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Abstract

Data acquisition, integration, transformation, cleansing and other highly tedious
tasks take a large proportion of data science projects. These routine tasks are tedious
basically because they are repetitive and, hence, automatable. As a consequence,
progress in the automation of this process can lead to a dramatic reduction of the
cost and duration of data science projects. Recently, Inductive Programming (IP)
has shown a large potential as a paradigm for addressing this automation. This
short paper elaborates on the recent success of induction using domain-specific
languages (DSLs) for the automation of data wrangling process and advocating
for the use of inductive programming over general-purpose declarative languages
(GPDLs) using domain-specific background knowledge (DSBKs).

Extended abstract

Raw data in data science applications is usually messy since it usually comes in a mix of structured
and unstructured formats from different sources. Data wrangling refers to the process of acquiring,
integrating, manipulating, cleansing, enriching and transforming data from its raw format to a more
structured and valuable form for easy access and analysis.

It is estimated that data wrangling, which is still carried on by means of ETL tools and scripting
languages, spends a great proportion (50%-80%) of the time devoted to data science projects [Stein-
berg, 2013]. Progress in the automation of this process is crucial to the efficiency of data-oriented
projects. In fact, there are some tools that try to automate the knowledge discovery process such as
AutoWeka [Thornton et al., 2013], AutoML [Aut, 2016] or DataRobot [Dat, 2016]. However, these
initiatives are focused primarily on the modeling phase which, compared to the data wrangling one,
has relatively low cost and duration. Other companies, such as Trifacta, Tamr and Paxata, focus on
data wrangling but most of their automation efforts are aiming at the analysis of semi-structured and
structured input data by means of innovative visual analysis and machine learning techniques for
merging and extracting relationships across data sets. In contrast, unstructured or free-form data is
less likely to be automatically processed due to the fact that it may require human intervention to
process and shape the data into a machine-readable form.

Recently, inductive programming [Kitzelmann and Schmid, 2006] has also shown a large potential
for data wrangling automation. In contrast to standard machine learning approaches, inductive pro-
gramming addresses the problem of learning small (but complex) programs from a few representative
input/output examples, generated as the user transforms one (or very few) particular instances or fields
of the data. The release of killer applications for data wrangling such as FlashFill [Gulwani, 2011] (a
tool for automating repetitive string transformations), FlashExtract [Le and Gulwani, 2014] (a tool for
extracting structured data from semi-structured text/log files and webpages) and FlashRelate [Barowy
et al., 2015] (a tool for extracting tabular/relational data out of semi-structured spreadsheets) is a
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demonstration that inductive programming research has matured in such a way that these applications
are becoming feasible [Gulwani et al., 2015].

It should be noted that all of these recent demonstrations are based on domain-specific languages
(DSLs), i.e., languages that are defined for a particular kind of processing (e.g., string processing,
number processing, etc.), instead of using general-purpose declarative (programming) languages
(GPDL) jointly with the inductive programming tools created for them during the last two decades,
such as Progol [Muggleton, 1995], MagicHaskeller [Katayama, 2012], FLIP [Ferri et al., 2001],
Metagol [Muggleton et al., 2015], gErl [Martínez-Plumed et al., 2013] and many others. Inductive
programming using GPDLs is usually inefficient and/or incomplete because of the large search
space, as they are not specialised for a particular domain. However, with the correct definition of a
reduced library of functions (or predicates) in a domain-specific background knowledge (DSBK),
the search space for these generic inductive programming tools can be bounded by the size of the
solution and the number of functions in this DSBK. In other words, in theory, the use of inductive
programming using GPDL + DSBK can be as powerful as the use of inductive programming tools
that are specifically designe for a particular DSL.

For instance, let us consider the problem of the automatic conversion between strings that contain
dates [Singh and Gulwani, 2016]. Here, the goal is to automatically transform strings that express
dates (in different formats) into the standard format “dd/mm/yyyy”. We consider the functional
language Haskell as the general-purpose declarative language (GPDL) where we can induce the
transformation functions, using an inductive programming tool such as MagicHaskeller. First we
need to define the functions that can capture the background knowledge that humans have about
dates. This DSBK must include functions that perform type conversions and numeric validations,
specialised to the problem domain. In Haskell, a sample of such set of functions follows:

-- Background Knowledge Functions
import Data.Char
import Data.List.Split
-- read :: String -> Int
-- show :: Int -> String
-- splitOn :: Eq a => [a] -> [a] -> [[a]]
-- (++) :: [a] -> [a] -> [a]
completeyear a = show (2000 + read (a))
ismonth numb = if (read(numb)>0 && read (numb)<12) then True else False
isday numb = if (read (numb)>0 && read (numb)<32) then True else False
getsep [x] = '?'
getsep (x:xs)= if (isDigit x) then getsep xs else x
splitOnNonNumeric cad= splitOn [getsep(cad)] cad

Now consider that we need to automatically turn dates into the standard format “dd/mm/yyyy”
from two different scenarios a) strings formatted as “dd-mm-yy” (e.g. “31-02-11”), and b) strings
formatted as “mm/dd/yy” (e.g. “05/31/11”). Using the DSBK defined previously, and some
examples of the conversions, state-of-art inductive functional programming (e.g., [Ferri et al., 2001,
Katayama, 2012, Kitzelmann and Schmid, 2006]) with a search space constrained by the DSBK
could be used to attempt to induce two functional programs in Haskell that are able to perform the
transformations, as follows.

-- Induced Programs
-- "31-02-11" -> "31/02/2011"
convert1 (md) =let (d:m:y:[])= splitOnNonNumeric md) in

if (ismonth m && isday d)
then d ++ "/" ++ m ++ "/" ++ completeyear y else "NA"

-- "05/31/11" -> "31/05/2011"
convert2 (md) =let (d:m:y:[])= splitOnNonNumeric md) in

if (ismonth m && isday d)
then d ++ "/" ++ m ++ "/" ++ completeyear y else "NA"

The advantages of using this approach are manifold. First, the same data wrangling tool with inductive
programming can be used for diversity of problems and domains, without specialised tools for every
domain. Second, a library of DSBKs could be provided with the data wrangling tools using inductive
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programming. The user just needs to suggest which one to use for a particular problem: dates, times,
emails, names, cities, addresses, etc. Since the languages for creating the DSBK are general-purpose
and well known (Haskell, Prolog, etc.), users can create their own DSBKs and share them with other
users to help them automate their data wrangling transformations.
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