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Abstract 
 

Machine learning can be applied to solve the 
knowledge acquisition bottleneck in many areas where an 
expert makes predictions to single cases, such as 
diagnosis, estimation, etc. The idea is to query the expert 
with as many cases as possible and get their answers. 
With this data we train a machine learning model which 
mimics the expert’s behaviour. This is just a simple 
application of a modelling technique known as 
“mimetism”, which has many other applications. This 
“soft” approach to knowledge acquisition has many 
advantages: any machine learning technique can be used, 
the expert must only answer simple questions (cases) and 
we can combine the decisions of several experts easily. 
However, one problem of this approach is that we do not 
know in advance how many cases we will need to ask in 
order to get a good model which is accurate wrt. the 
expert’s knowledge. Obviously, as more data is labelled 
by the expert better results are obtained. However, asking 
thousands of cases to the expert is usually impractical. In 
this paper, we analyse the behaviour of knowledge 
acquisition through mimetic learning according to two 
factors: accuracy and comprehensibility of the resulting 
model and we devise a method to compute the minimum 
number of cases that we need to ask the expert to attain a 
certain quality level. 
 
1. Introduction 
 

In many areas, we need the help of one or more 
experts to support decision making. Since the persistent 
need of these experts is costly, several approaches have 
been presented to substitute or automate these decisions, 
most notably through the use of expert systems. One of 
the main problems in expert systems is the knowledge 
acquisition bottleneck [7], since many experts are not able 
to write down their knowledge in clear and unambiguous 
rules. They usually behave by explicit rules, rules of 
thumb and unconscious rules. Even in case the expert is 
able to write down all their knowledge this requires a 
high effort, can be very time-consuming, is difficult to 

maintain and sometimes the result is a transcribed model 
that cannot be applied in a fully automated way since 
there are still some ambiguity. 

In many applications, such as diagnosis, estimation, 
detection, selection, etc., cases are described by a fixed 
series of attributes (either nominal or numerical) and a 
dependent value (either nominal or numerical). The 
expert’s model predicts the dependent value according to 
the rest of attributes. This model structure is similar to 
predictive models in machine learning, where we have 
cases with input variables and an output variable. 

In this case, the knowledge acquisition problem can be 
addressed by machine learning techniques. The idea is 
that we can query the expert to construct our model. 
Several methods exist for this, and this kind of learning is 
called “query learning” [1], where the expert acts as an 
oracle.  

This “soft” approach has many advantages, we control 
the representation of the model (rules, equations, ...), once 
it is finished it is unambiguous and hence fully 
automatisable and, finally, we can query several experts 
(either combined or specialised to parts of the problem). 

However, the “query learning” approach, in general, 
has some disadvantages for this application: not many 
machine learning techniques are designed for learning by 
making queries, in some cases the queries can be 
complex, and, most importantly, most query learning 
paradigms assume the expert must be there during 
training, and give the answers immediately. Otherwise the 
learning algorithms could delay for hours or even days, 
which would make the expert's availability problem even 
worse. Additionally, in existing analysis of query 
learning, the analysis of the complexity of the model has 
not been taken into account. 

In this paper, we investigate the use of the mimetic 
method ([3],[6]) for knowledge acquisition. The mimetic 
method just uses simple cases, i.e. unlabelled examples, 
for which the expert must only provide the output value. 
The result is a dataset, which can be then used to train a 
model by using any off-the-shelf machine learning 
method. As we can see in the following picture, the 



method can be applied easily by using any machine 
learning tool or data mining package: 

         Expert 
 
 
 
 

 
Figure 1. Mimetic process with expert oracle 
The process starts then by asking the expert for the 

labels for a set of examples. With this we have a labelled 
dataset which we use to train a model by using our 
favourite machine learning technique. 

As expected, the model will be more accurate the 
greatest the number of examples that we can ask the 
expert is. In fact, this can be as accurate as we want 
provided that we can ask the expert as many cases as we 
want ([3],[4],[6]) . 

However, there is no knowledge acquisition technique 
whatsoever where we can have an infinite expert’s 
availability. Consequently, we have to analyse how many 
cases we require in order to get a model which captures 
the expert’s knowledge with high accuracy and high 
comprehensibility, with a minimum number of queries.  

In this analysis we have to realise first that accuracy is 
benefited by an increasing number of cases, but 
comprehensibility is generally not. On the contrary, the 
greater the number of cases we have, the more complex 
the model will be, generally. One idea to solve this 
dilemma might seem to use pruning (for those machine 
learning techniques which have such a technique), but 
this would require to generate much more cases than 
really needed, saturating our expert uselessly. As we will 
see, we can control the comprehensibility of our models 
(in terms of number of rules) by gauging the number of 
cases that we ask the expert to label. 

It is also important to decide in an initial state how 
many cases will be required, without the need of coming 
and going to the expert for more cases repeatedly. In 
order to avoid this, we devise a method based on learning 
curves which is able to predict the number of cases that 
will be required given a trade-off between accuracy and 
comprehensibility of the models.  

The paper is organised as follows. Section 2 introduces 
an MML approach to address the optimality of a model 
generated from a dataset labelled by the expert, taking 
into account several factors, accuracy, query cost and 
comprehensibility. From it, Section 3 presents an 
approach to determine the optimal size of the dataset 
applying a modification of the MML principle. Section 4 
shows the setting used in Section 5 for the experimental 
evaluation of our approach. Section 6 presents how to use 

this approach in practice for a given knowledge 
acquisition problem. Finally, we summarise and conclude 
the paper with the results and the future work.  
 
2. Trade-off Analysis 
 

The mimetic method ([3],[4],[5],[6]) is a technique for 
converting an incomprehensible model into one simple 
and comprehensible representation. Basically, it considers 
the incomprehensible model as an oracle, which is used 
for labelling an invented dataset. Then, a technique which 
can generate comprehensible models (for instance, a 
decision tree) is trained with the invented dataset. The 
mimetic technique has usually been used for obtaining 
comprehensible models from ensemble methods 
(Domingo's original idea, [4],[5],[6]) or from other non-
comprehensible sources, such as neural networks [3]. In 
this paper we propose to use this technique in a different 
way, by assuming that the oracle is not an 
incomprehensible model but a human expert. Then, this 
expert labels the invented data which is the only dataset 
used for training the mimetic model.  

It has been shown ([3], [4]) that the following three 
factors of the mimetic model are related: the size of the 
invented dataset used for training the mimetic model, its 
number of rules and its accuracy. So, the accuracy 
increases as the size of the invented data increases, 
whereas fewer rules (and thus, greater comprehensibility 
of the model) are obtained using smaller invented 
datasets. From these results a trade-off between accuracy 
and number of rules (comprehensibility) seems to be 
needed. The factor which is more suitable for carrying out 
this study is the size of the invented dataset, since it is 
related to both accuracy and the number of rules. 

Even though in this case the source is a human expert, 
the main idea is to consider the construction of the 
mimetic model as a learning problem from a dataset. A 
very common way of analysing the relation between size 
of the model and the level of error is the minimum 
message length (MML) principle [9]. We use MML in 
order to determine the optimal size of the invented dataset 
that maximises accuracy and comprehensibility of the 
mimetic model. 

For a hypothesis H and data D, we have from Bayes 
theorem: 

p(H∩D) = p(H) · p(D|H) = p(D) · p(H|D) 
where p(H) is the prior probability of hypothesis H, 
p(H|D) is the posterior probability of hypothesis H and 
p(D|H) is the likelihood of the hypothesis, actually a 
function of the data given H. 

From Shannon's Communication Theory we know that 
with an optimal code, the message length of an event E, 
MsgLen(E), where E has probability p(E), is given by 
MsgLen(E) = -log2(p(E)). Therefore: 



MsgLen(H∩D) = MsgLen(H)+MsgLen(D|H)  (1) 

As we can see in (1), the message is split in two parts: 
the first one corresponds to the model (its message 
length), and the second one corresponds to the data given 
the model (the message length for encoding the data of D 
that are errors w.r.t. H).  

Finally, the MML principle establishes that models 
with shorter encoded messages are preferable.  

Now, we use the above result for determining the cost 
of the mimetic model. Given a model M learned by 
applying the mimetic technique by using an invented 
dataset D labelled by an expert as training set, we define 
the cost of M as: 

Cost(M) = MsgLen(M)+MsgLen(D|M)+Query(D) (2)

Note that, unlike (1), we have included in (2) the cost 
of querying the expert for labelling the invented dataset D 
(Query(D) factor), due to the limited availability of the 
expert, as we have said in Section 1. Then, the problem of 
determining an optimal size for D can be seen as an 
optimisation process whose objective is to maximise the 
accuracy and the comprehensibility (in terms of number 
of rules) of the model given some constraints (the number 
of queries), which are also included in the equation. As 
we will see next, these constraints are connected to the 
rest by the learning curves for the mimetic model, which 
represent the variability of the number of rules and errors 
of the model depending on the size of the invented 
dataset. 
 
3. Optimisation of the Size of D using a 
Modified MML  
 

In this section we present our approach based on a 
modification of the MML principle (which takes into 
consideration the cost of labelling the data) to determine 
an optimal size for the invented dataset which is used for 
learning the mimetic model. First, we obtain the learning 
curves using several data sets from the UCI repository [2] 
and then we use them in the previous equation (2). 
 
3.1. Learning Curves for the Mimetic Models  
 

As we have mentioned in Section 2, we will use the 
learning curves of the mimetic model to estimate the 
optimal points for equation (2). These curves represent 
the relationship between the factors we are interested in: 
number of rules w.r.t. size of the dataset (D) and number 
of errors w.r.t. size of D. To obtain them, we have 
induced a hundred of mimetic models (for each dataset) 
varying the size of D from an initial size that corresponds 
to the size of the training dataset in the UCI, and 
increasing the size 5% each time. Figures 2 and 3 show, 

as an example, the curves obtained for the balance-scale 
dataset. 

E = -5.0688 Ln(S) + 50.587
R2 = 0.997
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Figure 2. Error vs. size for the balance-scale 
dataset 

For the first one, the learning curve Error vs. Size can 
be described as  

E = α*Ln(S) + β (3)

where E is the error, S the size and α and β are constants 
(determined by a linear regression on the logarithmic 
equation). Analogously, the learning curve Number of 
Rules vs. Size [8] can be described as 

R = δ*S + λ (4)

where R is the number of rules, S is the size of D and δ 
and λ are constants (also determined by linear 
regression). Both functions will be used in the following 
subsection in order to obtain the optimal size S.  

R = 0.0576 S + 16.194
R2 = 0.983

0

20

40

60

80

100

120

140

160

180

200

0 500 1000 1500 2000 2500
Size of the data set of training

N
um

be
r o

f R
ul

es
 

 

Figure 3. Number of rules vs. size for the 
balance-scale dataset  

Regarding Figure 3, it can be noted that there exists a 
clear linear relation between the number of rules of the 
model and the size of the invented dataset. This relation 
will be used to simplify equation (2).  

Size of the invented dataset  

Size of the invented dataset  



 
3.2. Calculating the optimal size by a modified 
MML  
 

Considering that a model M consists of R rules and 
that the cost of encoding each rule is cr, the cost of 
encoding M can be approximated by: 

MsgLen(M) ≈ R*cr  (5)

Likewise, if there exist E errors and the cost of 
encoding each of them is ce, then the message length of 
dataset  D given M can also be approximated by: 

MsgLen(D/M) ≈ E*ce (6)

Finally, the cost of querying the expert is 

Query(D) ≈ |D|*cq (7)

where |D| is the size of dataset D and cq is the cost of 
labelling an example.  

Replacing (5), (6) and (7) in (2) we have that: 
Cost(Model) ≈ R*cr + E*ce + |D|*cq (8)

Considering the linear relation between the number of 
rules R and the size of the invented dataset |D|, we can 
approximate Equation (8) by 

Cost(Model) ≈ R*cr’ + E*ce (9)

where R and cr’ represents the number of rules and the 
size of D, and the costs of encoding a rule and labelling 
an example, respectively. The last equation is the 
objective function for the optimisation process. Then, we 
replace in (9) R by formula (4) and E by formula (3) and 
finally we derive the resulting equation w.r.t. S, which we 
use for obtaining its critical points (maximum and 
minimum).  The first derivative (equation (9)) shows that 
the optimal size of D is proportional to the quotient α /δ: 

Sopt = -K*α /δ (10)

where K is a constant of proportionality between the 
unitary costs ce and cr' (fixed by ce/cr'). 

To know whether Sopt is a maximum or a minimum, 
we calculate the second derivative, which is  

-K*α /S2 (11)

Since K and S are both positive, the sign of (11) only 
depends on the sign of α. If α is positive, it means that  
the number of rules of the mimetic model decreases as the 
size of the training set increases which is an anomalous 
behaviour (and we do not use it since it means that it is 
not possible to compute a minimum size for D). Then the 
parameter α is negative, and hence the Sopt value 
corresponds to a minimum.  

Now, we are ready to use this calculus for practical 
applications (Section 5). As we will see, for a given 
problem, we generate mimetic models using invented 

datasets of increasing size each time. Then, we 
approximate the learning curves and compute their 
parameters. Finally, we apply formula (8) to obtain the 
optimal final size of the invented dataset.  
 
4. Experimental Setting 
 

In this section, we present the setting used for the 
experimental evaluation of our approach included in the 
following section. Instead of using real experts, we use 
datasets, from which we learn a neural network which 
acts as our "expert". We have chosen this scenario 
because the neural network is able to capture complex 
patterns and is quite different from the technique we use 
for the mimetic model, a decision tree. 

In order to cover several situations and kinds of 
problems, we have used 18 datasets (showed in Table 1) 
from the UCI repository [2].  

For the generation of the invented dataset we use the 
uniform distribution which corresponds to the worst case: 
we have not used the original dataset and we do not know 
the real data distribution. If we were able to use this later 
information, however, the results of the mimetic model 
would be improved, since the mimetic technique usually 
works better when the invented dataset is generated 
according to the real distribution. 

Table 1. Datasets used for the experiments 
No. Data Num. Atr. Nom. Atr. Classes Size 
1 anneal 6 32 6 898 
2 audiology 0 69 24 226 
3 balance-scale 4 0 3 625 
4 breast-cancer 0 9 2 286 
5 Cmc 2 7 3 1,473 
6 Colic 7 15 2 368 
7 diabetes 8 0 2 768 
8 hayes-roth 0 4 3 132 
9 hepatitis 6 13 2 155 
10 iris 4 0 3 150 
11 monks1 0 6 2 556 
12 monks2 0 6 2 601 
13 monks3 0 6 2 554 
14 sick 7 22 2 3,772 
15 vote 0 16 2 435 
16 vowel 10 3 11 990 
17 waveform-5000 40 0 3 5,000 
18 zoo 1 16 7 101 

 
The neural network, which "acts" as the expert, is the 

MultilayerPerceptron method in the Weka data mining 
package [10], with the default parameters. The mimetic 
classifiers are constructed with the J48 algorithm included 
in Weka also using its default configuration. Finally, 
when we show average results of many datasets, we will 
use the arithmetic mean of all datasets. For the accuracies 
and number of rules shown in all the experiments, we 
used 10-fold cross-validation. 
 
 
 



5. Experimental Evaluation 
 

Given the previous experimental setting, in this section 
we show how we can reliably estimate the learning curves 
with just three models. This will make it possible to ask 
the expert the set of cases in a few rows, not more and not 
less than needed, and without being online with the 
algorithm. 

In particular, we want to estimate the previous 
parameters α and δ isolated in equation 10 before. We 
analyse if we can estimate these values accurately by 
using only three models with different sizes (we have 
used sizes of 5%, 150% and 450% of size of the original 
dataset). 

Table 3 shows the parameters α and δ for the 18 
datasets, estimated using these three models for each. We 
also show the determination coefficients. The average 
value for this coefficient is 0.97 for the error and 0.94 for 
the number of rules, which means that 97% of the error 
variability is explained by the Error vs. Size learning 
curve and 94% of the variability in the number of rules is 
explained by the Rules vs. Size learning curve. 

Table 2. Parameters and determination 
coefficients for the learning curves with three 

points (n=3) 
n=3 

Error vs Size Rules vs Size Dataset 
α R² δ R² 

1 -4.5711 0.97 0.0776 0.98 
2 -7.9902 0.99 0.1808 0.99 
3 -5.4376 1.00 0.0591 0.99 
4 -0.4968 0.74 0.0949 1.00 
5 -1.5936 0.93 0.0956 1.00 
6 -2.66 0.95 0.0097 0.96 
7 -1.2611 0.98 0.0445 1.00 
8 -7.197 0.96 0.0699 0.93 
9 -3.628 0.98 0.0456 0.99 

10 -8.9288 0.97 0.0498 0.98 
11 -7.6452 0.95 0.0081 0.49 
12 -7.5818 0.95 0.1045 0.97 
13 -4.1454 0.94 0.0043 0.73 
14 -0.2817 1.00 0.0068 0.99 
15 -1.5628 0.99 0.0267 0.99 
16 -4.9703 1.00 0.2144 1.00 
17 -3.1991 0.99 0.1099 1.00 
18 -10.865 0.99 0.1083 0.99 

Avg   0.97   0.94 
 

In order to confirm the previous results and clarify that 
we can estimate this optimal point with a curve obtained 
from only three different sizes, we compare the estimated 
cost with the value obtained from equation (9) and the 
best possible cost (obtained by analysing much more 
sizes, 100). This is shown in Table 3. 

We show that there is no significant difference 
between the estimation and the real point, as it is whon by 
a test t on the results on the 18 datasets. For these values 
we used K=10, but similar results are obtained with other 
values of K. 

Table 3 Hypothesis test for K=10 
Minimum Cost Dataset Estimated from 3 sizes Best from 100 sizes

1 213.15 202.922 
2 525.72 481.648 
3 224.54 227.275 
4 326.45 307.864 
5 568.83 543.152 
6 172.27 179.361 
7 298.85 289.335 
8 191.32 218.889 
9 226.46 225.327 
10 23.83 90.752 
12 250.30 297.48 
14 67.79 61.349 
15 85.04 74.915 
16 810.62 782.523 
17 443.81 427.34 
18 142.27 158.163 

Avg 285.70 285.52 
Average difference = -0.19 
Standard deviation = 28.42929 

 tc= -0.02606 
 t(15,0.01) 2.947 

 
6. Application Procedure 
 
Once shown that three sizes are enought to obtain an 
almost identical optimal point than examining all the 
possible sizes, we apply this general result to our problem 
at hand: we want to minimise the number of interviews to 
the expert without exceeding the number of required 
cases to be labelled.  

In order to do this, we propose the following 
procedure: 
 

size_set= {10, 20}; // initial number of examples 
margin= 0.1; // percentage of error wrt. the optimum size. 
 
i= 20; 
while(true) { 
   Ask_Expert_Until(i);   
   opt= Estimate_Opt_Value(size_set); 
    if ((opt < i) || (i/opt > 1 - margin)) 
      break; 
    else { 
      i= opt;    // quick approach 
      size_set= size_set ∪ { i }; 
    } 
} 

Figure 4. Procedure to estimate the optimal size 
 

The algorithm starts asking 20 examples to the expert 
(from which we take one model with 10 examples and 
another one with 20 examples). With this we compute a 
first curve, from which we can estimate the optimum 
value (this is done in the funcion Estimate_Opt_Value()). 
If the estimated size is smaller than the number of 
examples asked to the expert (strange situation) or the 
deviation between the estimated value and the number of 



examples is small then we stop. Otherwise, we ask the 
expert the remainder cases until the estimated size. 

An example of the trace of the previous algorithm for 
the "zoo" dataset is as follows: 

 
Iteration i opt i/opt 
1 20 207 0.1 
2 207 340 0.6 
3 340 353 0.97 (STOP) 

 
As we can see, we only execute three iterations (three 
interviews to the expert) and without exceeding the 
optimal value (in this case it was finally around 350), we 
can find the optimal point for the knowledge acquisition 
problem. Similar results are obtained for the other 
datasets. 
 
7. Conclusions 
 

In this paper we have analysed a scenario where 
knowledge acquisition is made through simple queries 
(several case outputs) to one or more experts. This 
scenario is not applicable for any knowledge acquisition 
problem, but it can be a practical, easy-to-implement and 
general approach in many situations, especially in 
diagnosis and problems where the cases are well-
structured but the expert’s model is not easily explainable 
in a dozen of rules. 

In these situations, the mimetic technique is directly 
applicable, since we do not need anything more than the 
expert, some unlabelled data (which can be generated by 
a simple uniform distribution) and any machine learning 
technique. As we know, the greater the dataset which the 
expert is able to label, the better the results will be. This 
sets up a dilemma between the quality of the model which 
captures the experts’ knowledge and the size of the model 
on one hand (and hence, its comprehensibility) and the 
cost/availability of the expert on the other. Using learning 
curves for several datasets, we have seen that the cost of 
the expert (size of the dataset) and the size of the model 
are linearly correlated (at least for decision trees), and 
hence we can simplify our MML analysis to just two 
factors: the accuracy aimed and the size of model/data. 
These two factors are reflected by a single ratio K, which 
can be set for different contexts. 

Given these general results we have devised a 
methodology to estimate the number of cases needed to 
obtain the “optimal” model, in terms of the trade-off 
between accuracy, number of queries and size of the 
model. We have seen that we can approach this value 
quite reasonably by usually three iterations, which means 
that we will ask a few cases to the expert on a first 
interview, and on the second and third interview we will 

know almost exactly the number of cases which will be 
required. 

The results and the proposed methodology are then a 
step forward in making knowledge acquisition through 
machine learning much more practical and easy, which 
can help to solve the knowledge acquisition bottleneck. 

As future work, we would like to investigate several 
issues. The possibility of grouping similar cases by 
clustering techniques and then ask the expert to label the 
clusters, in order to minimise the expert effort. Also, we 
would like to study how our approach can be applied for 
other machine learning methods and other machine 
learning tasks (e.g. regression). 
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