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Abstract. In this work we analyse the relation between hierarchical distance-

based clustering and the concepts that can be obtained from the hierarchy by 

generalisation. Many inconsistencies may arise, because the distance and the 

conceptual generalisation operator are usually incompatible. To overcome this, 

we propose an algorithm which integrates distance-based and conceptual 

clustering. The new dendrograms can show when an element has been 

integrated to the cluster because it is near in the metric space or because it is 

covered by the concept. In this way, the new clustering can differ from the 

original one but the metric traceability is clear. We introduce three different 

levels of agreement between the clustering hierarchy obtained from the linkage 

distance and the new hierarchy, and we define properties these generalisation 

operators should satisfy in order to produce distance-consistent dendrograms. 

Keywords: conceptual clustering, hierarchical clustering, generalisation, 

distances.  

1 Introduction 

Distances and generalisations are the underlying concepts to two different approaches 

for machine learning. Similarity, which is a broader concept than distance, is the basis 

for many inductive inference techniques, since similar elements are expected to 

behave similarly. Distances do not only formalise the notion of similarity between 

cases or individuals, but provide the additional properties of metric spaces, which are 

advantageously exploited by many techniques, known as distance-based. 

Generalisation is also another key concept in machine learning. Any inductive 

learning involves some kind of generalisation. Unlike distance-based methods, some 

approaches are based on the idea that a generalisation or pattern discovered from old 

data can be used to describe new data covered by this pattern. These techniques are 

known as model-based. 
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Distance-based techniques are quite intuitive and flexible, in the sense that we only 

need to define a distance function for the data we are working with. However, 

distance-based methods do not provide a pattern or explanation which justifies the 

decision made for a given individual. In particular, distance-based clustering systems 

arrange elements into groups based on a numerical measure of similarity between 

elements. Therefore, the resulting clusters lack conceptual descriptions making them 

difficult to interpret. For instance, it is helpful to know that a given molecule belongs 

to a cluster because it is similar to the elements of the cluster according to a certain 

distance measure, but it would even be more interesting to know what chemical 

properties are shared by all the molecules in the cluster. 

A well-known approach for distance-based clustering is hierarchical clustering [1, 

2]. In hierarchical distance-based clustering, data are split into clusters during several 

partition steps forming a hierarchy of clusters from a single cluster containing all the 

elements to n clusters containing just one element. Depending on how the hierarchy is 

built, hierarchical clustering can be classified as agglomerative (bottom-up) or 

divisive (top-down).  

A different approach to clustering is conceptual clustering defined by Michalski [3, 

4]. Conceptual clustering overcomes the cluster interpretation problem by forming 

clusters that can be described by properties involving relations on a selected set of 

attributes. A conceptual clustering system accepts a set of object descriptions and 

produces a partition over the observations. These descriptions can be viewed as 

cluster generalisations, which are expressed as patterns common to all the elements of 

the cluster. 

In this work we present a general approach for clustering in such a way that we use 

a distance to construct the cluster hierarchy while also producing patterns. The core of 

the approach is an algorithm for Hierarchical Distance-based Conceptual Clustering 

(HDCC). The key issue here, which has been neglected by other conceptual clustering 

methods that use distances, is whether the hierarchy induced by a distance and the 

discovered patterns are consistent, i.e. are all the elements covered by a pattern close 

with respect to the underlying distance? To answer the question, first we need to 

clearly show when this happens. This has led to a new graphical representation of the 

resulting dendrogram (that we have named conceptual dendrogram). We also need to 

analyse a priori whether the inconsistencies will appear or not. This has given rise to 

the development of three levels of consistency between distances and generalisations 

and the corresponding properties which ensure (in a higher or lower degree) that the 

conceptual clustering also reflects the distribution of examples in the metric space. 

This means that if for a given problem we are able to prove these properties, we will 

know beforehand that the resulting hierarchy of patterns is at the same time consistent 

with the distance and the concepts expressed by each pattern in the hierarchy.  

The main contribution of this work is a practical and general way to integrate 

hierarchical distance-based and conceptual clustering smoothly. Additionally, the 

algorithm is also a general way to construct an n-ary generalisation operator from 

binary generalisation operators in a metric space. Our approach is general in the sense 

that it can be applied to any distance, pattern language and generalisation operator. 

Consequently, this idea is directly applicable to structured data. One possible 

instantiation would provide us with the descriptions or generalisations for clusters of 

first order atoms obtained by the application of Plotkin´s least general generalisation 
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operator (lgg) at the same time that the process of clustering uses a distance for atoms, 

e.g. the distance defined in [5]. Another direct instantiation would be for example the 

clustering of lists using regular patterns and the edit distance. 

The work is organised as follows. In Section 2 some necessary previous concepts 

are summarized. Our proposal (HDCC) is presented in Section 3. In Section 4 we 

show theoretical results about some generalisation operator properties. In section 5 we 

present some experiments which compare our method to traditional conceptual 

clustering. Finally, Section 6 closes the paper with the conclusions and future work. 

2 Preliminaries 

Intuitively, the generalisation of a finite set of elements E in a metric space (X, d) 

could be extensionally defined as a set that contains E. However, this kind of 

extensional definition gives no insight on the concept or pattern that the elements in 

the generalisation share. We say that a pattern p ∈ L, where L is the pattern language, 

is an intensional way of representing a set of elements of X, which are denoted by 

Set(p).  

First we introduce the definition of binary generalisation operators over a metric 

space and then we extend this concept to patterns in Definition 2. 

Definition 1. Let (X, d) be a metric space and L a pattern language. A binary 

generalisation operator is a function ∆: X × X→ L such that given x1 ∈ X, x2 ∈ X, ∆(x1, 

x2) = p, where p ∈ L and x1 ∈ Set(p) and x2 ∈ Set(p). 

Fig. 1 (Left) shows five possible generalisations of two points in the metric space 

(ℜ2
, d), where d is the Euclidean distance. 
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Fig. 1. (Left) Five possible generalisations of two points in ℜ2. (Right) A generalisation of two 

patterns p1 and p2 in ℜ2. 

Definition 2. Let (X, d) be a metric space and L a pattern language. A pattern binary 

generalisation operator is a function ∆*
: L × L → L such that given p1 ∈ L and p2 ∈ L, 

∆*
(p1, p2) = p, where p ∈ L and Set(pi) ⊆ Set(p) (i ∈ {1,2}). 

Definition 2 establishes that a generalisation of two patterns must describe at least 

all the elements described by both patterns. In Fig. 1 (Right) we show a possible 

generalisation for two patterns p1 and p2 in L, where L is the set of all axis-parallel 

rectangles. 

Note that when L = X, as it happens, e.g. with lgg for atoms, the operator ∆*
 and ∆ 

can be the same. 
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3 Hierarchical Distance-based Conceptual Clustering Algorithm 

The approach to clustering we propose is based on one of the most known and simple 

bottom-up distance-based algorithms, the agglomerative hierarchical clustering. It 

builds a hierarchy of clusters from individual elements by progressively merging 

clusters. Clusters are joined based on the distance between them, referred as the 

linkage distance. Usually, the linkage distance is determined by the maximum 

distance between elements of each cluster (i.e. complete linkage distance, d
c
L), by the 

minimum distance between elements of each cluster (i.e. single linkage distance, d
s
L), 

by the mean distance between elements of each cluster (i.e. average linkage distance, 

d
a
L), or by the minimum distance between the cluster prototypes (i.e. prototype 

linkage distance, d
p
L), among others. In the rest of the paper we will only consider 

these four functions, d
c
L, d

s
L, d

a
L, and d

p
L. We use dL to refer any of them. 

In traditional agglomerative hierarchical clustering, the process of clustering starts 

at the leaves of the tree where each leaf corresponds to a one-element cluster. Then it 

joins the two closest clusters into a new cluster that becomes the parent of the formers 

into the hierarchy. Now the new cluster and the rest minus the two closest ones 

compose the new set of clusters. This process is repeated until eventually the set of 

clusters is formed by only one cluster containing all the elements.  

A problem appears if we want a pattern or description for each cluster. Since the 

clustering process is driven by the underlying distance, a discovered pattern obtained 

by generalisation may describe the elements of a cluster but it might describe other 

elements of the metric space that are not included into the cluster. This can lead to an 

inconsistency between the clusters described by the patterns and those resulting from 

the hierarchical algorithm. To illustrate the problem let us consider the example for 

lists of symbols given in Fig. 2 (Left). The elements belong to the metric space (X, d) 

where X is the set of all the finite list of symbols on the alphabet Σ = {a, b} and d is 

the edit distance or Levenshtein distance [6] considering the cost of a replacement as 

the cost of a supression plus an insertion. The figure shows four elements (aa, aab, 

abb, aabbbbbb) and the distances between them. 
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Fig. 2. (Left) Four examples of lists in (Σ*, d). (Right) The coverage of pattern p = aa∗. 

According to the hierarchical clustering algorithm with single linkage and taking 

into account the distances between the examples, the resulting clusters are those 

shown in Fig. 3 (Left). Let us suppose that the chosen generalisation operator 

produces the pattern aa∗ for the cluster {aa, aab}. Clearly, there is a metric 

inconsistency between the elements described by aa∗ (aa, aab, aaa, aaba, aabb,…) 

and the clusters induced by the distance, since aa∗ covers aabbbbbb but it does not 

cover abb, which is closer (see Fig. 2 (Right)). 
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With this idea, the proposed approach to hierarchical distance-based conceptual 

clustering (HDCC) makes a generalisation operator and a distance work together by 

achieving a simple adaptation to the hierarchical base algorithm. This adaptation 

consists in merging to each new cluster all those clusters covered by its 

generalisation. In this way, the final patterns provide a description common to all the 

elements that are close according to the underlying distance but also of those that 

although not close enough to be part of the cluster are covered by the pattern. To 

represent the resulting clustering we use an extended dendrogram that we have named 

conceptual dendrogram. A conceptual dendrogram provides not only with the 

traditional information about what elements are in each cluster but it also gives a 

description of the common properties of their elements in the form of a pattern. A 

solid line links the clusters merged by the distance, while a dashed line links those 

merged by a pattern. Fig. 3 (Right) shows the conceptual dendrogram for the current 

example. The pattern p = aa∗ covers the cluster {aa, aab, aabbbbbb}, which has been 

formed considering in first place the distance between the clusters and in second place 

the coverage of the resulting pattern aa∗.  

 

Fig. 3. (Left) Traditional dendrogram. (Right) Conceptual dendrogram. 

To overcome the inconsistency problem between the distance and the 

generalisation operator mentioned above, HDCC performs a coverage-reorganisation 

process that consists in merging to the new cluster C with pattern p all those clusters 

in the hierarchy that are included in Set(p). Hence these conceptually-added clusters 

can play a very different role in the construction of the hierarchy. Note that this 

process is performed during the construction of the hierarchy, and not as a post-

process. A post-processing over the original dendrogram would not yield a distance-

consistent explanation of the hierarchy and it would imply a much more complex, 

costly and thorough reorganization of the hierarchy. 

Table 1 shows a pseudo code for HDCC. The output is a tree T where each node is 

a cluster with its corresponding pattern and linkage distance (shown on the Y-axis). 

The HDCC is in fact a n-ary generalisation operator. 

Table 1. Hierarchical distance-based conceptual clustering 

Input: E={e1, e2,…, en} ⊆ X and a distance d, with (X, d) a metric space; ∆*: 
L × L → L a pattern binary generalisation operator; ∆: X × X → L a 
binary generalisation operator; dL: 2

X × 2X × (X × X → ℜ) → ℜ a linkage 
distance.  
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Output: A tree T of clusters and generalisations.  

1. S ← {{ e1 }, { e2 }, …, { en }}. 
2. Insert tuple ({ei}, ∆(ei, ei), 0) as a leaf of T, for all {ei} in S. 
3. While S ≠ {E} do 
 3.1. Compute dL(Ci, Cj, d) between each pair of clusters Ci, Cj ∈ S 
 with i< j, using the distance d.  
 3.2. Compute the pattern pCxy of cluster Cxy as ∆*(pCx, pCy), where 
 Cxy = Cx ∪ Cy, pCx, pCy are the patterns of Cx and Cy, respectively,  
 and Cx and Cy are the closest clusters in S according to dL. 
 3.3. S ← S ∪{Cxyz} and Cxyz = Cxy ∪ Cz and Cz = { e | e ∈ C i ∧ C i ∈ S ∧ Ci ⊆ Set(pCxy) } 
 3.4. Insert (Cxyz, pCxy, dLCxy) in T as the parent node of (Cx, pCx, dLCx), 
 (Cy, pCy, dLCy) and of nodes (Ci, pCi, dLCi) where Ci ∈ S and Ci ⊆ Set(pCxy).  
 3.5. S ← S – {Ci} for all Ci s.t. Ci ⊆ Set(pCxy).  
4. Return T.  

 

The following simple example illustrates how the HDCC algorithm works under 

single linkage. Let us suppose the evidence is the set of points in ℜ2
 shown in Fig. 4  

(Left) while the generalisation operator and the pattern language are the same used in 

the example shown in Fig. 1 (Right). 

 

Fig. 4. (Left) A set of points in ℜ2. (Center) The discovered patterns p1,…, p7. The shadowed 

area shows the evidence covered by p4. (Right) Conceptual dendrogram. 

Fig. 4 (Right) shows the resulting conceptual dendrogram. The clusters {a, b}, {a, 

b, c}, {a, b, c, d} and {a, b, c, d, e} have been formed driven by the distance. 

However, as we can see in Fig. 4 (Center) the cluster {i} has been merged to {a, b, c, 

d, e} by the pattern p4 that covers both. Note that {i} would have been the last merged 

cluster by d
s
L in the traditional dendrogram. 

4 Consistency between Distances and Generalisation Operators 

The exact shape of the conceptual dendrogram and whether it has dashed links 

depends not only on the distance d and the generalisation operators used but also on 

the linkage distance dL. We can talk of several degrees of consistency between 

distances and generalisations on the basis of the similarity between a conceptual 

dendrogram and the traditional one. The more similar the dendrograms are the more 
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consistent the distance is wrt. the generalisation operator. Next we present three 

different conditions to ensure that the generalisation operator produces distance-

consistent dendrograms. 

4.1 Equivalent Dendrograms 

In some cases, the conceptual dendrogram is isomorphic to the traditional 

dendrogram. This happens when the discovered patterns do not cover any other 

cluster besides those linked by the distance, i.e. each new cluster is formed only by 

merging the closest clusters or it is composed of only one element (i.e. it is a leaf 

cluster). Therefore, we say that a conceptual dendrogram is equivalent to a traditional 

dendrogram if for each cluster C which is not a leaf all its children are linked at the 

same distance l. This is formalised in Definition 3. 

Definition 3. Let T be the tree resulting from HDCC. T is equivalent to a traditional 

dendrogram iff ∀ (C, p, l) ∈ T : (|C| = 1 ∨ (∀ (Ci, pi, li) child of (C, p, l), ∃ (Cj, pj, lj) 

child of (C, p, l) in T  such that dL(Ci, Cj, d) = l)). 

If we want equivalent dendrograms, each time HDCC determines the two closest 

clusters C1 and C2 with linkage distance l, the corresponding pattern p should not 

cover any other cluster C whose distances l1 and l2 to C1 and C2 respectively are 

greater than l. Note that l1 and l2 can not be lower than l since in this case HDCC 

would have merged this cluster to C1 or C2 before. We say that generalisation 

operators that generate patterns whose coverage satisfies this condition are strongly 

bounded by dL. Intuitively, a pattern binary generalisation operator is strongly 

bounded by dL when for any pair of patterns p1, p2, and any pair of sets C1 and C2 

covered by each, the linkage distances from the new elements covered by the 

generalisation of p1 and p2 to C1 and C2 are equal or lower than the linkage distance 

between C1 and C2, i.e. the new elements covered by the generalisation of p1 and p2 

fall into the balls of radius dL(C1, C2, d) and centre in the linkage points of C1 and C2. 

The linkage points are, in the case of d
s
L, the two closest elements in C1 and C2; the 

two most distant elements in d
c
L; the prototypes in the case d

p
L and the centroids in the 

case of d
a
L (assuming the metric space is continuous). This concept is formalised in 

Definition 4. 

Definition 4. Let (X, d) be a metric space, L a pattern language and dL a linkage 

distance. A pattern binary generalisation operator ∆*
 is strongly bounded by dL iff ∀ 

p1, p2 ∈ L, C1 ⊆ Set(p1), C2 ⊆ Set(p2), C ⊆ Set(∆*
(p1, p2)) – (Set(p1) ∪ Set(p2)) : dL(C, 

C1, d) ≤ dL(C1, C2, d) ∨ dL(C, C2, d) ≤ dL(C1, C2, d). 

Fig. 5 (Left) shows clusters {a, b, c} and {d, e, f} formed under single linkage. The 

patterns used are unions of axis-parallel rectangles. A is the generalisation of {d, e}, A 

∪ C of {d, e, f}, B of {a, b}; B ∪ D of {a, b, c} and A ∪ C ∪ B ∪ D ∪ E of {a, b, c, 

d, e, f}. The union of the circles determines the area where the new elements in the 

generalisation of A ∪ C and B ∪ D should be if ∆* 
is strongly bounded by d

s
L. 

Definition 5 gives the same property for a binary generalisation operator. A binary 

generalisation operator is strongly bounded by dL when for any pair of elements e1 

and e2, the linkage distances from {e1} and {e2} to any cluster {e} covered by the 



8      A. Funes1,2, C. Ferri2, J. Hernández-Orallo2, M. J. Ramírez-Quintana2 

generalisation of e1 and e2 is lower than the linkage distance between {e1} and {e2}, 

i.e. e must fall into the balls of radius dL({e1}, {e2}, d) and centre in e1 and e2.  

D

L e21
e   . ..  .

. .
b

e

f

a 

d
.A

B

C

E

.c

d

 

Fig. 5. (Left) The union of the circles shows the region where the new elements in the 

generalisation of A ∪ C and B ∪ D should be. (Right) Maximum coverage of a binary 

generalisation operator ∆ strongly bounded by dL. 

Definition 5. Let (X, d) be a metric space, L a pattern language and dL a linkage 

distance. A binary generalisation operator ∆ is strongly bounded by dL iff ∀ e, e1, e2 

∈ X: if e ∈ Set(∆(e1, e2)) then dL({e}, {e1}, d) ≤ dL({e1}, {e2}, d) ∨ dL({e}, {e2}, d) ≤ 

dL({e1}, {e2}, d). 

Fig. 5 (Right) shows the area in ℜ2
 that a pattern p is allowed to cover when ∆ is 

strongly bounded by dL. Note that when we generalise only two elements the linkage 

distance dL is equal to the distance d between the elements for any dL.  

The linkage distance dL used by HDCC affects the boundedness property of 

generalisation operators. Given a distance d, a generalisation operator could be 

strongly bounded under a given dL but not under a different one. For example, the 

pattern generalisation operator ∆*
 shown in Fig. 4 (Center) is not strongly bounded by 

d
s
L but it is strongly bounded by d

c
L. We can easily see that it is not strongly bounded 

by d
s
L because, for instance, the point i covered by the pattern p4 is outside the balls 

with centre in d and e and radius d
s
L({a, b, c, d,}, {e}, d). Note that d

s
L({a, b, c, d}, {e}, 

d) = d(d, e). However, ∆*
 is strongly bounded by d

c
L since each pattern covers a 

rectangle that is determined by the two most distant points e1 and e2 in C1 and C2, 

and this rectangle is always in the intersection of the two balls B(e1, l) and B(e2, l), 

where l = d
c
L(C1, C2 , d) = d(e1, e2) and e1, e2 are the linkage points in C1 and C2. 

Proposition 1. Let (X, d) be a metric space, L a pattern language for X, ∆ a binary 

generalisation operator, ∆*
 a pattern binary generalisation operator and dL a linkage 

distance. For any evidence E ⊆ X, the conceptual dendrogram T resulting from 

HDCC(E, X, d, ∆*
, ∆, dL) is equivalent to the traditional dendrogram if the 

generalisation operators ∆ and ∆*
 are strongly bounded by dL. 

Proof. There are two different cases to consider in T: (a) the leaves and (b) the 

internal nodes. 

Case (a): In the first step HDCC builds n clusters {e} and their corresponding 

generalisations as ∆(e, e). Since ∆ is strongly bounded by dL we have by Definition 5 

∀ e’, e ∈ E: if e’ ∈ Set(∆(e, e)) then dL({e’}, {e}, d) ≤ dL({e}, {e}, d). Since dL({e}, 

{e}, d) = 0 and dL is positive, then dL({e’}, {e}, d) = 0. The only element e’ that 

satisfies this is e’ = e. Therefore, after a pattern is computed no other element can be 
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added to the cluster by HDCC. Therefore, in this case, T is equivalent to the 

traditional dendrogram by Definition 3. 

Case (b): In the following steps, each new node (C, p, l) in T is formed by merging in 

first place the two clusters (C1, p1, l1), (C2, p2, l2) whose linkage distance l is the 

lowest and p is computed as ∆*
(p1, p2). Since ∆*

 and ∆ are generalisation operators we 

have that C ⊆ Set(p) and C1 ⊆ Set(p1) and C2 ⊆ Set(p2). 

− If ∆*
(p1, p2) does not cover any other cluster in addition to C1 and C2, we have C = 

C1 ∪ C2 and dL(C1, C2, d) = l. 

− Let us suppose there is another child (C3, p3, l3) of (C, p, l) such that C3 ⊆ Set(∆*
(p1, 

p2))–(Set(p1) ∪ Set(p2)). Since ∆*
 is strongly bounded, by Definition 4 we have 

dL(C3, C1, d) ≤ dL(C1, C2, d) ∨ dL(C3, C2, d) ≤ dL(C1, C2, d). However, dL(C3, C1, d) 

must be equal to dL(C1, C2, d) and dL(C3, C2, d) must be equal to dL(C1, C2, d) 

otherwise HDCC should have merged before C1 and C3 or C2 and C3 than C1 and 

C2. 

 Therefore, dL(Ci, Cj, d) = l for any child (Ci, pi, li), (Cj, pj, lj) of (C, p, l) and 

consequently, in both cases, T is equivalent to the traditional dendrogram by 

Definition 3.                □ 

 

Fig. 6. An equivalent conceptual dendrogram. 

Fig. 6 shows a simple example of a conceptual dendrogram that is equivalent to the 

traditional dendrogram under single linkage. L is the set of the finite closed intervals 

in ℜ, and d the absolute difference. ∆*
(p1, p2) is the interval [min, max], where min is 

the minimum value of the lower bounds of p1 and p2, and max is the maximum of the 

upper bounds. ∆(e1, e2) is [min(e1, e2), max(e1, e2)]. It is easy to see that (a) ∆*
and (b) 

∆ are strongly bounded by d
s
L: 

− (a) Each generalisation of two patterns p1 and p2 is a new interval p that only 

covers the elements covered by p1 and p2 and those that are in between of them. If 

e1 and e2 are the linkage points in C1 and C2 that have determined the single 

linkage distance l = d
s
L(C1, C2, d), the new elements in the interval p must be 

included into the two balls B(e1, l) or B(e2, l), i.e. the intervals [e1 – l, e1 + l] or [e2 

– l, e2 + l ]. Since e1 and e2 are the closest elements in C1 and C2, we have that p1 = 

[a, e1] and p2 = [e2, b] and p = [a, b]. Clearly the new elements in p, i.e. the 

elements in the interval ]e1, e2[, are included in [e1 – l, e1 + l] and also in [e2 – l, e2 

+ l ] because l = | e2 – e1 |. 

− (b) ∆ is strongly bounded by d
s
L too because any element in Set(∆(e1, e2)) will be 

always in between of e1, e2. Note that (a) and (b) holds for any dL here considered. 
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The condition for having equivalent dendrograms, however, is too strong for many 

datatypes and generalisation operators given that it forces to minimal generalisations. 

In fact a pattern generalisation operator ∆*
(p1, p2) whose coverage Set(∆*

(p1, p2)) is 

equal to Set(p1) ∪ Set(p2) is strongly bounded because there is no new elements in 

∆*
(p1, p2), so the only set C which must satisfy (dL(C, C1, d) ≤ dL(C1, C2, d) ∨ dL(C, 

C2, d) ≤ dL(C1, C2, d)) is C = ∅ and since the dL from a cluster to ∅ is zero, the 

condition holds for any p1, p2 ∈ L, C1 ⊆ Set(p1), C2 ⊆ Set(p2). The same happens with 

∆ when ∆(e1, e2) is defined as {e1, e2}. 

4.2 Order-preserving Dendrograms 

Sometimes for a given pair of generalisation operators ∆ and ∆*
, a distance d and a 

linkage distance dL, the conceptual dendrogram –although not equivalent to the 

traditional one– can just preserve the order in which clusters are merged by dL, i.e. a 

discovered pattern will never cover a farther cluster leaving out a closer one. In that 

case, we say that the conceptual dendrogram is order-preserving.  

More specifically, an order-preserving conceptual dendrogram is one where for 

any node (C, p, l) in the hierarchy, its children are linked at the same distance l or they 

are linked by the pattern at a linkage distance lower than the linkage distance from 

any other cluster in the hierarchy not covered by the pattern. This concept is 

formalised by Definition 6. 

Definition 6. Let (X, d) be a metric space and T the tree resulting from HDCC. T is 

order-preserving iff ∀ (C, p, l), (Ci, pi, li) ∈ T, ∃ (Cj, pj, lj) ∈ T with (Ci, pi, li) and (Cj, 

pj, lj) children of (C, p, l)  such that  dL(Ci, Cj, d) = l ∨ (dL(Ci, Cj, d) < dL(C’, Ci, d) ∧ 

dL(Ci, Cj, d) < dL(C’, Cj, d)), for all (C’, p’, l’) ∈ T , C’ ⊄ Set(p). 

To obtain an order-preserving conceptual dendrogram, any time HDCC merges 

two clusters C1 and C2 with patterns p1 and p2, any other cluster C covered by the 

generalisation of p1 and p2 that has not been linked by the distance dL must have lower 

linkage distances to C1 and C2 than the linkage distances to C1 and C2 from any other 

cluster C’ not covered by the pattern. This is formalized by the property we call weak 

boundedness and that is given by Definition 7. Analogously, Definition 8 establishes 

the same property for binary generalisation operators. 

Definition 7. Let (X, d) be a metric space, L a pattern language and dL a linkage 

distance. A pattern binary generalisation operator ∆*
 is weakly bounded by dL iff ∀ 

p1, p2 ∈ L, C1 ⊆ Set(p1), C2 ⊆ Set(p2), C ⊆ Set(∆*
(p1, p2)) – (Set(p1) ∪ Set(p2)), C’ ⊄ 

Set(∆*
(p1, p2)) : (dL(C, C1, d) ≤ dL(C1, C2, d) ∨ dL(C, C2, d) ≤ dL(C1, C2, d)) ∨ (dL(C, 

C1, d) < dL(C’, C1, d) ∧ dL(C, C2, d) < dL(C’, C2, d)). 

Definition 8. Let (X, d) be a metric space, L a pattern language and dL a linkage 

distance. A binary generalisation operator ∆ is weakly bounded by dL iff ∀ e, e’, e1, e2 

∈ X: if e ∈ Set(∆(e1, e2)) and e’ ∉ Set(∆(e1, e2)) then dL({e}, {e1}, d) ≤ dL({e1},{e2}, 

d) ∨ dL({e}, {e2}, d) ≤ dL({e1},{e2}, d) ∨ ((dL({e}, {e1}, d) < dL({e’},{e1}, d) ∧ dL({e}, 

{e2}, d) < dL({e’},{e2}, d)). 
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Proposition 2. Let (X, d) be a metric space, L a pattern language, dL a linkage 

distance, ∆ a binary generalisation operator, and ∆*
 a pattern binary generalisation 

operator. 

(a) If ∆*
 is strongly bounded by dL then ∆*

 is weakly bounded by dL.  

(b) If ∆ is strongly bounded by dL then ∆ is weakly bounded by dL. 

Proof. Part (a) of Proposition 2 follows immediately from definitions of strongly and 

weakly bounded operators. Any pattern generalisation operator that is strongly 

bounded by the linkage distance is also weakly bounded given that Definition 7 

relaxes the condition in Definition 4. The same holds for part (b) since Definition 8 

relaxes the condition in Definition 5.             □ 

As before, we want to show that the weakly bounded property is a sufficient 

condition to preserve the order. 

Proposition 3. Let (X, d) be a metric space, L a pattern language, ∆ a binary 

generalisation operator, ∆*
 a pattern binary generalisation operator and dL a linkage 

distance. For any evidence E ⊆ X, the conceptual dendrogram T resulting from 

HDCC(E, X, d, ∆*
, ∆, dL) is order-preserving if the generalisation operators ∆ and ∆*

 

are weakly bounded by dL. 

Proof. There are two different cases to consider in T: (a) the leaves and (b) the 

internal nodes. 

Case (a): In the first step HDCC builds n nodes ({e}, ∆(e, e), l) with l = 0. If ∆(e, e) 

covers any other element this is merged to {e}.  

Since ∆ is weakly bounded by dL we have by Definition 8 ∀ e, e’, e1 ∈ E: if e ∈ 

Set(∆(e1, e1)) and e’ ∉ Set(∆(e1, e1)) then dL({e}, {e1}, d) ≤ dL({e1},{e1}, d) ∨ (dL({e}, 

{e1}, d) < dL({e’},{e1}, d). Since dL({e1}, { e1}, d) = 0 and dL is positive we have ∀ e, 

e’, e1 ∈ E: if e ∈ Set(∆(e1, e1)) and e’ ∉ Set(∆(e1, e1)) then dL({e},{e1}, d) = 0 ∨ 

dL({e},{e1}, d) < dL({e’},{e1}, d).  Therefore, T is order-preserving by Definition 6. 

Case (b): In the following steps, each node (C, p, l) in T is formed by merging (in first 

place) the two clusters (C1, p1, l1), (C2, p2, l2) whose linkage distance l is the lowest 

and p is computed as ∆*
(p1, p2). Since ∆*

 and ∆ are generalisation operators we have 

that C ⊆ Set(p) and C1 ⊆ Set(p1) and C2 ⊆ Set(p2).  

− If ∆*
(p1, p2) does not cover any other cluster different to C1 and C2, we have C = C1 

∪ C2 and dL(C1, C2, d) = l. 

− Let us suppose there is another child (C3, p3, l3) of (C, p, l) such that C3 ⊆ 

Set(∆*
(p1, p2)) – (Set(p1) ∪ Set(p2)). Since ∆*

 is weakly bounded, by Definition 7 

we have dL(C3, C1, d) ≤ dL(C1, C2, d) ∨ dL(C3, C2, d) ≤ dL(C1, C2, d) ∨ (dL(C3, C1, d) 

< dL(C’, C1, d) ∧ dL(C3, C2, d) < dL(C’, C2, d)) for all C’ ⊄ Set(∆*
(p1, p2)). By 

reasoning as in Proposition 1 we have, dL(C3, C1, d) = dL(C3, C2, d) = dL(C1, C2, d) 

= l ∨ (dL(C3, C1, d) < dL(C’, C1, d) ∧ dL(C3, C2, d) < dL(C’, C2, d)). 

Therefore, in both cases, T is order-preserving by Definition 6.          □ 

The conceptual dendrogram of Fig. 3 (Right) is not order-preserving under the 

single linkage. ∆*
 is not weakly bounded by d

s
L since the pattern aa* has linked first 

the cluster {aabbbbbb}, which is farther from {aa} and {aab} than {abb}. 
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Fig. 7 shows an example of an order-preserving dendrogram for nominal data using 

d
s
L. We have used a distance similar to the one defined in [14], a distance induced by 

a relationship R, where R is a partial order. R is defined as xRy if x is a y. Fig. 7 (Left) 

shows part of a relationship R as a tree hierarchy. The distance between two elements 

is the sum of costs associated to each edge of the shortest path connecting them. The 

cost of an edge of level i is wi = 1/2
i
. ∆(e1,e2) is defined as the minimun ancestor of e1 

and e2 if e1 ≠ e2 otherwise is equal to e1, and ∆*
(p1, p2) is defined anlogously. In Fig. 7 

(Top right) we can see the traditional dendrogram, and the corresponding conceptual 

dendrogram in Fig. 7 (Bottom right). The evidence is formed only by elements in the 

leaves of R. The internal nodes are generalisations. 

 Animal 
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Fig. 7. (Left) Relationship R as a tree. (Top right) Traditional dendrogram. (Bottom right) 

Not equivalent but order-preserving conceptual dendrogram. 

Note that a pattern generalisation operator that covers all the space (the maximal 

operator ∆*
(p1, p2) = p where Set(p) = X) is trivially weakly bounded because we 

cannot find a cluster C such that C ⊄ Set(∆*
(p1, p2)).  

4.3 Acceptable generalisation operators 

There are some generalisation operators that although not (weakly) bounded lead to 

dendrograms which are consistent with the distance in a broader sense. The idea is 

that a pattern should not cover new elements whose distance to the old elements is 

greater than the greatest distance between the old elements. We refer to the operators 

that produce this kind of patterns as acceptable. In this case, the dendrograms can 

differ significantly. 

Definition 9. Let (X, d) be a metric space, L a pattern language and d
c
L( . , . , . ) the 

complete linkage distance. A pattern binary generalisation operator ∆*
 is acceptable 

iff ∀ p1, p2 ∈ L, e ∈ Set(∆*
(1, p2)), ∃ e’ ∈ Set(p1) ∪ Set(p2) : d(e, e’) ≤ 

d
c
L(Set(p1),Set(p2), d). 

In Fig. 8 (Left) the union of the circles whose centres are in Set(p1)∪Set(p2) and 

radius equal to d
c
L(Set(p1), Set(p2), d) determines the maximum coverage for a pattern 

produced by an acceptable generalisation operator for the evidence {a, b, c, d} in ℜ2
. 

Note that a pattern generalisation operator is acceptable independently of the 

linkage distance used. It only depends on the distance d between the two most distant 
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elements in the clusters. We use d
c
L in the definition to simplify the notation. 

Definition 10 gives the same concept applied to binary generalisation operators. 

Definition 10. Let (X, d) be a metric space, L a pattern language. A binary 

generalisation operator ∆ is acceptable iff ∀ e, e1, e2 ∈ X : if e ∈ Set(∆(e1, e2)) then 

d(e, e1) ≤ d(e1, e2) or d(e, e2) ≤ d(e1, e2). 

We can see from Definition 10 and Definition 5 that any binary generalisation 

operator ∆ is acceptable if and only if it is strongly bounded by the linkage distance 

since the linkage distance dL is equal to d when applied to single sets for any of the 

linkage distances here considered. 

The pattern binary generalisation operator ∆*
 used in Fig. 6 is acceptable, since all 

the elements in p will always fall between the bounds of p1 and p2 and consequently at 

a distance lower than the two most distant elements in p1 and p2. ∆ is also acceptable 

because, as we showed for the example of Fig. 6, it is strongly bounded by the linkage 

distance. 

The good thing is that ∆(e, e) = {e} is strongly bounded, and hence acceptable. 

This operator can usually be expressed in most L. So, only ∆*
 must be analysed in 

most cases and, additionally, it is independent from dL. Results obtained for 

acceptability will be then extensible to whatever linkage function. 

 

�

�a 

b �
�c d 

dC
L 

   

Fig. 8. (Left) The coverage of an acceptable ∆* for the evidence {a, b, c, d} in ℜ2. (Center) 

Traditional dendrogram. (Right) Conceptual dendrogram. 

Fig. 8 (Center) shows the traditional dendrogram for the evidence {baaa, aaaa, ba, 

bbb, cacc} and Fig. 8 (Right) the corresponding conceptual dendrogram, both using 

d
s
L. The metric space is (Σ*

, d), where Σ*
 is the space of states of lists formed from Σ 

included the empty list λ, Σ = {a, b, c} and d is the edit distance. The pattern language 

L is given by all the finite lists from the alphabet Σ’ = Σ ∪ V ∪ {λ} where V = {V1, 

V2, …, Vn} is a set of variables. The variables are used to generalise symbols in Σ ∪ 

{λ}. The generalisation of two lists is given by ∆(l1, l2) = p where p is formed by the 

patterns given by the optimal alignments of l1 and l2 and whose length is given by the 

length of the longest pattern l1 or l2. Variables represent the symbols that do not 

match. For instance, ∆(aabaaa, ababaa) = aV1V2V3aa. ∆*
(p1, p2) is computed 

analogously, e.g. ∆*
(aV1V2V3aa, baa) = V1V2V3V4aa. Although ∆ and ∆* 

are not 

bounded under the single linkage distance, they are acceptable given that each pattern 

covers elements whose distances are at most the number of variables in the pattern 

and this is precisely the maximum distance possible between two elements in Set(p), 

in particular to the elements in Set(p1) ∪ Set(p2).  
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5 Experimental Results 

One question that arises from the previous proposal is whether the new conceptual 

clustering, coming from the on-line re-arrangement of the dendrogram might 

undermine cluster quality (in the cases where the dendrograms are not equivalent, 

naturally). In order to bring some light on this, the experiments below compare 

HDCC against the traditional version of the hierarchical clustering algorithm. We 

constructed 100 artificial datasets by drawing points from a finite mixture of k 

Gaussian distributions in ℜ2
 whose means are randomly located in [0, 100]

2 
with a 

standard deviation of 1. Although k represents the actual number of gaussians in a 

dataset, note that there might be overlapping between gaussians, so having fewer 

clusters. We set k = 3, and each dataset was formed by 600 points (200 points were 

drawn from each of the 3 Gaussian distributions). The experiments were conducted 

under single and complete linkage and using two different language patterns L1 and 

L2. L1 is the language of axis-parallel rectangles and L2 is the language of circles. 

Fig. 9 shows the discovered patterns in L1 and L2 for one dataset with 600 points 

drawn from three Gaussian distributions, one using d
s
L (Left) and the other using d

c
L 

(Right). Note that the rectangles obtained incrementally by HDCC fit the points as 

well as an n-ary operator. This is not the case in L2 where the discovered patterns are 

more general than using an n-ary operator. However, as we can see in Table 2, it does 

not affect the clustering quality because they are built incrementally and HDCC in 

each step only merges those clusters that are completely covered by the pattern. 

To assess the quality of the clustering we employed a measure, S, that reflects the 

mean scattering over the k clusters (see eq. (1)). The lower S is the better the 

clustering is. Table 2 shows S averaged over n different experiments. Note that n can 

take values less than 100 in HDCC since the resulting hierarchies do not always have 

a clustering of k clusters (several clusters may be joined by a discovered cluster 

pattern in one step).  

∑ ∑ ∑=
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The experiments show that not only quality is not degraded, but for L2 HDCC 

sometimes outperforms the traditional algorithm under single linkage. Similar results 

were obtained with points in [0, 10]
 2

. Logically, different results might be obtained 

using non-convex or complex-shaped patterns. 
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Fig. 9. Discovered patterns in L1 and L2     using d s
L (Left) and using d c

L (Right). 
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Table 2. Values of S for traditional and conceptual dendrograms for k =3. 

 Traditional 

S           n 

Conceptual 

S           n 

Dendrogram 

Relation 

Single 292,293  (100) 292,295  (100) Not equivalent 
L1 

Complete 281,393  (100) 281,393  (100) Equivalent 

Single 292,293  (100) 281,549   (98) Not equivalent L2 

Complete 281,393  (100) 281,727  (100) Not equivalent 

6 Conclusions 

We have presented a general approach for hierarchical conceptual clustering based on 

distances and generalisation operators. It puts together the flexibility of hierarchical 

distance-based clustering and the interpretability of conceptual clustering. For 

instance, a user can choose any part of a dendrogram, get a description also learning 

whether all the covered elements are close wrt. the underlying metric. 

Several clustering algorithms that generate concept descriptions can be found in 

the literature. On the one hand we have those coming from traditional conceptual 

clustering such as CLUSTER/2 [4], COBWEB [7] and GCF [8]. On the other hand 

we have those that, using a subset of first-order logic as representation language, 

apply traditional distance-based clustering algorithms. In this second group we can 

find KBG [9], C 0.5 [10], COLA-2 [11], and TIC [12, 13] among others. Our proposal 

is different to all the conceptual clustering methods which also use a distance in the 

way that it is general to any datatype (any generalisation operator and distance can be 

used). Moreover, we present graphical extensions to see the divergence between the 

distance and the generalisation operator a posteriori, but also conditions that can be 

checked a priori to ensure that the resulting conceptual dendrograms are consistent 

with the underlying distance. Our work is related to [14] where the author analyses 

the relationship between distances and generalisations and proposes a framework 

where these two paradigms can be integrated in a consistent way. In [14] the analysis 

is achieved on generalisation operators defined on a metric space and not over a 

language of patterns as it is done here. 

Additionally, as we have said, HDCC can be seen as an n-ary operator constructed 

over binary operators by only applying the binary operators at most n times, where n 

is the number of examples. This is an interesting property for machine learning areas 

which have well-established binary generalisations operators, such as ILP. 

The instantiation of HDCC to propositional clustering is direct, when datatypes are 

nominal or numerical. We have shown in [15] that the common generalisation 

operators for nominal data (extensional set) and numerical data (intervals) are 

strongly bounded in the metric spaces defined by the distance functions commonly 

used for these datatypes (discrete distance and difference distance). Hence in this case 

the distance-based conceptual dendrograms are equivalent to classical distance-based 

dendrograms, independently of the linkage distance. The problem is also analysed 

when the tuple is composed of both nominal and numerical data, and the 

generalisation operators are extended accordingly. Examples of this have been shown 

in the experiments section in this paper. 
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Things are more diverse (and interesting) when applying the proposal to structured 

datatypes. We have seen several examples in this paper when the conditions hold for 

the complete linkage but not for the single linkage, or only one of the degrees (the 

weakest one, acceptability) is met. We are currently working on the establishment of 

operative combinations of distances and generalisation operators for lists and sets.  
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