the final comprehensible 
model. He used a fixed number of randomly generated examples (1,000 for all the 
datasets). These were also joined to the original training set for learning the 
decision tree. In [4] we further analysed the method (which we called 
“mimetism”) experimentally, for boosting, a different ensemble method. The 
results are quite consistent with Domingos. Additionally, in [5] we analysed the 
technique theoretically, proving that 100% fidelity is achievable with unpruned 
decision trees, as long as a sufficient large random sample is generated. 

From all these results, we have learned some things about how “mimetic 
classifiers” work: A great number of random examples is necessary to achieve 
high fidelity, but the number of rules is also high. The use of the original training 
set (jointly with the random examples) is beneficial for the accuracy. 

However, there are other issues where the behaviour of the method is not so 
clear: The method has not been applied to other oracles, especially oracles which 
are not ensembles, such as neural networks. The relationship between the 
comprehensibility of the resulting model and some factors such as: degree of 
pruning, number of random examples generated, etc., is also unknown. 

In this work we analyse the method regarding these issues, concentrating 
especially on how short the sets of rules can be obtained without sacrificing too 
much the fidelity of the mimetic model with respect to the oracle.  

In order to settle a precise reference metric, we define the following “quality 
metric”, which represents a trade-off between comprehensibility (roughly 
represented here by the number of rules of the mimetic model) and accuracy: 

( Acc(Mim) - Acc(Ref) ) / Acc(Ref) Q  = (Rules(Mim) - Rules(Ref)) / Rules(Ref) (1) 

The “reference model” (Ref) represents a comprehensible model learned directly 
with the original training set, such as C4.5 while Mim represents the mimetic 
model (possibly C4.5 as well). Obviously, if the results with the mimetic 
procedure are not better than with the reference model there would be no point in 
using the mimetic technique. As we will see, the factors that affect this quality 
metric Q are manifold and complex.  

The paper is organised as follows. Section 2 introduces the experimental 
setting which has been used to perform the analysis of the mimetic technique. 



Section 3 studies the influence of pruning on the quality and fidelity of mimetic 
classifiers using neural networks and boosting as oracles. The relation between the 
invented dataset size and the quality of the mimetic model is analysed in Section 
4. A function to estimate the optimal size of the random dataset for each problem 
is also included. Section 5 modifies the random dataset by taking the confidence 
of the oracle into account. Section 6 includes a joint analysis about the 
combination of factors. Section 7 presents the conclusions and future work. 
 

2. Experimental Setting 
 
In this section we present the experimental setting used for the analysis of the 
mimetic method described in this paper. For the experiments, we have employed 
20 datasets (to see Table 1) from the UCI repository [1]. For the generation of the 
invented dataset we use the technique proposed in [4]. 

Table 1. Information about datasets used in the experiments 
No. Dataset Attr. Num.Attr. Nom.Attr. Classes Size Missing 
1 anneal 38 6 32 6 898 No 
2 audiology 69 0 69 24 226 Yes 
3 balance-scale 4 4 0 3 625 No 
4 breast-cancer 9 0 9 2 286 Yes 
5 cmc 9 2 7 3 1,473 No 
6 colic 22 7 15 2 368 Yes 
7 diabetes 8 8 0 2 768 No 
8 hayes-roth 4 0 4 3 132 No 
9 hepatitis 19 6 13 2 155 Yes 
10 iris 4 4 0 3 150 No 
11 letter 16 16 0 26 20,000 No 
12 monks1 6 0 6 2 556 No 
13 monks2 6 0 6 2 601 No 
14 monks3 6 0 6 2 554 No 
15 mushroom 22 0 22 2 8,124 Yes 
16 sick 29 7 22 2 3,772 Yes 
17 vote 16 0 16 2 435 Yes 
18 vowel 13 10 3 11 990 No 
19 waveform-5000 40 40 0 3 5,000 No 
20 zoo 17 1 16 7 101 No 

 

We have considered two kinds of oracles: Neural Networks and Boosting, using 
their implementations in the Weka data mining package (MultilayerPerceptron 
and AdaBoostM1, respectively). Also, the reference and the mimetic classifiers 
are constructed with the J48 algorithm included in Weka. The number of boost 
iterations is 10 in the AdaBoostM1 algorithm. In what follows, we denote the 
neural network oracle as NN, the Boosting oracle as Boost, the reference classifier 
as J48 and the mimetic classifier as Mim. Finally, when we show average results 
of many datasets, we will use the arithmetic mean of all datasets. For all the 
experiments, we use 10-fold cross-validation. 
 
3. Analysis of Pruning 
 
In this section we analyse how the quality metric and the mimetic classifier 
fidelity are affected by the use of different pruning degrees in the Mim algorithm. 
To do this, several experiments have been performed modifying the confidence 
threshold for pruning in the J48 algorithm; we have considered the following 



values: 0.0001, 0.001, 0.01, 0.02, 0.05, 0.10, 0.15, 0.20, 0.25, and 0.3. In all cases, 
we have fixed the size of the invented random dataset to 10,000.  

Figure 2 shows the average results when the oracle is a neural network (Mim 
NN) and when the oracle is Boosting (Mim Boost). We have also included as 
reference the accuracy obtained by the oracles and by the J48 algorithm learned 
with the original training set. 
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Fig. 2.  Accuracy vs Proportion of rules of Mim for several degrees of pruning 

 

As we can see, Mim has a better behaviour when the oracle is the neural network. 
The reason is that the neural network is in average a better oracle than Boosting 
(in terms of accuracy). Also, both of them are better than J48. In Figure 2 we can 
see that the increase in accuracy practically reaches its maximum with a pruning 
degree of 0.01 at a proportion of rules around 7 times more than the reference J48 
classifier. This “optimal” point is corroborated by the quality metric which is also 
maximum for this point. 

From all the previous results, it seems that pruning, or at least the pruning 
method included in J48, gives poor manoeuvrability to get good accuracy results 
with fewer rules. For these datasets, the best qualities are obtained with an 
increase of almost 2 points in accuracy but with decision trees which are 7 times 
larger than the original ones. Hence, in the following section, we study the 
influence of other more interesting factors such as the invented dataset size. 
 
4. Analysis of the Invented Dataset Size 
 
Previous works on mimetic classifiers [2][3][4] have considered a fixed size for 
the invented dataset (usually between 1,000 or 10,000). However, it is clear that 
this value is relatively small for datasets such as “letter” and relatively large for 
datasets such as “hayes-roth”. In this section we want to better analyse the 
relationship between the invented dataset size and the quality of the mimetic 
model (in terms of the quality metric defined in Section 1). 

In order to study this factor, we have performed experiments with several sizes 
for the invented dataset, from 0.3n to 6n, where n is the size of the training set. 
Each increment is 0.3, making a total of 20 different sizes per dataset. We use the 
neural network as oracle and J48 as mimetic classifier. 

Figure 3 shows how the quality metric evolves for increasing size of the 
invented dataset (the horizontal axis shows the proportion of rules). As we can 
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see, there is a maximum point at (3.06, 0.0071), with an invented dataset of 1.5 
times larger than the training dataset, which means that, as expected, very short 
datasets have very low accuracy but, on the other side, it is not beneficial to 
generate datasets that are too big. 

Since accuracy does not grow linearly, it is clear that we have a saturation 
point for the quality metric as the one shown in the picture. However, this 
saturation point is not reached at the same point for each dataset. Hence, 
considering 1.5 as a good value for all datasets would not be a good choice. 
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Fig. 3. Quality Metric vs Proportion of rules of Mim for several sizes 

Having this in mind, we try to estimate the optimal size for each dataset. In order 
to do this, first, with the previous experiments, we will determine the size of the 
invented dataset for which the quality metric gives the best value. With this, we 
will have a different best factor for each of the 20 datasets. What we will do next 
is to use this data for estimating a function that returns the size of the random 
dataset which would be optimal for a new dataset. 

For this, we use the following variables for each of the 20 datasets: the number 
of nominal attributes (NomAttr), the number of numerical attributes (NumAttr), 
the number of classes (Classes) and the size of the training dataset (Size). The 
output of the function is the factor φ (size random/size train) with respect to the 
original training set. More formally, we want to estimate the following function: 

φ = f(NomAttr,  NumAttr, Classes, Size) 
Due to the small number of examples for this estimation (20 datasets) we have 
used a simple modelling technique: multiple linear regression (with and without 
independent coefficient). In this way, we can estimate the optimal invented dataset 
as follows: 

n = φ × Siz.  φ = 0.05097×NumAttr – 0.01436×NomAttr + 0.17077×Classes + 0.00003×Size 
 

Table 2 shows the values estimates by the previous equation and the actual values 
for 5 fresh datasets. 
Table 2. Estimated and real quality results for 5 fresh datasets. n max = Size when Q is maximum 
(actual).  n calc = Size calculated with the formula (estimated). Q max = Actual quality metric. Q n 
calc = Estimated Q. Q 150% size = Q for fix invented dataset size of 150%  
No Dataset Attr NumAttr NomAttr Classes Size n max n calc Q max Q n calc Q 150% size 
1 Autos 25 15 10 7 205 1051 374 -0.01716 -0.03600 -0,02439 
2 CarsW 6 0 6 4 1728 466 1124 0.14232 0.09200 0,05983 
3 Credit-a 15 6 9 2 690 2235 372 -0.00042 -0.00335 -0,00084 
4 Heart-c 13 6 7 5 303 81 324 0.07948 0.04000 0,01813 
5 Hypothyroid 29 7 22 4 3772 1018 3172 -0.00132 -0.00230 -0,00219 
 Average        0.04058 0.01807 0.010108 

 

As we can see, the estimation is not perfect, and the estimated values (Q n calc) 
are usually below the real values (Q max). However, if we look at the average 
values, the average quality obtained by using this estimation is significantly better 
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(0.018) than that obtained by a fix invented dataset size of 150% which is 0.01. 
This corroborates the idea of considering an appropriate size for each dataset, 
depending on, at least, the previous factors (number of nominal and numeric 
attributes, number of classes, and, size of the training set). 
 

5. Use of Confidence in the Mimetic Method 
 

When an invented dataset is used to learn a mimetic model, it is usually generated 
without taking into account the confidence of the oracle over this set of examples. 
We use the confidence of an example as the estimated probability of the predicted 
class. It seems reasonable to think that the quality of the mimetic model would 
improve if we use only those examples of the invented dataset for which the 
oracle gives a high confidence. In this section we analyse how the confidence of 
the invented dataset can be used to improve the mimetic technique.  

In order to do this, once the invented dataset R has been constructed and added 
to the training set T, we process this set in the following way. First, we remove 
from R+T all examples whose confidence value is below a confidence threshold 
tc. Note that the examples of T are never removed because they have a confidence 
value of 1. Next, we remove the repeated examples. Finally, we duplicate the 
remaining examples a certain number of times depending on its confidence value. 
The resulting set, which we denote as DRT, is used for training the mimetic model. 
The number of times that an example must occur in DRT is defined as follows: let 
Ce be the confidence value of an example e and F a given repetition factor, then 
the number of occurrences of e in DRT is occ(e)= round(Ce×F). Since the objective 
of the occ function is to determine whether the example must be duplicated or not, 
each example e for which occ(e)=0 remains in DRT. Note that, as the repetition 
factor increases, examples with high confidence become more significant, and 
they may occur more than once in DRT.  

For the experiments the confidence thresholds tc used were 0, 0.3, 0.9, 0.95, 
0.98, 0.99 and 1.0, and for each one we used a repetition factor ranging from 1 to 
4. The size of the invented dataset R was 10,000. Figure 4 shows these results. 
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Fig. 4. Accuracy vs Proportion of Rules of Mim depending on a confidence and a repetition factor 

 

We have observed that in the case of confidence threshold tc=1.0 and repetition 
factor F=1, the process in general does not add invented examples to T (only adds 
a small number of invented examples for two datasets for which there were 
invented examples with confidence=1). In some problems, we even got smaller 
datasets DRT than the original training sets. This is caused by the fact that some 
original datasets had repeated examples that were eliminated.  

For the case of tc=0.99 and F=1, we get a size of invented examples in DRT 
around 3,000. If we contrast this value to a size of invented examples in DRT 
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around 7,000 when we use tc=0.0 (3,000 invented examples approx. are removed 
because they are repeated), we see that an important percentage of examples are 
given a confidence ≥ 0.99 by the NN. Consequently, with tc=0.99 we have an 
intermediate situation which is more on the left of Figure 4 than the original Mim. 
Additionally, the accuracy is almost totally reached with this case (86.1).  

Regarding the repetition factor, the behaviour is quite similar for all cases, but 
has different interpretations. For instance, for tc=0.99 and for F=1 all the 
remaining examples are included once and for F=2 all the remaining examples are 
included twice. The important accuracy increase between these two cases can be 
justified by the fact that J48 has a limitation on the minimum number of examples 
per node, and this duplication allows J48 to be more detailed. 

To confirm these observations we show in Figure 5 the quality metric for these 
experiments. As we can see, the best quality metric is obtained using a threshold 
confidence of 0.99 (Mim 0.99) with a repetition factor of 2. 
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Fig. 5. Quality Metric vs Repetition Factor for different confidence threshold 

 

6. Combination of Factors 
 

Finally, we made an experiment combining some of the results obtained in the 
previous experiments. We used pruning at 0.01 and 0.1, the size of the invented 
dataset was set to the value predicted by the estimated model in Section 4, and the 
repetition factor was set to 2 and the level of confidence to 0.99. Table 3 shows 
the results of these both scenarios. 

Table 3. Experimental results obtained by the combination of factors. 
NN J48 Mim 0.01 Mim 0.1 No. 

Dataset Acc Acc  Rules Acc Rules Ratio Acc Rules Ratio 
1 98.89 98.56 39.50 98.18 48.60 1.23 98.39 53.05 1.34 
2 83.21 77.33 30.20 85.05 53.30 1.77 85.76 53.10 1.76 
3 90.84 78.40 39.60 77.88 32.83 0.83 79.60 52.45 1.32 
4 67.96 74.08 7.50 70.39 3.17 0.42 72.17 19.15 2.55 
5 50.86 51.57 155.70 54.51 47.67 0.31 51.69 228.55 1.47 
6 81.94 85.13 5.50 84.40 5.20 0.95 85.44 6.25 1.14 
7 74.42 74.19 19.20 74.53 27.20 1.42 72.53 63.50 3.31 
8 81.20 68.58 19.00 74.74 22.63 1.19 77.25 24.65 1.30 
9 80.06 79.43 9.40 79.35 2.27 0.24 79.63 5.55 0.59 

10 96.81 94.96 4.70 95.33 4.77 1.01 94.67 4.65 0.99 
11 82.08 87.98 1,158.10 87.65 1,037.20 0.90 85.69 16,655.10 14.38 
12 100.00 97.12 30.10 100.00 28.00 0.93 100.00 28.00 0.93 
13 100.00 63.29 24.50 65.72 1.00 0.04 65.72 1.00 0.04 
14 98.49 98.92 14.00 96.95 9.97 0.71 98.92 13.70 0.98 
15 100.00 100.00 25.00 99.90 90.10 3.60 99.98 161.70 6.47 
16 96.84 98.68 28.60 98.32 10.65 0.37 98.32 10.65 0.37 
17 94.49 96.55 5.80 95.49 2.33 0.40 96.22 5.70 0.98 
18 93.15 79.75 128.00 79.50 155.75 1.22 82.93 494.9 3.87 
19 95.02 92.39 8.30 92.82 12.03 1.45 92.68 14.15 1.70 
20 83.54 75.36 290.70 76.54 177.10 0.61 76.02 1450.2 4.99 

Avg. 87.49 83.61  84.36  0.98 84.68  2.52 

The results with pruning level at 0.01 show that the three main factors considered 
(pruning, invented dataset size and relevance of the examples), if used together, 
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can dramatically reduce the number of rules. In fact, the average results show that 
the number of rules is even below J48 with its default parameters. In this scenario, 
however, the increase in accuracy is mild (from 83.61 to 84.36). The picture 
changes when we see the results with pruning level at 0.1. In this case, accuracy 
increases to 84.68 with a size of the models which only rises to 2.52 times more 
rules than the original J48 model. The quality is 0.0084. 
 
7. Discussion and Conclusions 
 
Summing up, from previous works and after the analysis on some of the separated 
factors (especially pruning), it seemed that it was almost impossible to improve 
the quality metric. Reducing the number of rules systematically entailed a 
reduction of accuracy and vice versa. However, the study of factors such as the 
size of the invented dataset and the modification of the distribution of examples 
are better tools to maintain significant improvements in accuracy while 
significantly reducing the number of rules. These final combined results suggest 
that there is still margin to pursue in this line, and that good compromises can be 
found, turning the mimetic technique originally introduced by Domingos, into a 
real useful and general technique for knowledge discovery. 

Additionally, this work provides a further insight on how mimetic classifiers 
work. The use of the confidence of the oracle in order to modify the distribution of 
examples is one of the main new contributions of this work and suggests that the 
increase in number of rules can be partially due to overfitting to low-confidence 
examples generated by the oracle. 

Finally, as future work, we would like to investigate several issues. For 
instance, instance selection methods could be useful for reducing the size of the 
invented dataset. The evaluation of mimetic models with other metrics, such as 
AUC (Area Under the ROC Curve), would also be interesting, since decision trees 
have better AUCs when the tree is not pruned [6]. Another issue to study would be 
to analyse the use of confidence without the training set, thus making the mimetic 
technique more generally applicable. 
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