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Extending Decision Tree Learning 
 

• Decision Tree Learning: methods such as 
CARS, ID3, C4.5/C5.0 and FOIL are amongst 
the most popular symbolic learning methods. 

 
o Induction is usually made in two phases: 

� building phase 
� post-pruning phase 

 
• FOIL, TILDE and derivatives represent an 

extension to include relational patterns and 
even recursion. 

o However, constructor data-types must be 
flattened. 

 

⇓ 
 

 

Learning from semi-structured data either requires ad-
hoc methods or requires important re-processing for 

general methods (e.g. ILP), which converts data into an 
unnatural condition. 

o  
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Constructor-Based Decision Trees 
 

Defined over Functional Logic Programs: 
 

• Facts are represented as equalities, where 
constructors can appear in any argument or 
even in the class: 

 

 
 

• Hypotheses are represented as conditional 
functional logic rules:  
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Constructor-Based Decision Trees 
 
A functional logic program can be represented 
as a functional-logic tree: 

 
 

 
• The root of the tree is a fully uninstantiated 

rule. 
• Branches add instantiations (substitutions) to 

these variables. 
• Recursive calls and background knowledge can 

appear as arguments or as the function result. 
 

⇓ 
 

Selection criteria based on discrimination (GINI, 
Gain, Gain Ratio) are not applicable. 
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Descriptive MDL 
 
Derived from Maximum A Posteriori (MAP) 
hypothesis and descriptional complexity (K(· )). 
 

 

hMAP = argmaxh∈H P(h|E) = argminh∈H (K(h) + K(E|h)) 
 

• In predictive MDL: K(E|h) just measures 
the information needed to code the 
function result. 

 
• In descriptive MDL: K(E|h) measures the 

information needed to code the arguments 
and the function result. 

 

Several estimates are introduced for: 
• K(h): information needed to code a branch 

up to a node. 
• K(E|h)): information needed to code the 

examples that fall under that branch, 
using the branch information. 
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Partitions 
 

• Splits allowed: 
 

 
 

• Expressiveness comparison: 
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cConstructing a Multitree 
 
Once a solution is found (in a greedy way), the tree 
is further populated to find more solutions. 
 

This constitutes a multitree, more specifically an 
AND-OR tree. 
 
Fig. 1: Complete AND/OR tree for the playtennis example 
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Selection Criteria 
 
Several selection criteria are needed: 
 
 

• Node Selection Criterion: from all the open nodes, 
the node with less description cost is selected first. 
This criterion is irrelevant. 

 

• Split Selection Criterion: from all the possible 
partitions (splits), we select the split which 
minimises the cost of the split and the cost of 
describing the evidence under that split in one level. 

 

• Stopping/Pruning Criterion: a node is closed when 
the class is consistent with all the examples falling 
under that node or the cost of coding the exceptions 
is less than following the branch. 

 

• Tree Selection Criterion (multitree population):  
from all the unexplored splits, the one which is 
relatively costlier wrt. the best alternative one is 
selected (rival ratio). 

 

• Solution Selection Criterion:  from all the solutions 
in a multitree, the shortest one is selected (Occam’s 
razor). 
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Experiments (1/2)  
 
Fig. 1: Rules and accuracy of CDTL for increasing number of solutions: 

 
 

Fig. 2: Comparing CDTL (FLIP2) with other learning algorithms (from 
Clementine v. 5.2.1): 
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Experiments (2/2)  
 
The use of a multitree allows the generation of 
multiple solutions which share common parts, thus 
allowing a sublinear growing of resources: 
 
Fig. 3: Time and memory required by FLIP2 and C5.0 with 
boosting depending on the number of solutions (iterations): 
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Conclusions and Future Work  
 
� Unified framework: new splitting criterion, node 
selection criterion and tree-selection criterion all 
based on descriptive MDL. Resulting accuracy on 
first implemented system (FLIP2) is comparable to 
the most popular ML methods. 
 
� Functional Logic Language: Extension for 
constructor-based data ⇒ XML applications. 
 
� The multi-tree allows an efficient structure for 
the generation of multiple solutions with  sublinear 
growing time/memory.  
 
 

Current and Future work: 
 

• Implementation of all the possible partitions. 
 

• Evaluation of different hypotheses combination 
techniques on the multitree: voting, boosting, etc.
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