Learning MDL-guided
Decision Trees for
Constructor-Based

Languages’

C. Ferri-Ramirez, J. Hernandez-Orallo & M.J. Ramirez-Quintana

DSIC, Universitat Politecnica de Valéncia
Cami de Vera s/n, 46022 Valéncia, Spain.
Email: {cferri,jorallo,mramirez }@dsic.upv.es

11t International Conference on Inductive Logic Programming (ILP'2001)
Strasbourg, France, September 9th-11th

1 Work partially supported by CICYT under grant TIC 98-0445-C03-C1 and
Generalitat Valenciana under grant GV00-092-14.

Extending Decision Tree Learning

» Decision Tree Learning: methods such as
CARS, ID3, C4.5/C5.0 and FOIL are amongst
the most popular symbolic learning methods.

o Induction is usually made in two phases:
= building phase
= post-pruning phase

 FOIL, TILDE and derivatives represent an
extension to include relational patterns and
even recursion,
o However, constructor data-types must be
flattened.

[]

Learning from semi-structured data either requires ad-
hoc methods or requires important re-processing for
general methods (e.g. ILP), which converts data into an
unnatural condition.

Constructor-Based Decision Trees

Defined over Functional Logic Programs:

* Facts are represented as equalities, where
constructors can appear in any argument or

even in the class:

[e : member(a, A) = false b
eg : member(b, ins(A, a)) = false

ey : member(e, A) = false

eq : member(c, ins(A, 1)) = false

es - member(a, ins{ins(A, b), d)) = false

eg : member(a, ins{ins(A, b),a)) = frue

ey : member(b, ins(ins{\, b),a)) = true

ex : ember(c, ins(ins(ins{\, b),a), ¢)) = frue
eg : ember(a, ins{ins(ins(A, b),a), b)) = true
ey : member{c, ins(A, ¢)) = frue

oy

#

 Hypotheses are represented as conditional
functional logic rules:

(i) member(X,)) = false
(i1) member(X,ins(Z, X)) = true
(iit) member(X,ins(L,W)) = member(X,L) «W £ X

Constructor-Based Decision Trees

A functional logic program can be represented
as a functional-logic tree:

member(X, Y) = R

Y=X =ins(Z, W)
W=X W# X
R = false

R — true R= member(X, L)

* The root of the tree is a fully uninstantiated
rule.

 Branches add instantiations (substitutions) to
these variables.

* Recursive calls and background knowledge can
appear as arguments or as the function result.

[]

Selection criteria based on discrimination (GINI,
Gain, Gain Ratio) are not applicable.

Descriptive MDL

Derived from Maximum A Posteriori (MAP)
hypothesis and descriptional complexity (K(-)).

hvmar = argmaxn+ P(N| E) = argminnn (K(h) + K(E]h))

* In predictive MDL: K(E] h) just measures
the information needed to code the
function result.

e In descriptive MDL: K(E | h) measures the
information needed to code the arguments
and the function result.

Several estimates are introduced for:
« K(h): information needed to code a branch
up to a node.
« K(E]h)): information needed to code the
examples that fall under that branch,
using the branch information.

Partitions

» Splits allowed:

Partition on Attribute X; (Split)

m'-'.'l‘lrhm%.'ll—l;:“:

o0 -

9

Xi =m |..-Ti=ﬂ.2 |...|J!|:-;' = g
Xi=co|...]| Xi=cal{¥1,:04,¥iem)

X; <t | X; = t"where t is a threshold
Xi=Y where Y € {X1,...,Xa} and ¥V # X
Xi=a| Xi#a'

a1 = f(V1,....Ya) |...| 80 = f(¥1,...,Ys)
where 3'¥; € {X1,...,Xn}

Xi = f(¥,....Ya)

a1 =g(¥1,... Ya)|l...|laa=g{Y1,:... ¥n)...
where Y; € {X,,...,Xp}and g€ X5
Xi=g(Y1,...,Ys) where g € Y'pg

* EXxpressiveness comparison:

ID3 [FOIL | CRG | CDTL
b =

*

-4

.h.-:.:m—l:*h

[- 1

n

X 0 ¥ o1 X X
1
¥ OE X X H K MK

D =] O

Constructing a Multitree

Once a solution is found (in a greedy way), the tree
Is further populated to find more solutions.

This constitutes a multitree, more specifically an
AND-OR tree.

Fig. 1: Complete AND/OR tree for the playtennis example

Pla‘vten nis(X L2 XA HN=X5

I Partition 1 : Partition 1 Partition 1 Patition 1 Partition 5
: Argument 1 1 Argument 2 Aigument 3 Arguiment 4 Argument 5
/Q\
Playtennis ({1, %2 33 X4=%5 Playtennis {1, X2. X3 X4=X5 Playtennis{ X132 X3 X4=X5
W l=rain Kl=overcast, X5—ves K l==unny
Patition 1 Partition 1 1 Patition 1 H Partition 5 Partition 1 1 Padition 1 H Partition 1 Paltition 5
Agument 2 Argument 3 . Acgmment 4 | Arguiment 3 Argument 2 . Argmment 3 | Arguiment 4 Argument 5
/‘“__")-I\ /L<:>\
BlaytennisX1 X2 X3 Xh=X5 Playtennis(X1, X2 X3 X4 =%5 Playtenniz(X1X2 X3 X4Hh=X3 Playtennis(X1, X2 X314 =X5
K l=rain X4=strong X5=no Kl=rain,Xd=weak, Xo>=7yes Kl=smunny X3=high,X5=no Kl=munny,X3=normal X5=yes

Selection Criteria

Several selection criteria are needed:

Node Selection Criterion: from all the open nodes,
the node with less description cost is selected first.
This criterion is irrelevant.

Split Selection Criterion: from all the possible
partitions (splits), we select the split which
minimises the cost of the split and the cost of
describing the evidence under that split in one level.

Stopping/Pruning Criterion: a node is closed when
the class is consistent with all the examples falling
under that node or the cost of coding the exceptions
is less than following the branch.

Tree Selection Criterion (multitree population):
from all the unexplored splits, the one which is
relatively costlier wrt. the best alternative one is
selected (rival ratio).

Solution Selection Criterion: from all the solutions
in a multitree, the shortest one is selected (Occam’s
razor).

Experiments (1/2)

Fig. 1: Rules and accuracy of CDTL for increasing number of solutions:

Numtree || 1 I 10 100 1000
Example Rules| Accuracy [|Rules| Accuracy |[Rules | Accuracy || Rules| Accuracy
CAFS 140 | B6.57 119 | BG.GY 119 | B6.69 110 | B7.50

house-votes|| 23 89.45 110 9450 10 94,50 i 9450
tic-tac-toe || 111 75.99 1m T1.59 04 Ta.TR 73 7187

NUrSeTy 817 | 93.00 440 | 94.86 440 | 94.B6 345 | 03.87
monksl 9 11} [b LM} b 1000 5 LM}

monks2 +4 62.50 38 64.35 28 6:3.19 26 62.04
mom ks3 21 94.44 9 97.22 9 97.22 9 97.22

Fig. 2: Comparing CDTL (FLIP2) with other learning algorithms (from
Clementine v. 5.2.1):

Example FLIP2||C5.0 ||Rules|| TrainNet
CArs B7.5 |[88.54(|85.88) 95.49
house-votes|| 94.50 [(94.50(94.5 095.87
tic-tac-toe || 77.87 ||80.38||77.45(79.96
NUrsery 93.87 |(95.99)|95.73|| 96.74
monks1 100 |[|B7.90)| 100 88.71
monks2 62.04 ||656.05||65.74| 99.77
monks3 097.22 |(97.22(|94.44|| 96.06

Experiments (2/2)

The use of a multitree allows the generation of
multiple solutions which share common parts, thus
allowing a sublinear growing of resources:

Fig. 3: Time and memory required by FLIP2 and C5.0 with
boosting depending on the number of solutions (iterations):

10d 170000

Time {seconds)
Memoryi Kb)j

T [Riei] f (§1] L UL
lterations herations

10

Conclusions and Future Work

#* Unified framework: new splitting criterion, node
selection criterion and tree-selection criterion all
based on descriptive MDL. Resulting accuracy on
first implemented system (FLIP2) is comparable to
the most popular ML methods.

#* Functional Logic Language: Extension for
constructor-based data [XML applications.

#* The multi-tree allows an efficient structure for

the generation of multiple solutions with sublinear
growing time/memory.

Current and Future work:

* Implementation of all the possible partitions.

« Evaluation of different hypotheses combination
techniques on the multitree: voting, boosting, etc.

11

DD DD =) =)=)
DD DD =) =)=
DDDD=D=D 7
NAR VNN

v b do 4o 4o 4

