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Motivation

• Cost-sensitive Learning is a more realistic 
generalisation of predictive learning:
– Costs are not the same for all kinds of misclassifications.
– Class distributions are usually unbalanced.

• ROC Analysis:
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• ROC Analysis:
– Useful for choosing classifiers when costs are not known in 

advance.

• AUC (Area Under the ROC Curve):
– A simple measure for each classifier, which estimates:

• The quality of the classifier for a range of class distributions.
• A measure of how well the classifier ranks examples (equivalent to 

the Wilcoxon statistic)



Motivation

• Applications:
– ROC analysis and AUC-related measures have been used in 

many areas: medical decision making, marketing campaign 
design, probability estimation, etc.

• Problems:
– ROC Analysis has not been extended for more than two 
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– ROC Analysis has not been extended for more than two 
classes, because of a difficult definition and complexity.

– There are approximations of the AUC measure for more than 
two classes, but:

• No acquaintance about the quality of these approximations.

• Goal:

Extend ROC analysis to more than 2 classes 
and evaluate approximations.



ROC Analysis

• Receiver Operating Characteristic (ROC) Analysis is 
useful when we don’t know:
– The proportion of examples of each class in application time 

(class distribution)
– The cost matrix in application time

• ROC Analysis can be applied in these situations. 
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• ROC Analysis can be applied in these situations. 
Provides tools to:
– Distinguish classifiers that can be discarded under any 

circumstance (class distribution or cost matrix).
– Select the optimal classifier once the cost matrix is known.



ROC Analysis

• Given a confusion matrix:

Yes No
Yes 30 20
No 10 40

Real

Predicted ROC diagram
1
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• We can normalise each column

No 10 40

Yes No
Yes 0.75 0.33
No 0.25 0.67

Real

Predicted
TPR

FPR
0 1

0
FPR

TPR



ROC Analysis

• Given several classifiers:

– We can construct the 
convex hull of their points 
(FPR,TPR) and the trivial 
classifiers (0,0), (1,1), 
(1,0).

ROC diagram
1
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(1,0).

– The classifiers falling 
under the ROC curve can 
be discarded.

– The best classifier of the 
remaining classifiers can 
be chosen in application 
time.

0 1
0

FPR

TPR

Trivial classifiers



ROC Analysis

• If we want to select one classifier:

ROC diagram
1

Classifier with 

greatest AUC

8

– We calculate the Area Under the ROC Curve (AUC) of all 
the classifiers and choose the one with greatest AUC.

0 1
0

FPR

TPR

greatest AUC

AUC



Multi-class ROC Analysis

• Classes and Dimensions
– For 2 classes, there is a 2×2 matrix, and there are 2 degrees of 

freedom. Hence 2 dimensions.
– For 3 classes, there is a 3×3 matrix, and there are 6 degrees of 

freedom. Hence 6 dimensions.
– For n classes … d= n×(n−1) dimensions.
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– For n classes … d= n×(n−1) dimensions.

• Problems:
– Representation of 6 or more dimensions difficult.
– The identification of the trivial classifiers is not clear.
– The computation of the convex hull of N points in a d-

dimensional space is in O(N log N + Nd/2).



Multi-class ROC Analysis

• Example. 3 classes.
a b c

a ha x1 x2

b x3 hb x4

c x5 x6 hc

Actual

Predicted
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• The xi give a 6-dimensional point. The values ha, hb, hc are 
dependent since:
– ha+x3+x5=1
– hb+x1+x6=1
– hc+x2+x4=1

• We can’t represent a ROC diagram, but still we could 
obtain the AUC.
– called in this case VUS (Volume Under the ROC Surface)



Multi-class ROC Analysis

• Maximum VUS for 3 classes.
– A point is a classifier if and only if:

x3 + x5 ≤ 1,  x1 + x6 ≤ 1, x2 + x4 ≤ 1

– The space determined by these equations can be easily 
obtained:

• It is equal to the probability that 6 random numbers under a 
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• It is equal to the probability that 6 random numbers under a 
uniform distribution U(0,1) follow these conditions

VUS3
max = P(U(0,1) + U(0,1) ≤ 1) · P(U(0,1) + U(0,1) ≤ 1) · P(U(0,1) 

+ U(0,1) ≤ 1) = [P(U(0,1) + U(0,1) ≤ 1)]3 = (½)3 = 1/8

• The previous expression can be approximated for more than 
3 classes.



Multi-class ROC Analysis

• Minimum VUS for 3 classes.

– Trivial classifiers:
» Where ha + hb + hc = 1

– We can discard a classifier if and only if it is above a trivial 
classifier:

∃h ,h ,h ∈R+ where (h + h + h = 1) such that:

a b c
a ha ha ha

b hb hb hb

c hc hc hc

Actual

Predicted
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∃ha,hb,hc∈R+ where (ha + hb + hc = 1) such that:

x1 ≥ ha, x2 ≥ ha, x3 ≥ hb, x4 ≥ hb, x5 ≥ hc, x6 ≥ hc

– This can be simplified into:

• Theorem 1:
– A classifier (x1, x2, x3, x4, x5, x6) can be discarded iff:

r1 + r2 + r3 ≥ 1

where r1 = min(x1, x2), r2 = min(x3, x4) and r3 = min(x5, x6).

• By a Montecarlo method, the minimum is approximated to 1/180.



HSA for Computing the ROC Polytopes

• The inequations (constraints) for max and min make it very difficult to 
obtain the exact values analytically.

• And, more importantly, 

How can we obtain the maximum and 
minimum VUS values exactly?
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•

• HSA (Hyperpolyhedron Search Algorithm):
– A Constraint Satisfaction Problem (CSP) Solver.
– Manages non-binary and continuous problems.
– Uses linear programming techniques.
– We will use HSA to determine the extreme solutions 

(hyperpolyhedron)

How can we obtain the VUS of any 
classifier exactly?



HSA for Computing the ROC Polytopes

• Minimum and Maximum VUS with HSA.
– Maximum. We solve the constraints:

x3 + x5 ≤ 1,  x1 + x6 ≤ 1, x2 + x4 ≤ 1

• We have 1/8, as expected.

– Minimum. Given the equations:
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– Minimum. Given the equations:
r1 + r2 + r3 ≥ 1

where r1 = min(x1, x2), r2 = min(x3, x4) and r3 = min(x5, x6).

• We transform them into:

x1 + x3 + x5 ≥ 1, x1 + x3 + x6 ≥ 1, x1 + x4 + x5 ≥ 1, x1 + x4 + x6 ≥ 1, 

x2 + x3 + x5 ≥ 1, x2 + x3 + x6 ≥ 1, x2 + x4 + x5 ≥ 1, x2 + x4 + x6 ≥ 1

• Which can be solved by HSA, giving 1/180, as expected.



HSA for Computing the ROC Polytopes

• Computing the VUS of any classifier with HSA.
– Basic Idea: Given a classifier, we combine it with the trivial 

classifier in order to know the volume of the classifiers it 
discards.

• The linear combination of one classifier z and the trivial classifiers 
is given by:
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is given by:
ha · (1, 1, 0, 0, 0, 0) + hb · (0, 0, 1, 1, 0, 0) + hc · (0, 0, 0, 0, 1, 1) + hd · (zba, 

zca, zab, zcb, zac, zbc)

– We can discard a classifier v iff: 
∃ha,hb,hc,hd ∈R+ where (ha + hb + hc + hd = 1) such that:

vba ≥ ha + hd · zba, vca ≥ ha + hd · zca, vab ≥ hb + hd · zab,

vcb ≥ hb + hd · zcb, vac ≥ hc + hd · zac, vbc ≥ hc + hd · zbc

– This sums up to a system of inequations with 10 variables that 
HAS can solve. 



HSA for Computing the ROC Polytopes

• Computing the VUS of a set of classifiers with HSA.
– The idea can be extended to a set of classifiers.

– E.g. given four classifiers, we can calculate the VUS of the 
convex hull of the four classifiers.

• The linear combination of four classifier z, w, x and y, and the 
trivial classifiers is given by:
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trivial classifiers is given by:

ha · (1, 1, 0, 0, 0, 0) + hb · (0, 0, 1, 1, 0, 0) + hc · (0, 0, 0, 0, 1, 1)+ h1 · (zba, zca, 

zab, zcb, zac, zbc)

+ h2 · (wba, wca, wab, wcb, wac, wbc)+ h3 · (xba, xca, xab, xcb, xac, xbc)+ h4 · 
(yba, yca, yab, ycb, yac, ybc)

– In the same way as before, we have a system with 9+4 
variables, which can be solved by HAS.



Evaluation of Approximations

• Now we are able to obtain the real VUS.
– The calculation is expensive, especially for 4 or more classes 

(12 or more dimensions).

– However, it can be used as a reference for evaluating current 
or new approximations.

• Approximations to the VUS for crisp classifiers:
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• Approximations to the VUS for crisp classifiers:
– Since, to date, the real AUC (VUS) could not be calculated, 

there have been many approximations:
• Macro-average

• Macro-average Modified

• 1-point trivial AUC extension

• 1-point Hand and Till Extension



Evaluation of Approximations

• Macro-average
– Given a classifier:

a b c
a vaa vba vca

b v v v

Actual

Predicted
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– The macro-average is just the average of the partial class accuracies.
MAVG3= (vaa + vbb + vcc) / 3

– Since the matrix is normalised, for points, this is equivalent to 
accuracy.

b vab vbb vcb

c vac vbc vcc

Predicted



Evaluation of Approximations

• Macro-average Modified
• Macro-average does not take into account that 

extreme partial accuracies are not good for AUC.
– Example: (0.2, 0.2) has more AUC than (0.1, 0.3), 

although macro-average is the same.
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although macro-average is the same.

• One solution is a geometric mean, a macro-
geomean, but this can be too much.

• A more general solution is the generalised mean:

MAVG3-MOD=                         .

– With t being a factor to be estimated.

t
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n

1

1
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Evaluation of Approximations

• 1-point trivial AUC extension

• We know that the AUC for two classes is:
AUC2 = max(1/2, 1 – vba /2 – vab /2)
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• Extending it trivially to 3 classes we have:
AUC-1PT3 = max(1/3, 1 – (vba + vca + vab + vcb + vac + vbc) /3

– Quite similar to macro-average, but different in some 
situations.



Evaluation of Approximations

• 1-point Hand and Till Extension
– Hand and Till presented an extension of the AUC measure for more than 

2 classes as a one-to-one weighting of all combinations.

– We consider three different variants for crisp classifiers:
HT1b= (max(1/2 ,  1–(vba+vab)/2) + max(1/2,  1–(vca+vac) /2) + max(1/2,  1–(vcb +vbc) /2)) / 3

∑∑
<≠ −
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−
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HT1b= (max(1/2 ,  1–(vba+vab)/2) + max(1/2,  1–(vca+vac) /2) + max(1/2,  1–(vcb +vbc) /2)) / 3

HT2= (max(1/2 ,  1 – (vba / (vba + vbb) + vab / (vaa + vab))/2)  + max(1/2,  1 – (vca / (vca + vcc) 

+ vac / (vaa + vac)) /2) + max(1/2,  1 – (vcb / (vcb + vcc) + vbc / (vbb + vbc)) /2))  / 3

HT3= (AUCa,rest + AUCa,rest + AUCa,rest )/ 3

– being:

AUCa,rest = max(1/2, 1 - [(vab+ vac) / (vaa + vab+ vac)]/2 - [ (vba + vca) / (vba + vca +  vbb + 

vbc + vcb + vcc)]/2



Evaluation of Approximations

• Evaluation:
– It is based on how well the approximations “rank” the 

classifiers, in comparison to the ranking, given to the real VUS.

– We define a measure of discrepancy.

– The results are:
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– The best results are obtained by the modified macro-average.

– More importantly, it is the only measure that is better than 
accuracy for evaluating crisps classifiers for ranking!

Accuracy Macro-
avg

Mod-avg 
(0.76)

1-p 
trivial

HT1B HT2 HT3

0.0871 0.0871 0.0588 0.0913 0.104 0.141 0.0968



Conclusions and Future Work

• Conclusions:
– The extension of ROC analysis, and related 

measures (AUC � VUS) has been addressed.
• We have identified the maximum VUS and the minimum 

VUS, and the general inequations.
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VUS, and the general inequations.

• We can solve these inequations through the HSA algorithm 
and hence obtain the VUS of any classifier and any set of 
classifiers.

– We have compared the approximations for VUS with 
the real VUS obtained by HAS.

• We have shown that only a modification of the macro-
average is better than accuracy for evaluating crisp 
classifiers, if we want to use them for ranking.



Conclusions and Future Work

• Ongoing Work:
– The evaluation of approximations of VUS for soft classifiers is 

our main immediate goal.

– We are evaluating approximations for soft classifiers 
(probability estimators). In this case,

• Hand and Till’s approximation (1vs1) seems to be better than 
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• Hand and Till’s approximation (1vs1) seems to be better than 
accuracy.

• Fawcett’s approximation (1vsAll) performs still better.

• Future Work
– Development of new approximations of VUS for soft classifiers.

• Much more accurate than current approximations.

• Much more efficient than HAS (able to cope with 5, 6 or more 
classes).


