
Learning Decision Trees 
Using the Area Under the 

ROC Curve

Cèsar Ferri 1 , Peter Flach 2 , José Hernández-Orallo 1

1 Dep. de Sist. Informàtics i Computació, Universitat Politècnica de València, Spain
2 Department of Computer Science, University of Bristol, UK

The 19th International Conference on Machine Learning, Sydney, Australia, 8-12 July 2002



ICML'2002 2

Evaluating classifiers

§ Accuracy/error is not a good evaluation measure of 
the quality of classifiers when:
§ the proportion of examples of one class is much greater then 

the other class(es). A trivial classifier always predicting the 
majority class may become superior.

§ not every misclassification has the same consequences (cost 
matrices). The most accurate classifier may not be the one 
that minimises costs.

§ Conclusion: accuracy is only a good measure if the 
class distribution on the evaluation dataset is 
meaningful and if the cost matrix is uniform.
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Evaluating classifiers

§ Problem. We usually don’t know a priori:
§ the proportion of examples of each class in application time.
§ the cost matrix.

§ ROC analysis can be applied in these situations. 
Provides tools to: 
§ Distinguish classifiers that can be discarded under any 

circumstance (class distribution or cost matrix).
§ Select the optimal classifier once the cost matrix is known.
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Evaluating classifiers. ROC Analysis

§ Given a confusion matrix:

§ We can normalise each column:
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Evaluating classifiers. ROC Analysis

ROC diagram
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§ We can construct the convex 
hull of their points (FPR,TPR) 
and the trivial classifiers (0,0) 
and (1,1).

§ The classifiers falling under 
the ROC curve can be 
discarded.

§ The best classifier of the 
remaining classifiers can be 
chosen in application time…

§ Given several classifiers:
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Choosing a classifier. ROC Analysis
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Choosing a classifier. ROC Analysis
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Choosing a classifier. ROC Analysis

§ If we don’t know the slope (expected class distribution)…

ROC diagram
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§ The Area Under the Curve (AUC) can be used as a 
metric for comparing classifiers.

Classifier with 
greatest AUC

AUC
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ROC Decision Trees

§ A decision tree can be seen as an unlabelled decision tree 
(a clustering tree):
§ Given n leaves and 2 classes, there are 2n possible labellings.
§ Clearly, each of the 2n possible labellings of the n leaves of a given 

decision tree represents a classifier
§ We can use ROC analysis to discard some of them!
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ROC Decision Trees

§ This set of classifiers has special properties which could 
allow a more direct computation of the optimal labellings.
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§ Many labellings are 
under the convex hull.

§ There is a special 
symmetry around 
(0.5,0.5).
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ROC Decision Trees. Optimal Labellings

§ Given a decision tree for a problem with 2 classes 
formed by n leaves {l1, l2,..., ln} ordered by local positive 
accuracy, i.e, r1 ≥ r2, ..., rn-1 ≥ rn, we define the set of 
optimal labellings Γ = {S0,S1,...Sn} where each labelling
Si, 0≤i≤n, is defined as: Si={A1

i, A2
i,..., An

i} where Aj
i = 

(j,+) if j≤i and Aj
i = (j,−) if j >i.

§ Theorem: The convex hull corresponding to the 2n

possible labellings is formed by and only by all the ROC 
points corresponding to the set of optimal labellings Γ, 
removing repeated leaves with the same local positive 
accuracy. 
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Example
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§ We first order the 
leaves and then use 
only the optimal 
labellings:

§ That matches 
exactly with the 
convex hull: 
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ROC Decision Trees. Optimal Labellings

§ Advantages:
§ Only n+1 labellings must be done (instead of 2n).
§ The convex hull need not be computed.
§ The AUC is much easier to be computed: O(n log n).

§ The AUC measure can be easily computed for 
unlabelled decision trees.

§ Decision trees can be compared using it, instead of 
using accuracy.

Why don’t we use this measure 
during decision tree learning?
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AUC Splitting Criterion

§ AUCSplit:

§ Given a split s when growing the tree, we can 
compute the ordering of these leaves and calculate 
the corresponding ROC curve.

§ The area under this curve can be compared to the 
areas of other splits in order to select the best split.



ICML'2002 15

AUC Splitting Criterion

§ AUCSplit vs.  standard splitting criteria:

§ Standard splitting criteria compare impurity of parent 
with weighted average impurity of children.
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§ AUC is an alternative not based on impurity.
§ Example for 2 children:
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Experiments

§ Methodology:
§ 25 binary datasets UCI.
§ PEP Pruning.
§ 10-fold cross-validation.

§ First we examine which 
is the best classical 
splitting criterion wrt. 
The AUC measure:

71.1283.1977.2685.53M

96.0 ± 3.398.0 ± 2.695.9 ± 3.398.1 ± 2.325

85.7 ± 0.599.4 ± 0.595.9 ± 2.498.7 ± 1.024

51.0 ± 4.073.5 ± 4.366.6 ± 9.973.7 ± 3.123

50 ± 066.6 ± 21.681.7 ± 4.993.7 ± 3.722

96.3 ± 2.199.7 ± 0.398.2 ± 0.799.7 ± 0.621

1 ± 01 ± 01 ± 01 ± 020

97.8 ± 1.198.1 ± 0.898.2 ± 0.898.1 ± 0.719

21.5 ± 21.452.5 ± 24.548.9 ± 27.150.5 ± 25.918

3.7 ± 11.365.8 ± 45.549.7 ± 46.193.6 ± 3.217

34.8 ± 41.196.9 ± 5.748.6 ± 51.283.2 ± 16.516

65 ± 24.272.9 ± 26.365.4 ± 24.492.9 ± 12.415

94.8 ± 2.996.8 ± 2.195.2 ± 2.795.5 ± 2.514

68.1 ± 12.872.7 ± 6.869.7 ± 10.460.6 ± 10.213

98.3 ± 0.899.7 ± 0.399.3 ± 0.499.7 ± 0.412

30.5 ± 39.869.3 ± 25.727.8 ± 3.578.0 ± 5.211

59.9 ± 9.465.6 ± 8.463.4 ± 8.265.1 ± 6.710

59.0 ± 15.190.8 ± 5.056.1 ± 13.688.8 ± 10.29

51.2 ± 3.554.9 ± 18.666.4 ± 18.358.1 ± 24.48

93.6 ± 3.795.7 ± 5.390.9 ± 5.891.1 ± 6.67

1 ± 0.11 ± 099.9 ± 0.21 ± 06

96.9 ± 2.596.9 ± 2.596.9 ± 2.596.9 ± 2.55

76.4 ± 5.679.8 ± 8.180.6 ± 7.581.3 ± 8.04

95.4 ± 2.698.7 ± 1.798.7 ± 1.798.8 ± 1.63

69.8 ± 4.155.5 ± 7.957.7 ± 8.460.6 ± 10.42

82.2 ± 5.379.8 ± 11.979.8 ± 11.981.5 ± 14.01

EErrDKMGiniGain Ratio#
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Experiments

§ Methodology:
§ 25 binary datasets UCI.
§ PEP Pruning.
§ 10x10-fold cross-validation.
§ü when differences are 

significant with t-test at 0.1.

86.2487.5585.7887.49M.

üü98.5±1.899.5±0.394.2±19.498.9±1.825

üü99.3±0.799.5±0.198.9±1.499.5±0.224

ü73.3±4.071.1±3.672.2±4.970.4±3.923

ü95.1±6.996.8±0.293.3±4.796.8±0.922

99.4±0.699.6±0.299.6±0.599.6±0.321

1±01±01±01±020

98.1±1.094.8±1.998.2±0.995.0±1.819

59.8±21.368.9±11.661.5±20.871.4±12.418

üü95.1±3.196.7±1.292.6±3.595.2±1.417

üü94.8±5.698.6±0.884.6±13.198.0±10.916

x63.5±22.383.4±14.085.1±17.986.4±14.215

üü97.6±2.196.2±2.596.3±2.595.4±2.514

üü73.6±11.071.0±10.467.4±11.968.2±10.213

99.5±0.699.2±0.699.5±1.699.1±2.312

76.7±6.072.5±5.176.6±6.9 73.3±5.711

65.8±10.164.0±9.064.2±10.6 62.6±8.810

x89.7±6.789.6±5.090.4±7.092.0±4.79

x59.3±16.269.5±10.661.3±16.972.1±10.28

ü94.7±4.692.9±3.791.5±6.192.5±4.17

1±01±01±01±06

95.2±3.195.8±2.695.2±3.195.8±2.65

xx76.9±6.577.6±4.779.8±7.278.9±4.64

üü99.1±1.499.1±1.197.4±8.597.6±7.83

xx56.7±8.056.0±6.261.1±7.957.7±6.52

üü94.3±6.796.5±3.983.6±11.890.7±6.61

AUCAcc.AUCAcc.AUCAcc.Set

Better?AUCsplitGain Ratio

§ Next we compare 
the best classical 
splitting criterion 
with the AUCsplit:
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Experiments

§ Methodology:
§ 6 of 25 binary datasets UCI with 

% of minority class < 15%.
§ PEP Pruning.
§ 10x10-fold cross-validation.

91.487.894.992.998.598.0M.

9.8697.392.798.495.899.598.925

3.9593.692.596.696.099.599.524

10.2382.782.989.789.896.896.822

10.497.898.498.799.099.699.621

11.8388.481.992.688.696.795.217

6.0688.378.693.588.398.698.016

AUCs.GRAUCs.GRAUCs.GR
%min 
class

Swapped Dist.50%-50%Original Dist.#

§ Finally we compare 
the results when class 
distribution changes.
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Conclusions and Future Work

§ Labelling classifiers:
§ One classifier can be many classifiers!
§ Optimal labelling set identified (order by local positive accuracy)
§ An efficient way to compute the AUC of a set of rules.

§ AUCsplit criterion:
§ Better results for the AUC measure

ü
§ Future work:

§ Extension of the AUC measure and AUCsplit for c>2.
§ Global AUC splitting criterion.
§ Pre-pruning and post-pruning methods based on AUC.


