

Knowledge Acquisition through Machine Learning: Minimising Expert's Effort

Ricardo Blanco-Vega José Hernández-Orallo María José Ramírez-Quintana

Agenda

- Introduction
- Trade-off Analysis
- Optimisation of the Size of the training set using a Modified MML
- Experimental Evaluation
- Application Procedure
- Conclusions y Future Work

One of the main problems in expert systems:

knowledge acquisition bottleneck

- Many experts are not able to write down their knowledge:
 - Clear
 - Unambiguous rules.

- Expert write down all their knowledge:
 - a high effort
 - can be very time-consuming
 - difficult to maintain and
 - sometimes the result isn't a model fully automated.

Minimising Expert's Effort

- Training a model:
 - captures the expert's knowledge
 - high accuracy
 - high comprehensibility
 - with a minimum number of queries.

- Applications:
 - Diagnosis
 - Estimation
 - Detection,
 - Selection, etc.

Cases are described by a fixed series of attributes and a dependent value.

- Expert's model predicts the dependent value according to the rest of attributes.
- This model structure is similar to predictive models in machine learning

Mimetic Technique

Mimetic process with expert oracle

- Method based on learning curves of mimetic method.
- To predict the number of cases.
- Trade-off between accuracy and comprehensibility of the models.

Trade-off Analysis

size of the invented data increases

accuracy increases

smaller invented datasets

fewer rules (greater comprehensibility)

Trade-off Analysis

The minimum message length (MML) principle

 $MsgLen(H \cap D) = MsgLen(H) + MsgLen(D \mid H)$

- This problem can be seen as an optimisation process.
- The objective is to maximise the accuracy and the comprehensibility of the model given some constraints.
- The constraints are obtained by the learning curves for the mimetic model

Modified MML

Cost of mimetic model:

Cost(M) = MsgLen(M) + MsgLen(D|M) + Query(D)

Learning Curves for the Mimetic Models

Error vs. size for the balance-scale dataset

Learning Curves for the Mimetic Models

Number of rules vs. size for the balance-scale dataset

4

Optimisation of the Size Calculating

 $MsgLen(M) \approx R^*cr$

 $MsgLen(D/M) \approx E^*ce$

Query(D) $\approx /D/*cq$

Cost(Model) $\approx R^*cr + E^*ce + |D|^*cq$

Cost(Model) $\approx R^*cr' + E^*ce$

 $Sopt = -K^*\alpha/\delta$

the second derivative $-K*\alpha/S^2$

the *Sopt* value corresponds to a minimum

Experimental Evaluation

No.	Data	Num. Atr.	Nom. Atr.	Classes	Size
1	anneal	6	32	6	898
2	audiology	0	69	24	226
3	balance-scale	4	0	3	625
4	breast-cancer	0	9	2	286
5	cmc	2	7	3	1,473
6	colic	7	15	2	368
7	diabetes	8	0	2	768
8	hayes-roth	0	4	3	132
9	hepatitis	6	13	2	155
10	iris	4	0	3	150
11	monks1	0	6	2	556
12	monks2	0	6	2	601
13	monks3	0	6	2	554
14	sick	7	22	2	3,772
15	vote	0	16	2	435
16	vowel	10	3	11	990
17	waveform-5000	40	0	3	5,000
18	Z00	1	16	7	101

Experimental Evaluation

Parameters and determination coefficients (R^2) for the learning curves with three points (n=3)

Dataset	n=3					
	Error vs Size		Rules vs Size			
	α	R ²	δ	R ²		
1	-4.5711	0.97	0.0776	0.98		
2	-7.9902	0.99	0.1808	0.99		
3	-5.4376	1.00	0.0591	0.99		
4	-0.4968	0.74	0.0949	1.00		
5	-1.5936	0.93	0.0956	1.00		
6	-2.66	0.95	0.0097	0.96		
7	-1.2611	0.98	0.0445	1.00		
8	-7.197	0.96	0.0699	0.93		
9	-3.628	0.98	0.0456	0.99		
10	-8.9288	0.97	0.0498	0.98		
11	-7.6452	0.95	0.0081	0.49		
12	-7.5818	0.95	0.1045	0.97		
13	-4.1454	0.94	0.0043	0.73		
14	-0.2817	1.00	0.0068	0.99		
15	-1.5628	0.99	0.0267	0.99		
16	-4.9703	1.00	0.2144	1.00		
17	-3.1991	0.99	0.1099	1.00		
18	-10.865	0.99	0.1083	0.99		
Avg		0.97		0.94		

Application Procedure

```
size_set= {10, 20}; // initial number of examples
margin = 0.1; // percentage of error wrt. the optimum size.
i= 20;
while(true) {
 Ask_Expert_Until(i);
 opt= Estimate_Opt_Value(size_set);
  if ((opt < i) \mid | (i/opt > 1 - margin))
   break;
  else {
   i= opt;
   size_set = size_set \cup { i };
```

Application Procedure

An example of the trace

Iteration	i	opt	i/opt
1	20	207	0.1
2	207	340	0.6
3	340	353	0.97 (STOP)

Conclusions

- We have analysed a scenario where knowledge acquisition is made through simple queries to one or more experts.
- Our approach is:
 - practical,
 - easy-to-implement and
 - general (in many situations).

Conclusions

- We need:
 - The expert,
 - some unlabelled data and
 - any machine learning technique.
- We propose a methodology to estimate the number of cases needed to obtain the "optimal" model.

Conclusions

- A step forward in making knowledge acquisition through machine learning much more practical and easy.
- Which can help to solve the knowledge acquisition bottleneck.

Future work

- Grouping similar cases by clustering techniques and then ask the expert to label the clusters.
- Applied for other machine learning methods and other machine learning tasks.