
A Strong Complete Schema for Inductive

Functional Logic Programming⋆

J. Hernández-Orallo M.J. Ramı́rez-Quintana

DSIC, UPV, Camino de Vera s/n, 46020 Valencia, Spain.
{jorallo,mramirez}@dsic.upv.es

Abstract. A new IFLP schema is presented as a general framework for
the induction of functional logic programs (FLP). Since narrowing (which
is the most usual operational semantics of FLP) performs a unification
(mgu) followed by a replacement, we introduce two main operators in
our IFLP schema: a generalisation and an inverse replacement or intra-
replacement, which results in a generic inversion of the transitive prop-
erty of equality. We prove that this schema is strong complete in the way
that, given some evidence, it is possible to induce any program which
could have generated that evidence. We outline some possible restric-
tions in order to improve the tractability of the schema. We also show
that inverse narrowing is just a special case of our IFLP schema. Finally,
a straightforward extension of the IFLP schema to function invention is
illustrated.
Keywords: Functional Logic Programming, Inductive Logic Program-
ming, Function Invention, Induction of Auxiliary Functions, Narrowing,
Inverse Narrowing.

1 Introduction

Inductive logic programming (ILP) [9] is the branch of machine learning that
studies concept learning in a logical framework. Namely, ILP deals with the
induction of logic programs (i.e. finite sets of Horn clauses) from examples and
background knowledge.

The use of logic programming for learning is mainly based on the idea that
logic programs are a single representation for examples, background knowledge
and hypotheses. However, logic languages like Prolog (the most representative
language of this paradigm) lack some programming facilities such as evaluable
and nested functions, types, higher order programming and lazy evaluation. Al-
though these features are well supported by functional languages, they lack the
computing power provided by logical variables and unification. Hence, the inter-
est in the integration of both families of languages has grown over the last few
years.

Integrated languages fully exploit the facilities of logic programming in a
general sense: functions, predicates and equality. One relevant approach [4, 6]

⋆ This work has been partially supported by CICYT under grant TIC 98-0445-C03-C1.

to integration is functional logic programming where the programs are logic
programs which are augmented with Horn equational theories. A lot of work
has been invested in the development of the semantics of integrated languages.
Therefore, it has been shown that the main semantic properties of logic pro-
grams also hold for functional logic programs (least model, fixpoint semantics)
[1]1. Operational semantics is defined in terms of semantic unification or E-
unification [15] (i.e., general unification wrt an equational theory E). Narrowing
[5, 14] is a sound and complete E-unification method for theories which satisfy
some requirements (such as confluence and termination properties or the absence
of extra variables in the condition of the equations). Narrowing can be seen as
a combination of resolution from logic programming and term reduction from
functional programming. Hence, it is widely accepted that narrowing is the key
to describing operational semantics of functional logic languages.

In [3] we have presented a framework for the induction of functional logic
programs (IFLP) from (positive and negative) examples. The evidence is com-
posed of equations, and their rhs’s are normalised wrt the background knowledge
and the theory to be induced. In logic programming, the induction can be made
top-down (starting from the most general program and refining it by specialisa-
tion) or bottom-up (starting from positive data as a program and generalising
it). In the case of functional logic programs, we cannot follow a top-down direc-
tion because the examples are equations, and the most general program X = Y

would not make the program terminating nor confluent. As a consequence, the
kernel of our method was an inverse narrowing mechanism (similar to the in-
verse resolution operator of ILP) which selects pairs of equations to obtain an
equation which is usually more general than the original ones. The starting set of
equations is a generalisation of the positive examples which is made by replacing
terms by variables at some occurrences. In fact, the algorithm combines inverse
narrowing and generalisation in each step. The method is effective, but it is too
specific for those cases where auxiliary terms are involved.

Let us show this with an example.

Example 1. Consider the following evidence

E+ =

{

e+1 : f(a) = r(g(b, b))
e+2 : h(a, b) = r(a)

}

and suppose that sufficient negative examples are provided to justify the program

P =







r1 : h(Y, a) = g(Y, b)
r2 : f(X) = r(h(b,X))
r3 : h(a, b) = r(a)







However, P could never be induced by inverse narrowing. This is because
the example e+1 directly relates the function symbols f , r and g (we are not
considering other constant symbols in the equations), whereas the equations r1
and r2 from P define the function f in terms of r and g but through the function
h. This last function can be thought of as an auxiliary function in the definition

1 In this paper we do not address any questions related to declarative semantics.

of f . The generalisation step in the inverse narrowing approach does not take
this possibility into account since there is no positive evidence that links the
symbols f and h nor the symbols h and g.

In this paper, we define a new framework, the IFLP schema, as a general and
strong complete framework for solving the IFLP problem. By strong complete-
ness we refer to the capability of inducing all possible programs such that the
positive examples hold wrt them but the negative examples do not. The term
‘strong’ is due to the fact that, in this context, weak completeness makes no
sense since it is always possible to find a program that covers all the positive
examples and none of the negative ones: the positive examples themselves. Other
completeness results could be stated in terms of some extra conditions that the
program should follow (e.g. Progol). The idea is to generalise the way in which
the narrowing relation is inverted to induce theories which use auxiliary func-
tions. The inductive method proposed is closely related to the transitive property
of equality. More exactly, we define a new operator that reverses the direction in
which transitivity is applied. Then, we prove that the schema is complete in the
sense mentioned above. We also show that the IFLP schema is rather general to
have inverse narrowing as one of its instances. Finally, we deal with the function
invention problem which can be easily formalised in our schema. In this context,
we can consider an invented function as an auxiliary function of a new signature
that extends the hypothesis language with new functions.

The work is organised as follows. In Section 2, we recall the main concepts
of functional logic programming and we formalise the narrowing semantics we
focus on. Section 3 reviews the inverse narrowing approach and analyses the way
in that theories are induced. This motivates the introduction of new operators
to overcome the limitations of inverse narrowing. The IFLP schema is defined
in Section 4. The strong completeness of the schema is discussed in Section 5.
Section 6 shows that inverse narrowing is an instance of our schema. In Section
7, the setting is easily changed to include function invention. Finally, Section 8
concludes the paper and discusses future work.

2 Preliminaries

We briefly review some basic concepts about equations, Term Rewriting Systems
and E-unification. For any concept which is not explicitly defined, the reader may
refer to [2, 8, 15].

Let Σ be a set of function symbols (or functors) together with their arity2 and
let X be a countably infinite set of variables. Then T (Σ,X) denotes the set of
terms built from Σ and X . The set of variables occurring in a term t is denoted
V ar(t). This notation naturally extends to other syntactic objects (like clause,
literal, . . .). A term t is a ground term if V ar(t) = ∅. A substitution is defined as a
mapping from the set of variables X into the set of terms T (Σ,X). An occurrence
u in a term t is represented by a sequence of natural numbers. O(t) and Ō(t)

2 We assume that Σ contains at least one constant.

denote the set of occurrences and non-variable occurrences of t respectively. t|u
denotes the subterm of t at the occurrence u and t[t′]u denotes the replacement of
the subterm of t at the occurrence u by the term t′. An equation is an expression
of the form l = r where l and r are terms. l is called the left hand side (lhs) of the
equation and r is the right hand side (rhs). An equational theory E (which we
call program) is a finite set of equational clauses of the form l = r ⇐ e1, . . . , en.

with n ≥ 0 where ei is an equation, 1 ≤ i ≤ n. The theory (and the clauses)
are called conditional if n > 0 and unconditional if n = 0. An equational theory
can also be viewed as a (Conditional) Term Rewriting System (CTRS) since the
equation in the head is implicitly oriented from left to right and the literals ei
in the body are ordinary non-oriented equations. Given a (C)TRS R, t →R s

is a rewrite step if there exists an ocurrence u of t, a rule l = r ∈ R and a
substitution θ with t|u = θ(l) and s = t[θ(r)]u. A term t is said to be in normal
form wrt R if there is no term t′ with t →R t′. We say that an equation t = s

is normalized wrt R if t and s are in normal form. R is said to be canonical
if the binary one-step rewriting relation →R is terminating (there is no infinite
chain s1 →R s2 →R s3 →R . . .) and confluent (∀ s1, s2, s3 ∈ T (Σ,X) such that
s1 →

∗
R s2 and s1 →

∗
R s3, ∃ s ∈ T (Σ,X) such that s2 →

∗
R s and s3 →

∗
R s). An

E-unification algorithm defines a procedure for solving an equation t = s within
the theory E . Narrowing is a sound and complete method for solving equations
wrt canonical programs. Given a program P , a term t narrows into a term t′

(in symbols t
u,l=r,θ
→֒ P t′3) iff u ∈ Ō(t), l = r is a new variant of a rule from

P , θ = mgu(t|u, l) and t′ = θ(t[r]u). We write t→֒n
P t

′ if t narrows into t′ in n

narrowing steps.

3 The Inverse Narrowing Approach

In this section, we briefly outline the inverse narrowing approach we have pre-
sented in [3]. The algorithm was composed of two operators: Consistent Re-
stricted Generalisation and Inverse Narrowing.

Since we had to ensure posterior satisfiability, the inverse narrowing method
began generating all possible restricted generalisations from each positive ex-
ample which was consistent with both positive and negative examples. It was
computed by the Consistent Restricted Generalisation operator.

Definition 1. Consistent Restricted Generalisation CRG
An equation e = {l1 = r1} is a consistent restricted generalisation (CRG) wrt
E+ and E− and an existing theory T = B ∪ P if and only if e is a restricted
generalisation for some equation of E+4 (always oriented left to right) and there
does not exist: (1) a narrowing chain using e and T that yields some equation

3 Or simply t
l=r,θ
→֒ P t′ or t

θ
→֒P t′ if the occurrence or the rule is clear from the context.

Also, the subscript P will usually be dropped when clear from the context.
4 An equation t = s is a restricted generalisation of an equation r = m if ∃σ : σ(t) =
r ∧ σ(s) = m and ∀x(x ∈ V ar(s) ⇒ x ∈ V ar(t)).

of E−, and (2) a narrowing chain using e and T that yields a different normal
form for some lhs different from the rhs which appeared in the equations of E+.

Secondly, the inverse narrowing operator was defined as an operator that
generates an equation from two equations.

Definition 2. Inverse Narrowing
Given a functional logic program P , we say that a term t conversely narrows

into a term t′, and we write t
u,l=r,θ
←֓ P t′, iff u ∈ O(t), l = r is a new variant of

a rule from P , θ = mgu(t|u, r) and t′ = θ(t[l]u). The relation ←֓P is called the
inverse narrowing relation.

Now, we will concentrate our attention on how the inverse narrowing ap-
proach induces equations. Suppose that s = t and l = r are the equations
selected by the algorithm, such that t|u unifies with r with θ = mgu(t|u, r).
Then, s = θ(t[l]u) and l = r are the two equations induced in an inverse nar-
rowing approach step. It is easy to see the relationship between this algorithm
and the transitive property of equality. In what follows, for the sake of legibility,
we consider x, y and z to be subterms at the occurrence ǫ. The next rationale
is still valid for any other occurrence in a term.

The transitive property is expressed as:

x→ y ∧ y → z ⇒ x→ z (1)

whereas an inverse narrowing approach step can be also represented as:

x→ z ∧ y → z ⇒ x→ y ∧ y → z (2)

where x→ y in (2) is the equation computed by inverse narrowing from x→ z

and y → z. However, (2) is not a real inversion of transitivity because it begins
from two equations (one of the premises and the result) of the formula (1) and it
generates its other premise. To have a constructive inversion of the transitivity
of equality, the behaviour of the algorithm should be as follows:

x→ z ⇒ x→ y ∧ y → z (3)

where x → y and y → z are the result of this constructive inverse narrowing.
Notice that the term y in the above formula (3) is new. The following schema
not only extends the setting to cope with this inverse transitive, but also to cope
with inverse replacement. This is the mechanism which will allow us to introduce
auxiliary functions in the inductive process.

4 IFLP Schema

Let us denote the set of function symbols of arity ≥ 0 which appear in a program
P as ΣP . In the same way, ΣE+ , or simply Σ+, denotes the set of function
symbols of arity ≥ 0 which appear in the positive evidence E+.

As we have stated, narrowing is based on a mgu, which is a specialisation,
followed by a replacement. It is logical then to base the induction of functional
logic programs on an inversion of these deductive operators. Consequently, we
introduce two operators: an inverse specialisation, namely a generalisation, and
an inverse replacement.

Definition 3. Unrestricted Generalisation (UG)
An equation e′ = {l′ = r′} is an unrestricted generalisation (UG) of an equation
e = {l = r} if and only if there exists a substitution θ such that θ(l′) = l and
θ(r′) = r.

Definition 4. Single Intra-Replacement (SIR)
Given an equation s = t, choose any occurrence ω of t and any function symbol
F ∈ Σ+ to construct a new term q in the following way:

q = t[φ]ω
where φ = F (Xk,1, Xk,2, . . . , Xk,n), n ≥ 0 is the arity of F and Xk,i are different
fresh variables. The subscript k is used to distinguish these variables from other
variables in previous or subsequent uses of this operator.

As output, the SIR operator produces a first equation Dk as: s = q, and a
second equation Ek as: q|ω = t|ω

The first result from this definition is that Dk and Ek make true that s→֒2t,

i.e. s can be narrowed into t in two narrowing steps, because s
ǫ,s=q,∅
→֒ q and

q
ω,q|ω=t|ω,∅
→֒ t. Following the definition, and taking into account both Dk and Ek,

the operator SIR can only generalise. However, if the occurrence ω is a variable
X, the second equation is of the form t = X. If we remove this equation, it can
be said that SIR specialises. Despite this seemingly contradictory behaviour, the
operator must be used interactively in order to specialise a variable into a term
which has more than one function symbol.

Example 2. Suppose an original equation f(g(a)) = b and Σ+ = {f, g, h, a, b} with

their corresponding arities. By choosing the occurence ω = ǫ and F = h, we generate

the following two equations:

a first equation Dk as: f(g(a)) = h(Xk,1, Xk,2)

and a second equation Ek as: h(Xk,1, Xk,2) = b

We can apply the same operator to Dk at occurrence ω′ = 2 and F = a. This gives

a third equation Dk+1 as: f(g(a)) = h(Xk,1, a)

and a fourth equation Ek+1 as: a = Xk,2

It is easy to show that the original equation is covered by the program which can be

constructed from Dk, Ek, Dk+1, Ek+1. However, it would be interesting to be able to

specialise the lhs of Ek’s and to allow more then one new symbol on the lhs.

Both things can be obtained by using the following simple operator:

Definition 5. Syntactic Folding (SF)
Given two equations E1 = {l1 = r1} and E2 = {l2 = r2} with r1 being a variable
such that there exists an occurrence ω such that r1 ≡ (l2)|ω, a new folded equation

can be constructed as l2[l1]ω = r2. The same applies if such an occurrence is in
r2.

In the previous example Ek+1 and Ek could be folded into h(Xk,1, a) = b by
using the occurrence ω=2.

Example 3. Consider Example 1 again. If the first equation from the evidence is se-

lected, i.e. f(a) = r(g(b, b)), and the SIR operator is applied at occurrence ω = 1 and

with function symbol h, the following two equations are generated:

a first equation Dk is: f(a) = r(h(Xk,1, Xk,2))

and a second equation Ek as: h(Xk,1, Xk,2) = g(b, b)

We can apply the same operator to Dk at occurrence ω′ = 1.1 and F = b. This pro-

duces:

a third equation Dk+1 as: f(a) = r(h(b,Xk,2)

and a fourth equation Ek+1 as: b = Xk,1

If SIR is applied again to Dk+1 but now at occurrence ω′ = 1.2 and F = a, this gives:

a fifth equation Dk+2 as: f(a) = r(h(b, a)

and a sixth equation Ek+2 as: a = Xk,2

Equation Dk+2 can be generalised into f(Xk,2) = r(h(b,Xk,2) which is one rule of pro-

gram P . By using the SF operator, Ek and Ek+2 can be folded into h(Xk,1, a) = g(b, b)

and then folded again by using Ek+1 into h(b, a) = g(b, b) which can then be generalised

into h(Xk,1, a) = g(Xk,1, b), which is another rule of the program.

These three operators are able to construct virtually any term as the following
lemma and theorem show:

Lemma 1. Select any term r constructable from T (Σ). Given any equation
s = t and any occurrence ω of t there exists a finite combination of the SIR and
SF operators that generates these two equations:

a first equation D as: s = q

and a second equation E as: q|ω = t|ω
where q = t[r]ω.

Proof. Let us prove this lemma by mathematical induction. Consider d equal to the
depth of the tree which can be drawn from r, e.g. f(g(a, h(a, a))) has depth 4.

For d = 1, the lemma is obvious because it is only necessary to apply the SIR
operator at occurrence ω with the term φ = r.
Let us suppose the hypothesis that the lemma is true for k. Then, we have to show that
it is true for k+1. Consider that r|u = g(a1, a2, . . . , an) where ai are function symbols
of arity 0, i.e. constants, and u = x1.x2.xk and there is no other occurrence at level
k+1 but the ai. By hypothesis we have been able to construct two equations for depth
k:

a first equation Dk as: s = q

and a second equation Ek as: q|ω = t|ω
where q = t[r′]ω, with r′ being r[a]x1.x2.....xk

where this a does not appear again in r′.
Since this a appears once, it is obvious that this step could have been avoided and we
could have a variable X instead of a term a as well.

Let us apply the SIR operator to the first equation at occurrence ω′ = x1.x2.xk

with φ = g(Xk,1, Xk,2, . . . , Xk,n), n ≥ 0 is the arity of F and Xk,i are different fresh

variables. This generates two equations:
a first equation Dk+1 as: s = q′

and a second equation Ek+1 as: q′|ω′ = q|ω′

where q′ = q[φ]ω′ . We can apply the SIR operator n times with function symbol a to
Dk+1 at all its n positions giving respectively:

a first equation Di as: s = q′[ai]i
and a second equation Ei as: a = Xk,i

These Ei can be used jointly with Dk+1 by operator SF to construct a new equation A,
s = q[g(a1, a2, . . . , an)]ω′ , which is equal to s = t[r]ω, and Di can be used jointly with
Dk+1 by operator SF for a second equation, q[g(a1, a2, . . . , an)]ω′ = q|ω′ . Finally, since
the rhs of this last equation is X, we can apply a SF operator to this last equation and
Ek giving an equation B, r = t|ω. Both A and B are precisely the equations D and E

of the lemma.

Since this holds for k + 1 if it holds for k, we can affirm that it holds for all k. 2

Theorem 1. Select any term r′ which is constructable from T (Σ,X). Given
any equation s = t and any occurrence ω of t, there exists a finite combination
of the SIR, the SF and the UG operators that generates these two equations:

a first equation D′
k as: s = q′, and a second equation E′

k as: q′|ω = t|ω,

where q′ = t[r′]ω.

Proof. Given the equation s = t and any term r′, consider a new term r such that

any variable in r′ is substituted by a function symbol of arity 0. Obviously, this r is

ground, and, by lemma 1 it can be constructed by a finite combination of the operators

SIR and SF, resulting in a first equation Dk as s = q, and a second equation Ek as

q|ω = t|ω, where q = t[r]ω.

Take Dk and use a UG to obtain a new equation s = t[r′]ω which is equal to s = q′. In

the same way all the Ek can be generalised to obtain a new equation r′ = t|ω. 2

5 Strong Completeness of the IFLP Schema

Theorem 1 is essential to be able to show that any possible intermediate term
that may be used in a derivation can be induced by using the operators of the
IFLP Schema. This leads to the following strong completeness result:

Theorem 2. Strong Completeness
Given a finite program P , and a finite evidence E generated from P , such that
every rule of P is necessary for at least one equation of the positive evidence (i.e.
if removed some positive example is not covered), and ΣP = Σ+, i.e., all function
symbols of the program appear in the positive evidence, then the program can be
induced by a finite combination of the operators presented in the IFLP schema,
that is to say, Unrestricted Generalitation (UG), Single Intra-Replacement (SIR)
and Syntactic Folding (SF).

Proof. Select any rule r ≡ {s = t} from P . Since it is necessary, it is used in at
least one derivation of one example, say a0 = an. We express this derivation as:

a0

u1,l1=r1,θ1
→֒ a1

u2,l2=r2,θ2
→֒ a2 →֒ . . .

un,ln=rn,θn
→֒ an

If n = 1, i.e. the derivation a0

u1,l1=r1,θ1
→֒ a1 then we have that under the IFLP schema

we can generate a first equation Dk as: a0 = a0, and a second equation Ek as:
(a0)|ω = (a1)|ω, such that ω = u1, and what has to be introduced is q = (a0)|ω. This
can be done as was shown in Theorem 1. The last equation Ek can be generalised in
order to match l1 = r1.

Let us assume the hypothesis that we have been able to generate all the li = ri
upto n− 1. Then, for n we have :

a0

u1,l1=r1,θ1
→֒ a1

u2,l2=r2,θ2
→֒ a2 →֒ . . .

un,ln=rn,θn
→֒ an

Since it has been generated to an−1 we only have to show that it is possible to

generate the equation that allows for narrowing from an−1 to an, i.e. an−1

un,ln=rn,θn
→֒

an. However, this step is no different from the step we proved for n = 1, so we can find

this ln = rn and the hypothesis is true for all n. Thus, the theorem is proven. 2

Strong Completeness is not usual in the inductive literature (except [12]),
because, without additional information (e.g. modes) it entails intractability.
However, the previous theorem discovers a set of operators which are sufficient
to induce any possible program. Further work is centred on finding restrictions
which preserve completeness or bring the schema to tractability. Among the
latter there are at least two ways possible. A first option is to fix a selection
criterion (e.g. compression) ensuring completeness wrt this criterion by using
an ordered search space and mode declarations (e.g. [11]). A second one is to
study uncomplete but still powerful instances of the schema and provide efficient
algorithms for them. The first option is in progress by the authors through the use
of genetic programming as in [17]. The second option was precisely undertaken
in [3] and the next section discusses its relation to the preceding schema.

6 Inverse Narrowing as an Instance of the IFLP Schema

In this section, we show that Inverse Narrowing is just an instance of our generic
IFLP Schema. This relationship allows a more detailed study of our previous
algorithm, its limitations and its extensions to cover more difficult cases without
falling into intractability.

First of all, it is evident that, according to the definition given in Section 3,
CRG is just a restriction of the UG. Secondly, Inverse narrowing was defined
as an operator that generates an equation from two equations. On the contrary,
SIR generates two equations from one equation. This operator, iterated and com-
bined with the other operators of the IFLP Schema is a generalisation of inverse
narrowing as the following corollary shows:

Corollary 1. For any equation s = t such that we can make an inverse narrow-

ing step: t
u,l=r,θ
←֓ P t′ to obtain a pair of equations s = t′ and l = r, then these

two equations can be obtained in the IFLP schema.

Proof. Just apply the operators of the IFLP schema to obtain a first equation Dk as:

s = q, and a second equation Ek as: q|ω = t|ω, such that ω = u, where q = t[l]ω and

t|ω = r.

The only difference is that t′ = θ(q), i.e., a substitution is applied, but this difference

vanishes if we select q = θ(t[l]ω) and then we generalise the second equation Ek to

make it match l = r. 2

7 Extending Inverse Narrowing

As we have stated before, the IFLP Schema should suggest different ways to
generalise inverse narrowing to cope with more complex cases. In this work, it
has been shown that if a function symbol did not appear in some convenient con-
ditions, it could not be induced by inverse narrowing. In this way, we can extend
inverse narrowing to allow fresh variables on the rhs’s and where the secondary
equation can be obtained either from a set of generalised equations from the ev-
idence or by the introduction of a new term function symbol F (X ′

1, X
′
2, . . . , X

′
m)

into an equation of the form F (X ′
1, X

′
2, . . . , X

′
m) = Y , which obviously can be

used in any occurrence of the other equation since Y unifies with anything.

7.1 Function Invention

The invention of predicates is an open area of research in ILP [13, 16, 10, 7]. In
the case of unconditional functional logic programs it is expected that function
invention would be even more necessary than First Order Horn Logic [16].

In our strong completeness theorem, we assumed that ΣP = Σ+, i.e., all
function symbols of the program appear in the positive evidence.

One of the reasons for the introduction of this general schema is that in the
case where the relation ΣP ⊃ Σ+ is strict, we can extend Σ+ with new and fresh
function symbols of different arities, thus making the invention of new functions
possible. The set of inventable functions is denoted by Σi, and the SIR operator
can then construct terms by using function symbols from Σ+ ∪Σi.

Under the extension of the signature, it is clear that the IFLP Schema is
able to invent functions. The procedure resembles the approach presented in
[10], where maximal utilisation predicates are introduced and then refined. In
our case, they are refined by the possible introduction of function symbols in
different occurrences at different stages.

On the contrary, in order to extend our previous inverse narrowing approach
[3] with function invention, we are forced to act in the reverse way due to the
nature of this procedure. Our extended inverse narrowing is able to do inventions
of this kind but adding equations of the form F (a, a, . . . , a) = Y where F is a
new function symbol from Σi and a is a constant which appears in Σ+. These
equations can be used as secondary equations in an inverse narrowing step. The
use of inverse narrowing on the lhs is also required (this was already done when
learning from background knowledge in [3]). Therefore, the approach becomes
too general for practical purposes, as the following example illustrates.

Example 4. Let us consider the example of inducing the product function from scratch,
which requires the invention of a function for addition. To do this, make Σi = {+}
where + has arity 2. Given the following evidence:

(E+

1) ss0× ss0 = ssss0
(E+

2) sss0× ss0 = ssssss0
(E+

3) sss0× s0 = sss0
(E+

4) 0× sss0 = 0
(E+

5) ss0× 0 = 0
(E+

6) ssss0× 0 = 0
(E+

7) s0× ss0 = ss0

(E−
1) ss0× sss0 = sssssssss0

(E−
2) sss0× sss0 = ssssssss0

(E−
3) ss0× sss0 = ssss0

(E−
4) sss0 ↑ ss0 = ssss0

(E−
5) 0× s0 = s0

(E−
6) s0× 0 = ss0

We can proceed as follows. The equation {0 ×X = 0} is just a generalisation of E+

4 .
From Σi = {+}, we introduce the equation +(0, 0) = Y , which can be expressed in
infix notation as E1 ≡ 0+0 = Y . From Σ+ we introduce the equations E2 ≡ s(0) = Y ′

and E3 ≡ 0 = Y ′′. We make inverse narrowing at occurrence ǫ of the rhs of E1 with
E3 and we have E4 ≡ 0+0 = 0 that can be generalised into X+0 = X. By repeatedly
using inverse narrowing on different occurrences we can obtain the following equation
X + s(Y) = s(X +Y). Although, in this case, this involves only three steps, in general
it would be necessary to use heuristics or mode declarations. Even with all this, some
systems (e.g. [11]) are helped by some examples of the addition in the evidence. The
equation sX + Y = X × Y can be obtained as was shown in [3] since the equations of
addition are already generated.

At the end of the process, the following program can be constructed: P = {0×X =
0, sX × Y = X × Y + Y,X + 0 = X,X + s(Y) = s(X + Y)}.

8 Conclusions and Future Work

The IFLP Schema is shown to be a general and strong complete framework for
the induction of functional logic programs. Theoretically, this allows the induc-
tion of functional logic programs with auxiliary functions and, if the signature is
conveniently extended, it can be used to invent functions. Moreover, although in-
tricate combinations of the operators which have been presented may be needed
in order to obtain the rules of the intended program, function symbols are intro-
duced one by one. This makes extending our previous algorithm with the new
operators possible, since it is based on genetic programming techniques.

This theoretical work is a necessary stage in a more long-term project to
explore the advantages of extending the representational language of ILP to
functional logic programs. This is also subject to a convenient extension of our
schema to conditional theories, which will make it possible to use and compare
the same examples and background knowledge as in ILP problems. A less the-
oretical ongoing work is centred on the development and implementation of a
more powerful but still tractable algorithm than the one presented in [3].

References

1. P.G. Bosco, E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. A complete
semantic characterization of K-leaf, a logic language with partial functions. In

Proceedings of the IEEE Symposium on Logic Programming, pages 318–327. IEEE
Computer Society Press, N.W., Washington, 1987.

2. M. Hanus. The Integration of Functions into Logic Programming: From Theory
to Practice. Journal of Logic Programming, 19-20:583–628, 1994.

3. J. Hernández and M.J. Ramı́rez. Inverse Narrowing for the Induction of Functional
Logic Programs. In Proc. Joint Conference on Declarative Programming, APPIA-

GULP-PRODE’98, pages 379–393, 1998.
4. S. Hölldobler. Equational Logic Programming. In Proc. Second IEEE Symp. on

Logic In Computer Science, pages 335–346. IEEE Computer Society Press, 1987.
5. H. Hussmann. Unification in conditional-equational theories. Technical report,

Fakultät für Mathematik und Informatik, Universität Passau, 1986.
6. J. Jaffar, J.-L. Lassez, and M.J. Maher. A logic programming language scheme. In

D. de Groot and G. Lindstrom, editors, Logic Programming, Functions, Relations

and Equations, pages 441–468. Prentice Hall, Englewood Cliffs, NJ, 1986.
7. K. Khan, S. Muggleton, and R. Parson. Repeat learning using predicate invention.

In C.D. Page, editor, Proc. of the 8th International Workshop on Inductive Logic

Programming, ILP’98, volume 1446 of Lecture Notes in Artificial Intelligence, pages
165–174. Springer-Verlag, Berlin, 1998.

8. J.W. Klop. Term Rewriting Systems. Handbook of Logic in Computer Science,
I:1–112, 1992.

9. S. Muggleton. Inductive Logic Programming. New Generation Computing,
8(4):295–318, 1991.

10. S. Muggleton. Predicate invention and utilisation. Journal of Experimental and

Theoretical Artificial Intelligence, 6(1):127–130, 1994.
11. S. Muggleton. Inverse entailment and progol. New Generation Computing Journal,

13:245–286, 1995.
12. S. Muggleton. Comnpleting inverse entailment. In C.D. Page, editor, Proc. of the

8th International Workshop on Inductive Logic Programming, ILP’98, volume 1446
of Lecture Notes in Artificial Intelligence, pages 245–249. Springer-Verlag, Berlin,
1998.

13. S. Muggleton and W. Buntine. Machine invention of first-order predicates by
inverting resolution. In S. Muggleton, editor, Inductive Logic Programming, pages
261–280. Academic Press, 1992.

14. U.S. Reddy. Narrowing as the Operational Semantics of Functional Languages.
In Proc. Second IEEE Int’l Symp. on Logic Programming, pages 138–151. IEEE,
1985.

15. J.H. Siekmann. Universal unification. In 7th Int’l Conf. on Automated Deduction,
volume 170 of Lecture Notes in Computer Science, pages 1–42. Springer-Verlag,
Berlin, 1984.

16. I. Stahl. The Appropriateness of Predicate Invention as Bias Shift Operation in
ILP. Machine Learning, 20:95–117, 1995.

17. A. Varsek. Genetic Inductive Logic Programming. PhD thesis, University of Ljubl-
jana, Slovenia, 1993.

