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Abstract. Decision tree learning is a machine learning technique that
allows us to generate accurate and comprehensible models. Accuracy can
be improved by ensemble methods which combine the predictions of a
set of different trees. However, a large amount of resources is necessary
to generate the ensemble. In this paper, we introduce a new ensemble
method that minimises the usage of resources by sharing the common
parts of the components of the ensemble. For this purpose, we learn a
decision multi-tree instead of a decision tree. We call this new approach
shared ensembles. The use of a multi-tree produces an exponential num-
ber of hypotheses to be combined, which provides better results than
boosting/bagging. We performed several experiments, showing that the
technique allows us to obtain accurate models and improves the use of
resources with respect to classical ensemble methods.

Keywords: Decision-tree learning, Decision support systems, Boosting,
Machine Learning, Hypothesis Combination, Randomisation.

1 Introduction

From the different machine learning approaches which are currently being ap-
plied with successful results, decision tree learning [16] is considered to be a
paradigm with an optimal trade-off between the quality and the comprehensi-
bility of the models learned.

A method that has recently been exploited to improve the accuracy of simple
classifiers consists in the combination of a set of hypotheses (or ensemble) [3].
Well-known techniques for generating and combining hypotheses are boosting
[8, 18], bagging [1, 18], randomisation [4], stacking [19] and windowing [17]. Al-
though accuracy is significantly increased, “the large amount of memory required
to store the hypotheses can make ensemble methods hard to deploy in applica-
tions”[12]. One way to partially overcome this limitation could be to share the
common parts of the components of the ensemble.

In a previous work [5], we presented an algorithm for the induction of decision
trees which is able to obtain more than one solution. To do this, once a node has
been selected for splitting, the other possible splits at this point are suspended
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and stored until a new solution is required. This way, the search space is a multi-
tree rather than a tree which is traversed thus producing an increasing number
of solutions as the execution time increases. Since each new solution is built
following a suspended node at an arbitrary place in the multi-tree, our method
differs from other approaches such as the boosting method or the bagging method
[1, 8, 18] which induce a new decision tree for each solution. Therefore, a multi-
tree is not a forest [10] because a multi-tree shares the common parts of different
trees (shared ensemble), whereas a forest is just a collection of trees.

Other works have attempted to generate a forest of ‘different’ trees, either
semantically/vertically (by changing the weights of examples, e.g. boosting [8,
18], or the sample, e.g. bagging [1]) or syntactically/horizontally (by select-
ing attribute samples for each tree). Specifically, this latter approach has been
presented independently by [9, 10], under the name pseudo-randomly selected
feature subspaces, and by [20], under the name stochastic attribute selection
committees. In both cases, the idea is to pseudo-randomly select a subset of
attributes, to learn a first classifier, and then, to select another subset of at-
tributes and learn a second classifier, and so on. Next, the elements from the
set of decision tree classifiers (the forest) are combined. A related technique has
been presented by Breiman in [2].

The main aim of both the horizontal and vertical approaches is to obtain
better accuracy in the combination. There have also been attempts to combine
horizontal and vertical approaches, such as the work from [21]. In [4], a ran-
domised method has been introduced in the construction of the tree (random
split criterion) and has been shown to be competitive w.r.t. boosting and bag-
ging.

In this paper, we focus on the combination of hypotheses from the multi-tree
approach in order to obtain accurate models. The use of this structure allows
us to combine more hypotheses than in other combination methods using the
same resources. Several hypothesis-fusion strategies are defined and evaluated
experimentally. We also include a comparison between our approach and some
well-known ensemble methods.

The paper is organised as follows. In Section 2, we introduce the multi-
tree structure. Section 3 discusses different ways to combine the components
of a shared ensemble. Section 4 presents several experiments showing that the
approach effectively generates accurate models. Finally, Section 5 summarises
and presents some future work.

2 Multi-tree structure

In this section, we present the multi-tree structure, and we discuss the different
criteria required to construct it.

The construction of decision trees is performed in two different steps [17]:

– Tree Construction: The entire decision tree is constructed in this phase.
The process is driven by a splitting criterion that selects the best pair split.
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The selected split is applied to generate new branches, and the rest of the
splits are discarded. The algorithm stops when the examples that fall into a
branch belong to the same class.

– Pruning. This phase consists in the removal of useless parts of the tree.
There are two options: pre-pruning, when the process is performed during
the construction of the tree, or post-pruning, when the pruning is performed
by analysing the leaves once the tree has been built.

Thus, decision trees are built in an eager way, which allows for the quick
construction of a model. However, it may produce bad models because of bad
decisions.

In [5], we have defined a new structure in which the rejected splits are not
removed, but stored as suspended nodes. The further exploration of these nodes
after the first solution is built allows for the extraction of new models from this
structure. For this reason, we call it a decision multi-tree, rather than a decision
tree. Since each new model is obtained by continuing the construction of the
multi-tree, these models share their common parts. A decision multi-tree can
also be seen as an AND/OR tree [13, 15], if one considers the split nodes as
being OR-nodes and considers the nodes generated by an exploited OR-node as
being AND-nodes.

To populate a multi-tree, we need to specify a criterion that selects one of the
suspend nodes. In [6], we presented and evaluated some possible criteria, such
as topmost, bottom, or random. Our experimental results showed that random
is a trade-off between speed and quality.

Once the multi-tree has been built, we can use it for two different purposes: to
select one or n comprehensible models (decision trees) according to a selection
criterion (Occam, MDL, . . .), or to use the multi-tree as an ensemble whose
components can be combined. In this paper, we address the latter.
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Fig. 1. Selection of a single decision tree from the multi-tree structure.
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Figure 1 shows a decision multi-tree. OR-nodes are represented with an arc
and leaves are represented by rectangles. Three different models are exhibited
in this multi-tree since two suspended nodes have been exploited.

The decision multi-tree approach presents some interesting features. First,
the number of solutions grows exponentially wrt. the number of suspended OR-
nodes that are exploited. Secondly, the solutions share some of their parts. The
percentage of the shared quantity depends on the depth of the suspended OR-
node that is exploited. Exploring deep suspended nodes in the bottom areas of
the multi-tree causes the generation of models that share many of their con-
ditions; therefore they could be very similar. However, the exploration of OR-
nodes in the top positions of the multi-tree produces solutions which are different
enough.

3 Shared Ensemble Combination

In this section, we address the question of how to combine different solutions in
a multi-tree. Given several classifiers that assign a probability to each prediction
(also known as soft classifiers), there are several combination methods or fusion
strategies. Let us denote by pk(cj |x) an estimate of the posterior probability that
classifier k assigns class cj for example x. In decision tree learning, the pk(cj |x)
depends on the leaf node where each x falls. More precisely, these probabilities
depend on the proportion of training examples of each class that have fallen into
each leaf node during training. The reliability of each leaf usually depends on
the cardinality of the leaf.

Let us define a class vector vk,j(x) as the vector of training cases that fall in
each node k for each class j. For leaf nodes, the values would be the training cases
of each class that have fallen into the leaf. To propagate these vectors upwards to
internal nodes, we must clarify how to propagate through AND and OR nodes.
This is done for each new unlabelled example we want to make a prediction
for. For the OR-nodes, the answer is clear: an example can only fall through
one of its children. Hence, the vector would be the vector of the child where
the example falls. AND-nodes, however, must do a fusion whenever different
alternate vectors occur. This is an important difference in shared ensembles:
fusion points are distributed all over the multi-tree structure. Following [11], we
have considered several fusion strategies that convert m class vectors into one
combined vector Ωj :

– sum: Ωj =
∑m

k=1
vk,j

– arithmetic mean: Ωj =
∑m

k=1

vk,j

m

– product: Ωj =
∏m

k=1
vk,j

– geometric mean: Ωj =
m
√

∏m

k=1
vk,j

– maximum: Ωj = maxk(vk,j)
– minimum: Ωj = mink(vk,j)

There have been some studies to determine which strategy is better. In particu-
lar, [11] concludes that, for two-class problems, minimum and maximum are the
best strategies, followed by average (arithmetic mean).
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In addition, we have devised some transformations to be done to the original
vectors at the leaves before its propagation:

– good loser : v′k,j(x) =
∑

j vk,j(x) if j = argmax(vk,j(x)) and 0 otherwise
– bad loser: v′k,j(x) = vk,j(x) if j = argmax(vk,j(x)) and 0 otherwise.
– majority: v′k,j(x) = 1 if j= argmax(vk,j(x)) and 0 otherwise.
– difference: v′k,j(x) = vk,j(x)−

∑

i6=j vk,j(x)

For example, the following table shows the results of applying the transforma-
tions to two vectors.

Original Good loser Bad loser Majority Difference

{ 40, 10, 30 } { 80, 0, 0 } { 40, 0, 0} { 1, 0, 0 } { 0, -60, -20 }
{ 7, 2, 10 } { 0, 0, 19 } { 0, 0, 10 } { 0, 0, 1 } { -5, -15, 1 }

In the next section, we show an experimental evaluation of these fusion and
transformation methods for problems with more than two classes.

4 Experiments

In this section, we present an experimental evaluation of our approach, as it
is implemented in the SMILES system [7]. SMILES is a multi-purpose machine
learning system which (among many other features) includes the implementation
of a multiple decision tree learner.

For the experiments, we used GainRatio [17] as splitting criterion and we
chose a random method [6] for populating the shared ensemble (after a solution
is found, a suspended OR-node is woken at random). Pruning is not enabled.

The experiments were performed in a Pentium III-800Mhz with 180MB of
memory running Linux 2.4.2. We have used several datasets from the UCI dataset
repository [14]. Table 1 shows the dataset name, the size in number of examples,
the number of classes and the number of nominal and numerical attributes.

Since there are many sources of randomness, we performed the experiments
by averaging 10 results of a 10-fold cross-validation. This makes a total of 100
runs for each pair composed of a method and a dataset.

4.1 Evaluation of fusion and vector transformation techniques

Table 2 shows the mean accuracy and the standard deviation using the different
fusion techniques introduced in Section 3 for each dataset. We summarise the
results with the geometric means for each technique.

The techniques studied are sum, product, maximum, minimum, and arith-

metic mean, all of which use the original vectors. In the table, we do not include
the experiments with geometric mean because they are equivalent to the results
of product. The multi-tree was generated by exploring 100 suspended OR-nodes,
thus giving thousands of possible hypotheses (with much less required memory
than 100 non-shared hypotheses). According to the experiments, the best fusion

5



# Dataset Size Classes Nom.Attr. Num.Attr.

1 Balance-scale 625 3 0 4
2 Cars 1728 4 5 0
3 Dermatology 358 6 33 1
4 Ecoli 336 8 0 7
5 Iris 150 3 0 4
6 House-votes 435 2 16 0
7 Monks1 566 2 6 0
8 Monks2 601 2 6 0
9 Monks3 554 2 6 0
10 New-thyroid 215 3 0 5
11 Post-operative 87 3 7 1
12 Soybean-small 35 4 35 0
13 Tae 151 3 2 3
14 Tic-tac 958 2 8 0
15 Wine 178 3 0 13

Table 1. Information about datasets used in the experiments.

technique was maximum. Thus, we will use this fusion method to study the effect
of applying the transformations on the vector.

Table 3 illustrates the results for accuracy using the original vector and the
good loser, bad loser, majority and difference transformations. According to these
experiments, all transformations get very similar results, except from majority.
We will use the combination max + difference in the following experiments.

4.2 Influence of the size of the multi-tree

Let us study the influence of the size of the multi-tree, varying from 1 to 1,000
explored OR-nodes. Table 4 shows the accuracy obtained using the shared en-
sembles depending on the number of OR-nodes opened. The results indicate
that the greater the population of the multi-tree the better the results of the
combination are.

4.3 Comparison with other ensemble methods

Figure 2 presents an accuracy comparison among our method (multi-tree), the
boosting method and the bagging method (without pruning) for the mean of all
the 15 datasets, depending on the number of iterations. We have employed the
Weka1 implementation of these two ensemble methods.

Although our method initially obtains lower results with few iterations, with
a higher number of iterations it surpasses the other two systems. Probably the
slow increase of accuracy in the multi-tree method is due to the random selection
of the OR-nodes to be explored.

1 http://www.cs.waikato.ac.nz/∼ml/weka/
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Arit. Sum. Prod. Max. Min.

# Acc. Dev. Acc. Dev. Acc. Dev. Acc. Dev. Acc. Dev.

1 80.69 5.01 81.24 4.66 76.61 5.04 83.02 4.76 76.61 5.04
2 91.22 2.25 91.25 2.26 83.38 3.65 90.90 2.09 83.38 3.65
3 94.17 4.06 94.34 3.87 89.06 5.19 94.00 4.05 89.06 5.19
4 80.09 6.26 79.91 6.13 76.97 7.14 80.09 6.11 76.97 7.14
5 95.63 3.19 95.77 3.18 93.28 3.71 95.93 2.81 93.28 3.71
6 94.53 5.39 94.20 5.66 94.00 5.34 94.47 5.45 94.40 5.34
7 99.67 1.30 99.71 1.18 81.00 8.60 99.89 0.51 81.00 8.60
8 73.35 5.86 73.73 5.82 74.53 5.25 77.15 5.88 74.53 5.25
9 97.87 2.00 97.91 1.80 97.58 2.45 97.62 1.93 97.58 2.45
10 94.52 4.25 93.76 5.10 92.05 5.71 92.57 5.43 92.05 5.71
11 62.50 16.76 63.25 16.93 61.63 17.61 67.13 14.61 61.63 17.61
12 97.50 8.33 97.50 9.06 97.75 8.02 94.75 11.94 97.75 8.02
13 63.60 12.59 64.33 11.74 62.00 12.26 63.93 12.03 62.00 12.26
14 81.73 3.82 82.04 3.78 78.93 3.73 82.68 3.97 78.93 3.73
15 94.06 6.00 93.88 6.42 91.47 7.11 92.53 6.99 91.47 7.11

Geomean 85.83 4.72 85.99 4.71 82.53 5.93 86.40 4.52 82.55 5.93

Table 2. Comparison between fusion techniques.

Nevertheless, the major advantage of the method can be appreciated by
looking at the consumption of resources. Figure 3 shows the average training
time depending on the number of iterations (1-300) for the three methods. Note
that, as expected, the time increase of bagging is linear. Boosting behaves better
with high values because the algorithm implemented in Weka trickily stops the
learning if it does not detect a significant increase in accuracy. Finally, SMILES

presents a sub-linear increase of required time due to the sharing of common
components of the multi-tree structure.
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Fig. 2. Accuracy comparison between ensemble methods.
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Max + Orig Max + Good Max + Bad Max + Majo. Max + Diff.

# Acc. Dev Acc. Dev Acc. Dev Acc. Dev Acc. Dev

1 83.02 4.76 83.02 4.76 83.02 4.76 67.84 6.61 83.02 4.76
2 90.90 2.09 90.90 2.09 90.90 2.09 81.48 3.22 90.90 2.09
3 94.00 4.05 94.00 4.05 94.00 4.05 79.97 7.98 94.00 4.05
4 80.09 6.11 80.09 6.11 80.09 6.11 78.21 6.07 80.09 6.11
5 95.93 2.81 95.93 2.81 95.93 2.81 89.44 4.84 95.93 2.81
6 94.47 5.45 94.47 5.45 94.47 5.45 91.47 6.90 94.47 5.45
7 99.89 0.51 99.89 0.51 99.89 0.51 77.58 6.29 99.89 0.51
8 77.15 5.88 77.15 5.88 77.15 5.88 83.42 5.06 77.15 5.88
9 97.62 1.93 97.62 1.93 97.62 1.93 90.40 4.02 97.62 1.93
10 92.57 5.43 92.57 5.43 92.57 5.43 89.14 6.74 92.57 5.43
11 67.13 14.61 67.13 14.61 67.13 14.61 68.25 15.33 67.00 14.60
12 94.75 11.94 94.75 11.94 94.75 11.94 50.75 28.08 94.75 11.94
13 63.93 12.03 63.87 12.14 63.93 12.03 60.93 11.45 65.13 12.53
14 82.68 3.97 82.68 3.97 82.68 3.97 68.26 4.35 82.68 3.97
15 92.53 6.99 92.53 6.99 92.53 6.99 78.41 11.25 92.53 6.99

Gmean 86.40 4.52 86.39 4.53 86.40 4.52 76.11 7.19 86.49 4.54

Table 3. Comparison between vector transformation methods.

5 Conclusions

This work has presented a novel ensemble method. The main feature of this
technique is the use of a structure called multi-tree that permits sharing common
parts of the single components of the ensemble. For this reason, we call it shared
ensemble.

Several combination methods or fusion strategies have been presented, as well
as class vector transformation techniques. The effectiveness of these methods has
also been examined by an experimental evaluation. We have also investigated the
importance of the size of the multi-tree w.r.t. the quality of the results obtained.

Finally we have compared the new ensemble method with some well-known
ensemble methods, namely boosting and bagging. The accuracy results for the new
method are quite encouraging: although our results are initially worse than the
other two methods, when the number of iterations is increased, the new approach
equals and even excels the other methods. Nevertheless, as we have shown, it is in
the use of resources where the shared ensembles offer an important advance. Our
system is very appropiate for complex problems where other ensemble methods
such as boosting or bagging require huge amounts of memory and time.

As future work, we propose the study of a new strategy for generating trees.
This strategy would be different from the current random technique we have
employed to explore OR-nodes, and would probably be based on the semantic
discrepancy of classifiers. This technique would provide a way to improve the
results of our ensemble method with few iterations.
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1 10 100 1000

# Acc. Dev. Acc. Dev. Acc. Dev. Acc. Dev.

1 76.82 4.99 77.89 5.18 83.02 4.76 87.68 4.14
2 89.01 2.02 89.34 2.20 90.90 2.09 91.53 2.08
3 90.00 4.72 91.43 4.67 94.00 4.05 94.00 4.05
4 77.55 6.96 78.58 6.84 80.09 6.11 80.09 6.11
5 93.63 3.57 94.56 3.41 95.93 2.81 95.56 2.83
6 94.67 5.84 94.27 5.69 94.47 5.45 95.00 5.14
7 92.25 6.27 96.45 4.15 99.89 0.51 100.00 0.01
8 74.83 5.17 75.33 5.11 77.15 5.88 82.40 4.52
9 97.55 1.89 97.84 1.86 97.62 1.93 97.75 1.92
10 92.62 5.22 93.43 5.05 92.57 5.43 90.76 5.89
11 60.88 17.91 63.00 15.88 67.00 14.60 68.13 15.11
12 97.25 9.33 96.00 10.49 94.75 11.94 95.50 10.88
13 62.93 12.51 65.00 12.19 65.13 12.53 65.33 12.92
14 78.22 4.25 79.23 4.03 82.68 3.97 84.65 3.34
15 93.12 6.95 93.29 6.31 92.53 6.99 92.99 5.00

Gmean 83.88 5.52 84.91 5.30 86.49 4.54 87.47 4.47

Table 4. Influence of the size of the multi-tree.
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