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Introduction

• Many collaborative views of learning: 
– combination (ensembles, stacking/cascading),
– co-learning, ...

• Generally composed of “total”, non-specialised
classifiers, usually under-utilised.

• Learner specialisation:

– Pre-refereeing: meta-learning, analysis of separability, ...
– Post-refereeing: stacking, cascading, arbitrating, grading, ...
– Self-refereeing: ???

But who determines the areas of specialisation?
And how?
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Introduction

• Delegation:
• Training set Tr is split 

using a threshold τ.
• The threshold τ defines 

the degree of self-
confidence.

{ }τ>∈=> )(: efTreTr CONFf

>≤ −= ff TrTrTr

• The overall classifier is used as follows:



5

Introduction

• If the task is classification, it is a multi-classifier 
method.
– Self-refereeing: each classifier self-assigns its area of 

expertise. 

– Serial: not parallel or hierarchical.

– Transferring: each prediction is made by only one 
classifier (no combination).

– Specialised: based on partial classifiers.

– Attribute-preserving: no new attributes are generated.
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Delegation as Separate-and-Conquer
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comprehensible.
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Establishing the Threshold

• We use the same threshold for prediction (and 
for the test set).

• This threshold is very dependent on the 
problem.

• Instead, we define a percentage of retention.
– Two different ways:

• Global Absolute Percentage (GAP): retain a fraction of the 
ρ best ranked examples.

• Stratified Absolute Percentage (SAP): retain a fraction of 
the ρ best ranked examples per class.

How do we determine this threshold?
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Scenarios

• We investigated three different scenarios:
– Two stages: a master classifier and a slave classifier.

– Two stages with “round rebound”.

– Iterative: several chained stages.
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Experiments

• Experimental methodology:
– 22 datasets from UCI repository
– Trained PETs (Probability Estimation Trees):

• Smiles and Weka J4.8 variants of C4.5.
• Pruning disabled.
• Probability smoothing.

– Evaluation:
• 20x5-fold cross-validation.
• Accuracy and AUC used as metrics.
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Experiments

• Importance of a good probability estimation.
– Four methods of PETs:

– With pruning and no smoothing (Pr NoSmooth)
– No pruning and no smoothing (NoPr NoSmooth)
– No pruning and Laplace smoothing (Pr Laplace)
– No pruning and Mbranch smoothing (Pr Mbranch) (ECML’03)

• Two-stage scenario. GAP (ρ=0.5).
– Averaged results for the 22 datasets.

• The way in which the master classifier is able to estimate its 
reliability is key to the success of the delegating method.
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Experiments

• The proportion ρ and Global/Stratified.
– Two-stage scenario. GAP and SAP. Varying 

proportions ρ.
• Averaged results for the 22 datasets.

– Proportions around 0.5 are optimal.
– The improvement is obtained with just around a 50% 

overhead.
– Stratified thresholds do not improve the results of 

global thresholds in general.
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Experiments

• Iterative Scenario:
– The greater the # of iterations the better the results.

– Once again, the “Global Absolute” variant is the 
best one.

– Execution times for 2% and 1% are around 8 and 
10 times higher, respectively, than a single classifier.

– With similar times, delegation is close to bagging 
and not far behind boosting.
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Discussion

• Factors that affect “Delegation”:
– Reliability estimation (confidence) crucial.
– Cannot be justified as a reduction of variance.
– Patterns removed iteratively, as in Sep&Conq.
– Class distribution is modified (better specialisation?).
– Overfitting not so crucial as expected.

• Some of these factors may also explain a better 
improvement for accuracy than for AUC.
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Conclusions and Future Work

• Delegation is a key idea in machine learning.
– This work has used it systematically, using learners 

as building blocks for different scenarios.
– As long as classifiers perform better probability 

estimation, they are more reliable for self-refereeing, 
crucial in delegation.

– The method is simple, general and efficient.
– In some configurations, it can preserve the 

comprehensibility of the base models by pruning 
and grafting them.

• Only the useful parts are maintained.
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Conclusions and Future Work

• Future work:
– Use very efficient classifiers for the first stage and 

then more data-intensive ones for the subsequent 
stages.

– Investigate the “combination” of the predictions.
– Apply to regression and clustering.
– Investigate other methods to determine the 

threshold (e.g. AUC-based, validation dataset, …).


