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Abstract

In this paper many of the classical paradoxes of induction confirmation
are briefly discussed. Most of them are originated by qualitative views
of confirmation. Some proposals to solve them are recalled, especially
those which are based on the notion of converse coverage or entailment,
jointly with a selection criterion. However, these solutions introduce new
problems in the context of confirmation. The constructive reinforcement
propagation method introduced in [4][7] is proposed as a solution to the
problem of confirmation and analysed in front of all of these paradoxes.
It is shown that this new measure is robust to all of them.

1 Introduction

The problem of confirmation has parallelled to the problem of induction. In
order to find a justification for induction, different criteria of confirmation have
been introduced. A pristine criterion is just a converse coverage condition,
known as “converse entailment condition” (C1): e confirms H if H entails e,
where e is the evidence (observations) and H the hypothesis. Although this
condition is more restrictive than a simple converse consistency condition, there
is still a problem of selecting among all the many possible H’s that entail e.
This generates the hypothesis selection problem.

Instead of applying selection criteria some authors have opted for qualitative
confirmation criteria. In the way of finding refutable hypotheses, Jean Nicod
introduced a criterion N1: the observation of an A which is a B confirms the
hypothesis that all A’s are B. This criterion is useful in many situations, but it
cannot be used in general.

In a more general way, Hempel introduced several adequacy conditions and
studied their combination (from [3] and [1]):

e H1. Entailment Condition: If e entails H then e confirms H. A special
case of H1 is H1.1: e confirms e.

e H2. Consequence Condition: If e confirms each of set of sentences, K,
then e confirms every logical consequence of K. A special case of H2 is



H2.2: Hempel’s equivalence condition for hypotheses, which states that if
e confirms H then e confirms any hypothesis which is equivalent to H.

e H3. Consistency Condition: e is consistent with the class of all hypotheses
that e confirms.

e H4. Equivalence condition for observations: if e confirms H then any
observation equivalent to e confirms H.

e Hb5. Converse consequence condition: if e confirms H then e confirms any
other hypothesis that entails H.

Obviously, the five conditions all together are incompatible. Properly, it is H5
which represents inductive confirmation (bottom-up), while H1-H3 are deduc-
tive confirmation criteria (top-down). However, Hempel decided precisely to
withdraw H5 by introducing the notion of ‘development’ [3]. This represents a
new criterion: e confirms H iff e entails the ‘development’ of H wrt. the objects
mentioned in e. The ‘development’ of a formula wrt. some objects is understood
as what the formula affirms wrt. these objects exclusively.

On the contrary, Flach [1] has preserved and augmented H5 (separated into
a “converse entailment condition” and “converse consequence condition”) and
has removed accordingly some other adequacy conditions (H1 to H3)). This
constitutes an explanatory view of inductive confirmation (although e explains
e is a result of his framework, which is rather counterintuitive).

However, most of these approaches are still vulnerable to some paradoxes.

2 Confirmation Paradoxes

Let us recall the most important confirmation paradoxes before discussing which
solutions have previously been presented and the concrete solution, constructive
reinforcement, which will be analysed in sections 3 and 4.

1. Hempel’s Raven Paradox: the proposition “All ravens are black” is ‘con-
firmed’ by observations of ravens that are black. But the statement “All
ravens are black” is formally equivalent to the statement “All nonblack
things are nonravens”. The latter (and hence the first) proposition would
be confirmed by a white shoe. This paradox originates from Nicod’s cri-
terion (N1) and Hempel’s equivalence condition for hypotheses (H2.2).

2. Goodman’s Grue Paradox [2]: Define ‘grue’ as “green before time ¢ and
blue otherwise”. Then observing a green emerald seems to confirm equally
well both “All emeralds are green” and “All emeralds are grue” (assuming
t is still in the future). It has been argued that ‘grue’ is not a ‘projectible’
concept but no formalisations have been given for this justification.

3. The Invented Useful Concept Paradox: given any theory T, a new theory
T’ can be constructed where each rule has been added an extra condition
P and this P is added as a fact. This fact is highly confirmed because it
is necessary for each rule of the theory under the converse entailment con-
dition (C1). This is the same problem given why a confirmation criterion
H5 gives that AV B is at least as confirmed as A.



4. The Everything Confirms Everything Paradox: for any A and B, by the
converse entailment condition C1, AAB is confirmed by A since AAB = A,
but, by the entailment condition H1, A A B confirms B since AA B = B.
Hence, A confirms B. This is why H1 and H2 are incompatible with H5.

5. The Representation Counts Paradox: by the assumption of the equivalence
condition for hypotheses (H2.2), given three facts p(a), p(b) and p(c), the
theories Hy = p(X) and Ha = p(a) Ap(b) Ap(c) A (p(X) + (X #aNnX #
b A X # c¢)) should have the same confirmation degree.

According to the everything confirms everything paradox, which is the gravest
one, most authors [3][1] have avoided the joint use of H2 and H5, as we have com-
mented on in the previous section. If H5 is not considered, the propagation of
inductive confirmation cannot be done by the other adequacy conditions unless
a special procedure is added, such as Hempel’s ‘development’. But Hempel’s
‘development’ criterion leads to say that p(a) confirms VX : —p(X) — ¢ for
whatever ¢, under the ‘development’ of the only object a, because p(a) entails
—p(a) — ¢, closely related to Hempel’s raven paradox. But ‘development’ also
originates the grue paradox because any observation of an object with property
p confirms whatever you like about objects without property p. In other words,
why the observation of things before time  does not confirm anything you like
about observations after time x7 Other criteria such as Nicod’s or a converse
consistency criterion also lead to Hempel’s Raven Paradox.

The use of converse covering or entailment condition avoids Hempel para-
dox, because H = Vz(raven(z) — black(x)) does not entail anything about
nonravens. However it does not entail black(a) A raven(a) either. This prob-
lem can be minimised by arbitrary selecting B = raven(a) as a given fact and
F = black(a) as the fact to be predicted, since HU B |= F. However this choice
seems arbitrary and paradox 1 remains unsolved!.

Occam’s Razor clearly avoids paradoxes 2 and 3. The use of a covering
criterion alone (the converse entailment condition C1) avoids paradox 4. Finally,
a modified Occam’s Razor that assigns the plausibility of a hypothesis as the
length of the shortest equivalent hypothesis avoids the fifth paradox. However,
new paradoxes appear with Occam’s razor:

e An increasing number of confirming observations may decrease the plau-
sibility of a hypothesis. For instance, the sequence of 2" a’s is more com-
pressible than a sequence of 2™ + 1 a’s.

e Occam’s Razor gives a single value for the whole of the theory but there
is no information about which parts are more confirmed than others, or,
if exceptions are found, which parts of the theory are to be blamed.

e When used jointly with deductive inference, we have counterintuitive re-
sults. The probability of the formula A U B is at least equal than the
probability of the formula A. However, the latter is shorter and Occam’s
Razor gives it more plausibility.

L Another approach is to consider a different kind of material or default implication instead
of the logical implication. However, this solution seems more ad-hoc.



e The plausibility of a hypothesis wrt. an evidence is independent to the
evidence (just depends on the length of the hypothesis), thus ignoring
when a hypothesis has been generated with an evidence and must be
evaluated wrt. another evidence.

e When the observations are incompressible, H becomes the quoting of the
observations, which can be interpreted as FE is the explanation for E.

The first problem has been solved by monotone variants [9] of Kolmogorov com-
plexity. The other four cannot be solved by an exclusively syntactic criterion.

3 Confirmation as Reinforcement

We must contemplate inductive confirmation (bottom-up) by the converse con-
sequence condition H5 and/or the converse entailment condition C1. However,
this would be incompatible to any deductive confirmation. The idea is to con-
sider a quantitative view of confirmation propagation, as Carnap suggested,
but not probabilistic. Such a quantitative propagation has been developed in
[4][7], known as constructive reinforcement, where parts of the theory are rein-
forced according to their contribution to covering the evidence. This allows us
to determine which parts of the theory are justified by the evidence, and more
importantly, which parts of the evidence are well explained by the theory. More
concretely, the conditions for such a propagation are:

1. A part of a theory is reinforced by an observation if that part is necessary
for entailing the observation (bottom-up confirmation propagation).

2. An observation is explained as much as the parts that are necessary for
entailing it are more reinforced (top-down confirmation propagation).

3. The better the theory explains an evidence the better the theory is.

Different instances can be developed obeying the previous conditions. The first
thing to determine is the notion of part or unit of a theory. In the most granular
case, a unit would be a symbol or even a bit in the descriptional language used
for hypotheses. In [7] an instance of the previous reinforcement conditions has
been formalised by using model-based languages where the unit is a rule?.

A unit is ‘necessary’ if H |= e but the removal of the unit would make that
H [~ e. The reinforcement of each unit is computed following the formula 2=»
where F,, represents the number of observations in the evidence for which the
unit is necessary. The explanatory degree or course for each observation is com-
puted as the product of the reinforcement of all the rules which are necessary for
that observation. Since reinforcement is always | 1 then this product penalises
the use of many and non-reinforced rules. If multiple proofs (explanations) are
given for one observation, the greatest one is selected.

2Choosing a gross granularity at the level of rule produces a tricky problem of joining rules
by using if-then-else constructions. Although a specific solution is also presented in [7], it is
preferable to use thinner granularities. In a similar way, in order to cope with joint examples
or non-factual examples, observations are separated in parts such that the parts entail the
whole and viceversa, and no part is tautological. This makes it possible to split observations
such as a Vb or a A bA < —d.



4 Reinforcement vs. Confirmation Paradoxes

These simple constructs are sufficient for assigning degrees of reinforcement and
explanation to theories wrt. evidences. Let us show now that the framework is
free from the paradoxes of Section 2, independently of the representational lan-
guage. For instance, in the case of Goodman’s Paradox, the part of the concept
grue after moment z is not used for any evidence before moment x and hence it is
not reinforced. Moreover, the Invented Useful Concept Paradox is also avoided,
since the inclusion of invented concepts can increase the mean reinforcement of
the theory but they usually diminish the mean explanatory value (course) of
the evidence. The Everything Confirms Everything Paradox is solved by the
quantitative way in which inductive and deductive confirmation are propagated.
The Representation Counts Paradox is avoided by considering the plausibility
of a hypothesis as the plausibility of the best consistent hypothesis, in the same
way as it could be done for the MDL principle3.

Finally, the Hempel’s Raven Paradox seems more difficult to address. Hol-
land et al [8] affirm that “nonravens are simply not a coherent kind of thing”,
but this is not a solution in general. Moreover, not every instance of Hempel’s
Paradox are paradoxical. Consider for instance a bag full of cards which can be
either red or black on one side and can have either a triangle or a circle on the
other side. The first side to be observed each time is random, thus precluding
any arbitrary assumption of the figure as being cause of the colour or vice-versa.
In this example, the observation of a black card is exactly the same as a nonred
card, and the same happens with the figures. Therefore, nonred and nontri-
angle are coherent concepts. That is to say, we have the following background
knowledge B = {red(X) < —black(X),triangle(X) + —circle(X)}. Consider
the following evidence and hypothesis:

E = {triangle(a), black(a), black(b), triangle(b), black(c), circle(c), circle(d), red(d) }
H = {triangle(a), triangle(X) — black(X), triangle(b), black(c), circle(c), red(d)}

In this case, the theory of reinforcement gives the following values of reinforce-
ment of the six rules of H and the courses of the eight observations:

p1 = 0.75, p2 = 0.875, p3 = 0.75, pg = 0.5, ps = 0.5, pg = 0.75

x1 = 0.75,x2 = 0.656, x5 = 0.656, x4 = 0.75, x5 = 0.5, x6 = 0.5, x7 = 0.656, xs = 0.75

which show that the rule triangle(X) — black(X) is reinforced without any
information of which is the cause (the ‘arbitrariness’ would not be needed either
in the black ravens case). In this case red circles confirm black triangles, since
the background knowledge makes triangle(X) — black(X) equal to red(X) —
circle(X). This would not happen, however, for the black raven paradox.
Finally, some other problems presented when using the MDL principle are
avoided. The method of confirmation propagation is monotone for increas-
ing confirmative evidence and provides detailed information about the units or
parts of a theory. In the same way, reinforcement allows to compute how well
explained or justified the predictions of the theory are, and give different values

3Nonetheless, one can consider that simplification processes are important and a better
representation or formulation of the same theory makes it more reliable.



for a theory if it is evaluated with different evidences. Also, extensional theories
such as FE for E are lowly reinforced. Finally, hypotheses such as A U B for
observation A; are clearly handled by giving all the reinforcement to the A unit,
and no reinforcement at all to the unit B. The result is that an observation A;
is equally justified for A as for AU B, because B is not used.

Moreover, other characteristics of the whole theory can be established, such
as its unifying power, the uniformity of the compression degree between the
theory and the evidence, and many other features (see [5], [6]).

5 Conclusions

Confirmation can be propagated bottom-up by hypothetical inference processes
from evidence to theory. In a similar way, confirmation must also be propagated
top-down by non-hypothetical inference processes from parts of theory to other
parts and finally to the evidence in order to see how well explained it is. In
my opinion, a quantitative (but not probabilistic) way is the only way to in-
clude both H2 (top-down) and H5 (bottom-up) senses of confirmation, and the
propagation conditions of Section 3 are a good settlement to work on.

Theory revision can take advantage of this framework because it is easier
to discover weak (non-reinforced) parts of the theory to be revised first. In
this sense, we have left out of this paper the corresponding blame assignment
for negative confirmation (see [7]). Confirmation propagation must also be
considered with a quantitative blame assignment in the presence of noise.
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