Volume Under the ROC Surface for Multi-class Problems

C. Ferri, J. Hernández-Orallo, M.A. Salido

Departament de Sistemes Informàtics i Computació Universitat Politècnica de València, Valencia, Spain {cferri, jorallo, msalido}@dsic.upv.es

ECML'03, Cavtat-Dubrovnik, September 22-26, 2003.

Outline

- Motivation
- ROC Analysis
- Multi-class ROC Analysis
- HSA for Computing the ROC Polytopes
- Evaluation of Approximations
- Conclusions and Future Work

Motivation

- Cost-sensitive Learning is a more realistic generalisation of predictive learning:
 - Costs are not the same for all kinds of misclassifications.
 - Class distributions are usually unbalanced.
- ROC Analysis:
 - Useful for choosing classifiers when costs are not known in advance.
- AUC (Area Under the ROC Curve):
 - A simple measure for each classifier, which estimates:
 - The quality of the classifier for a range of class distributions.
 - A measure of how well the classifier ranks examples (equivalent to the Wilcoxon statistic)

Motivation

Applications:

 ROC analysis and AUC-related measures have been used in many areas: medical decision making, marketing campaign design, probability estimation, etc.

Problems:

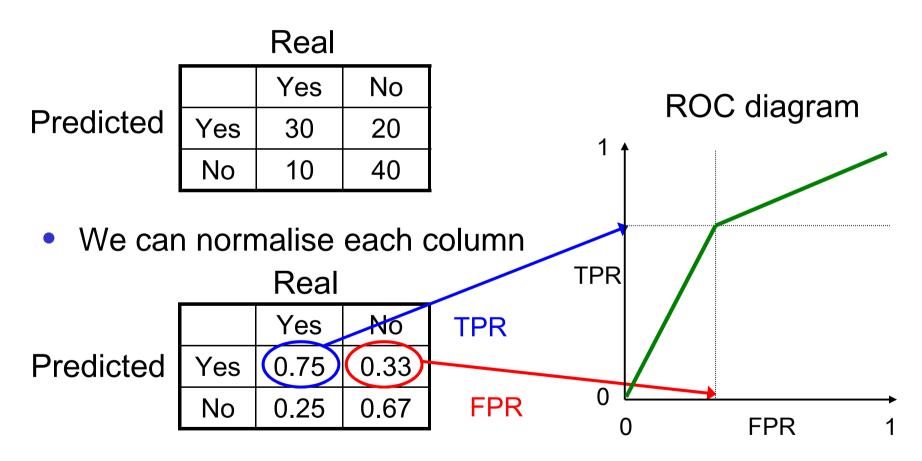
- ROC Analysis has not been extended for more than two classes, because of a difficult definition and complexity.
- There are approximations of the AUC measure for more than two classes, but:
 - No acquaintance about the quality of these approximations.

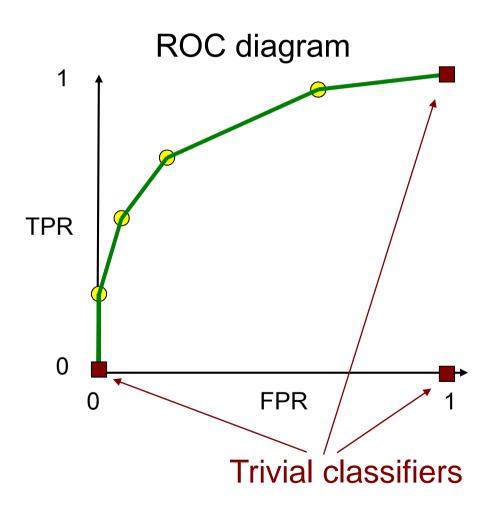
Goal:

Extend ROC analysis to more than 2 classes and evaluate approximations.

- Receiver Operating Characteristic (ROC) Analysis is useful when we don't know:
 - The proportion of examples of each class in application time (class distribution)
 - The cost matrix in application time
- ROC Analysis can be applied in these situations.
 Provides tools to:
 - Distinguish classifiers that can be discarded under any circumstance (class distribution or cost matrix).
 - Select the optimal classifier once the cost matrix is known.

Given a confusion matrix:

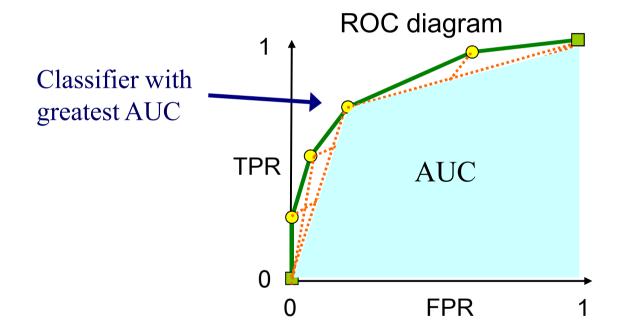




Given several classifiers:

- We can construct the convex hull of their points (FPR,TPR) and the trivial classifiers (0,0), (1,1), (1,0).
- The classifiers falling under the ROC curve can be discarded.
- The best classifier of the remaining classifiers can be chosen in application time.

• If we want to select *one* classifier:



 We calculate the Area Under the ROC Curve (AUC) of all the classifiers and choose the one with greatest AUC.

Classes and Dimensions

- For 2 classes, there is a 2×2 matrix, and there are 2 degrees of freedom. Hence 2 dimensions.
- For 3 classes, there is a 3×3 matrix, and there are 6 degrees of freedom. Hence 6 dimensions.
- For *n* classes ... $d= n \times (n-1)$ dimensions.

Problems:

- Representation of 6 or more dimensions difficult.
- The identification of the trivial classifiers is not clear.
- The computation of the convex hull of N points in a d-dimensional space is in $O(N \log N + N^{d/2})$.

Example. 3 classes.

Actual

Predicted

	а	b	С	
а	h _a	X ₁	X ₂	
b	<i>X</i> ₃	h_b	X ₄	
С	X ₅	X ₆	h_c	

- The x_i give a 6-dimensional point. The values h_a , h_b , h_c are dependent since:
 - $h_a + x_3 + x_5 = 1$
 - $-h_b+x_1+x_6=1$
 - $h_c + x_2 + x_4 = 1$
- We can't represent a ROC diagram, but still we could obtain the AUC.
 - called in this case VUS (Volume Under the ROC Surface)

- Maximum VUS for 3 classes.
 - A point is a classifier if and only if:

$$x_3 + x_5 \le 1$$
, $x_1 + x_6 \le 1$, $x_2 + x_4 \le 1$

- The space determined by these equations can be easily obtained:
 - It is equal to the probability that 6 random numbers under a uniform distribution U(0,1) follow these conditions

$$VUS_3^{max} = P(U(0,1) + U(0,1) \le 1) \cdot P(U(0,1) + U(0,1) \le 1) \cdot P(U(0,1) + U(0,1) \le 1) = [P(U(0,1) + U(0,1) \le 1)]^3 = (\frac{1}{2})^3 = \frac{1}{8}$$

 The previous expression can be approximated for more than 3 classes.

Predicted

Minimum VUS for 3 classes.

	а	b	С
а	h _a	h _a	h _a
b	h_b	h_b	h_b
С	h_c	h_c	h_c

Actual

Trivial classifiers:

» Where
$$h_a + h_b + h_c = 1$$

 We can discard a classifier if and only if it is above a trivial classifier:

$$\exists h_a, h_b, h_c \in R^+ \text{ where } (h_a + h_b + h_c = 1) \text{ such that:}$$

 $x_1 \ge h_a, x_2 \ge h_a, x_3 \ge h_b, x_4 \ge h_b, x_5 \ge h_c, x_6 \ge h_c$

- This can be simplified into:
- Theorem 1:
 - A classifier $(x_1, x_2, x_3, x_4, x_5, x_6)$ can be discarded iff:

$$r_1 + r_2 + r_3 \ge 1$$

where $r_1 = \min(x_1, x_2)$, $r_2 = \min(x_3, x_4)$ and $r_3 = \min(x_5, x_6)$.

By a Montecarlo method, the minimum is approximated to 1/180.

 The inequations (constraints) for max and min make it very difficult to obtain the exact values analytically.

How can we obtain the maximum and minimum VUS values *exactly?*

And, more importantly,

How can we obtain the VUS of any classifier *exactly?*

- HSA (Hyperpolyhedron Search Algorithm):
 - A Constraint Satisfaction Problem (CSP) Solver.
 - Manages non-binary and continuous problems.
 - Uses linear programming techniques.
 - We will use HSA to determine the extreme solutions (hyperpolyhedron)

- Minimum and Maximum VUS with HSA.
 - Maximum. We solve the constraints:

$$x_3 + x_5 \le 1$$
, $x_1 + x_6 \le 1$, $x_2 + x_4 \le 1$

- We have 1/8, as expected.
- Minimum. Given the equations:

$$r_1 + r_2 + r_3 \ge 1$$

where $r_1 = \min(x_1, x_2)$, $r_2 = \min(x_3, x_4)$ and $r_3 = \min(x_5, x_6)$.

We transform them into:

$$x_1 + x_3 + x_5 \ge 1$$
, $x_1 + x_3 + x_6 \ge 1$, $x_1 + x_4 + x_5 \ge 1$, $x_1 + x_4 + x_6 \ge 1$, $x_2 + x_3 + x_5 \ge 1$, $x_2 + x_3 + x_6 \ge 1$, $x_2 + x_4 + x_5 \ge 1$, $x_2 + x_4 + x_6 \ge 1$

Which can be solved by HSA, giving 1/180, as expected.

- Computing the VUS of any classifier with HSA.
 - Basic Idea: Given a classifier, we combine it with the trivial classifier in order to know the volume of the classifiers it discards.
 - The linear combination of one classifier *z* and the trivial classifiers is given by:

$$ha \cdot (1, 1, 0, 0, 0, 0) + hb \cdot (0, 0, 1, 1, 0, 0) + hc \cdot (0, 0, 0, 0, 1, 1) + hd \cdot (zba, zca, zab, zcb, zac, zbc)$$

— We can discard a classifier v iff:

```
\exists ha,hb,hc,hd \in R^+ where (ha+hb+hc+hd=1) such that:

vba \ge ha+hd \cdot zba, vca \ge ha+hd \cdot zca, vab \ge hb+hd \cdot zab,

vcb \ge hb+hd \cdot zcb, vac \ge hc+hd \cdot zac, vbc \ge hc+hd \cdot zbc
```

 This sums up to a system of inequations with 10 variables that HAS can solve.

- Computing the VUS of a set of classifiers with HSA.
 - The idea can be extended to a set of classifiers.
 - E.g. given four classifiers, we can calculate the VUS of the convex hull of the four classifiers.
 - The linear combination of four classifier *z*, *w*, *x* and *y*, and the trivial classifiers is given by:

```
ha \cdot (1, 1, 0, 0, 0, 0) + hb \cdot (0, 0, 1, 1, 0, 0) + hc \cdot (0, 0, 0, 0, 1, 1) + hl \cdot (zba, zca, zab, zcb, zac, zbc)
+ h2 \cdot (wba, wca, wab, wcb, wac, wbc) + h3 \cdot (xba, xca, xab, xcb, xac, xbc) + h4 \cdot (yba, yca, yab, ycb, yac, ybc)
```

In the same way as before, we have a system with 9+4 variables, which can be solved by HAS.

- Now we are able to obtain the real VUS.
 - The calculation is expensive, especially for 4 or more classes (12 or more dimensions).
 - However, it can be used as a reference for evaluating current or new approximations.
- Approximations to the VUS for crisp classifiers:
 - Since, to date, the real AUC (VUS) could not be calculated,
 there have been many approximations:
 - Macro-average
 - Macro-average Modified
 - 1-point trivial AUC extension
 - 1-point Hand and Till Extension

- Macro-average
 - Given a classifier:

Predicted

	а	a b	
а	V _{aa}	V _{ba}	V _{ca}
Ь	V _{ab}	V_{bb}	V_{cb}
С	V _{ac}	V_{bc}	V_{cc}

The macro-average is just the average of the partial class accuracies.

$$MAVG_3 = (v_{aa} + v_{bb} + v_{cc}) / 3$$

 Since the matrix is normalised, for points, this is equivalent to accuracy.

- Macro-average Modified
 - Macro-average does not take into account that extreme partial accuracies are not good for AUC.
 - Example: (0.2, 0.2) has more AUC than (0.1, 0.3), although macro-average is the same.
 - One solution is a geometric mean, a macrogeomean, but this can be too much.
 - A more general solution is the generalised mean:

$$MAVG3-MOD = \left(\frac{1}{n}\sum_{k=1}^{n}a_{k}^{t}\right)^{\frac{1}{t}}.$$

With t being a factor to be estimated.

- 1-point trivial AUC extension
 - We know that the AUC for two classes is:

$$AUC2 = max(1/2, 1 - vba/2 - vab/2)$$

Extending it trivially to 3 classes we have:

$$AUC-1PT3 = \max(1/3, 1 - (vba + vca + vab + vcb + vac + vbc)/3$$

 Quite similar to macro-average, but different in some situations.

1-point Hand and Till Extension

Hand and Till presented an extension of the AUC measure for more than
 2 classes as a one-to-one weighting of all combinations.

$$M = \frac{1}{c(c-1)} \sum_{i \neq j} \hat{A}(i,j) = \frac{2}{c(c-1)} \sum_{i < j} \hat{A}(i,j)$$

— We consider three different variants for crisp classifiers:

```
HT1b = (\max(1/2, 1-(vba+vab)/2) + \max(1/2, 1-(vca+vac)/2) + \max(1/2, 1-(vcb+vbc)/2)) / 3
```

HT2=
$$(\max(1/2, 1 - (vba / (vba + vbb) + vab / (vaa + vab))/2) + \max(1/2, 1 - (vca / (vca + vcc) + vac / (vaa + vac))/2) + \max(1/2, 1 - (vcb / (vcb + vcc) + vbc / (vbb + vbc))/2)) / 3$$

$$HT3 = (AUCa, rest + AUCa, rest + AUCa, rest)/3$$

being:

AUCa,rest =
$$\max(1/2, 1 - [(vab + vac) / (vaa + vab + vac)]/2 - [(vba + vca) / (vba + vca + vbb + vbc + vcb + vcb)]/2$$

• Evaluation:

- It is based on how well the approximations "rank" the classifiers, in comparison to the ranking, given to the real VUS.
- We define a measure of discrepancy.
- The results are:

Accuracy	Macro- avg	Mod-avg (0.76)	1-p trivial	HT1B	HT2	HT3
0.0871	0.0871	0.0588	0.0913	0.104	0.141	0.0968

- The best results are obtained by the modified macro-average.
- More importantly, it is the only measure that is better than accuracy for evaluating crisps classifiers for ranking!

Conclusions and Future Work

Conclusions:

- The extension of ROC analysis, and related measures (AUC → VUS) has been addressed.
 - We have identified the maximum VUS and the minimum VUS, and the general inequations.
 - We can solve these inequations through the HSA algorithm and hence obtain the VUS of any classifier and any set of classifiers.
- We have compared the approximations for VUS with the real VUS obtained by HAS.
 - We have shown that only a modification of the macroaverage is better than accuracy for evaluating crisp classifiers, if we want to use them for ranking.

Conclusions and Future Work

Ongoing Work:

- The evaluation of approximations of VUS for soft classifiers is our main immediate goal.
- We are evaluating approximations for soft classifiers (probability estimators). In this case,
 - Hand and Till's approximation (1vs1) seems to be better than accuracy.
 - Fawcett's approximation (1vsAll) performs still better.

Future Work

- Development of new approximations of VUS for soft classifiers.
 - Much more accurate than current approximations.
 - Much more efficient than HAS (able to cope with 5, 6 or more classes).