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Abstract. In this paper Software Development (SD) is understood explicitly as a 

learning process, which relies much more on induction than deduction, with the 

main goal of being predictive to requirements evolution. Concretely, classical 

processes from philosophy of science and machine learning such as hypothesis 

generation, refinement, confirmation and revision have their counterpart in 

requirement engineering, program construction, validation and modification in 

SD, respectively. Consequently, we have investigated the appropriateness for 

software modelling of the most important paradigms of modelling selection in 

machine learning. Under the notion of incremental learning, we introduce a new 

factor, predictiveness, as the ability to foresee future changes in the specification, 

thereby reducing the number of revisions. As a result, other quality factors are 

revised. Finally, a predictive software life cycle is outlined as an incremental 

learning session, which may or may not be automated. 

1 Introduction 

Software engineering was considered a pure science just two or three decades ago. 

Theoretical and formal methods were prevalent. Nowadays, we have a much more 

realistic conception of software engineering as an experimental science [6]. Empirical 

studies of real problems are encouraged and their conclusions are usually much more 

successful in practice than theoretical results. Moreover, many times theoretical studies 

are not applicable because in the end they do not model the software construction 

process. 

In our opinion, the formal methods in software engineering cannot be fully exploited 

due to still frequent conceptions of software as being “from specification to final 

product”. This does not take maintenance nor the generation of that specification into 

account. 

Fortunately, there is an increasing interest in requirements elicitation and evolution as 

the most important topics in software engineering. Requirements Engineering has made 

some important things patently clear: the need to take the context of a computer system 

into consideration, i.e., “the real-world environment in which the system operates, 

including the social structure and the people therein” and the fact “that requirements 
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are always incomplete; each stage involves identifying new requirements based on 

experiences from previous stages… and requirements and design affect each other” [8]. 

The other two fundamental (and more classical) areas of research for improving the 

economics of software have been reusability and modifiability, the latter being more 

relevant when a particular system is already implemented. The maintenance cost is 

greatly reduced by improving the modifiability and/or extensibility software quality 

factors. Another neglected but fundamental question is whether we are able to reduce the 

modification probability. The idea is to ‘predict’ requirement evolution as much as 

possible, in order to minimise the remaking of software as a trace of this evolution. In 

order to gain greater benefits, this “predictive model of requirements” should be made 

upon previous models by reusing parts of other specifications and taking context into 

account. 

It should be explicitly stated that this predictive character of the model must be 

preserved during the remainder of the life-cycle: the design must be conceived to 

maintain the generality of the model, validation must be made according to this general 

model, and, more importantly, future modifications must consist of coherent revisions, 

not extensional ‘patches’ to the model. 

With the appearance of new approaches, such as adaptive software [28] or intelligent 

software [30], which include techniques and languages for further generalisation, an 

empirical and theoretical study of when a generalisation of the model is useful and how 

it should be done seems necessary. The flippancy here would be to start from scratch or 

to reinvent the wheel. As we will see in the following sections, predictive modelling in 

particular and philosophy of science in general historically been able to provide us very 

useful terminology and tools to select the most likely or the most informative model. 

This paper tries to emphasise the benefits of adapting the paradigm of theory 

construction to software, and to recognise and situate the role of induction in software 

engineering. In fact, recent popular subjects in the field such as adaptive software or 

intelligent software are in essence inductive. However, none of them use inductive tools 

and techniques in an explicit way. 

Induction, as we use throughout this paper, is the process of theory abstraction from 

facts. Karl Popper proposed [36] the concept of verisimilitude as the level of agreement 

with the facts. Since there are an infinite number of theories which cover a finite number 

of examples, the question of verisimilitude must be contrasted with all the possible 

future examples that may appear in a given context. The quandary of whether there is 

any way to know, a priori, if a given hypothesis will be followed by future experiences 

in that context is obvious. If we know the initial distribution of hypotheses in that 

context, the plausibility of the hypothesis can be obtained in a Bayesian way. Since this 

initial distribution is generally unknown, many different measures of the quality of 

theories have been proposed in philosophy of science and Machine Learning (ML), 

generally in an informal way. From these, there are two main trends ([39]): descriptional 

induction ([5]), which is usually related to the simplicity criterion (or Occam’s Razor) 

and the view of learning as compression; and explanatory induction ([39]), which is 

more closely related to coherence, cohesion or ‘consilience’ criteria ([41]). 

In 1978, Rissanen formalised Occam’s Razor under the Minimum Description Length 

(MDL) principle, quickly spreading over the theory and practice of ML and predictive 

modelling. In his later formulation ([5]), the MDL principle advocates that the best 



description of a given data is the shortest one. Apart from all the methodological 

advantages of simplicity, the major reason for using the MDL principle is that it usually 

avoids over-specialisation (underfitting) and over-generalisation (overfitting).  From 

here it is usually argued that “the shorter the hypothesis the more predictable it is”. On 

the contrary, ‘consilience’ or coherence refer to the idea that the data must be covered 

by the same general rule. Thagard ([41]) postulated that “explanatory coherence” is 

more important for durability than prediction and confirmation:  “a hypothesis exhibits 

explanatory coherence with another if it is explained by the other, explains the other, is 

used with the other in explaining other propositions, or if both participate in analogous 

explanations”. Another related notion is that of intensionality ([19]), which is based on 

the avoidance of extensional patches to the theory.  

The convenience of both these trends will be studied for the case of software, in order 

to obtain predictive and coherent models for the requirements which will improve 

software quality factors. In the ML literature [31], there is a classical paradigm that is 

necessary for problems of medium or large complexity: incremental learning. The 

evidence is obtained incrementally and new evidence can appear which may force the 

revision of the model. Revision is then the most important process in incremental 

learning and is motivated by two kinds of errors: anomalies (cases which are not 

explained by the current theory) and novelties (new cases which are not covered). The 

incremental paradigm is the most appropriate one for software. 

The paper is organised as follows. In Section 2 we introduce an analogy between 

software development and theory induction, which we contrast with previous (and very 

debated) analogies between software development and deduction and mathematics. 

Section 3 reviews many software quality factors under the inductive paradigm. A new 

quality factor, ‘predictiveness’, is defined and is related to other software quality factors 

such as functionality, validation, reusability, modifiability, … 

Section 4 introduces a new life-cycle as an incremental learning session which 

attempts to reduce prediction errors. The automation is discussed, as applied to 

declarative programming (logic programming), because the techniques and stages 

required for the new life-cycle (ILP, evaluation, transformation, revision, etc.) are much 

more mature than in any other paradigm.  

Finally, Section 5 concludes the paper with a discussion of the practical relevance of 

this work and future directions. 

2 Programs as Scientific Theories. 

The statement “programs are scientific theories” or, alternatively, “software is a learning 

process” summarises the main idea developed in this section. Before presenting this 

analogy, we will review the most well-known analogies in order to understand software 

development. In our opinion, these analogies have failed to capture the essence of 

software, although partial mappings have been useful. 



2.1 Existing Analogies 

The use of analogies with pure mathematics to formalise the processes of computer 

programming was greatly influenced and promoted by the seminal paper from Hoare 

[24]. This first analogy, known as “Verifiers’ Analogy”, established that proofs are to 

theorems as verifications are to programs: 
 

Verifiers’ Analogy 
 Mathematics  Programming 
 theorem ↔  program 

 proof ↔ verification 
 

After the first successes of some simple programs of algorithmic nature, the debate 

began precisely from the side of mathematics, exemplarised by the influential paper by 

De Millo, Lipton and Perlis [13]. The preceding analogy was criticised and replaced by 

the following one, which is based on the idea that programs are formal whereas the 

requirements for a program are informal: 
 

De Millo-Lipton-Perlis Analogy 
         Mathematics          Programming 

 theorem ↔  specification 

 proof ↔ program 

 imaginary formal demonstration  ↔ verification 
 

The new trends in automated programming, popularised by the logic programming 

community, were very difficult to conciliate with an analogy with mathematics as a 

social science. Thus, the analogy was revised once again [38]: 
 

Automated Programming Analogy 
 Mathematics  Programming 

 problem ↔  specification 

 theorem ↔ program 

 proof ↔ program derivation 
 

However, Colburn [11] affirms that “for unless there is some sort of independent 

guarantee that the program specifications, no matter how formally rendered, actually 

specify a program which solves the problem, one must run the program to determine 

whether the solution design embodied by the specification is correct”. In this way, he 

postulates that software is the final test for validating the specification.  

Finally, Fetzer reopened the debate and introduced an analogy between computer 

programs and scientific theories [17]: 
 

Fetzer’s Analogy  
 Mathematical Proofs Scientific Theories Computer Programs 

Syntactic Entities: Yes Yes Yes 
Semantic Significance: No Yes Yes 
Causal Capability: No No Yes 

 

In our opinion, the difference between scientific theories and programs in causal 

capability disappears if we consider software to be a learning process (which shares the 

same paradigm with philosophy of science but has causal capability), where the learned 

theory (the program) can be used to interact with the environment.  



2.2 Scientific Theories and Programs 

The assumption that there is an “independent guarantee” that the specification is correct 

for a given problem is rather optimistic in the context of modern software development, 

where requirements and, consequently, applications are very complex. It is impossible to 

completely and definitely establish the intended behaviour that the system should show. 

Current methodologies end up accepting the dynamic character of requirements, and 

include loops back to each of the stages, including a loop to requirement elicitation. 

Then it is finally recognised that requirements are never completely stated, that they 

evolve and that they are related to the environment, the context of specifications, the 

‘reality’. 

The same idea is implicitly suggested by the maxim that “testing can be used to show 

the presence of bugs, but never to show their absence” [15], although applied to a 

restricted view of software. The extended maxim “requirements cannot be fully 

validated, just invalidated” conforms perfectly with Popper’s conception of scientific 

methodology [36] where scientific hypotheses can possibly be shown to be false but can 

never be shown to be true. 

This impels us to looking for more realistic conceptions of programming. We propose 

a new analogy between scientific methodology and programming methodology which 

shows the numerous links that can be established: 
 

Programs as Scientific Theories Analogy 
 Science  Programming 

 reality  ↔  requirements context 

 problem  ↔  problem 

 experimentation data ↔ cases / interviews / scenarios 

 construed evidence ↔ requirements 

 evaluation ↔ analysis 

 best hypothesis ↔ specification 

 refinement  ↔ transformation  

 theory ↔ program 

 verisimilitude ↔ correctness 

 anomalies ↔ exceptions 

 confirmatory experiments   ↔  testing 

 confirmation ↔  validation 

 revision ↔ modification 

 background knowledge ↔ SW. repositories 

 technical books ↔ technical/programmer's doc. 

 science text books ↔ user documentation 
 

The difference between best hypothesis and theory in Science is less than the difference 

between specification and program in software engineering. In both cases, however, a 

hypothesis-specification is not usually predictive/operational and it must be 

refined/transformed into a more manageable and applicable form, by the use of 

mathematisation/formalisation and a proper engagement with the background knowledge 

/ repositories. As we have stated, the analogy should be well understood by regarding 

programs not only as simple scientific theories which predict the outputs for given inputs 

but also as systems that interact with an environment or reality according to the ontology 

and hypotheses that have been learned, i.e., interactive learning systems. This ‘new’ 



analogy offers many equivalences to work on and many of the results in one field can be 

applied to the other. Therefore, following this comparison, Figure 1 shows how 

deduction and induction are more or less used depending on the stage of the 

development of a scientific theory or a software system. 
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Fig. 1. Main stages in scientific theories and software systems development. 

It is remarkable that, in some way, the philosophy of science and software engineering 

are complementary in experience and techniques because they have focused primarily on 

different stages. 

For instance, the third and fourth stages (of a more engineering character) have been 

thoroughly addressed on the software side, especially the stage that is called 

‘transformation’, which includes design and codification. In automated programming, 

this transformation stage is the most important one, because it is not convenient to 

directly execute the specification, and it is necessary to transform it by using program 

transformation techniques and further analyses [35]. The final program evolves from the 

specification to better performance characteristics, while still preserving semantics. 

On the contrary, the first and second stages have been traditionally addressed by 

philosophy of science. Only recently these stages have been taken into consideration and 

they are included in the software construction paradigm under the banner of 

“requirement engineering”. However, it is not usually recognised in the literature that 

the techniques should be mainly inductive. The information transmitted from the user to 

the developer is incomplete and inexact. The developer must complete and explain it by 

inductive methods. This inference process has recently given name to a different 

approach to software engineering: inductive programming [33]. According to Partridge: 

“The science of creating software is based on deductive methods. But induction, 

deduction’s ignored sibling, could have a profound effect on the future development of 

computer science theory and practice”. In our opinion, this effect will come true if both 

inferences can be effectively combined. 



Finally, our concern is not to present software engineering as an experimental science 

but to show that each program can be seen as a scientific theory and that each software 

problem can be seen as a learning problem. We will work under this analogy for the rest 

of the paper, mostly investigating the implications from theory formation and revision to 

program generation and modification. 

From theory formation we will translate the debate between descriptive and 

explanatory approaches to theory construction in science (see [39] for some contrasted 

positions in this debate). From theory revision (and abduction) we will try to identify 

which kind of software modifications are preferable: minimal extensional modifications 

or deeper coherent ones. 

3 A Revision of Software Quality Factors 

As we stated above, the role of the specification as a tentative hypothesis forces a 

revision of many software quality factors. The factors that are more directly related to 

the compliance with the specification are functionality, completeness, correctness, 

reliability and robustness. Other factors which are indirectly related such as testability, 

traceability, adaptability, flexibility, reusability, generality, maintainability 

/modifiability, practical modularity/granularity, ideal modularity or module 

independence, coupling, cohesion, efficiency/performance, comprehensibility and 

intelligibility will be discussed later1. 

The main factors are classically defined in terms of “the specification” or 

“requirements” ([26], [27]): 

•  Functionality: the degree to which a system “satisfies stated or implied needs”. 

•  Completeness: usually assumed in functionality, it is the degree to which a 

system or component implements all required capabilities. 

•  Correctness: is the fundamental part of functionality (jointly with 

completeness): the degree to which software, documentation, or other items meet 

specified requirements (classical view) or meet user needs and expectations, 

whether specified or not (modern view). 

•  Reliability: “the ability of a component to perform its required functions under 

stated conditions for a specified period of time”. 

•  Robustness: “the degree to which a system or component can function correctly 

in the presence of invalid inputs or stressful environmental conditions”. 

Most of them deal with “stated or implied needs”, “required capabilities”, “specified 

requirements”, “expectations, whether specified or not” and “required functions”. 

However, the question arises of what software feature measures the correctness of this 

specification or specified requirement wrt. the “stated or implied needs”. 

In our opinion, a new factor is required to measure the goodness of the requirement 

elicitation stage and the whole process of specification (hypothesis) revision during the 

overall life-cycle: 
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Definition 3.1. Software Predictiveness 

Predictiveness is the degree to which the software system predicts present and 

future requirements in the context where the requirements are originated. 

The key issue is that the behaviour of a program is seen as a prediction given from the 

hypothetical specification. The analogy from incremental learning is now as follows: 

software construction is an incremental process. The new goal is not necessarily to 

achieve the highest accuracy at the end of a first prototype or version (or even with the 

‘last’ version), but to maximise the cumulative benefits (prediction hits) obtained 

throughout the entire life of the software.  

Consequently, some concepts must be redefined. If we regard functionality equivalent 

to predictive accuracy, we must reconsider the components of functionality. 

Functionality or predictiveness includes: 

•  correctness (prediction for normal situations), 

•  robustness (prediction for environment or abnormal situations), 

•  reliability (minimisation of anomalies), and 

•  completeness (minimisation of novelties). 
Since a modification is required when there is a lack of functionality, modifiability 

(which includes extensibility) should cover both prediction errors (anomalies) and 

failure to predict (novelties). The former are motivated by a lack of correctness or 

reliability and the latter by a failure of robustness or completeness. 

Finally, maintainability is redefined as considering both the predictiveness and 

modifiability factors. That is to say, it weights the frequency and scope of modifications. 

For instance, a software system can be non predictive at all and highly modifiable, 

resulting in a maintainable software. Conversely, a software system can be not 

modifiable at all but, if it has been predictive for changing requirements, then the 

resulting cost of maintenance could still be low. 

Next we deal with how the learning/science analogy for software helps to redefined 

many of these and other quality factors in a more detailed way.  

3.1 Functionality and Validation 

In the reorganisation made after the introduction of predictiveness, one may still 

question why we have included reliability inside functionality. The reason that has been 

argued is that, since the requirements are never definite, reliability depends more on the 

accuracy of the requirements elicitation than on the rest of the design and 

implementation phases. However, the relationship between these later phases and 

reliability is, at first glance, not related to the predictiveness factor. We will see that this 

is not the case, and even the later phases of the software life-cycle can be better 

understood using the analogy with a learning session. 

For example, it is widely accepted that redundancy compromises reliability because 

inconsistencies can easily arise, and checking them is sparse and consequently more 

difficult. An initial reflection would suggest that the removal of redundancies is the key 

to reliability. In [42], Gerard Wolff establishes the correlation between software and 

information compression in a direct way, arguing that “the process of designing well 

structured software may be seen as a process of information compression”. Although 

the parallel between automated programming and pattern recognition was recognised by 



Banerji in the eighties [4], Wolff reminds us that patterns such as iteration, function, 

procedure or sub-routine, and the idea of recursion are all forms of information 

compression. The same applies to object-oriented abstraction through the use of 

inheritance. 

The paradox arises when conditional statements (if.. then.. else and cases) are well 

justified by this approach. However, it has been recognised that the number of “cases” 

or “exceptions” in software increases the possibility of errors (and makes modifiability 

difficult). Moreover, there is a maintainability measure, known as cyclomatic complexity 

[25], which measures exactly this, the number of conditions in the source. 

In this way, an intensional model (with few exceptions) seems much easier to check. 

In particular, apart from reusability, object-oriented methodologies (and especially the 

polymorphism technique) improve reliability because they generally eliminate long 

cases and exceptions with a considerable increase in code length. 

As the software becomes more complex and requirements evolve during software 

validation, validation is finally applied to a whole which can be influenced by 

requirements elicitation errors, design errors or implementation errors. However, the 

idea of intensional and coherent models and structures applies to all the stages and must 

be preserved from specification to final code.  

3.2 Reusability 

The coherence and simplicity criteria are have long been known to improve reusability 

(keep in mind the claims keep methods coherent and keep methods small [37]). 

However, intensionality is more important for reusability than simplicity. For instance, 

we can make a very simple program work for a given specification or data, but if we 

have no foresight, the software will be not useful to slight changes in the specification. 

In this case, the problem resides in selecting the ‘easy’ or ‘extensional’ solutions, the 

most specific ones instead of the most general ones. 

This avoidance of application specific procedures, methods, modules, etc, is directed 

by the following classical guidelines [37]: 

•  provide uniform coverage: if input conditions can occur in various 

combinations, write methods for all combinations, not just the ones that you 

currently need. 

•  broaden the method as much as possible: try to generalise argument types, 

preconditions and constraints, assumptions about how the method works, and the 

context in which the method operates. Take meaningful actions on empty values, 

extreme values, and out-of-bound values (anomalies). Often a method can be made 

more general with a slight increase in code. 

In addition, reusability is based on again taking advantage of the effort made in previous 

software components. Although there are some approaches where the reused parts can 

be modified (adapted) from project to project [12], the ideal option is to reuse it exactly 

as it was, benefiting from all the acquired validation, something that is guaranteed by 

encapsulation, restricting that the module could be modified at the moment of 

reusability. 



3.3 Modifiability 

Whatever the software system is, predictiveness cannot be complete and, unavoidably, 

prediction errors will sometimes occur. In that case a question we must ask ourselves is 

whether making predictive software, i.e., reducing modification frequency, entails an 

increase in the cost of modification, thus eventually compromising overall maintenance. 

To answer this, we would need to know what kind of software is most maintainable in 

the following way: 

•  it predicts specification changes in order to reduce the number of future 

changes to software. 

•  once a failure in prediction occurs, the modification can be made smoothly. 

The question is how are these two properties compatible and to what extent. 

It is well known that redundancy also compromises modifiability, but, at the same 

time, every software developer knows that excessive compression (cryptic models, code 

or documentation) also hinders modifiability. Wolff’s new concept of software [42] is 

based on compression, based on the fact that short software is more manageable and that 

the reduction of redundancy eases modifiability and extensibility. In the end, despite its 

predictive shortcomings, the MDL principle (as a preference for compressed models) is 

not valid for software development because it has been experimentally proved that 

extremely compressed models are not appropriate for reusability, as for other software 

quality factors, such as comprehensibility, testability and modifiability itself.  

Is there then any good compromise between compression and avoidance of 

redundancy? The answer is again to realise that avoidance of redundancy can be 

achieved without excessive compression. In other words, there are an infinite number of  

irreduceable models (without redundancy), such as intensional models, which are not the 

most compressed models. 

The explanatory paradigm of ML and philosophy of science is the most appropriate 

one to ensure functionality, reusability, modifiability and maintenance. Some other 

factors such as traceability, modularity, cohesion, comprehensibility and intelligibility 

can also be partially redefined under the paradigm of machine learning or philosophy of 

science (especially the explanatory view). For instance, performance can be seen in 

terms of lazy vs. eager learning methods [29]. Eager learning works with a model, 

whereas lazy learning predicts each new instance by comparing it with old cases. In the 

case of software, eager learning obviously requires more effort at development time and 

revision is more complicated, but performance and reusability are not compromised. 

Nevertheless, from the ML experimental and theoretical results on the complexity of 

lazy methods, a medium or large size predictive system must necessarily be based on 

eager learning methods, and, in the following, we will take for granted that this is the 

case. 

4 Predictive Software Life-Cycle 

In section 2, the five main common stages between science and software were presented 

just as they are, without explicit influence between them. The analogy is now exploited 

to re-design the software life-cycle with the goal of making it predictive, and introducing 

model revision as one of the most important (and reiterative) stages. 



4.1 A New Life Cycle 

Figure 2 represents a mixture between an automated software construction cycle and 

scientific theory evolution. The terminology is used indistinctly, by either borrowing a 

term from philosophy of science (or ML) or by using a term from software engineering. 
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Fig. 2. Predictive Software Life-Cycle 

The process begins by gathering the data and partial requirements of the problem and 

inducing a first model from these examples usually with the help of background 

knowledge which consists of reusable software components of previous projects and 

some other information about the domain of the reality from which the problem 

originates. The next stages are quite similar to the classical or automated life-cycles, 

depending on the degree of formalisation of the model and the automation of the 

transformation stage. The first result of the process is a program which can be contrasted 

/ validated with more use examples or with real operation. This comparison may trigger 

a partial or whole revision of the model, which is followed by a rederivation of the 

program. 

Obviously, this cycle could be more detailed depending on the automated or non-

automated character of each stage. For instance, in a non-automated developing schema, 

an analysis stage could be introduced between an induced partial specification and the 

model, without using previous software. The design would convert this initial model into 

a refined model by using the repositories.  

4.2 Towards the Automation of the Predictive Life-Cycle 

As the analogy suggests, at present, the goal would be to (partially) automate the process 

by using techniques from ML. However, automated inductive methods are not yet ready 

for most of the complex software problems we face. Nonetheless, specifications are 

getting increasingly more complex and more data-based, and ML techniques are 

becoming more powerful to justify the inductive software paradigm practically and 



economically. Partridge [33] presents some successful cases of automated construction 

of software from sample data. 

There are two generic approaches for research towards this difficult goal: 1) to evolve 

simple, fully-automated software systems into more complex systems; and 2) to develop 

semi-automated systems. Both approaches highlight a revival of declarative paradigms, 

because declarative languages are more mature for automating the stages of the previous 

life-cycle, and more intelligible. 

For the first via, logic programming is clearly the most appropriate paradigm at 

present. Inductive Logic Programming (ILP) [32] represents the automation of the stage 

of generation and selection from examples and background knowledge. The automation 

of the transformation stage is ensured by many years of research in transformation 

techniques (see e.g. [35]). The automation of the revision of the model can be found in 

works usually originated in non-monotonic approaches inside AI, by using logical 

theories [9] or more software specific approaches [1]. Finally, the application stage is 

performed directly through SLD-resolution or after a specialisation stage (see e.g. [2]) 

for improving performance.  

The problems of scalability appear at all the stages, but more critically in the first 

stage. From the first recovery of specifications by using ILP [10], and after the 

application for inducing simple algorithms shown in part III of [7], the prospect of ILP 

for program synthesis has sometimes been discredited and biased. Nowadays, ILP is 

addressing more complex problems, so the predictive declarative programming 

paradigm can address medium-complexity problems, such as web-agents, controllers in 

changing environments, software assistants, and the like. Nonetheless, we must 

recognise the main problems of ILP for software engineering: background knowledge 

usage bottleneck and knowledge mobilisation [18]. 

For the second via, the most important issue is the intelligibility of software, i.e., if 

some part of the model (or the code) is automatically generated from the user’s 

requirements, it must be intelligible to humans, in order to ensure good coordination 

with manually generated software and allowing for manual maintenance and revisions. 

In this case, the use of declarative languages is even more justified. 

5. Conclusions and Future Work 

This paper has focused on the view of programs as scientific theories or, more precisely, 

software development as learning. This analogy forces a reconsideration of the quality 

factors of software and the software construction life-cycle. New software characteristics 

are distinguished, mainly that software must be predictive, in order to minimise future 

modifications, and other software factors are redefined. Induction will be more 

important than deduction in the future, when automation is possible for complex 

systems. 

Software systems must receive feedback from the user about the quality of its task: 

adequacy to user’s needs, efficiency, robustness, etc., and they must update to the user’s 

demands dynamically. In other words, software systems must learn from the 

environment and user’s needs, in an interactive way quite similar to query or interactive 

learning [3]. 



The recent aim for automation of induction has driven us to highlight and encourage 

the productive translations of ML techniques to software engineering. Although full 

automation is not possible at the moment, the analogy, the revision of factors and the 

new life-cycle are useful for traditionally developed software. This is the keypoint of the 

paper, to highlight that a change in attitude (or paradigm) in software construction can 

be useful in practice even without any automation at all. 

In a broader context, many historical traits of the short life of software engineering (in 

contrast to the long life of philosophy of science) can also be better understood. For 

instance, many techniques and paradigms of software engineering in the last decades can 

be seen as tools and mechanisms to ease compression while preserving intensionality 

(avoidance of exceptions), such as structured programming, object-oriented 

programming, encapsulation, polymorphism, etc. 

Moreover, the emphasis placed on the inductive phase of modelling to make software 

more predictive matches the increasing relevance that requirement elicitation has been 

acquiring in software engineering theory and practices in the last decade. 

At present, the authors are developing inductive algorithms and systems for other 

more powerful declarative languages, for which transformation and specialisation 

techniques are also developed [35], [2]. In particular, the induction of functional logic 

programs has been attempted [20][21] in order to allow the acceptance of more 

expressive and complex requirement cases as examples, which is usual in software 

applications. The system FLIP [16] is specially designed to induce recursive programs 

and it also supports the use of background knowledge, with the long-term goal of 

automating [22] more and more parts of the whole process.  

As future work, from a much more practical point of view, software is a very 

appropriate place to experiment new techniques from AI and ML (see e.g. [40]). 

Moreover, AI and ML can expand their commercial applications in this area. Many ML 

paradigms and techniques [31] can be used in different processes and stages of software 

construction: evaluation criteria like cross-validation, query learning [3], reinforcement 

learning applied to constructive languages [23], explanation-based learning, [14], data 

mining for knowledge-based software, analogical reasoning, case-based reasoning, 

genetic computation, etc. 

In summary, our analogy also shows that until machine intelligence (and ML) 

approaches human ability more closely, fully automated programming will remain a 

fallacy. In the meantime, in accordance with the analogy presented here and in an effort 

to reach the Utopia of “intelligent software” [30], a more prosperous methodology for 

software construction could be devised from the nascent “predictive software”. 
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