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IntroductionIntroductionIntroductionIntroduction

�Many applications require some kind of reliability 
or numeric assessment of the quality of each 
classification.
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�Soft classifiers can give an estimate of the 
reliability of each prediction

�Soft classifiers are useful in many scenarios, 
including combination of classifiers, cost-
sensitive learning and safety-critical applications.



Probability Estimator Trees Probability Estimator Trees Probability Estimator Trees Probability Estimator Trees (1/3)(1/3)(1/3)(1/3)

�A common presentation of a soft classifier is a 
probability estimator, i.e. a model that estimates 
for an example the probability of membership of 
every class.
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every class.

�A decision tree adapted to be a probability 
estimator is called Probability Estimator Tree 
(PET).



Probability Estimator Trees Probability Estimator Trees Probability Estimator Trees Probability Estimator Trees (2/3)(2/3)(2/3)(2/3)

�A trained decision tree can be easily adapted to 
be a PET by using the absolute class frequencies 
of each leaf of the tree.

� If a node has the following absolute frequencies n1, n2, 
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� If a node has the following absolute frequencies n1, n2, 
..., nc (obtained from the training dataset) the 
estimated probabilities for that node can be derived as 
pi = ni / Σni. 

�The probability estimates obtained by PETs are 
quite poor with respect to other probability 
estimators 



Probability Estimator Trees Probability Estimator Trees Probability Estimator Trees Probability Estimator Trees (3/3)(3/3)(3/3)(3/3)

�A good DTC is always a good PET??

�There is a high correlation between quality of DTCs 
and quality of PETs, however many heuristics used for 
improving classification accuracy “reduce the quality of 
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probability estimates” [Provost F., Domingos P., 2003]

It is worth investigating new heuristics and 
techniques which are specific to PETs 



Evaluation of Probability EstimatorsEvaluation of Probability EstimatorsEvaluation of Probability EstimatorsEvaluation of Probability Estimators

�The AUC (Area under the ROC Curve) measure 
has been a standard measure for evaluating the 
quality of PETs.
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�We employ the Hand & Till extension of the AUC 
measure for multi-class problems.



Experimental EvaluationExperimental EvaluationExperimental EvaluationExperimental Evaluation

�50 datasets from the UCI repository (25 with 2 classes + 
25 with more than 2 classes).

�Results show the average of 20x5-fold cross-validation 
(i.e. 100 executions for dataset).
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(i.e. 100 executions for dataset).

�All experiments have been done within the SMILES 
system (http://www.dsic.upv.es/~flip/smiles/). 

� GainRatio splitting criterion without node collapsing. 



SmoothingSmoothingSmoothingSmoothing

�We have investigated the effect of using 
probability smoothing in the leaves of PETs.

�Laplace smoothing
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�Laplace smoothing

�m-estimate smoothing 
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SmoothingSmoothingSmoothingSmoothing

�Results for smoothing:

No smoothing
Laplace 

smoothing
M-estimate 

smoothing (m=4)

ECML 2003 9

No smoothing
smoothing smoothing (m=4)

25 datasets

(2 classes)
79.3 85.0 85.0

25 datasets

(>2 classes)
78.0 83.9 84.0

All 78.7 84.5 84.5



mmmm----branch smoothing branch smoothing branch smoothing branch smoothing (1/3)(1/3)(1/3)(1/3)

�m-estimate and Laplace smoothing methods consider 
a uniform class distribution of the sample.

�The sample used to obtain the probability estimate in 
a leaf is the result of many sampling steps, as many 
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a leaf is the result of many sampling steps, as many 
as the depth of the leaf.

� It makes sense, then, to consider this history of 
samples when estimating the class probabilities in a 
leaf.



mmmm----branch smoothing branch smoothing branch smoothing branch smoothing (2/3)(2/3)(2/3)(2/3)

�Given a leaf node l and its associated branch <n1, n2, 
..., nd> where nd = l and n1 is the root, denote with nij

the cardinality of class i at node nj. Define pi
0 = 1/c. We 

recursively compute the probabilities of the nodes from 
1 to d as follows:
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1 to d as follows:

�The m-branch smoothed probabilities of leaf l are given 
by pi

d.

mn

pmn
p

Ci

j

i

j

i

j

ij

i

+








⋅+
=

∑
∈

−1



mmmm----branch smoothing branch smoothing branch smoothing branch smoothing (3/3)(3/3)(3/3)(3/3)

M-estimate 
smoothing (m=4)

m-branch 
smoothing (m=4)

Better?

8 �

�Results for m-branch smoothing:
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25 datasets

(2 classes)
85.0 85.8

8 �

14 =

3 ×

25 datasets

(>2 classes)
90.5 91.5

13 �

9 =

3 ×

All 87.8 88.7

21 �

23 =

6 ×



Splitting Criteria for PETsSplitting Criteria for PETsSplitting Criteria for PETsSplitting Criteria for PETs

�The splitting criterion is a crucial factor in the 
learning of decision trees

�Classical splitting criteria (Gini, Gain Ratio, DKM) 
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�Classical splitting criteria (Gini, Gain Ratio, DKM) 
have been designed and evaluated for classifiers, 
not for probability estimators.



MAUC splitting criterionMAUC splitting criterionMAUC splitting criterionMAUC splitting criterion

� In previous works we have introduced a novel criterion 

aimed at maximising the AUC of the resulting tree rather 

than its accuracy.
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� It simply computes the quality of each split as the AUC of 

the nodes resulting from that split, assuming a two-class 

problem.

�The splitting criterion can be generalised for multiclass 

problems by using the Hand and Till’s 1-vs-1 average.



MSE splitting criterionMSE splitting criterionMSE splitting criterionMSE splitting criterion

�A different approach is to consider that the tree really 

predicts probabilities. 

� It makes sense to minimise the quadratic error (MSE) 
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� It makes sense to minimise the quadratic error (MSE) 

committed when guessing these probabilities. 

�Given a split s, the quality of the split is defined as:
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Splitting criteria comparisonSplitting criteria comparisonSplitting criteria comparisonSplitting criteria comparison

�Results in AUC measure:

C4.5 Gain Mgini DKM MAUCSplit MSESplit

MSESplit

Vs.

C4.5
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25 datasets

(2 classes)
84.9 84.8 84.6 84.8 85.0 85.3

7 �

13 =

5 ×

25 datasets

(>2 classes)
90.6 90.9 90.8 91.1 90.8 90.9

7 �

13 =

5 ×

All 87.7 87.8 87.7 87.9 87.8 88.1

14 �

26 =

10 ×



Pruning and PETs Pruning and PETs Pruning and PETs Pruning and PETs 

�Some works have shown that pruning is 

counterproductive for obtaining good PETs. 

�The better the smoothing at the leaves is the worse 
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�The better the smoothing at the leaves is the worse 

pruning will be.

� It is interesting to design pruning methods that reduce 

the size of the tree without degrading too much the 

quality of the PET.



CardinalityCardinalityCardinalityCardinality----based pruningbased pruningbased pruningbased pruning

� The size of the sample is crucial to establish the quality of a 

probability estimation.

� The poorest estimates of a PET will be obtained by the smallest 

nodes. It is also important to consider the number of classes.
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nodes. It is also important to consider the number of classes.

� Given a node l, it will be pruned when:

where Card(l) is the cardinality of node l, K is a constant (K=0 means 

no pruning) and c is the number of classes.

c

K
lCard 2)( <



CardinalityCardinalityCardinalityCardinality----based pruningbased pruningbased pruningbased pruning
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SummarySummarySummarySummary

C4.5
C4.5 with 
Laplace 

Smoothing

C4.5 with 
m-branch 
Smoothing

MSESplit with 
m-branch 
Smoothing

C4.5 + laplace vs

MSESplit + m-branch 
+ pruning k=1

25 datasets
11 �
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25 datasets

(2 classes)
78.0 83.9 84.9 85.4

11 �

9 =

5 ×

25 datasets

(>2 
classes)

87.3 89.5 90.6 90.6

16 �

4 =

5 ×

All 82.5 86.7 87.7 88.1

27 �

13 =

10 ×



Conclusions Conclusions Conclusions Conclusions (1/2)(1/2)(1/2)(1/2)

�We have reassessed the construction of PETs, 
evaluating and introducing new methods:

�A new smoothing correction that takes the whole 
branch of decisions into account.
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branch of decisions into account.

�A novel MSEE splitting criterion aimed at reducing 
the squared error of the probability estimate.

�A simple cardinality pruning method can be applied 
to obtain simpler PETs without degrading their 
quality too much. 



Conclusions Conclusions Conclusions Conclusions (2/2)(2/2)(2/2)(2/2)

�An exhaustive experimental evaluation has 
shown the performance of the methods

�One of the first works that that compares the 
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�One of the first works that that compares the 
ranking of probability estimates of several 
splitting criteria for PETs

�SMILES is freely available at:
�http://www.dsic.upv.es/~flip/smiles/



Future workFuture workFuture workFuture work

�The study of methods for improving the estimates 
without modifying the structure of a single tree. 

�The design of better pruning methods for PETs.
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�The design of better pruning methods for PETs.

�The use of PET’s in ensemble methods.


