Volume Under the ROC Surface for Multi-class Problems

C. Ferri, J. Hernández-Orallo, M.A. Salido

Departament de Sistemes Informàtics i Computació
Universitat Politècnica de València,
Valencia, Spain
\{cferri, jorallo, msalido\}@dsic.upv.es

ECML'03, Cavtat-Dubrovnik, September 22-26, 2003.

Outline

- Motivation
- ROC Analysis
- Multi-class ROC Analysis
- HSA for Computing the ROC Polytopes
- Evaluation of Approximations
- Conclusions and Future Work

Motivation

- Cost-sensitive Learning is a more realistic generalisation of predictive learning:
- Costs are not the same for all kinds of misclassifications.
- Class distributions are usually unbalanced.
- ROC Analysis:
- Useful for choosing classifiers when costs are not known in advance.
- AUC (Area Under the ROC Curve):
- A simple measure for each classifier, which estimates:
- The quality of the classifier for a range of class distributions.
- A measure of how well the classifier ranks examples (equivalent to the Wilcoxon statistic)

Motivation

- Applications:
- ROC analysis and AUC-related measures have been used in many areas: medical decision making, marketing campaign design, probability estimation, etc.
- Problems:
- ROC Analysis has not been extended for more than two classes, because of a difficult definition and complexity.
- There are approximations of the AUC measure for more than two classes, but:
- No acquaintance about the quality of these approximations.
- Goal:

Extend ROC analysis to more than 2 classes and evaluate approximations.

ROC Analysis

- Receiver Operating Characteristic (ROC) Analysis is useful when we don't know:
- The proportion of examples of each class in application time (class distribution)
- The cost matrix in application time
- ROC Analysis can be applied in these situations. Provides tools to:
- Distinguish classifiers that can be discarded under any circumstance (class distribution or cost matrix).
- Select the optimal classifier once the cost matrix is known.

ROC Analysis

- Given a confusion matrix:

Real			
		Yes	No
Predicted	Yes	30	20
	No	10	40

ROC diagram

- We can normalise each column

ROC Analysis

- Given several classifiers:

ROC diagram

- We can construct the convex hull of their points (FPR,TPR) and the trivial classifiers $(0,0),(1,1)$, $(1,0)$.
- The classifiers falling under the ROC curve can be discarded.
- The best classifier of the remaining classifiers can be chosen in application time.

ROC Analysis

- If we want to select one classifier:

- We calculate the Area Under the ROC Curve (AUC) of all the classifiers and choose the one with greatest AUC.

Multi-class ROC Analysis

- Classes and Dimensions
- For 2 classes, there is a 2×2 matrix, and there are 2 degrees of freedom. Hence 2 dimensions.
- For 3 classes, there is a 3×3 matrix, and there are 6 degrees of freedom. Hence 6 dimensions.
- For n classes $\ldots d=n \times(n-1)$ dimensions.
- Problems:
- Representation of 6 or more dimensions difficult.
- The identification of the trivial classifiers is not clear.
- The computation of the convex hull of N points in a ddimensional space is in $\mathrm{O}\left(N \log N+N^{d / 2}\right)$.

Multi-class ROC Analysis

- Example. 3 classes.

Predicted

	a	b	c
a	h_{a}	x_{1}	x_{2}
b	x_{3}	h_{b}	x_{4}
c	x_{5}	x_{6}	h_{c}

- The x_{i} give a 6-dimensional point. The values h_{a}, h_{b}, h_{c} are dependent since:
$-h_{a}+x_{3}+x_{5}=1$
$-h_{b}+x_{1}+x_{6}=1$
$-h_{c}+\mathrm{x}_{2}+\mathrm{x}_{4}=1$
- We can't represent a ROC diagram, but still we could obtain the AUC.
- called in this case VUS (Volume Under the ROC Surface)

Multi-class ROC Analysis

- Maximum VUS for 3 classes.
- A point is a classifier if and only if:

$$
x_{3}+x_{5} \leq 1, x_{1}+x_{6} \leq 1, x_{2}+x_{4} \leq 1
$$

- The space determined by these equations can be easily obtained:
- It is equal to the probability that 6 random numbers under a uniform distribution $\mathrm{U}(0,1)$ follow these conditions

$$
\begin{aligned}
\mathrm{VUS}_{3}{ }^{\max } & =\mathrm{P}(\mathrm{U}(0,1)+\mathrm{U}(0,1) \leq 1) \cdot \mathrm{P}(\mathrm{U}(0,1)+\mathrm{U}(0,1) \leq 1) \cdot \mathrm{P}(\mathrm{U}(0,1) \\
& +\mathrm{U}(0,1) \leq 1)=[\mathrm{P}(\mathrm{U}(0,1)+\mathrm{U}(0,1) \leq 1)]^{3}=(1 / 2)^{3}=1 / 8
\end{aligned}
$$

- The previous expression can be approximated for more than 3 classes.

Multi-class ROC Analysis

- Minimum VUS for 3 classes.
- Trivial classifiers:

Predicted

" Where $h_{a}+h_{b}+h_{c}=1$
Actual

	a	b	c
a	h_{a}	h_{a}	h_{a}
b	h_{b}	h_{b}	h_{b}
c	h_{c}	h_{c}	h_{c}

- We can discard a classifier if and only if it is above a trivial classifier:

$$
\begin{aligned}
& \exists h_{a} h_{b}, h_{c} \in R^{+} \text {where }\left(h_{a}+h_{b}+h_{c}=1\right) \text { such that: } \\
& x_{1} \geq h_{a}, x_{2} \geq h_{a}, x_{3} \geq h_{b}, x_{4} \geq h_{b}, x_{5} \geq h_{c}, x_{6} \geq h_{c}
\end{aligned}
$$

- This can be simplified into:
- Theorem 1:
- A classifier $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$ can be discarded iff:

$$
r_{1}+r_{2}+r_{3} \geq 1
$$

where $r_{1}=\min \left(x_{1}, x_{2}\right), r_{2}=\min \left(x_{3}, x_{4}\right)$ and $r_{3}=\min \left(x_{5}, x_{6}\right)$.

- By a Montecarlo method, the minimum is approximated to $1 / 180$.

HSA for Computing the ROC Polytopes

- The inequations (constraints) for max and min make it very difficult to obtain the exact values analytically.

How can we obtain the maximum and minimum VUS values exactly?

- And, more importantly,

How can we obtain the VUS of any classifier exactly?

- HSA (Hyperpolyhedron Search Algorithm):
- A Constraint Satisfaction Problem (CSP) Solver.
- Manages non-binary and continuous problems.
- Uses linear programming techniques.
- We will use HSA to determine the extreme solutions (hyperpolyhedron)

HSA for Computing the ROC Polytopes

- Minimum and Maximum VUS with HSA.
- Maximum. We solve the constraints:

$$
x_{3}+x_{5} \leq 1, x_{1}+x_{6} \leq 1, x_{2}+x_{4} \leq 1
$$

- We have $1 / 8$, as expected.
- Minimum. Given the equations:

$$
\begin{gathered}
r_{1}+r_{2}+r_{3} \geq 1 \\
\text { where } r_{1}=\min \left(x_{1}, x_{2}\right), r_{2}=\min \left(x_{3}, x_{4}\right) \text { and } r_{3}=\min \left(x_{5}, x_{6}\right) \text {. }
\end{gathered}
$$

- We transform them into:

$$
\begin{aligned}
& x_{1}+x_{3}+x_{5} \geq 1, x_{1}+x_{3}+x_{6} \geq 1, x_{1}+x_{4}+x_{5} \geq 1, x_{1}+x_{4}+x_{6} \geq 1, \\
& x_{2}+x_{3}+x_{5} \geq 1, x_{2}+x_{3}+x_{6} \geq 1, x_{2}+x_{4}+x_{5} \geq 1, x_{2}+x_{4}+x_{6} \geq 1
\end{aligned}
$$

- Which can be solved by HSA, giving $1 / 180$, as expected.

HSA for Computing the ROC Polytopes

- Computing the VUS of any classifier with HSA.
- Basic Idea: Given a classifier, we combine it with the trivial classifier in order to know the volume of the classifiers it discards.
- The linear combination of one classifier z and the trivial classifiers is given by:

$$
h a \cdot(1,1,0,0,0,0)+h b \cdot(0,0,1,1,0,0)+h c \cdot(0,0,0,0,1,1)+h d \cdot(z b a,
$$

- We can discard a classifier v iff:

$$
\begin{aligned}
& \exists h a, h b, h c, h d \in R^{+} \text {where }(h a+h b+h c+h d=1) \text { such that: } \\
& v b a \geq h a+h d \cdot z b a, v c a \geq h a+h d \cdot z c a, v a b \geq h b+h d \cdot z a b, \\
& v c b \geq h b+h d \cdot z c b, v a c \geq h c+h d \cdot z a c, v b c \geq h c+h d \cdot z b c
\end{aligned}
$$

- This sums up to a system of inequations with 10 variables that HAS can solve.

HSA for Computing the ROC Polytopes

- Computing the VUS of a set of classifiers with HSA.
- The idea can be extended to a set of classifiers.
- E.g. given four classifiers, we can calculate the VUS of the convex hull of the four classifiers.
- The linear combination of four classifier z, w, x and y, and the trivial classifiers is given by:

$$
\begin{gathered}
h a \cdot(1,1,0,0,0,0)+h b \cdot(0,0,1,1,0,0)+h c \cdot(0,0,0,0,1,1)+h 1 \cdot(z b a, z c a, \\
z a b, z c b, z a c, z b c) \\
+h 2 \cdot(w b a, w c a, w a b, w c b, w a c, w b c)+h 3 \cdot(x b a, x c a, x a b, x c b, x a c, x b c)+h 4 \cdot \\
(y b a, y c a, y a b, y c b, y a c, y b c)
\end{gathered}
$$

- In the same way as before, we have a system with 9+4 variables, which can be solved by HAS.

Evaluation of Approximations

- Now we are able to obtain the real VUS.
- The calculation is expensive, especially for 4 or more classes (12 or more dimensions).
- However, it can be used as a reference for evaluating current or new approximations.
- Approximations to the VUS for crisp classifiers:
- Since, to date, the real AUC (VUS) could not be calculated, there have been many approximations:
- Macro-average
- Macro-average Modified
- 1-point trivial AUC extension
- 1-point Hand and Till Extension

Evaluation of Approximations

- Macro-average
- Given a classifier:

- The macro-average is just the average of the partial class accuracies.

$$
\mathrm{MAVG}_{3}=\left(v_{a a}+v_{b b}+v_{c c}\right) / 3
$$

- Since the matrix is normalised, for points, this is equivalent to accuracy.

Evaluation of Approximations

- Macro-average Modified

- Macro-average does not take into account that extreme partial accuracies are not good for AUC.
- Example: $(0.2,0.2)$ has more AUC than $(0.1,0.3)$, although macro-average is the same.
- One solution is a geometric mean, a macrogeomean, but this can be too much.
- A more general solution is the generalised mean:

$$
\operatorname{MAVG3}-\mathrm{MOD}=\left(\frac{1}{n} \sum_{k=1}^{n} a_{k}^{t}\right)^{1 / t}
$$

- With t being a factor to be estimated.

Evaluation of Approximations

- 1-point trivial AUC extension

- We know that the AUC for two classes is:

$$
\mathrm{AUC} 2=\max (1 / 2,1-v b a / 2-v a b / 2)
$$

- Extending it trivially to 3 classes we have:
$\mathrm{AUC}-1 \mathrm{PT} 3=\max (1 / 3,1-(v b a+v c a+v a b+v c b+v a c+v b c) / 3$
- Quite similar to macro-average, but different in some situations.

Evaluation of Approximations

- 1-point Hand and Till Extension

- Hand and Till presented an extension of the AUC measure for more than 2 classes as a one-to-one weighting of all combinations.

$$
M=\frac{1}{c(c-1)} \sum_{i \neq j} \hat{A}(i, j)=\frac{2}{c(c-1)} \sum_{i<j} \hat{A}(i, j)
$$

- We consider three different variants for crisp classifiers:
$\mathrm{HT} 1 \mathrm{~b}=(\max (1 / 2,1-(v b a+v a b) / 2)+\max (1 / 2,1-(v c a+v a c) / 2)+\max (1 / 2,1-(v c b+v b c) / 2)) / 3$
$\begin{aligned} \text { HT2 }= & (\max (1 / 2,1-(v b a /(v b a+v b b)+v a b /(v a a+v a b)) / 2)+\max (1 / 2,1-(v c a /(v c a+v c c) \\ & +v a c /(v a a+v a c)) / 2)+\max (1 / 2,1-(v c b /(v c b+v c c)+v b c /(v b b+v b c)) / 2)) / 3\end{aligned}$

HT3 $=($ AUCa,rest + AUCa,rest + AUCa,rest $) / 3$

- being:

AUCa,rest $=\max (1 / 2,1-[(v a b+v a c) /(v a a+v a b+v a c)] / 2-[(v b a+v c a) /(v b a+v c a+v b b+$ $v b c+v c b+v c c)] / 2$

Evaluation of Approximations

- Evaluation:
- It is based on how well the approximations "rank" the classifiers, in comparison to the ranking, given to the real VUS.
- We define a measure of discrepancy.
- The results are:

Accuracy	Macro- avg	Mod-avg (0.76)	$1-\mathrm{p}$ trivial	HT1B	HT2	HT3
0.0871	0.0871	$0.0588 . \dot{i}$	0.0913	0.104	0.141	0.0968

- The best results are obtained by the modified macro-average.
- More importantly, it is the only measure that is better than accuracy for evaluating crisps classifiers for ranking!

Conclusions and Future Work

- Conclusions:

- The extension of ROC analysis, and related measures (AUC \rightarrow VUS) has been addressed.
- We have identified the maximum VUS and the minimum VUS, and the general inequations.
- We can solve these inequations through the HSA algorithm and hence obtain the VUS of any classifier and any set of classifiers.
- We have compared the approximations for VUS with the real VUS obtained by HAS.
- We have shown that only a modification of the macroaverage is better than accuracy for evaluating crisp classifiers, if we want to use them for ranking.

Conclusions and Future Work

- Ongoing Work:
- The evaluation of approximations of VUS for soft classifiers is our main immediate goal.
- We are evaluating approximations for soft classifiers (probability estimators). In this case,
- Hand and Till's approximation (1vs1) seems to be better than accuracy.
- Fawcett's approximation (1vsAll) performs still better.
- Future Work
- Development of new approximations of VUS for soft classifiers.
- Much more accurate than current approximations.
- Much more efficient than HAS (able to cope with 5, 6 or more classes).

