
 1

Software as Learning:
Quality Factors and
Life-Cycle Revised

José Hernández-Orallo

MªJosé Ramírez-Quintana

Universitat Politècnica de València
Departament de Sistemes Informàtics i Computació

 Camí de Vera s/n, E-46022, València, Spain.
E-mail: {jorallo,mramirez}@dsic.upv.es.

Foundational Aspects of Software Engineering (FASE 2000)
European Joint Conferences on Theory of Practice of Software (ETAPS 2000)

Berlin, 27 March - 1 April 2000

 2

Introduction

Classical View of SW Engineering:

“From specification to final product”

Requirements Engineering:

“From needs to specification”

However, this does not equal to:

“From needs to final product”

• Requirements must constantly be revised.

 3

Classical Goals

Minimise the Maintenance Cost:

f (modifiability, modification prob.)

Modifiability has been addressed by:

• Evolution of Software Technology: structure,
modularity, encapsulation, polymorphism…

• New banners: Adapt(at)ive and Intelligent
Software.

Modification probability has been less studied from a
SW engineering point of view.

 4

Classical Tools

However, the issue has been thoroughly addressed by
the sciences of induction:

• Machine Learning (ML).

• Philosophy of Science (Ph. Sc.).

Induction:

E:Evidence

Context

H:Hypothesis

P:Predictions

Especially for the selection of hypotheses.

 5

Background from ML & Ph. Sc.

Hypotheses Evaluation:

• verisimilitude (consistency with E).

• predictability (extrapolability to P).

Some evaluation criteria:

• Bayesian approaches (if the prior is known).

• Occam’s Razor (MDL principle).

• Consilience, coherence or intensionality.

If the evidence is given incrementally:

Incremental learning:
H must be revised due to:

• anomalies: new evidence is wrongly covered.

• novelties: new evidence is not covered.

 6

Programs as Scientific Theories

New Analogy:

 Science Programming

 reality ↔ requirements context

 problem ↔ problem

 experimentation data ↔ cases / interviews / scenarios

 construed evidence ↔ requirements

 evaluation ↔ analysis

 best hypothesis ↔ specification

 validated subhypothesis ↔ prototype

 refinement ↔ transformation

 theory ↔ program

 verisimilitude ↔ correctness

 anomalies ↔ exceptions

 confirmatory experiments ↔ testing

 confirmation ↔ validation

 revision ↔ modification

 background knowledge ↔ SW. repositories / components

 technical books ↔ technical/programmer's doc.

 science text books ↔ user documentation

 7

Comparison of Stages

Deduction and Induction have the same role in each
side of the analogy:

GENERATION

Hypotheses
S
c
i
e
n
c
e

EVALUATION

Hypothesis

Experimentation
Data Background

Knowledge

REFINEMENT

Theory

CONFIRMATION

Predictions

REVISION

Ind

Ind/Ded

Ded

Ind/Ded

Ind/Ded

Problem

ELICITATION

Requirements

ANALYSIS

Specification

Use Cases,
Interviews Repositories, other

SW systems

TRANSFORMATION

Program

VALIDATION

Behaviour

MODIFICATION

S
o
f
t
w
a
r
e

1

2

3

4

5

 8

Revision of SW Quality Factors

The main factors are defined in terms of “the
specifications” or “requirements”:

• Functionality: the degree to which a system

“satisfies stated or implied needs”.

• Completeness: degree to which a system implements
all required capabilities.

• Correctness: degree to which software meet specified
requirements (classical view) or meet user needs and
expectations, whether specified or not (modern view).

• Reliability: “the ability to perform its required
functions under stated conditions”.

• Robustness: “the degree to which a system functions
correctly in the presence of invalid inputs or stressful
environmental conditions”.

 9

Predictiveness

Software quality is evaluated assuming that
specifications are perfect.
This is almost never the case.

The previous factors depend on how good the
requirements elicitation has been made in order to
know how accurate the factors can evaluate.

Let us measure this primary factor:

SOFTWARE PREDICTIVENESS
Predictiveness is the degree to which the software
system predicts present and future requirements
in the context where the requirements are
originated.

 10

Functionality as Predictiveness

Under the analogy, predictiveness matches with
functionality, which includes:

• correctness (prediction for normal situations),

• robustness (prediction for environment or abnormal
situations),

• reliability (minimisation of anomalies), and

• completeness (minimisation of novelties).

 11

Predictiveness and Maintenance

Prediction Errors:

• Lack of reliability � modifications.

• Lack of completeness � extensions.

modifiability: easiness to make modifications and
extensions (scope of each change).

Maintainability

f (modifiability, predictiveness)

An interesting question is whether and how
modifiability and predictiveness are related.

 12

Implications: Validation

• Predictiveness covers all life-cycle errors: elicitation
errors, design errors or implementation errors.

• Validating a software system with respect to the
specification is neglecting part of the possible errors.

• Predictiveness includes any error since any error
change the model of the hypothesis, consequently
changing predictiveness.

 13

Implications: Reusability and
Modifiability

• Reusability: coherence and simplicity.

− Uniform coverage (generality).

− Avoidance of extensional patches.
 These features are included in the evaluation

criterion called intensionality in Ph. Sc.

• Modifiability: redundancy must be avoided.

− Compression is a criterion for predictive models.
However, extremely compressed models are
cryptical.

− But there are many infinite non-redundant
models.

The notion of avoidance of redundancy makes
modifiability and predictiveness compatible.

This is the explanatory paradigm of ML-Ph.Sc.

 14

Software Development as an
Incremental Learning Session.

New adaptive and intelligent software systems include

revision techniques from ML and non-monotone
reasoning. After each error, the system modifies
itself (revises its model).

However, this is far from new if:

Software Development is seen as an
Incremental Learning Session.

The relevance is now put on the inductive phases
(generation and selection) and revision.

 15

Predictive Software Cycle

By using a combination of terms and cycles from ML-Ph.Sc
and Software Engineering:

GenerationGenerationGenerationGeneration

andandandand

SelectionSelectionSelectionSelection

Data + Partial

Requirements

SW Repositories +

Domain Ontology

Intensional

Model

TransformationTransformationTransformationTransformation

Program

ApplicationApplicationApplicationApplication

Behaviour

RevisionRevisionRevisionRevisionContrastationContrastationContrastationContrastation

ReuseReuseReuseReuse

RequirementsRequirementsRequirementsRequirements

ChangesChangesChangesChanges

 16

On Automation

The previous analogies and cycle highlight that the
automation of software development relies on the
automation of induction.

� GOOD NEWS:

The selection of hypotheses can be made
automatically. Evaluation criteria can and should be
applied to the analysis stage.

� BAD NEWS:

The generation of hypotheses has been addressed by
ML, but,
ML is not yet prepared for addressing so complex
problems such as those software engineering deals
with.

 17

Towards Automation

Two possible (non-exclusive) ways:

• Fully automatised development for simple systems.
Only descriptional languages where the previous
phases have been automatised (generation,
transformation, revision).

• Increase the degree of partial automation of complex
systems. For this, comprehensibility is indispensable.
Only comprehensible descriptional languages can be
used.

Consequently, whatever the approach, only
declarative languages, where induction has been
developed, can be used.

Presently, only (functional) logic programming is
prepared for this.

 18

Predictive LP cycle

ILPILPILPILP

Positive and

Negative Data +

Partial

Requirements
Background

Knowledge

Intensional

Model

Logic Prog.Logic Prog.Logic Prog.Logic Prog.

TransformationTransformationTransformationTransformation

TechniquesTechniquesTechniquesTechniques

Logic

Program

ResolutionResolutionResolutionResolution

Behaviour

RevisionRevisionRevisionRevisionContrastationContrastationContrastationContrastation

ReuseReuseReuseReuse

RequirementsRequirementsRequirementsRequirements

ChangesChangesChangesChanges

 19

Conclusions and Discussion

View of program as scientific theories.

 Software = Incremental learning
 life-cycle session

The goal is to construct predictive software, in order to
reduce the number of modifications.

However, modifiability must also be preserved. In this
sense, evaluation criteria that support predictive
hypotheses with easiness of revision are preferred
over very compressed models.

The analogy clearly shows that until induction could
be fully automatised for complex problems,
automated software development will be a fallacy.

Nonetheless, evaluation can be automatised.

 20

Current and Future Work

• The compromise between predictiveness and
modifiability has been studied theoretically for
different software topologies.

• Development of more powerful induction systems
(e.g. the system FLIP)
(http://www.dsic.upv.es/~jorallo/flip):

− is able to induce recursive functional logic
programs from examples and BK.

− is designed for being used jointly with other
automated stages of functional logic
programming (transformation).

• Other paradigms of ML can also be applied to SW
Eng. (query or interactive learning).

• Although the analogy is more general and plausible
than preceding ones, more experimental support is
necessary.

