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Introduction

� One of the main problems in expert systems:

knowledge acquisition bottleneckknowledge acquisition bottleneck

� Many experts are not able to write down 
their knowledge:

� Clear

� Unambiguous rules.



Introduction

� Expert write down all their knowledge:

� a high effort

can be very time-consuming� can be very time-consuming

� difficult to maintain and 

� sometimes the result isn´t a model fully 
automated.



Introduction

Training a model:  

Minimising Expert’s Effort

� Training a model:  

� captures the expert’s knowledge

� high accuracy 

� high comprehensibility

� with a minimum number of queries. 



Introduction
� Applications:

� Diagnosis
� Estimation
� Detection,� Detection,
� Selection, etc.
Cases are described by a fixed series of 
attributes  and a dependent value. 

� Expert’s model predicts the dependent 
value according to the rest of attributes. 

� This model structure is similar to 
predictive models in machine learning
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Specialization Mimetic Technique
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Mimetic process with expert oracle
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Introduction

� Method based on learning curves of 
mimetic method.

� To predict the number of cases.� To predict the number of cases.

� Trade-off between accuracy and 
comprehensibility of the models.



Trade-off Analysis

accuracy

increases

size of the invented data

increases

fewer rules 

(greater comprehensibility)

increasesincreases

smaller

invented datasets



Trade-off Analysis

The minimum message length (MML) principle

MsgLen(H∩D) = MsgLen(H)+MsgLen(D|H) 



Optimisation of the Size

� This problem can be seen as an 
optimisation process.

� The objective is to maximise the � The objective is to maximise the 
accuracy and the comprehensibility of 
the model given some constraints. 

� The constraints are obtained by the 
learning curves for the mimetic model



Modified MML

Cost of mimetic model:

Optimisation of the Size

Cost of mimetic model:

Cost(M) = MsgLen(M)+MsgLen(D|M)+Query(D)



Learning Curves for the Mimetic Models
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Learning Curves for the Mimetic Models
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Calculating

MsgLen(M) ≈ R*cr

MsgLen(D/M) ≈ E*ce

Optimisation of the Size

MsgLen(D/M) ≈ E*ce

Query(D) ≈ |D|*cq

Cost(Model) ≈ R*cr + E*ce + |D|*cq

Cost(Model) ≈ R*cr’ + E*ce

Sopt = -K*α /δ -K*α /S2

the second derivative

the Sopt value corresponds to a minimum



No. Data Num. Atr. Nom. Atr. Classes Size

1 anneal 6 32 6 898

2 audiology 0 69 24 226

3 balance-scale 4 0 3 625

4 breast-cancer 0 9 2 286

5 cmc 2 7 3 1,473

Experimental Evaluation

5 cmc 2 7 3 1,473

6 colic 7 15 2 368

7 diabetes 8 0 2 768

8 hayes-roth 0 4 3 132

9 hepatitis 6 13 2 155

10 iris 4 0 3 150

11 monks1 0 6 2 556

12 monks2 0 6 2 601

13 monks3 0 6 2 554

14 sick 7 22 2 3,772

15 vote 0 16 2 435

16 vowel 10 3 11 990

17 waveform-5000 40 0 3 5,000

18 zoo 1 16 7 101



Experimental Evaluation

Dataset n=3

Error vs Size Rules vs Size

α R² δ R²

1 -4.5711 0.97 0.0776 0.98

2 -7.9902 0.99 0.1808 0.99

Parameters and determination coefficients (R²) 
for the learning curves with three points (n=3)

2 -7.9902 0.99 0.1808 0.99

3 -5.4376 1.00 0.0591 0.99

4 -0.4968 0.74 0.0949 1.00

5 -1.5936 0.93 0.0956 1.00

6 -2.66 0.95 0.0097 0.96

7 -1.2611 0.98 0.0445 1.00

8 -7.197 0.96 0.0699 0.93

9 -3.628 0.98 0.0456 0.99

10 -8.9288 0.97 0.0498 0.98

11 -7.6452 0.95 0.0081 0.49

12 -7.5818 0.95 0.1045 0.97

13 -4.1454 0.94 0.0043 0.73

14 -0.2817 1.00 0.0068 0.99

15 -1.5628 0.99 0.0267 0.99

16 -4.9703 1.00 0.2144 1.00

17 -3.1991 0.99 0.1099 1.00

18 -10.865 0.99 0.1083 0.99

Avg 0.97 0.94



Application Procedure

size_set= {10, 20}; // initial number of examples
margin= 0.1; // percentage of error wrt. the optimum size.
i= 20;
while(true) {while(true) {

Ask_Expert_Until(i);  
opt= Estimate_Opt_Value(size_set);
if ((opt < i) || (i/opt > 1 - margin))

break;
else {

i= opt;    
size_set= size_set ∪∪∪∪ { i };

}
}



An example of the trace

Iteration i opt i/opt

Application Procedure

1 20 207 0.1

2 207 340 0.6

3 340 353 0.97 (STOP)



Conclusions

� We have analysed a scenario where 
knowledge acquisition is made through 
simple queries to one or more experts. simple queries to one or more experts. 

� Our approach is:

� practical, 

� easy-to-implement and

� general (in many situations).



Conclusions

� We need:

� The expert,

some unlabelled data and� some unlabelled data and

� any machine learning technique.

� We propose a methodology to estimate 
the number of cases needed to obtain 
the “optimal” model.



Conclusions

� A step forward in making knowledge 
acquisition through machine learning 
much more practical and easy. much more practical and easy. 

� Which can help to solve the knowledge 
acquisition bottleneck.



Future work

� Grouping similar cases by clustering 
techniques and then ask the expert to 
label the clusters.label the clusters.

� Applied for other machine learning 
methods and other machine learning 
tasks.


