

Learning MDL-guided
Decision Trees for
Constructor-Based

Languages1

C. Ferri-Ramírez, J. Hernández-Orallo & M.J. Ramírez-Quintana

DSIC, Universitat Politècnica de València

Camí de Vera s/n, 46022 València, Spain.
Email: {cferri,jorallo,mramirez }@dsic.upv.es

11th International Conference on Inductive Logic Programming (ILP’2001)

Strasbourg, France, September 9th-11th

1 Work partially supported by CICYT under grant TIC 98-0445-C03-C1 and

Generalitat Valenciana under grant GV00-092-14.

 2

Extending Decision Tree Learning

• Decision Tree Learning: methods such as
CARS, ID3, C4.5/C5.0 and FOIL are amongst
the most popular symbolic learning methods.

o Induction is usually made in two phases:

� building phase
� post-pruning phase

• FOIL, TILDE and derivatives represent an

extension to include relational patterns and
even recursion.

o However, constructor data-types must be
flattened.

⇓

Learning from semi-structured data either requires ad-
hoc methods or requires important re-processing for

general methods (e.g. ILP), which converts data into an
unnatural condition.

o

 3

Constructor-Based Decision Trees

Defined over Functional Logic Programs:

• Facts are represented as equalities, where
constructors can appear in any argument or
even in the class:

• Hypotheses are represented as conditional
functional logic rules:

 4

Constructor-Based Decision Trees

A functional logic program can be represented
as a functional-logic tree:

• The root of the tree is a fully uninstantiated

rule.
• Branches add instantiations (substitutions) to

these variables.
• Recursive calls and background knowledge can

appear as arguments or as the function result.

⇓

Selection criteria based on discrimination (GINI,
Gain, Gain Ratio) are not applicable.

 5

Descriptive MDL

Derived from Maximum A Posteriori (MAP)
hypothesis and descriptional complexity (K(·)).

hMAP = argmaxh∈H P(h|E) = argminh∈H (K(h) + K(E|h))

• In predictive MDL: K(E|h) just measures
the information needed to code the
function result.

• In descriptive MDL: K(E|h) measures the

information needed to code the arguments
and the function result.

Several estimates are introduced for:
• K(h): information needed to code a branch

up to a node.
• K(E|h)): information needed to code the

examples that fall under that branch,
using the branch information.

 6

Partitions

• Splits allowed:

• Expressiveness comparison:

 7

cConstructing a Multitree

Once a solution is found (in a greedy way), the tree
is further populated to find more solutions.

This constitutes a multitree, more specifically an
AND-OR tree.

Fig. 1: Complete AND/OR tree for the playtennis example

 8

Selection Criteria

Several selection criteria are needed:

• Node Selection Criterion: from all the open nodes,
the node with less description cost is selected first.
This criterion is irrelevant.

• Split Selection Criterion: from all the possible
partitions (splits), we select the split which
minimises the cost of the split and the cost of
describing the evidence under that split in one level.

• Stopping/Pruning Criterion: a node is closed when
the class is consistent with all the examples falling
under that node or the cost of coding the exceptions
is less than following the branch.

• Tree Selection Criterion (multitree population):
from all the unexplored splits, the one which is
relatively costlier wrt. the best alternative one is
selected (rival ratio).

• Solution Selection Criterion: from all the solutions
in a multitree, the shortest one is selected (Occam’s
razor).

 9

Experiments (1/2)

Fig. 1: Rules and accuracy of CDTL for increasing number of solutions:

Fig. 2: Comparing CDTL (FLIP2) with other learning algorithms (from
Clementine v. 5.2.1):

 10

Experiments (2/2)

The use of a multitree allows the generation of
multiple solutions which share common parts, thus
allowing a sublinear growing of resources:

Fig. 3: Time and memory required by FLIP2 and C5.0 with
boosting depending on the number of solutions (iterations):

 11

Conclusions and Future Work

� Unified framework: new splitting criterion, node
selection criterion and tree-selection criterion all
based on descriptive MDL. Resulting accuracy on
first implemented system (FLIP2) is comparable to
the most popular ML methods.

� Functional Logic Language: Extension for
constructor-based data ⇒ XML applications.

� The multi-tree allows an efficient structure for
the generation of multiple solutions with sublinear
growing time/memory.

Current and Future work:

• Implementation of all the possible partitions.

• Evaluation of different hypotheses combination
techniques on the multitree: voting, boosting, etc.

POSTER: 200 x 100 cms = 20000 cm2
1 full = 21 x 29,7 = 623 cm2

1 (títol) + 3 files de 3 + 1 conclusions

ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÒ
ÔÒÑÐÐÐÐÐ
ÎÎÎÎÎ

•

