
PRELIMINARY VERSION, THE FINAL VERSION APPEARED IN 

INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS  1 

Int. J. Intel. Systems vol.15, pp. 241-264, 2000 

© 2000 John Wiley & Sons, Ltd Int. J. Intel. Systems. vol.15, pp. 241-264, 2000 

 

 

CONSTRUCTIVE REINFORCEMENT LEARNING 

 
JOSE HERNANDEZ-ORALLO

*
 
 

Department of Information Systems and Computation, Technical University of Valencia, Camí de Vera 14, Aptat. 22.012 

E-46071, Valencia, Spain 

 
ABSTRACT 

 

This paper presents an operative measure of reinforcement for constructive learning methods, i.e., eager learn-
ing methods using highly expressible (or universal) representation languages. These evaluation tools allow a 
further insight in the study of the growth of knowledge, theory revision and abduction. The final approach is 
based on an apportionment of credit wrt. the ‘course’ that the evidence makes through the learnt theory. Our 
measure of reinforcement is shown to be justified by cross-validation and by the connection with other suc-
cessful evaluation criteria, like the MDL principle. Finally, the relation with the classical view of reinforce-
ment is studied, where the actions of an intelligent system can be rewarded or penalised, and we discuss 
whether this should affect our distribution of reinforcement. The most important result of this paper is that the 
way we distribute reinforcement into knowledge results in a rated ontology, instead of a single prior distribu-
tion. Therefore, this detailed information can be exploited for guiding the space search of inductive learning 
algorithms. Likewise, knowledge revision may be done to the part of the theory which is not justified by the 
evidence. © XXXX John Wiley & Sons, Ltd. 
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1. INTRODUCTION 

1.1. Motivation 

The problem of inductive learning defined as “the construction of theories that describe the evi-

dence” is underspecified. Consequently, many evaluation criteria have been presented to complete 

this specification. Model ‘simplicity’ and ‘reinforcement’ are the most natural ones and they have 

been successfully applied to restricted representations. However, they do not scale up well to con-

structive languages, i.e., languages that allow dynamical change of its representational bias (what is 

sometimes known as the possibility of ‘redescription’
21

). The issue is especially troublesome when 

new constructed terms can be created to express more compactly the evidence (this is usually known 

in ILP as the problem of predicate invention). 

Some approximations have been adopted to make the simplicity criterion work for constructive 

(or universal) languages (e.g. U-learnability
35

). Contrariwise, a constructive and general formalisa-

tion for measuring reinforcement has not been presented to date, despite the fact that reinforcement 

learning in restricted representations (like general Markov decision processes
23

) has been especially 
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fruitful in this decade (see e.g. References 20 and 43 for surveys) and it has been recently related 

with EBL
8
. 

The reasons may be found in the increasing difficulty of assigning and ‘propagating’ the rein-

forcement (or apportionment of credit
19

) depending on two factors: (1) the eagerness of the inductive 

strategy and (2) the expressibility of the language which is to be used for the hypotheses. 

Since the expressibility of the representation language does not imply a constructive learning 

method (this expressive power cannot be exploited), for the rest of the paper we will define con-

structive learning as having these two characteristics: eager strategy and highly expressible represen-

tation languages. 

Not surprisingly, these two issues are as well related. Eager learning methods extract all the regu-

larity from the data in order to work with intensional knowledge (instead of the extensional knowl-

edge of lazy methods
1
) but, on the other hand, intensional knowledge is only possible if the repre-

sentation language is rich enough. The difficulty of these two issues explains the broad use of lazy 

methods, like instance-based and case-based reasoning
30

, and algorithms for restricted representa-

tions, like attribute learning. In decision trees or attribute languages, no invented terms are induced 

and reinforcement is distributed among the initial attributes.  The main drawback of these ap-

proaches is the lack of flexibility: when arrived at a ‘saturation’ point, the data are not abstracted 

further and the mean reinforcement cannot be increased. Furthermore, the ontology must be given 

and not constructed (a model of the ‘world’ is embedded in the system) and the possible extensions 

of this world are very restricted. 

Inductive Logic Programming (ILP) is the best example of a recent reaction towards ‘construc-

tive learning’, but other frameworks like Explanatory Based Learning (EBL) have tried to adopt 

reinforcement as an evaluation criterion
8
. The combination faces many difficulties apart from effi-

ciency: a main problem is presented when learning in highly expressible frameworks: the ontology 

of any new constructed concept is indirect. The usual solution to this problem is the assumption of a 

prior probability. Once the probabilities are assigned, a bayesian framework can be used to ‘propa-

gate’ the distribution. 

In general, there is not any justification at all of which prior distribution to choose. In the ab-

sence of any knowledge, the most usual one is the MDL (Minimum Description Length) princi-

ple
37,38

. The MDL principle is just a formalisation of Occam’s razor (the preference of the shortest 

theories). Theoretically, its close relation with PAC-learning
45

 has been established by Blumer et al.
4
 

and, recently, some high-level representation inductive methods (e.g. U-learnability in ILP
35

) have 

adapted these ideas. 

All of them are based on the assumption of a prior probability. However, there are many riddles 

associated with the management of probabilities and, in particular, the best choice, the MDL princi-

ple, has additional ones. 

1.2. Proposal 

As we will see, most of these difficulties would disappear if no prior distribution is assumed and 

the knowledge is constructed by reinforcement, as the data suggest. However, as we have discussed, 

the translation of these ideas to general representational frameworks seems difficult. First, the length 

of the structures which supposedly are to be reinforced is variable. Secondly, and more importantly, 

it seems we can always invent ‘fantastic’ concepts that can be used in the rest of knowledge. Conse-

quently, these ‘fantastic’ concepts are highly reinforced, increasing the reinforcement ratio of 

knowledge in an unfair way. 
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An immediate way out is the combination of reinforcement learning with some prior probability, 

mainly the MDL principle (see e.g. an example under the name of ‘incremental self-

improvement’
39

), to restrict the appearance of these inventions. Notwithstanding, our approach also 

avoids ‘fantastic’ concepts but it is based exclusively on reinforcement. Consequently, compression 

turns out to be an ‘a posteriori’ consequence of a well-established reinforcement, instead of an ‘arbi-

trary’ assumption.  

1.3. Paper Organisation 

The paper is organised as follows. Section 2 presents some model selection criteria usually es-

sayed in machine learning, especially the MDL principle. Section 3 introduces our framework for 

incremental knowledge construction. Section 4 essays a first adaptation of reinforcement to realise 

the problems of ‘fantastic’ concepts. Section 5 remakes the approach and introduces the idea of 

‘course’ to measure reinforcement. Section 6 introduces some applications and examples. Section 7 

gives a justification of reinforcement by relating cross-validation and intensionality. Section 8 con-

siders the length of the reinforced ‘units’ or ‘rules’ and establishes the relation with the MDL princi-

ple in the limit. The result is a balanced reinforcement suitable for explanation, not so strict as the 

whole avoidance of exceptions (and noise). Section 9 discusses the extension of these ideas to wider 

notions of reinforcement with the presence of reward and penalties. Section 10 presents two methods 

for computing effectively these measures and deals with their limitations and complexity. Section 11 

closes the paper discussing the results and the open questions. 

2. SELECTION CRITERIA IN INDUCTIVE INFERENCE 

The aim of Machine Learning is the computational construction of hypothetical inferences from 

facts, as Michalski has pointed out
31

: “inductive inference was defined as a process of generating 

descriptions that imply original facts in the context of background knowledge. Such a general defi-

nition includes inductive generalisation and abduction as special cases”. 

However, given the background knowledge B and some evidence E, infinite many hypotheses H 

can be induced which ensure B ∪ H = E. As we have said, some selection criterion is needed to 

complete the specification of the learning problem. Intrinsically, selection criteria can be classified 

in the following way: 

• Semantical Criteria (What does the hypothesis cover?). There has been a long and still open 

debate among informativeness (advocated by Popper
36

), non-presumptiveness, generality, speci-

ficity, etc., apart from other considerations: the theory may be complete or partial, and exact or 

approximate. 

• Syntactical Criteria (What is the hypothesis like?). Different ad-hoc preferences have been 

adopted depending on the purpose of the learning task. However, the MDL principle is the syn-

tactical criterion that has been used more frequently. In general, syntactical criteria imply the as-

sumption of a prior distribution which can be used to derive a likeliness value of hypotheses. 

• Structural Criteria (How does the hypothesis cover the evidence?). The best known structural 

criterion is the computational complexity of a hypothesis (time). This criterion is implicitly as-

sumed by the computational restrictions of the learning algorithm. Nonetheless there are other 

structural criteria which are much more interesting, around the ideas of Whewell’s ‘consil-

ience’
48

, Reichenbach’s principle of common cause, Thagard’s coherence
44

, all of them vs. sepa-

rate covering of the evidence. Unfortunately, there are not formalisations or even clear defini-
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tions for these terms. The same applies for related concepts like intensionality vs. tolerance of 

extensionality (intrinsical exceptions). 

In the rest of this section, we will center on the pros and cons of the principle of simplicity, because 

it is the one that has been better formalised. We will show later that it is closely related with rein-

forcement. The principle of simplicity, represented by Occam’s razor, selects the shortest hypothesis 

as the most plausible one. This principle was rejected by Karl Popper because, in his opinion (and at 

that moment) there was no objective criterion for simplicity. However, Kolmogorov Complexity or 

Algorithmic Information
47

, denoted K(x), is an absolute criterion for simplicity. This is precisely 

what R.J.Solomonoff proposed as a ‘perfect’ theory of induction
29,42

. The direct relationship be-

tween Kolmogorov Complexity and Stochastic Complexity inspired J. Rissanen in 1978 to use it as a 

general modelling method, giving the popular MDL principle
37

, recently revised as a one-part code
38

 

instead of the initial two-parts code formulation. 

It is remarkable (and often forgotten) that Kolmogorov Complexity just gives consistency to this 

theory of induction; Occam's razor is assumed but not proven. Nonetheless, some justifications have 

been given in the context of physics, reliability and entropy, but, in our opinion, it is the notion of 

reinforcement (and cross-validation) which justifies the MDL principle more naturally. At first sight, 

it seems that the higher the mean compression ratio (length(E) / length(H)) the higher the mean rein-

forcement ratio. 

Summing up, the MDL principle says that, in absence of any other knowledge about the hypothe-

ses distribution, we should select the prior P(h) = 2−K(h), prevailing short theories over large ones. 

However, this prior distribution has many riddles. First of all, (1) K(h) is not computable, so it must 

be approximated (e.g. using the time-weighted variant Kt of Kolmogorov complexity
27

), with the 

additional problem that it may dynamically change as the learner knows that something can be fur-

ther compressed. Second, (2) it presents problems with perfect data; the MDL principle usually ‘un-

derfits’ the data, because sometimes it is too conservative for incremental learning. New examples 

are merely quoted until their compression is worthy. Third, (3) the reliability of the theory is not 

always increasing with the number of examples which have confirmed the theory (e.g., the sequence 

(a
n
b

n
)

*
 is more compressible if n = 10

10
 than if n = 78450607356). Moreover, (4) it is difficult to 

work with different and non-exclusive hypotheses, because, if we have Ta and Tb, intuition (and 

logic) says that T = Ta ∨ Tb should have more probability, but the MDL principle assigns less prob-

ability to T because it is larger. Finally, (5) the MDL principle has shown problems for explanation, 

because, for the sake of maximum mean compression, some part of the hypothesis cannot be com-

pressed at all. This yields a very compressed part plus some additional extensional cases which are 

not validated, making the whole theory weak. An ontology is difficult to construct from here if they 

are unrelated (not explained) with the other facts. This is associated with the differentiation between 

Enumerative Induction and Best Explanation
14,15,9

 and the distinction between Induction and Abduc-

tion
11,16

. 

We will handle these difficulties with a structural criterion: a dynamical and detailed propagation 

of reinforcement. Our approach has additional advantages: (1) no prior assumption has to be made 

(apart from how to distribute this reinforcement, which is the topic of this paper), i.e. knowledge is 

constructed just as the data suggest, and (2) reinforcement can be more flexibly managed than prob-

abilities, and allows further insight on the relation between the evidence and the theory. 
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3 FRAMEWORK 

With this section we just present the schema of incremental learning and the languages we aim to 

address in the following sections. 

3.1. Incremental Knowledge Construction 

From the complex task of knowledge construction, organisation and maintenance, for our pur-

poses, we will exclusively tackle the inductive or learning task in knowledge construction. 

Incremental knowledge construction (which includes acquisition and revision) generates a theory 

from an evidence that is gradually supplied example by example. From the very beginning, with an 

empty knowledge T=∅, when new observations or evidences e are received, we can have three pos-

sible situations: 

• Prediction Hit (or 'matter of course'). The observations are covered without more assumptions, 

i.e., T = e. The theory T is reinforced. 

• Novelty. The observation is uncovered but consistent with T, i.e. T ≠ e and T ∪ e ≠ �. Here, the 

possible actions are: 

1. Extension: T can be extended with a good explanation A, (i.e. T ∪ A = e). 

2. Revision: revised if a good explanation cannot be found, 

3. Patch: quoted as an extensional exception (i.e. T’ = T ∪ e), or 

4. Rejection: regarded as noise and ignored. 

• Anomaly. The observation is inconsistent with the theory T, i.e., T ≠ e and T ∪ e = �. In this 

case, T cannot be extended and there are three possibilities: revision, patch or rejection. 

An eager but still non-explanatory approach to theory formation is Kuhn's theory of changing para-

digms
26

 which basically matches with the MDL principle: as too many exceptions to the paradigm 

are found, they are increasingly lengthy to quote (patch) and the whole paradigm (or part of it) must 

be reformulated.  

In the preceding schema, abduction performs an extension of current knowledge with some as-

sumption (usually one or more facts) and induction can be an extension or revision which performs 

some kind of generalisation. Nevertheless, this characterisation is not sufficient for a clear distinc-

tion (see Reference 16 for more detailed considerations). In fact, it is a topic of current discussion 

(for a state of the art see Reference 11). In this way, abduction has been commonly seen as belief 

revision
5
, usually combined with induction

2
. In other cases it is related with validation, justification 

or ontology
10

, in the way that the part of the theory where abduction is supported must be reliable. 

Unavoidably, this reliability must come from a reinforcement produced by the previous evidence. 

The former schema is general enough to include explanatory and conservative knowledge con-

struction. Explanatory knowledge construction should minimise the exceptions, so patches and rejec-

tions should not be allowed. Thus, revisions are much more frequent. Even more, the goal is to an-

ticipate, to invest, to find more informative and easily refutable hypotheses
36

, in contrast to what 

many approaches to minimal revisions aim for (see e.g. Reference 33), supported by the obvious fact 

that a minimal revision is usually less costly, in short-term, than a deep revision. 

3.2. Representation Languages. Syntax and Semantics 

For the study of reinforcement we need to introduce some basics for the representation to which 

it can be applied. A ‘pattern’ of languages is defined as a set of chunks or rules r which are com-

posed of a head (or consequence) and a body (or set of conditions) in the following way r  ≡ { h :- t1, 

t2, .. ts }. A theory is simply a set of rules: T = {r1, r2, …, rm} 



PRELIMINARY VERSION, THE FINAL VERSION APPEARED IN 

INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS  6 

Int. J. Intel. Systems vol.15, pp. 241-264, 2000 

© 2000 John Wiley & Sons, Ltd Int. J. Intel. Systems. vol.15, pp. 241-264, 2000 

Since no restriction of how h and ti can be (there may be variables, equations, boolean opera-

tors...), our definition could be specialised to propositional languages, Horn theories, full logical 

theories, functional languages, some kind of grammars, and even higher-order languages. In the fol-

lowing, we leave unspecified the semantics of the representations and we just say that e is a conse-

quence of P, denoted P = e (in other words, there is a proof for e in P, or, simply, P covers e). 

3.3. Preliminaries 

Given the slight semantical and syntactical restriction of the previous paragraphs, we introduce 

some useful and simple constructions which will shape our framework with more determination. 

Definition 3.1. A rule ri is said to be necessary wrt. T for an example e iff 

T = e    and  T − {ri} ≠ e 

Definition 3.2. A theory T is reduced for an example e iff 

T = e    and  ¬∃ ri ∈ T  such that ri is not necessary for e 

For the rest of the paper, we consider a proof as a set of rules, independently of their order of com-

bination, the applied substitutions or the number of times that each rule is used. This unusual (and 

incomplete) conception of proof allows us to work without considering the concrete semantics while 

maintaining an appropriate degree of detail. This makes possible the following definition: 

Definition 3.3. We say that S1 and S2 are alternative proofs for an example e in the theory T iff 

S1 ⊂ T,  S2 ⊂ T,  S1 ≠ S2  and S1 and S2 are reduced for e 

We denote with Proof(e,T) the set of alternative proofs for an example e wrt. a theory T. Finally, we 

can define Proofr(e,T) as the set of alternative proofs which contain r. More formally, 

Definition 3.4.  

Proofr(e,T) = { S : S ⊂ Proof(e,T) and r ∈ S } 

With these naive constructions, we are able to introduce our first measurement of reinforcement. 

4. REINFORCEMENT WRT. THE THEORY USE 

As we have seen, whatever the approach to knowledge construction, the revision of knowledge must 

come either from an inconsistency or from a lack of support. In the latter case, a partial or total 

weakness of the theory can be detected by a loss of reinforcement (or apportionment of credit
19

). 

There have been several empirical and theoretical justifications for reinforcement in different fields, 

from many empirical observations on learning processes in animals or humans to theoretical and 

practical verifications by cross-validation. 

We present the first intuitive way to compute the reinforcement map for a given theory, depend-

ing on past observations. 

Definition 4.1. The pure reinforcement ρρ(r) of a rule r from a theory T wrt. some given evi-

dence E = {e1, e2, …, en} is defined as: 

ρρ(r) = Σi=1..n card(Proofr(ei,T)) 

In other words, ρρ(r) is computed as the number of proofs of ei where r is used. If there are more than 

one proof for a given ei, all of them are reckoned, but in the same proof, a rule is computed only 

once. 

Definition 4.2. The (normalised) reinforcement is defined as: 

ρ(r) = 1 − 2−ρρ(r) 

Definition 4.2 is motivated by the convenience of maintaining reinforcement between 0 and 1. How-

ever, its computation is easy, as the following elementary lemma shows: 
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Lemma 4.3. Suppose a new example is added to the evidence and it is covered by the theory 

(hit). For each rule r that is used for it, the new ρ’(r) can be easily obtained from the old ρ(r) by: 

ρ’(r) = [ ρ(r) + 1 ] / 2 

Proof. The new ρρ’(r) is incremented by one, i.e. ρρ’(r)=ρρ(r) + 1. From here, ρ’(r)=1 − 2−ρρ’(r) = 

1 − 2−ρρ(r) − 1 = 1 − 2−ρρ(r)/2 = ½  · [2 − 2−ρρ(r) ] = ½ · [ 1 + 1 − 2−ρρ(r) ] = ½ · [ 1 + ρ(r)]. � 

Corollary. If an example is removed from the evidence, for each rule r that was used for it, the 

new ρ’(r) can be easily obtained from the old ρ(r) by: 

ρ’(r) = 2 · ρ(r) − 1 

Hence, if a rule r covers a single example then ρ(r)=0.5 and if r becomes not necessary, ρ’(r)=0.  

Definition 4.4. The mean reinforced ratio mρ(T) is defined as 

mρ(T) = Σr∈T ρ(r)/m,  

being m the number of rules. 

From these definitions one can verify that, in general, the most (mean) reinforced theory is not the 

shortest one as the following example shows: 

EXAMPLE 4.1 
Given the evidence e1,e2,e3, consider a theory Ta={r1,r2,r3} where {r1} covers {e1}, {r2} covers {e2} and {r3} 

covers {e3} and a theory Tb={r1,r2,r3,r4} where {r1,r4} cover {e1}, {r2,r4} cover {e2} and {r3,r4} cover {e3}. 

From here, Ta is less reinforced than Tb. 

In the first case we have ρρa,1= ρρa,2= ρρa,3= 1 and mρ(Ta) = 0.5. For Tb we have ρρb,1= ρρb,2= ρρb,3= 1, 

ρρb,4= 3 and mρ(Tb) = 0.5938. 

In addition, redundancy does not imply a loss of mean reinforcement ratio (e.g. just add twice the 

same rule). However, this measurement of the theory allows fantastic (unreal) concepts: 

Theorem 4.5. Consider a program P composed of rules ri of the form { h :- t1, t2, .. ts }, which cov-

ers n examples E = { e1, e2, ...  en }. If the mean reinforcement ratio mρ < 1 − 2−n then it can always 

be increased.  

Proof. A fantastic rule rf  can be added to the program by modifying all the rules of the program 

in the following way ri  = { h :- t1, t2, .. ts , rf }. Obviously, all the other rules maintain the same re-

inforcement but rf is now reinforced with ρρ(rf) = n. Since ρ(rf)> mρ  then the new mρ’ must be 

greater than mρ. � 

One can argue that these fantastic rules could be checked out and eliminated. However, there are 

many ways to ‘hide’ a fantastic rule; in fact, cryptography relies on this fact. 

5. REINFORCEMENT WRT. THE EVIDENCE 

It might be derived from this problem that reinforcement must be combined with a simplicity crite-

rion in order to work. There is an analogy with neural networks, where this avoidance of overfitting, 

ensured by simplicity, has been more thoroughfully studied in combination with reinforcement. 

However, the analogy inspires a solution without explicitly making use of simplicity. The idea is to 

measure the validation wrt. the evidence. 

Definition 5.1. The course χT( f ) of a given fact f wrt. a theory T is defined as: 

χT( f ) = max S⊂Proof(e,T) { Πr∈S ρ(r) } 

More constructively, χT( f ) is computed as the product of all the reinforcements ρ(r) of all the rules r 

of T used in the proof of f. If a rule is used more than once, it is computed once. If f has more than 

one proof, we select the greatest course. 
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The way reinforcements are calculated avoids the generation of very complex programs, but re-

dundancy is possible. However, now there is not any risk of fantastic concepts. As said before, for 

any program P composed of rules ri of the form { h :- t1, t2, .. ts }, which covers m examples E = { e1, 

e2, ...  en } and their reinforcements ρi, a fantastic rule rf  could be added to the program and all the 

rules could be modified in the following way ri = { h :- t1, t2, .. ts, rf }. The following theorem shows 

that now it is not reinforced over the original one: 

Theorem 5.2. The course of any example cannot be increased by the use of fantastic concepts. 

Proof. Since the fantastic concept rf now appears in all the proofs of the n examples, the rein-

forcement of rf is exactly 1 − 2−n and the reinforcements of all the ri remain the same. Hence, the 

course of all the n examples is modified to χ’(ej) = χ(ej) · rf = χ(ej) − χ(ej) · 2
−n. Since n is finite, for 

all ej ∈ E, χ’(ej) can never be greater than χ(ej) .� 

6. APPLICATIONS 

Now it is time to start to use the previous measure to evaluate inductive theories. The first idea is to 

use the greatest mean of the courses of all the data presented so far, defined as: 

Definition 6.1. The mean course mχ(T, E) of a theory T wrt. an evidence E is defined as: 

mχ(T, E) = Σe∈E χT(e)/n 

being n = card(E). 

In order to obtain a more compensated theory, a geometric mean can be used instead, which we will 

denote by µχ. For every theory T, we will say that it is worthy for E iff mχ(T, E) ≥ 0.5. If the repre-

sentation language is expressible enough, it is easy to show that for every evidence E there is at least 

a theory worthy for it (just choose a theory with an extensional rule for covering each example). The 

same holds for µχ. 

6.1. Knowledge Construction, Revision and Abduction  

The use of these simple measurements can be seen in the following example, which is somehow 

long in order to show the use of this new criterion for knowledge construction: 
 

EXAMPLE 6.1 
Using Horn theories for representation (Prolog), consider the following incremental learning session: 

⌦ Given the background theory B = { s(a,b), s(b,c), s(c,d) } we observe the evidence 

E = { e+
1: r(a,b,c), e+

2: r(b,c,d), e+
3: r(a,c,d), e--

1: ¬r(b,a,c), e--
2: ¬r(c,a,c) }: 

The following programs could be induced, with their corresponding reinforcements and courses: 

P1 = {r(X,Y,Z) :- s(Y,Z) : ρ = 0.875} χ(e+
1)= χ(e+

2)= χ(e+
3)= 0.875 

P2 = {r(X,c,Z) : ρ = 0.75  

          r(a,Y,Z) : ρ = 0.75} χ(e+
1)= χ(e+

2)= χ(e+
3)= 0.75 

P3 = {r(X,Y,Z) :- s(X,Y) : ρ = 0.75  

          r(X,Y,Z) :- s(Y,Z) : ρ = 0.875} χ(e+
1)= χ(e+

2)= χ(e+
3)= 0.875 

P4 = {r(X,Y,Z) :- t(X,Y), t(Y,Z) : ρ = 0.875 

          t(X,Y) :- s(X,Y) : ρ = 0.875 

          t(X,Y) :- s(X,Z), t(Z,Y) : ρ = 0.5} χ(e+
1)= χ(e+

2)= 0.7656, χ(e+
3)= 0.3828 

P5 = {r(X,Y,Z) :- t(X,Y) : ρ = 0.875  

          t(X,Y) :- s(X,Y) : ρ = 0.875 

          t(X,Y) :- s(X,Z), t(Z,Y) : ρ =  0.5} χ(e+
1)= χ(e+

2)= 0.7656, χ(e+
3)= 0.3828 

At this moment, P1 and P3 are the best options and P4 and P5 seem ‘risky’ theories wrt. the evidence. 

⌦ e+
4 = r(a,b,d) is observed. 
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P1 does not cover e4
+ and it is patched:  

P1a’ = {r(X,Y,Z) :- s(Y,Z) : ρ = 0.875 χ(e+
1)= χ(e+

2)= χ(e+
3) = 0.875, χ(e+

4) = 0.5 

            r(a,b,d) : ρ = 0.5} mχ = 0.78, µχ = 0.76 

P1b’ = {r(X,Y,Z) :- s(Y,Z) : ρ = 0.875 

           r(X,Y,d) : ρ = 0.875 } χ(e+
1)= χ(e+

2)= χ(e+
3)= χ(e+

4) = 0.875 

P2’ is reinforced = {r(X,c,Z) : ρ = 0.75.  

                                r(a,Y,Z) : ρ = 0.875} χ(e+
1)=0.875, χ(e+

2)=0.75, χ(e+
3)=χ(e+

4)=0.875 

P3’ is reinforced  = {r(X,Y,Z) :- s(X,Y) : ρ = 0.875.  

                                 r(X,Y,Z) :- s(Y,Z) : ρ = 0.875} χ(e+
1)= χ(e+

2)= χ(e+
3)= χ(e+

4) = 0.875   

P4’ is reinforced  

  P4’= { r(X,Y,Z):-t(X,Y), t(Y,Z): ρ = 0.9375 

         t(X,Y) :- s(X,Y) : ρ = 0.9375 χ(e+
1)= χ(e+

2)= 0.8789, χ(e+
3)= χ(e+

4) = 0.6592 

         t(X,Y) :- s(X,Z), t(Z,Y) : ρ = 0.75} mχ = 0.77, µχ= 0.76 

P5’ is slightly reinforced 

   P5’ = { r(X,Y,Z) :- t(X,Y) : ρ = 0.9375.  χ(e+
1)=χ(e+

2)=0.8789 

               t(X,Y) :- s(X,Y) : ρ = 0.9375 χ(e+
3)=0.4395, χ(e+

4)=0.8789 

               t(X,Y) :- s(X,Z), t(Z,Y) : ρ =  0.5}  mχ = 0.77, µχ= 0.74 

At this moment, P1b’ and P3’ are the best options. Now P4’ and P5’ seem more grounded. 

⌦ We add e--
3
 = ¬r(a,d,d) 

P1a’ remains the same and P1b’ and P2’ are inconsistent, motivating the following 'patches' for them: 

P2a’ = {r(X,c,Z) : ρ = 0.75.  

           r(X,b,Z) : ρ = 0.75} χ(e+
1)= χ(e+

2)= χ(e+
3)= χ(e+

4) = 0.75 

P2b’ = {r(X,Y,Z) :- e(Y) : ρ = 0.9375.  

           e(b) : ρ = 0.75 

           e(c) : ρ = 0.75} χ(e+
1)= χ(e+

2)= χ(e+
3)= χ(e+

4) = 0.7031 

P3’ and P4’ remain the same. P5’ becomes inconsistent.  

⌦ We add e+
5
 = r(a,d,e) 

P1a’, P2a’, P2b’ can only be patched with e+
5
 as an exception because abduction is not possible. 

P3’ has abduction as a better option. 

       P3’’ = {s(d,e) : ρ = 0.5 χ(e+
1)=χ(e+

2)=χ(e+
3)= 0.9375 

                  r(X,Y,Z) :- s(X,Y) : ρ = 0.875  χ(e+
4)= 0.875, χ(e+

5)= 0.4688 

                  r(X,Y,Z) :- s(Y,Z) : ρ = 0.9375} mχ = 0.831, µχ= 0.805 

P4’ makes the same abduction 

    P4’’ = { s(d,e) : ρ = 0.5 

                r(X,Y,Z):-t(X,Y),t(Y,Z): ρ=0.96875 χ(e+
1)=χ(e+

2)=0.939 

                t(X,Y) :- s(X,Y) : ρ = 0.96875 χ(e+
3)=χ(e+

4)=0.82,χ(e+
5)=0.41 

                t(X,Y) :- s(X,Z), t(Z,Y): ρ = 0.875} mχ = 0.786, µχ= 0.754 

At this moment, P3’’ and P4’’ are the best options. 

Further examples would be required to distinguish with more reliability which is the ‘intended’ one. 
 

The example illustrates that, in general, and by using this new recknoning of reinforcement, the 

shortest theories are not the best ones. More importantly, the weak parts are detected by a low value 

of reinforcement, and revision, if necessary, should be done to these parts of the theory. On the other 

hand, as soon as a theory gains some solidity, in terms of increase of reinforcement, abduction can 

be applied. Another advantage of this approach is that a ‘rated’ ontology can be derived directly 

from the theory. 
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6.2. Consilience can be precisely defined 

We have previously commented on the difficulty of determining in a formal way the idea of 

‘consilience’, introduced by Whewell in the last century
48

, and other related concepts, like Reichen-

bach’s principle of common cause, Thagard’s coherence
44

, all of them with the common idea of giv-

ing a conciliating theory for all the data, i.e., all the evidence must be accounted by the same expla-

nation or by very close related explanations. 

In the context of reinforcement, it is easy to define consilience: 

Definition 6.2. A theory T is partitionable wrt. an evidence E iff ∃T1, T2 : T1 ⊂ T, T2 ⊂ T and T1 

≠ T2 such that ∀e ∈ E : T1 = e ∨ T2 = e . We define E1 = { e ∈ E : T1 = e } and E2 = { e ∈ E : T2 

= e } and E12 = E1 ∩ E2. Finally, we will use ther term Sχ(T1 ⊕ T2, E) to denote the expression 

mχ(T1, E1) · [ card(E1) − card(E12)/2 + mχ(T2, E2) · [ card(E2) − card(E12)/2. 

Definition 6.3. A theory T is consilient wrt. an evidence E iff there does not exist a partition T1, 

T2 such that Sχ(T1 ⊕ T2, E) ≥ mχ(T, E) · card(E). 

In other words, a theory T is consilient wrt. an evidence E iff there does not exist a bipartition 

P∈℘(T), such that every example of E is still covered separatedly without loss of reinforcement. 

EXAMPLE 6.1 
Given the following evidence (in Prolog): 

E = { p(a), p(b), p(e), q(a), q(b), q(e), q(f) } 

The following program could be induced, with its corresponding reinforcements and courses: 

P = { p(X) : ρ = 0.875 

         q(X) : ρ = 0.9375} mχ(E, P)= 0.9107 

The following partition: 

P1 = { p(X) : ρ = 0.875 } mχ(E1, P1)= 0.875 

P2 = { q(X) : ρ = 0.9375} mχ(E2, P2)= 0.9375 

In this case it is obvious that Sχ(P1 ⊕ P2, E) = mχ(E1, P1) · 3 + mχ(E2, P2) · 4 = mχ(E, P) · card(E) = 0.9107 

· 7. Hence, as expected, P is not consilient. 

The definition can be parametrised introducing a consilience factor or changing the arithmetic mean 

by the geometric mean. 

6.3. Intrinsical Exceptions, Consilience and Noise  

Using reinforcement, an intrinsecal exception or extensional patch can be easily defined as a rule 

r with ρ = 0.5, i.e. a rule that just covers one example e, or, in other words, it is necessary for only 

one example. However we must distinguish between completely extensional exceptions, when r does 

not use any rule from the theory to cover e, and partially extensional exceptions when r uses other 

rules to describe e. The following theorem shows that completely extensional exceptions should be 

avoided to obtain consilient programs. 

Theorem 6.4. If a worthy theory T for an evidence E has a rule r with ρ = 0.5, and completely 

extensional, then T is not consilient. 

Proof. Just choose the partition T1 = T − r and T2 = T. Since ρ = 0.5 then r is only used by one 

example er. Since it is a completely extensional exception, we have that r does not use any rule 

from T1 to cover er, so ρ’(ri) = ρ(ri) for all ri ∈ T1. Let n be the number of the examples of the evi-

dence E. Hence, mχ(T1, E1) = [mχ(T, E) · n − χ(er,T) ] / (n−1) = [mχ(T, E) · n − ½ ] / (n−1) = 

[mχ(T, E) · n + mχ(T, E) − mχ(T, E) − ½ ] / (n−1) = mχ(T, E) + [mχ(T, E) − ½] / (n−1). 

From definition 6.3, the disequality simplifies as follows: 

Sχ(T1 ⊕ T2, E) = 

mχ(T1, E1) · [ card(E1) − card(E12)/2 ]+ mχ(T2, E2) · [ card(E2) − card(E12)/2 ] = 
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{ mχ(T, E) + [ mχ(T, E) − ½] / (n−1) } · [ (n−1) − (n−1)/2 ]+ mχ(T, E) · [ n − (n−1)/2 ] = 

mχ(T, E) · [ (n−1) − (n−1)/2 + n − (n−1)/2 ] + [ mχ(T, E) − ½ ] · [ (n−1) − (n−1)/2 ] / (n−1) = 

mχ(T, E) · [ n ] + [ mχ(T, E) − ½ ] / 2 

Since T is worthy, then mχ(T, E) ≥ 0.5., and finally 

Sχ(T1 ⊕ T2, E) ≥ mχ(T, E) · n = mχ(T, E) · card(E). � 

In the same way, partially extensional exceptions are not suitable for consilience, but a limit would 

depend on how many rules are been used by the exception, because the separation would make the 

reinforcement of these rules decrease as follows ρ’(ri)=2·ρ(ri)−1, by the corollary of lemma 4.3. 

In any case, not only intensionality (avoidance of exceptions) but consilience are both very strict 

requirements in the presence of noise, because any piece of data which is left as noise would be tried 

to be ‘conciled’ with the rest of the theory, sometimes in an artificial way. 

However, if used correctly, reinforcement is a very powerful tool to control the level of noise in a 

theory. This means that if we have any information or hint about the expected noise ratio, we can 

adjust the percentage of examples covered by extensional rules.  

7. REINFORCEMENT, INTENSIONALITY AND CROSS-VALIDATION 

The idea of intensionality is useful to distinguish between explanatory views of induction (and ab-

duction as a particular case) and non-explanatory induction
16

, where the goal is to describe com-

pactly the evidence, but not to explain all of it. Moreover, there is a strong relation between inten-

sionality (or avoidance of exceptions) and hypothesis stability. 

In this section we will make the connection between intensionality (i.e. avoidance of exceptions, 

as they were defined in the previous section) and cross-validation. Since Devroye and Wagner
7
 es-

tablished the relation between leave-one-out cross-validation and hypothesis stability, many other 

variants of cross-validation have been studied (like training-test split or k-fold). 

We will work with multi-fold split, that is to say, we will take into account all the possible splits 

in all the possible orders, to see the influence of intrinsical exceptions in the stability of the theory. 

Let us denote with ne the number of rules r that just cover one example e. In other words, if the ex-

ample e would have not appeared, the rule r would be useless. We will make the following reason-

able assumption: a natural learning algorithm is a learning algorithm that does not add useless rules 

to the theory. 

Let us define P(A,T,E,k) as the probability that the algorithm A gives the theory T with the first k 

examples of the evidence E, considering all possible orderings of E. 

Theorem 7.1. For any natural learning algorithm A, 

P(A,T,E,k) ≤ 1 − [ (n−ne)n−k  / nn−k ]  

being n = card(E). 

Proof. Let us denote with Ew the examples from E that are covered by a rule with ρ = 0.5. Let w 

= card(Ew), Eb = E− Ew and b = n−w. Obviously, w ≤ ne since there can be examples covered by 

more than one exception rule. We denote with E1..k and Ek+1..n the set of the first k examples and 

the rest of the n examples of a given ordering of E, in other words, a split at position k. We de-

fine Pw(E,k) as the probability of Ew ∩ Ek+1..n ≠ ∅, i.e., the probability of having one exception 

example in the second part of the split. By a simple combinatorial analysis, removing from the 

whole probability the probability of having all Ek+1..n from Eb, this probability is: 

Pw(E,k) = [ (w + b)n−k − bn−k  ] / nn−k = 1 − [ bn−k  / nn−k ] 

Since b = n−w, we have 
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Pw(E,k) = 1− [ (n−w)n−k  / nn−k ] 

and w ≤ ne, so 

Pw(E,k) ≤ 1− [ (n− ne)n−k  / nn−k ] 

From here, P(A,T,E,k) ≤ Pw(E,k) because A is natural.� 

At first sight the result may be understood as a rationale to avoid exceptions, in order to have 

Pw(E,k)=1. For instance, given a theory of 100 rules, 3 of which are exception rules, we have that the 

probability that the theory could be found with eighty examples is Pw(E, 80)≤1−9720/10020=0.45. 

The ideas of intensionality have been used in an incremental learning system
18

 using Curry as a 

representation language (a logic functional programming language based on narrowing with some 

higher-order constructs). The results demonstrate that the intended hypothesis is found sooner than 

when the MDL principle is used, because the latter allows the introduction of patches (exceptions) in 

an incremental session. 

A deeper reflection on theorem 7.1 shows that stability of the whole theory is a very strict re-

quirement. If it is substituted by partial stability, i.e., how many rules of the theory can be obtained 

in early learning steps, the result may be quite different. Moreover, the connection between mean 

course and cross-validation would be more enlightening, although more difficult to obtain. 

In the end, theorem 7.1 is just an example of the connections that could be established between 

model selection methods for constructive languages, by using reinforcement as a measure. In this 

section it has been done with a particular variant of cross-validation. However, these connections 

can be established at a higher and more general level than other comparisons based on error estima-

tion and attribute complexities
22

. The next section will address the relation with the MDL principle. 

8. BALANCED REINFORCEMENT 

With the final measure introduced in section 5 there is still a tricky way of increasing reinforcement: 

joining rules. If a high-level representation language allows very expressive rules, larger rules can be 

made in order to stand for the same that was expressed with separated rules, with the advantage of 

increasing reinforcement and mean course:  

EXAMPLE 8.1 
For instance, the following extended functional programs are equivalent: 

Ta =  { r1 = { f(X,a)    → g(b) }, 

 r2 = { f(X,c)    → i(d) } } 

Tb =  {  r  = { f(X,Y)   → if (Y=a) then g(b) 

  if (Y=c) else i(d) } } 

but Tb would be more reinforced than Ta. 
 

In order to maintain the granularity of the theory there are two options: (1) the introduction of a fac-

tor directly related with the number of rules, and (2) the introduction of a factor inversely related 

with the syntactical length of each rule. We will choose this second option to clarify that this modifi-

cation still makes our measure very different from a prior distribution like the MDL principle. 

With length(r) we will denote the length of a rule r for any specific language. The only restriction 

for length is that for all r, length(r) ≥ 1. Thus we extend the definitions of section 5: 

Definition 8.1. The extended pure reinforcement is defined as: 

ρρ*(r) = ρρ(r) / length(r). 

The extended normalised reinforcement ρ*(r) and the extended courses χ*(r) are defined in the obvi-

ous way using ρρ*(r) and ρ*(r). 
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With this extension, it is easy to show that —in the limit
12

— the MDL principle is an excellent 

principle for achieving reinforcement: 

Theorem 8.2. If the data E are infinite and a theory T is finite, the mean course mχ*(T, E) = 1. 

Proof. Given some infinite data as evidence E = { e1, ..., en }, without loss of generality, consider 

that T can be exclusively composed of two rules: r1, which covers all E except ei and, independ-

ently, r2, which covers ei. The reinforcements are ρ*(r1) = (1−2(1−n)/length(r1)) and ρ*(r2) = 

(1−2−1/length(r2)) and the mean course mχ*(T, E) =  [(n−1) · (1−2(1−n)/length(r1)) + (1−2−1/length(r2))] / n. For 

infinite data, we have that limn
�

∞ mχ*(T, E)= 1. � 

The result is independent of the last extension given by definition 8.1. In general, the theorem shows 

that maximum reinforcement matches with maximum compression in the limit (simply because both 

are saturated). However, when the data are finite we have many cases where they differ. The most 

blatant case occurs when some exception is covered extensionally (as r2 which covers di in the proof 

of theorem 8.2) and there is an important loss of reinforcement vs. a slight loss of compression. The 

following example illustrates this point: 

EXAMPLE 8.2 
Consider the following evidence e1–e10: 

 E = { e1: e(4) → true, e2: e(12) → true, 

  e3: e(3) → false, e4: e(2) → true, 

  e5: e(7) → false, e6: e(7) → false, 

  e7: e(20) → true, e8: e(0) → true, 

  e9: o(3) → true, e10: o(2) → false } 

where natural numbers are represented by using the functor s as the symbol for successor, e.g. s(s(s(0)))  

means 3. The length (denoted l) of a rule is computed as 1+nf+nv, where nf means the number of functors 

(including constants as functors with arity 0) and nv being the number of variables. 

 From here, the following theories are evaluated: 
 

   : l ρρ ρρ* ρ* 

 Ta= { e(s(s(X)) → e(X) : 7 7 1 0.5 

  e(0) → true : 4 5 1.2 0.5647 

  e(s(0)) → false : 5 3 0.6 0.3402 

  o(s(s(s(0)))) → true : 7 1 0.1429 0.0943 

  o(s(s(0))) → false  : 6 1 0.1667 0.1091} 
 

The extended courses are χ*(e1, e2, e4, e7, e8) = 0.5 · 0.5647 = 0.28235, χ*(e3, e5, e6) = 0.5 · 0.3402 = 0.1701, 

χ*(e9) = 0.0943 and χ*(e10) = 0.1091. 

The mean extended course mχ*’ is 0.2125. 
 

   : l ρρ ρρ* ρ* 

 Tb= { e(s(s(X)) → e(X) : 7 7 1 0.5 

  e(0) → true : 4 5 1.2 0.5647 

  e(s(0)) → false : 5 3 0.6 0.3402 

  o(s(s(X)) → o(X) : 7 2 0.2857 0.1797 

  o(0) → false : 4 1 0.25 0.1591 

  o(s(0)) → true  : 5 1 0.2 0.1294} 
 

The extended courses are χ*(e1, e2, e4, e7, e8) = 0.5 · 0.5647 = 0.28235, χ*(e3, e5, e6) = 0.5 · 0.3402 = 0.1701, 

χ*(e9) = 0.1797 · 0.1294 = 0.02325 and χ*(e10) = 0.1797 · 0.1591 = 0.02859. 

The mean extended course mχ*’ is 0.1974.  
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   : l ρρ ρρ* ρ* 

 Tc= { e(s(s(X)) → e(X) : 7 9 1.2857 0.5898 

  e(0) → true : 4 6 1.5 0.6464 

  e(s(0)) → false : 5 4 0.8 0.4257 

  o(X) → not(e(X)) : 6 2 0.3333 0.2063 

  not(true) → false : 4 1 0.25 0.1591 

  not(false) → true  : 4 1 0.25 0.1591} 
 

The extended courses are χ*(e1, e2, e4, e7, e8) = 0.5898 · 0.6464 = 0.3813, χ*(e3, e5, e6) = 0.5898 · 0.4257 = 

0.2511, χ*(e9) = 0.2063 · 0.5898 · 0.4257 · 0.1591 =  0.00824 and χ*(e10) = 0.2063 · 0.5898 · 0.6464 · 

0.1591 = 0.0125.  

The mean extended course mχ*’ is 0.2681. 
 

Note that the lengths (l(Ta)=29, l(Tb)=32, l(Tc) = 30) do not give many hints about which theory to choose, 

while reinforcement selects more clearly the last one. 

The example also shows the advantages of this approach for explanation-based learning. Since all 

the data should be explained, if a part is left in an extensional way (or unrelated with the rest), it is 

penalised. On the other hand, we have seen in the preceding sections that fantastic concepts are also 

avoided, so it results to be a balanced criterion for a more reasonable degree of theory intensional-

ity, without falling into fantasy.  

Regarding Tc of example 8.2, our measure can be adapted to situations where a more compen-

sated theory is required, using a geometric mean instead of an arithmetic mean. In addition, and 

concerning Ta, if we do not want exceptions (extensional parts) at all, we discard theories where a 

fact has a course value less than the mean divided by a constant. In an incremental framework, this 

case should trigger theory revision in order to integrate (or reconcile) the example with the theory. 

9. REWARDED REINFORCEMENT 

In reinforcement learning, it is usually assumed that the learner receives some reward (or penalty) 

value for its actions. In other words, prediction hits receive different degrees of reward. Prediction 

errors (including novelties and anomalies) receive different degrees of penalty (or negative reward). 

Usually, this broader view of reinforcement is suitable for frameworks where reasoning about ac-

tion is necessary. The rewards are assigned depending on the actions that the agent performs for 

each situation. Apart from Markov decision processes
23

, other more expresible temporal languages 

are used for representation, like event calculus or situation calculus
25

. The important issue here is 

that our model selection measures can be used for these high-level representations. The value of 

reinforcement can be understood as the prediction reliability of the following situation sn+1 after 

every possible action that can be performed in a certain situation sn. The task of the system seems to 

be the choice of the one with the greatest reward. With this first approach, in the case the result of 

the action matches with the evidence, a positive hit happens with the predicted reward. However, in 

the case a prediction error occurs, the action may have no awful consequences (no penalty) but in 

some cases, it may be fatal. The question is how ontology and ‘hedonism’ must be combined. It is 

commonly accepted in psychology the claim that hedonism motivates ontology, and this is stronger 

the earlier the stage of development of a cognitive system. In our opinion, this motivation does not 

imply that they must be mixed. Moreover, rewards should also be learned because they may change. 

Hence, the choice of the best action must take into account both the reliability of the prediction 

(i.e. the reinforcement) weighted with the reward, not the action with the best reward alone (because 

it may be a very weak guess). 
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Finally, there can be degrees of reliability in the evidence. This degree may come from different 

reliabilities of the system sensors or from intermediate recognition or sensor preprocessing subsys-

tems. Indeed, this should affect ontology in the following way: every fact of the evidence is assigned 

a real number as a reliability degree, −1 ≤ df ≤ 1. In this framework, the completely reliable positive 

examples are assigned a value of df = 1 and the completely reliable negative examples are assigned a 

value of df = −1. 

Definition 9.1. The 'grounded' course χ'( f ) of a given fact f wrt. to a theory is computed as the 

normal course χ( f ) multiplied by the reliability degree of f. More formally, χ'( f ) = χ( f ) · df. 

Summing up, the decision of which action should be taken would depend on: 

• the reliability of recognising the situation where the agent is really embedded. 

• the reliability of predicting the consequence of a given action in that situation. 

• the reward (or penalty) of the consequence (and its reliability if rewards are learned as well). 

In the previous section we considered the length of rules. Another straightforward extension to our 

approach is to consider the length of the examples, too. This can also be incorporated in the same 

way as the reliability degree. 

10. COMPUTING REINFORCEMENT 

As the reader must have realised, our theory of reinforcement is not an inductive learning method. 

We have not dealt about how the theory could be constructed from the evidence. On the contrary, 

this paper have presented a setting for constructive reinforcement learning based on a measurement 

that allows a detailed study of the relation between the theory and the evidence, for assisting the 

evaluation, the selection, and the revision of theories. 

Notwithstanding, the measurement needs to be computed. A general method of computing rein-

forcement is just as it has been used in all the examples which have appeared throughout the paper: 

GENERAL METHOD: 

Consider the theory T, with m rules r1..rm, and the evidence E, with n examples e1..en, such that 

T=E. First we must prove all the examples and compute ρρ* and ρ* for each rule. In a second 

stage, we prove again the n examples, computing χ* from the ρ* obtained in the first stage. 

The complexity of the previous method seems to be, in the worst case, in O(m·n). However it is not 

so, because we have not stated any restriction about the computational cost of the theory, and each 

proof has its own cost. Nonetheless, it would be more realistic to consider the reckoning of rein-

forcement in an incremental setting: 

INCREMENTAL METHOD: 

We will use four arrays: l1..m, ρρ*
1..m, ρ*

1..m, χ*
1..n for the lengths, the pure and normalised rein-

forcements and the courses, respectively. An additional boolean bidimensional array U1..m,1.. n as-

signs true to Uj,i iff ei uses rm in its proof and false otherwise. 

For each new example en+1 which is received we have different possibilities: 

1. If it is a hit, we remake ρρ*
1..m, ρ*

1..m, according to the proof of en+1, U is extended to U·,n+1 and 

χ*
1..n+1 is updated using U. 

2. If it is a novelty and no revision is made to T, only an extension T'= T  ∪ {rm+1, ..., rm+k}, the 

steps are very similiar to the previous case, except that the arrays must be extended to m+k. 

3. Finally, if it is a novelty or an anomaly and the theory is revised in some rules {r1, ..., rp} and 

extended in others {rm+1, ..., rm+k}, only the U·,j which does not use any rule from {r1, ..., rp} can 

be preserved. The rest must be remade. 
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The previous method ignores two exceptional cases: that a hit would trigger a revision of the theory 

to readjust reinforcements, and that case 2. may produce alternative proofs for previous examples. 

Further optimisation could come from a deeper study of the static dependencies (i.e.  some rule 

always depends on others) and the topology of the dependencies that the theory generates. On the 

other hand, an appropriate approximation could be used. Even more, part of the past evidence can be 

‘forgotten’ if it is covered by very reinforced rules, so avoiding future computations to a large extent 

without a significant loss in accuracy. 

However, in the case that an inductive learning method uses reinforcement for evaluating the 

theories it is constructing, the complexity of these methods would surely be very modest compared 

to the usual huge costs of machine learning algorithms. 

Moreover, reinforcement measures are a very adequate tool to guide a learning method. For in-

stance, in a learning algorithm for logic functional languages based on genetic programming
18

, the 

examples and rules with low reinforcement are mixed first in order to ‘conciliate’ them into more 

compact and reinforced theories. 

11. CONCLUSIONS 

This paper introduces a mechanism for propagating reinforcement into constructive theories depend-

ing on the observation (or evidence). Strictly speaking, this model selection criterion is neither syn-

tactical nor semantical. It is, as we have dubbed, structural, i.e., it is based on “how the hypothesis 

cover the evidence”. The advantage of this approach is that it makes no assumptions about the prior 

distribution. Also in this framework, knowledge can have alternative descriptions, without reducing 

the evidence’s courses. Moreover, “deduction in the knowledge” is possible and it can even affect 

positively to reinforcement. In contrast, the MDL principle or other syntactical prior selection meth-

ods cannot use deductive inference without decreasing the a posteriori probability. 

Reinforcement allows a more detailed treatment of exceptions and provides different ratings for 

different parts of a theory, not the single probability value given by the prior distribution which is 

assigned to the whole theory. Moreover, different predictions or assumptions are provided with dif-

ferent reliability values. 

We have presented some examples, using logical and functional languages. They illustrate the 

utility of our framework in the context of knowledge construction. They also show that abduction is 

feasible as long as the theory gets reinforced. Other reasoning processes like analogy can also be 

ellucidated under this view of reinforcement. Although directly applicable to expert systems, diag-

nostic systems and ILP frameworks, conceptually, this work is closer to the distribution of rein-

forcement in neural networks (training = induction, recognition = abduction), and the problems of 

overfitting and underfitting. It even resembles some popular algorithms, like back-propagation. 

However, a symbolical framework with topological flexibility allows the direct combination with 

different areas and applications which have used or may use it in the future: ILP, EBL, Analogical 

Reasoning, Reinforcement Learning and some kinds of non-monotonic reasoning, much more 

knowledge oriented than artificial neural networks or other hybrid approaches. 

At present, it is more compelling to continue the evaluation of our measures in practice
18

. As fu-

ture work, the measurement could be extended to consider time-complexity and/or negative cases in 

the courses. In addition, a deeper study of how deduction affects reinforcement could be of capital 

interest in knowledge-based systems which use inductive and deductive reasoning techniques. Fi-

nally, we plan to apply our ideas in domains with actions, probably using situation or event calcu-

lus
25,40

, and to treat rewards in a more direct way than it has been done in section 9 (connecting with 
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the work of Dietterich & Flann
8
), in order to re-associate our notion of reinforcement with more 

classical notions of reinforcement learning.  
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