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Abstract 

ROC analysis is increasingly being recognised as 
an important tool for evaluation and comparison 
of classifiers when the operating characteristics 
(i.e. class distribution and cost parameters) are 
not known at training time. Usually, each classi-
fier is characterised by its estimated true and 
false positive rates and is represented by a single 
point in the ROC diagram. In this paper, we 
show how a single decision tree can represent a 
set of classifiers by choosing different labellings 
of its leaves, or equivalently, an ordering on the 
leaves. In this setting, rather than estimating the 
accuracy of a single tree, it makes more sense to 
use the area under the ROC curve (AUC) as a 
quality metric. We also propose a novel splitting 
criterion which chooses the split with the highest 
local AUC. To the best of our knowledge, this is 
the first probabilistic splitting criterion that is not 
based on weighted average impurity. We present 
experiments suggesting that the AUC splitting 
criterion leads to trees with equal or better AUC 
value, without sacrificing accuracy if a single 
labelling is chosen.  

1.  Introduction 

Traditionally, classification accuracy (or error), i.e., the 
percentage of instances that are correctly classified 
(respectively incorrectly classified) has been used as a 
measure of the quality of classifiers. However, in many 
situations, not every misclassification has the same 
consequences, and problem-dependent misclassification 
costs have to be taken into account. If the cost parameters 
are not known at training time, Receiver Operating 
Characteristic (ROC) analysis can be applied (Provost & 
Fawcett 1997; Swets, Dawes & Monahan 2000). ROC 
analysis provides tools to distinguish classifiers that are 
optimal under some class and cost distributions from 

classifiers that are always sub-optimal, and to select the 
optimal classifier once the cost parameters are known.  

ROC analysis for two classes is based on plotting the true-
positive rate (TPR) on the y-axis and the false-positive 
rate (FPR) on the x-axis. This gives a point for each 
classifier. A curve is obtained because, given two 
classifiers, we can obtain as many derived classifiers as 
we want along the segment that connects them, just by 
voting them with different weights. Consequently, any 
point “below” that segment will have greater cost for any 
class distribution and cost matrix, because it has lower 
TPR and/or higher FPR. According to that property, given 
several classifiers, one can discard the classifiers that fall 
under the convex hull formed by the points representing 
the classifiers and the points (0,0) and (1,1), which 
represent the default classifiers always predicting negative 
and positive, respectively.  

This paper is concerned with taking costs into account 
when learning decision trees. If costs are known at 
training time, the training algorithm could be made cost-
sensitive, e.g. by incorporating costs in the splitting 
criterion. However, it has been shown that such cost-
sensitive techniques do not lead to trees with lower costs 
(Drummond and Holte 2000; Elkan 2001) and that cost-
sensitive class labelling is more effective (Bradford et al. 
1998; Ferri, Flach & Hernandez 2002). In this paper we 
assume that costs are unknown at training time. Clearly, 
each of the 2n possible labellings of the n leaves of a 
given decision tree establishes a classifier, and we can use 
ROC analysis to determine the optimal labellings among 
them. However, this set of classifiers has special 
properties (e.g., for any classifier there is another one 
making opposite predictions) which allows a more direct 
computation of the optimal labellings. We prove that 
there are n+1 of these, which are determined by a simple 
ordering on the leaves of the tree.  

Thus, from a cost-sensitive perspective it makes sense to 
view a decision tree as an unlabelled tree with an ordering 



 

 

on the leaves. Furthermore, this suggests to use the area 
under the ROC curve (AUC), obtained by plotting the n+1 
optimal labellings in ROC space, to evaluate the quality 
of a decision tree (or any other partitioning of instance 
space). A natural question is then whether existing deci-
sion tree algorithms – which aim at optimising the accu-
racy of a single labelling – also lead to good AUC values, 
or whether we can do better by adapting the algorithm. 
We show that a simple AUC-based splitting criterion 
leads to trees with better AUC, without sacrificing 
accuracy if a single labelling is chosen. To the best of our 
knowledge, this is the first probabilistic splitting criterion 
that is not based on weighted average impurity. 

The paper is organised as follows. Section 2 poses the 
problem of finding all labellings of the tree on the ROC 
convex hull, and shows how to effectively obtain this 
subset of labellings. In section 3, we discuss the AUC 
metric and propose the AUC-based splitting criterion. In 
section 4 we experimentally compare AUCsplit with  
several well-known impurity-based splitting criteria with 
respect to accuracy and AUC. Finally, section 5 closes the 
paper with a discussion of the main conclusions and some 
plans for future work. 

2.  Finding Optimal Labellings of a Decision 
Tree 

A decision tree classifier can be represented by a point in 
the ROC space. However, if we change the class 
assignment of one leaf, we obtain a different classifier and 
hence a different point in the ROC space. Note that this 
change can be made a posteriori, after the tree was learnt 
or pruned. By changing in many different ways the 
assignments of each leaf of the tree we can obtain 
different trees. In what follows we will call labelling a set 
of assignments to each tree leaf. 

The idea is to view the ROC curve of a decision tree not 
as the three-point curve given by a single labelling 
together with the two default classifiers, but as the convex 
hull defined by all the possible labellings. The problem is 
that given n leaves and c classes, there are cn possible 
labellings. Although this value alone can make this 
intractable for many trees even for two classes, the 
problem gets worse if we consider that we would need to 
compute the convex hull of these cn points. Note that the 
cost of computing the convex hull of N points in a d-
dimensional space is in O(N log N + Nd/2) (Boissonat & 
Yvinex 1998). Consequently, one relevant question is 
whether there is a way to restrict these cn combinations 
and obtain the same ROC curve. 

2.1  Preliminaries 

Given a set of tree leaves lk (1≤k≤n) and a training set S 
with possible classes ci (1≤i≤c), we denote by Ek the 
number of examples of S that fall under leaf lk, and we 
denote by Ek

i the number of examples of S that fall under 

leaf lk of class i. The k subscript in Ek
i can be dropped 

when the leaf is clear from context. A labelling is defined 
as a set of pairs of the form (k, i), where k represents the 
leaf lk and i represents the class assigned to that leaf. The 
set of all possible labellings is denoted by Λ. Clearly, the 
cardinality of Λ is cn.  

In what follows, we study for 2-class problems how we 
can restrict the 2n labellings but still obtain the points on 
the convex hull. We will denote the two classes: + and −. 
We also assume the following properties: 

nkEEEE kkkk ≤≤∀>+≥≥ −+−+ 1,0,0,0  , 

∑
≤≤

− >
nk

kE
1

0 , and ∑
≤≤

+ >
nk

kE
1

0  

That means that there are no empty leaves and that there 
exists at least one example of each class. 

We use the following notation for cost matrices Ci,j: 

  ACTUAL 
  + − 

+ C++ C+− 
PREDICTED 

− C−+ C−− 
where all the costs are greater or equal than 0. Addition-
ally, C−+ > C++ , C+− > C−−. Given a leaf lk we define Costk

i 
as the cost of the examples under that leaf if class i would 
be assigned: 
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The best assignment for a leaf lk is then defined as: 
i
k

i
k CostBest minarg=  

The optimal labelling Sopt for a given cost matrix C is then 
given by: 

nkkopt BestkS ≤≤= 1)},{(  

which means that each leaf is assigned the class that 
minimises the cost for the cost matrix C. 

2.2  Subset of Labellings Forming the Convex Hull 

In this section we determine the subset of decision tree 
labellings on the convex hull. 

Lemma 1. Given a leaf of a decision tree for a 2-class 
problem with the distribution E+ and E−, and given a cost 
matrix C, the cost is minimised if the leaf is assigned class 
+ when 
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and assigned class − otherwise. 

Proof: The cost of this leaf will be assigned to + iff Cost+ 
≤ Cost−, i.e. 
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The value on the left hand side is defined as the local 
positive accuracy of a leaf lk, and is denoted by rk. This 
result has also been used elsewhere to assign classes (see 
e.g. Elkan 2001), but we will use it to order the leaves. 
The value on the right hand side of the equation is called 
the cost ratio (CR). In particular, when rk = CR either 
class can be assigned arbitrarily. 

The main definition of this section is the following.  

Definition 2 (Optimal labellings). Given a decision tree 
for a problem with 2 classes formed by n leaves {l1, l2 , … 
, ln} ordered by local positive accuracy, i.e, r1 ≥ r2, ..., rn-1 
≥ rn, we define the set of optimal labellings Γ = {S0, S1, ..., 
Sn} where each labelling Si (0≤i≤n) is defined as: Si={A1

i, 
A2

i, ..., A
n
i} where Aj

i = (j,+) if j≤i and Aj
i = (j,−) if j >i. 

The following three lemmas are needed to establish the 
main result of this section. The reader in a hurry may wish 
to skip the technical details and proceed directly to 
Theorem 6 and the subsequent example.  

Lemma 3. Given a decision tree for a problem with 2 
classes with n leaves, the labelling that minimises the cost 
according to the training set and an arbitrary cost matrix 
belongs to the set of optimal labellings Γ. 

Proof: The cost matrix has one degree of freedom 
expressed with the CR. Imagine that the CR is 1, then all 
the leaves will be set to –, according to Lemma 1 (in the 
case rk = CR we also select –). This labelling is in Γ. This 
solution minimises the cost of any matrix until r1≤CR≤r2. 
Then, leaf l1 will change its assignment to + according to 
Lemma 1; this labelling also belongs to Γ. We can repeat 
this argument until CR=0, where all the leaves will be set 
to +. Thus, there are n+1 states that correspond to the 
labellings in Γ. 

Blockeel and Struyf (2001) used the same set of assign-
ments. However, no theoretical properties were discussed. 
Lemma 3 shows that the set of optimal labellings is 
sufficient for calculation of the convex hull. We now 
proceed to show that these points are also necessary. 

Lemma 4. Given three labellings from the set of optimal 
labellings Γ: Si−1, Si, Si+1 (1≤i≤n−1), the point in the ROC 
space corresponding to classifier Si is above the convex 
hull formed by (0,0), (1,1), and the points in the ROC 
space corresponding to classifiers Si−1, Si+1, if and only if 
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Proof: The three points in the ROC space corresponding 
to Si−1, Si, Si+1 are: 
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Thus, according to the definition of ROC curve, we only 
want to know when Pi is above the straight line that joins 
Pi−1 and Pi+1, focusing on the y coordinate.   

The formula of a straight line that joins two points 
P1=(X1,Y1) and P2=(X2,Y2) is:  
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Substituting P1= Pi−1 and P2= Pi+1, the y coordinate of Pi 
will be above iff: 
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We have shown this result for three consecutive 
classifiers of the set of optimal labellings; however, it also 
holds for three non-consecutive classifiers. 

Lemma 5. Given three labellings from the set of optimal 
labellings Γ: Si−1, Si, Si+1 (1≤i≤n−1) such that ri=ri+1, it is 
not necessary to consider the point in the ROC space 
corresponding to Si, because it will not affect the convex 
hull. 

Proof: If ri=ri+1 then 
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which, according to Lemma 4, means that the point in the 
ROC space corresponding to Si is placed just on the 
straight line between the points in the ROC space 
corresponding to Si−1 and Si+1.   

We can now formulate the main result of this section.  

Theorem 6. Given a decision tree for a problem of 2 
classes with n leaves, the convex hull of the 2n possible 
labellings is formed by exactly those ROC points 



 

 

corresponding to the set of optimal labellings Γ, removing 
repeated leaves with the same local positive accuracy. 

Proof: From Lemma 3 we can easily derive that all the 
ROC points that are on the convex hull from the 2n 
possible labellings belong to the ROC points generated 
from the set of optimal classifiers. We only have to show 
that all the ROC points from the set of optimal labellings 
are on the convex hull. Suppose we have three 
consecutive labellings Si-1, Si, Si+1, where Si-1 and Si+1 are on 
the convex hull. Lemma 4 has shown that Si will be above 
the convex hull iff ri ≥ ri+1, which is the case since the set 
of optimal labellings is ordered by local positive 
accuracy. In the case that ri= ri+1 we have, from Lemma 5, 
that we can remove one of them. 

The relevance of Theorem 6 is that computation of the 
convex hull of the 2n possible labellings of the n leaves of 
a decision tree is equivalent to ordering the leaves by 
local positive accuracy.   

2.3  Example 

Suppose we have a decision tree with three leaves and the 
following training set distribution: 

 + − 
LEAF 1 3 5 

LEAF 2 5 1 

LEAF 3 4 2 

There are 23=8 possible classifiers corresponding to each 
labelling in Λ. Figure 1 represents the ROC points of 
these classifiers. As can be seen in the figure, the points 
are mirrored through the point (0.5, 0.5), because for each 
labelling there is another labelling assigning the opposite 
class to each leaf. 

We first order the leaves by the local positive accuracy 
and then we generate the set of n+1= 4 optimal labellings: 

 + − S0 S1 S2 S3 

LEAF 1 5 1 - + + + 

LEAF 2 4 2 - - + + 

LEAF 3 3 5 - - - + 

If we plot the ROC points of these 4 combinations, these 
are the points corresponding to the convex hull of Λ, 
which are shown in Figure 1 as squares. 

A final question is what to do with empty leaves, a case 
that we have not considered in the previous results 
because we excluded this case in the assumptions. Empty 
leaves can be generated when there are splits with more 
than two leaves, some of which may not cover any 
example, i.e., E+=0 and E−=0. One easy solution to this 
problem is to use some kind of smoothing (such as 
Laplace or m-estimate) for E+ and E−. Another option is to 
assign a local positive accuracy 0.5 and work with the leaf 
without cardinality, not affecting the ROC curve.  
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Figure 1. ROC points and convex hull of set Λ. 

3.  AUC-based Decision Tree Evaluation and 
Construction 

The previous analysis supports the interpretation of a 
decision tree as having several possible labellings of the 
leaves, or alternatively, an ordering on the leaves. We 
propose to use the area under the ROC curve (AUC) 
obtained from these labellings to evaluate the quality of 
the tree. Notice that if the accuracy of the tree is 100%, all 
leaves are pure and the ROC curve covers the whole 
space. If the tree consists of a single unsplit leaf, the two 
labellings of this leaf correspond to the two default 
classifiers and the area under the curve is 0.5. Also notice 
that we can even calculate the AUC of a single labelling, 
i.e. the area under the curve (0,0)–(FPR,TPR)–(1,1), 
which is (TPR-FPR+1)/2, i.e. the average of positive and 
negative accuracies.  

3.1  The AUC Metric for Decision Tree Evaluation 

In order to compute the area under the ROC curve we 
employ the leaf ordering from the previous section to 
compute the areas of each trapezoid. Specifically, it is 
easy to compute the area between two consecutive points 
Pi−1 and Pi in the ROC curve given by the set Γ: 
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where y i−1, xt and yt are as defined in Lemma 4. Since the 
first point is P0=(0,0), we can define AUC as follows.  

Definition 7 (AUC). Let Γ be the set of optimal labellings 
of a decision tree with n leaves, then the AUC metric is 
defined as 
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(See Lemma 4 for the meaning of the symbols.)  

AUC is like any other machine learning metric in that it is 
a population statistic which needs to be estimated from a 



 

 

sample. We can use the standard techniques of using a 
test set or cross-validation to obtain such an estimate. In 
the case of a test set, note that the leaf ordering is 
obtained during training, while the leaves’ positive and 
negative coverage is determined on the test set. 
Consequently, the ROC curve on the test set may not be 
convex (it is, however, monotonically non-decreasing by 
construction). Definition 7 is a general geometric 
construction which does not assume convexity of the 
curve.  

3.2  The AUCsplit Splitting Criterion for Decision 
Tree Construction 

In the previous section we have argued that AUC is a 
better metric than accuracy for evaluating decision trees 
when class and cost distributions are unknown at training 
time. However, the existing methods for growing decision 
trees typically use splitting criteria based on 
error/accuracy or discrimination. In this subsection we 
propose an AUC-based splitting criterion.  

Without the results introduced in section 2, computing the 
AUC corresponding to a set of n leaves could be 
computationally expensive, especially if splits have more 
than two children. Using the optimal labelling set Γ, AUC 
of the leaves under a split can be computed efficiently. In 
particular, given several possible splits for growing the 
tree, where each split consists of a set of new leaves, we 
can compute the ordering of these leaves and calculate the 
corresponding ROC curve. The area under this curve 
could be compared to the areas of other splits in order to 
select the best split. More precisely, we can use the 
previous formula for AUC(Γ). This yields a new splitting 
criterion.   

Definition 8 (AUCsplit). Given several splits sj, each one 
formed by nj leaves {lj

1, l
j
2,..., l

j
nj}, then the best split is the 

one that maximises: 
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where the points Pi 
j are obtained in the usual way (sorting 

the leaves of each split by local positive accuracy). 

The first question that arises with a new splitting criterion 
is how it differs from other criteria previously proposed. 
To answer this question, let us review the general formula 
of other well-known splitting criteria, such as Gini 
(Breiman et al. 1984), Gain, Gain Ratio and C4.5 criterion 
(Quinlan 1993) and DKM (Kearns & Mansour 1996). 
These splitting criteria find the split with the lowest I(sj), 
where I(sj) is defined as: 
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where pj is the probability of being sorted into that node 
in the split (cardinality of child node divided by the 
cardinality of parent node). Using this general formula, 
each splitting criterion implements a different function f, 
as shown in the following table: 

CRITERION f(a,b) 

ACCURACY (EERROR) min(a,b) 
GINI (CART) 2ab 

ENTROPY (GAIN) a·log(a)+b·log(b) 
DKM 2(a·b)1/2 

These functions f(a,b) are impurity functions, and the 
function I(s) calculates a weighted average of the impurity 
of the children in a split. In general, we need to compare 
this weighted average impurity of the children with the 
impurity of the parent, if we are comparing different splits 
of different nodes.  

Consider for instance the following two splits: 
 [a+b,a+b] 

[a,b] [b,a] 
 

 [2a,2b] 

[a,b] [a,b] 
 

The children have the same weighted average impurity in 
both cases. In order to see that the left is a better split than 
the right (assuming a≠b), we need to take the impurity of 
the parent into account. In contrast, AUCsplit evaluates 
the quality of the whole split (parent + children) and 
cannot be reduced to a difference in impurity between 
parent and children. The left split has AUCsplit=a/(a+b) 
(assuming a>b), while the right split has AUCsplit=0.5, 
indicating that nothing has been gained in ROC space 
with respect to the default diagonal from (0,0) to (1,1). 

An interesting relationship can be established with the 
Gini index. Consider the following binary split: 

 [p,n] 

[p1,n1] [p2,n2] 
 

If the left child has higher local positive accuracy, then 
we have: 
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pnnp
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It is interesting to note that the denominator of this 
expression is the Gini index of the parent, and the 
enumerator could be called a mutual Gini index of the 
children given the parent. 

Finally, we have to consider the computational 
complexity of calculating the AUCsplit with respect to 
other well-known splitting criteria. Let n denote the 
maximum number of children in all the splits. Then, if we 
have k partitions, the selection of the best split by using 
any of the information measures I(sj) requires, for each 
partition, n computations of the entropy formula, that can 
be considered in O(1). Consequently, the cost would be in 
O(k·n). On the other hand, the selection of the best split 
by using the AUCsplit(si) requires n·logn for sorting the n 
nodes, and n computations of the A(·,·) formula that can 
be considered in O(1). Consequently, the cost would be 
k·(n·log n + n) which is in O(k·n·log n). This difference in 



 

 

log n is negligible especially if we realise that the number 
of children of a partition is 2 for numerical attributes and 
very small for nominal attributes. 

4.  Experimental Evaluation 

We evaluate the previous methods by using 25 datasets 
extracted from the UCI repository (Blake and Merz 
1998). All of them have two classes, either originally or 
by selecting one of the classes and joining all the other 
classes. Table 1 shows the dataset (and the class selected 
in case of more than two classes), the size in number of 
examples, the nominal and numerical attributes and the 
percentage of examples of the minority class. 

Table 1. Datasets used for the experiments. 

ATTRIBUTES # DATASET SIZE 
NOM NUM 

%MIN 
CLASS 

1 MONKS1 566 6 0 50 
2 MONKS2 601 6 0 34.28 
3 MONKS3 554 6 0 48.01 
4 TIC-TAC 958 8 0 34.66 
5 HOUSE-VOTES 435 16 0 38.62 
6 AGARICUS 8124 22 0 48.2 
7 BREAST-WDBC 569 0 30 37.26 
8 BREAST-WPBC 194 0 33 23.71 
9 IONOSPHERE 351 0 34 35.9 

10 LIVER 345 0 6 42.03 
11 PIMA 768 0 8 34.9 
12 CHESS-KR-VS-KP 3196 36 0 47.78 
13 SONAR 208 0 60 46.63 
14 BREAST-CANCER 683 0 9 34.99 
15 HEPATITIS 83 14 5 18.07 
16 THYROID-HYPO 2012 19 6 6.06 
17 THYROID-SICK-EU 2012 19 6 11.83 
18 TAE [{0}] 151 2 3 32.45 
19 CARS [{UNACC}] 1728 6 0 29.98 
20 NURSERY [{NR}] 12960 8 0 33.33 
21 PENDIGITS [{0}] 10992 0 16 10.4 
22 PAGE-BLOCKS [{0}] 5473 0 10 10.23 
23 YEAST [{ERL}] 1484 0 8 31.2 
24 LETTER [{A}] 20000 0 16 3.95 
25 OPTDIGITS [{0}] 5620 0 64 9.86 

 
The first thing to be considered is the behaviour of 
classical splitting criteria with the AUC evaluation 
measure. We compare the most commonly used splitting 
criteria: Gain Ratio (only considering splits with at least 
average gain as is done in C4.5), Gini (as used in CART), 
DKM and Expected Error. All the experiments have been 
done within the SMILES system (Ferri et al. 2002) that 
includes all of these criteria, the labelling method and 
AUC computation. The use of the same system for all the 
methods makes the criteria comparison more impartial 
because all the other things remain equal. 

The experiments were performed with and without 
pruning, although we only show the methods with 
pruning because the results are better in general (both in 
accuracy and AUC) for all the splitting criteria. The post-

pruning method used is the “Pessimistic Error Pruning” 
introduced by (Quinlan 1987). According to the study in 
(Esposito, Malerba & Semeraro 1997), this is the best 
method that does not modify the tree structure (unlike 
C4.5 pruning). Although it has a tendency to underprune, 
we think that it is a quite simple and effective method that 
allows a fairer comparison. We have also used frequency 
smoothing (Laplace correction) for the nodes in each 
split, because it is favourable for the AUC measure for all 
methods, especially Gini and DKM. Accuracy of Gain 
Ratio results are slightly worse when smoothing is used, 
although AUC values are still better. Table 2 shows AUC 
results obtained by 10-fold cross-validation. 

Table 2. AUC values for different splitting criteria. 

SET  GAIN RATIO GINI DKM EERR 
1 81.5 ± 14.0 79.8 ± 11.9 79.8 ± 11.9 82.2 ± 5.3 
2 60.6 ± 10.4 57.7 ± 8.4 55.5 ± 7.9 69.8 ± 4.1 
3 98.8 ± 1.6 98.7 ± 1.7 98.7 ± 1.7 95.4 ± 2.6 
4 81.3 ± 8.0 80.6 ± 7.5 79.8 ± 8.1 76.4 ± 5.6 
5 96.9 ± 2.5 96.9 ± 2.5 96.9 ± 2.5 96.9 ± 2.5 
6 1 ± 0 99.9 ± 0.2 1 ± 0 1 ± 0.1 
7 91.1 ± 6.6 90.9 ± 5.8 95.7 ± 5.3 93.6 ± 3.7 
8 58.1 ± 24.4 66.4 ± 18.3 54.9 ± 18.6 51.2 ± 3.5 
9 88.8 ± 10.2 56.1 ± 13.6 90.8 ± 5.0 59.0 ± 15.1 

10 65.1 ± 6.7 63.4 ± 8.2 65.6 ± 8.4 59.9 ± 9.4 
11 78.0 ± 5.2 27.8 ± 3.5 69.3 ± 25.7 30.5 ± 39.8 
12 99.7 ± 0.4 99.3 ± 0.4 99.7 ± 0.3 98.3 ± 0.8 
13 60.6 ± 10.2 69.7 ± 10.4 72.7 ± 6.8 68.1 ± 12.8 
14 95.5 ± 2.5 95.2 ± 2.7 96.8 ± 2.1 94.8 ± 2.9 
15 92.9 ± 12.4 65.4 ± 24.4 72.9 ± 26.3 65 ± 24.2 
16 83.2 ± 16.5 48.6 ± 51.2 96.9 ± 5.7 34.8 ± 41.1 
17 93.6 ± 3.2 49.7 ± 46.1 65.8 ± 45.5 3.7 ± 11.3 
18 50.5 ± 25.9 48.9 ± 27.1 52.5 ± 24.5 21.5 ± 21.4 
19 98.1 ± 0.7 98.2 ± 0.8 98.1 ± 0.8 97.8 ± 1.1 
20 1 ± 0 1 ± 0 1 ± 0 1 ± 0 
21 99.7 ± 0.6 98.2 ± 0.7 99.7 ± 0.3 96.3 ± 2.1 
22 93.7 ± 3.7 81.7 ± 4.9 66.6 ± 21.6 50 ± 0 
23 73.7 ± 3.1 66.6 ± 9.9 73.5 ± 4.3 51.0 ± 4.0 
24 98.7 ± 1.0 95.9 ± 2.4 99.4 ± 0.5 85.7 ± 0.5 
25 98.1 ± 2.3 95.9 ± 3.3 98.0 ± 2.6 96.0 ± 3.3 
M 85.53 77.26 83.19 71.12 

 
Although all methods behave very similarly in terms of 
accuracy (as has been shown in the machine learning 
literature and by our own experiments not listed here), the 
differences in AUC are very noticeable, especially in 
datasets 9, 11, 15, 16, 17, 22, 23. There is no apparent 
relationship with any dataset characteristic except the 
minority class proportion, which will be analysed at the 
end of this section. 

The worst methods according to the AUC measure are 
clearly Gini and Expected Error. Better and more similar 
results are given by GainRatio and DKM. If we select 



 

 

Gain Ratio as the best classical method, we can compare 
its results with AUCsplit results. In order to make 
comparisons significant, we have repeated 10-fold cross 
validation 10 times, making a total of 100 learning runs 
for each pair of dataset and method. These new results are 
shown in Table 3. 

Table 3. Accuracy and AUC for Gain Ratio and AUCsplit. 

 GAIN RATIO AUCSPLIT BETTER? 
SET ACC. AUC ACC. AUC ACC. AUC 
1 90.7±6.6 83.6±11.8 96.5±3.9 94.3±6.7   
2 57.7±6.5 61.1±7.9 56.0±6.2 56.7±8.0 x x 
3 97.6±7.8 97.4±8.5 99.1±1.1 99.1±1.4   
4 78.9±4.6 79.8±7.2 77.6±4.7 76.9±6.5 x x 
5 95.8±2.6 95.2±3.1 95.8±2.6 95.2±3.1   
6 1±0 1±0 1±0 1±0   
7 92.5±4.1 91.5±6.1 92.9±3.7 94.7±4.6   
8 72.1±10.2 61.3±16.9 69.5±10.6 59.3±16.2 x  
9 92.0±4.7 90.4±7.0 89.6±5.0 89.7±6.7 x  

10 62.6±8.8 64.2±10.6  64.0±9.0 65.8±10.1   
11 73.3±5.7 76.6±6.9  72.5±5.1 76.7±6.0   
12 99.1±2.3 99.5±1.6 99.2±0.6 99.5±0.6   
13 68.2±10.2 67.4±11.9 71.0±10.4 73.6±11.0   
14 95.4±2.5 96.3±2.5 96.2±2.5 97.6±2.1   
15 86.4±14.2 85.1±17.9 83.4±14.0 63.5±22.3   x 
16 98.0±10.9 84.6±13.1 98.6±0.8 94.8±5.6   
17 95.2±1.4 92.6±3.5 96.7±1.2 95.1±3.1   
18 71.4±12.4 61.5±20.8 68.9±11.6 59.8±21.3   
19 95.0±1.8 98.2±0.9 94.8±1.9 98.1±1.0   
20 1±0 1±0 1±0 1±0   
21 99.6±0.3 99.6±0.5 99.6±0.2 99.4±0.6   
22 96.8±0.9 93.3±4.7 96.8±0.2 95.1±6.9   
23 70.4±3.9 72.2±4.9 71.1±3.6 73.3±4.0   
24 99.5±0.2 98.9±1.4 99.5±0.1 99.3±0.7   
25 98.9±1.8 94.2±19.4 99.5±0.3 98.5±1.8   
M. 87.49 85.78 87.55 86.24   

 
Table 3 lists the accuracy of the chosen labelling and the 
AUC values of the whole set of optimal labellings. The 
first thing that can be observed is that the differences in 
accuracy are smaller than in AUC. In some cases it 
happens that Gain Ratio is better than AUCsplit in terms 
of accuracy, but not significantly in terms of AUC. 

Since means of different datasets are illustrative but not 
reliable we compare dataset by dataset if one method is 
better than the other. The ‘Better?’ column represents if 
AUCsplit behaves better ( ) or worse (x) than Gain 
Ratio. These marks are only shown when the differences 
are significant according to the t-test with level of 
confidence 0.1. This gives 8 wins, 13 ties and 4 loses for 
accuracies and 11 wins, 11 ties and 3 loses for AUC. 

In order to study the applicability of the AUCsplit for 
unbalanced datasets, we have selected the datasets with a 
percentage of the minority class less than 15%. Table 4 

shows the accuracies of both methods (GainRatio and 
AUCsplit) with several test set distributions under the 
same experimental methodology as those shown in Table 
3. The first two columns of Table 4 show the accuracy 
preserving the original class distribution for the test set. 
The new information appears in the next columns of 
Table 4. These show the accuracies if we modify the test 
set distribution to be 50% for both classes. Finally, we 
show the accuracies for the swapped class distributions 
(e.g. 10%-90% train distribution is swapped to 90%-10% 
test distribution). 

Table 4. Accuracy results for unbalanced datasets. 

# ORIGINAL DIST. 50%-50% SWAPPED DIST. 
 GR AUCS. GR AUCS. GR AUCS. 

%MIN 

CLASS 
16 98.0 98.6 88.3 93.5 78.6 88.3 6.06 
17 95.2 96.7 88.6 92.6 81.9 88.4 11.83 
21 99.6 99.6 99.0 98.7 98.4 97.8 10.4 
22 96.8 96.8 89.8 89.7 82.9 82.7 10.23 
24 99.5 99.5 96.0 96.6 92.5 93.6 3.95 
25 98.9 99.5 95.8 98.4 92.7 97.3 9.86 
M. 98.0 98.5 92.9 94.9 87.8 91.4  

 
As we can see in Table 4, the difference in accuracy is 
small when train and test distributions are the same. In 
general, if a model learned with an unbalanced dataset is 
to be used with a distribution different from the train 
distribution, the accuracy decreases. However, the 
AUCsplit splitting criterion yields models whose accuracy 
decreases less than those obtained by GainRatio splitting 
criterion in these cases. 

5.  Conclusions and Future Work 

We have reassessed the construction and evaluation of 
decision trees based on a very practical and direct way to 
compute the convex hull of the ROC curve of all the 
possible labellings of a decision tree. The cost of this 
operation is just O(n·log n), for ordering n leaves of a tree 
according to their local positive accuracy. This gives a 
different perspective on decision tree learning, where just 
clustering trees are learned, and classes are assigned at 
application time. 

Our approach to using only n+1 points is closely related 
to the ordering of decision tree leaves already presented in 
(Blockeel & Struyf 2001) and the ranking of predictions 
and its use for computing the AUC measure presented in 
(Hand & Till 2001). In comparison with Hand and Till’s 
approach, their AUC measure is almost equivalent to ours 
(their area is step-like) but our node-based way of 
computing the AUC gives more insight and allows a 
direct implementation as splitting criterion. This leads to 
the first successful splitting criterion based on estimated 
probabilities we are aware of that is not a weighted 
average of the impurities of the children, and gives better 
results for the AUC measure and comparable results in 
terms of accuracy. 



 

 

As future work, we plan to extend AUCsplit to more than 
2 classes. For this, a simplified 1-point ROC curve could 
be used, or the generalised M function introduced by 
(Hand & Till 2001). This would only be feasible by using 
our node sorting technique, incurring a cost in O(c2·n·log 
n) where c is the number of classes and n the number of 
nodes. 

Some other issues to be explored are the development of 
pre-pruning and post-pruning methods based on AUC, 
because accuracy-based pruning methods may counteract 
some of the AUCsplit benefits for the AUC measure. 
From a more general point of view, other subsets of the 
set Γ of optimal labellings or even Λ could be considered, 
or several smoothing methods could be applied to 
compute the AUC measure. The use of a validation set for 
estimating AUCsplit could also be examined.  

A more ambitious approach would be the development of 
a global AUC search heuristic, which would compute the 
optimality of a split taking into account the leaves in the 
split but also all the other opened leaves of the tree. We 
think that a monotonic AUC-based heuristic could be 
derived, in order to implement an optimal AO* search. 

Finally, we would like to point out that, while we have 
focused on decision trees in this paper, the results can be 
equally used with other learning methods that partition the 
instance space, such as CN2 or many ILP systems. 
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