
An Instantiation for Sequences of Hierarchical 

Distance-based Conceptual Clustering 

Ana Funes1, María José Ramírez-Quintana
2
, Jose Hernández-Orallo

2
, Cèsar Ferri

2 

 
1 Universidad Nacional de San Luis, Ejército de los Andes 950, 5700 San Luis, Argentina 

afunes@unsl.edu.ar 
2 Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, España 

Abstract. In this work, we present an instantiation of our framework for 

Hierarchical Distance-based Conceptual Clustering (HDCC) using sequences, a 

particular kind of structured data. We analyse the relationship between dis-

tances and generalisation operators for sequences in the context of HDCC. 

HDCC is a general approach to conceptual clustering that extends the tradition-

al algorithm for hierarchical clustering by producing conceptual generalisations 

of the discovered clusters. Since the approach is general, it allows to combine 

the flexibility of changing distances for different data types at the same time 

that we take advantage of the interpretability offered by the obtained concepts, 

which is central for descriptive data mining tasks. We propose here different 

generalisation operators for sequences and analyse how they work together with 

the edit and linkage distances in HDCC. This analysis is carried out based on 

three different properties for generalisation operators and three different levels 

of agreement between the clustering hierarchy obtained from the linkage 

distance and the hierarchy obtained by using generalisation operators. 

Keywords: conceptual clustering, distance-based clustering, hierarchical 

clustering, generalisation, structured data, lists, sequences, edit distance. 

1   Introduction 

Distance-based methods in machine learning made decisions based on the similarity 

between cases. Some examples of popular methods based on similarity are the k-

nearest neighbours [8] for classification, the k-means clustering algorithm [9], Fisher 

discriminant [10] and the hierarchical clustering algorithms [11,14,15] in which 

HDCC [4] is based. Distance-based techniques, although flexible and intuitive, have 

associated a lack of comprehensibility, i.e. they cannot give an explanation to their 

answers. For example, a classification by the k-nearest neighbours could recommend 

certain book as appropriate for a given customer because the k-nearest neighbours of 

the book were appropriate for the same customer. However, this technique does not 

provide a pattern or a common description to all these books, which give a better idea 

of the characteristics they share. 

On the other hand, some techniques are based on the idea that a discovered pattern 

or generalisation from old data can be used to describe new data covered by this patt-

ern. These techniques are known as symbolic. Some well-known symbolic techniques 



are association rules, decision trees and Michalski’s conceptual clustering [11, 12]. 

An important issue related to the integration of distance-based with symbolic 

techniques is the existence of a possible inconsistency between the underlying 

distance and the discovered generalisations. HDCC is an algorithm that integrates 

both techniques. Based on the agglomerative hierarchical clustering, it constructs a 

cluster hierarchy by using a distance at the same time that produces a hierarchy of 

patterns, which results in an extended dendrogram referred as conceptual dendrogram. 

A key aspect considered in HDCC is the possibility of determining a priori whether 

the hierarchy of clusters induced by the underlying distance is consistent with the 

discovered patterns, i.e. how much the cluster elements covered by a given pattern 

reproduce the distribution of the elements in the metric space. Accordingly, we have 

defined in [4] three different levels of consistency between distance and 

generalisations based on the divergences between the clustering hierarchy obtained 

from the linkage distance and the hierarchy obtained by using generalisation 

operators. In [4] we have also given the properties the generalisation operators used 

by HDCC must meet in order to reach a given consistency level. Therefore, this 

general framework allows the instantiation of the algorithm for different distances, 

generalisation operators and data types and to determine a priori how consistent are 

these distances with the employed generalisation operators.  

In the present work, we propose a particular instantiation of the general framework 

[4] for sequences of elements. In this instantiation we make use of the edit distance 

between sequences and we propose and analyze two different pairs of generalisation 

operators under different linkage distances accordingly with the consistency levels 

given in [4, 6]. We prove that HDCC when instantiated with the edit distance and one 

of the here proposed pairs of generalisation operators is highly consistent under 

complete linkage distance, producing conceptual dendrograms equivalent to the 

dendrograms obtained by the only use of the linkage distance. We also show that 

when used under single linkage we obtain acceptable conceptual dendrograms 

according to the consistency levels defined in [4]. These results expand the set of 

consistent instantiations already found for HDCC (see [7]). 
The paper is organised as follows. Due to space limitations, all necessary 

preliminary concepts about the HDCC approach can be found in [4] and in [6]. In 

Section 2.1 and Section 2.2, respectively, we recall some necessary concepts, which 

are used in the instantiation of our framework, and propose a first pair of 

generalisation operators for HDCC. In Section 2.3, we analyse the consistency 

between the operators proposed in Section 2.2 and the edit and linkage distances, 

according to the three levels of consistency between distances and generalisations 

presented in [4]. In Section 2.4, we give a more suitable pair of operators and show 

that they satisfy the property of strong boundedness under complete linkage distance 

as well as the acceptability property under single linkage. Finally, Section 3 closes the 

paper with the conclusions and future work.  

2   An Instantiation for Sequences 

In Propositional Learning, evidence is described by means of tuples of numerical and 

nominal values. However, sometimes it is necessary to use more expressive but 

complex representations such as sets, sequences, graphs, etc. These representations 



are referred as structured data.  

In the section, we analyse our framework applied to lists, a structured data type 

whose elements are sequences of data where order matters and repetitions are 

allowed. We analyse the properties proposed in [4] for different generalisation 

operators of lists and list patterns. 

In the presented instantiation, lists are sequences of symbols from a set of symbols 

Σ = {a, b, c, …} called the alphabet. The distinguished symbol λ denotes the empty 

list. We denote by Σ*
 the space of lists formed from Σ included the empty list λ. 

Examples of lists on Σ are aa, babab, c, acba, λ. 

2.1 The Distance d 

We can found several distance functions for lists in the literature. Among them, we 

have Hamming distance [1], which can be applied only for equal-length lists. Here the 

distance between two lists is given by the number of positions where the 

corresponding symbols are different. For instance, d(bbab, abab) = 1.  

The most commonly used distance function for sequences is the edit distance, also 

known as Levenshtein distance [2], which can be used for variable-length sequences. 

Here the distance between two sequences is given by the number of operations 

(insertion, deletion and substitution) required to transform one sequence into another. 

Different costs can be assigned to each of these operations. 

Example 1. Let us assume that the cost of one substitution is 1, equal to the cost of 

one insertion and to the cost of one deletion. Consequently, the edit distance between 

sequences s1 = aabb and s2 = cbba is 3. That is, s1 is transformed into s2 by deleting 

the first a, by replacing the second a by a c and finally adding one a at the end. 

There are variations for this distance, e.g. the metric obtained by allowing only 

additions and deletions but not substitutions. That is, it considers the cost of one 

substitution as the cost of one deletion plus one insertion. In this case, the resulting 

distance between the sequences s1 and s2 of Example 1 is 4. In this work, we adopt the 

first assumption, i.e. the cost of one substitution is 1, equal to the cost of one insertion 

or the cost of one deletion.  

2.2 The Language of Patterns and the Generalisation Operators  

In this section, we analyse the application of the edit distance d together with two 

pairs of generalisation operators, which are defined on a same pattern language L0. 

Patterns in the considered language L0 are sequences built from the extended alphabet 

Σ’ = Σ ∪ V ∪ {λ} where Σ is the set of symbols from which sequences are defined 

and V = {V1, V2, V3, …} is a set of variables. A same variable cannot appear twice in 

a pattern. Each variable in a pattern represents a symbol from Σ ∪ {λ}. Examples of 

patterns on L0 are aaV1b, V1V2a. 1 

The first binary generalisation operator2 ∆ we analyse is based on the concept of 

pattern associated to an alignment, given in [5]. We propose here a pattern binary 

                                                           
1 For the sake of simplicity, sometimes we will use Vn to denote the sequence of variables V1V2…Vn. For 

instance, V2a in place of V1V2a. 
2 For the definition of binary generalisation operator, see [4]. 



generalisation operator3 ∆*
 that is a natural extension for patterns of ∆. We also 

analyse their consistency with respect to the edit and linkage distances. 

In order to propose formally the first pair of operators ∆ and ∆*
, we present the 

previous concepts of optimal alignment and pattern associated to an alignment. 

Firstly, we formalize in Definition 1 the concept of alignment. 

Definition 1. Given two sequences s1 and s2 in Σ*
, an alignment on Σ*

of s1 and s2 is 

given by the mapping M: Σ* × Σ*→  ℕ* × ℕ*
 defined by M(s1, s2) = ((i11,i12,...,i1n), 

(i21,i22,...,i2n)) such that  

i) s1(i1j) = s2(i2j),  for all j = 1.. n. 

ii) i1j < i1j+1 and i2j < i2j+1, for all j = 1.. n-1 

Remark 1. Note in Definition 1 that 0 ≤ n ≤ min{|s1|, |s2|}. n = 0 corresponds to the 

empty alignment M = ((),()) that is obtained when there is no matching between both 

sequences. n = |s1| = |s2| corresponds to the alignment M when s1 = s2. 

Example 2. Let us suppose we want to generalise the sequences s1=aabaaa and 

s2=ababaa. One possible alignment between them is  

             a    a b a a a 

             a b a b a a 

that we denote as M(s1, s2) = ((1, 2, 3, 4, 5), (1, 3, 4, 5, 6)). 

Other valid alignments for s2 and s2 are, among others, M’(s1, s2) = ((2, 3, 4, 5, 6), 

(1, 2, 3, 5, 6)) and M’’ = ((1, 2), (3, 5)) 

  M’     M’’ 

      a a b a    a a                                                                  a    a    b a a a 

         a b a b a a                                                            a b a b a a 

Although these three alignments are valid, we are interested in optimal alignments. 

In the example, only M and M’ are optimal. An optimal alignments is one alignment 

where the sequence formed by the symbols of s1 (or s2) pointed by its respective 

indexes in the alignment constitute a longest common subsequence (lcs) 4. 

Example 3. Let s1, s2, M, M’, M’’ be the sequences and alignments given in Example 

2. According to M we have5 s1(1).s1(2).s1(3).s1(4).s1(5) = s2(1).s2(3).s2(4).s2(5).s2(6) = 

aabaa and according to M’ s1(2).s1(3).s1(4).s1(5).s1(6) = s2(1).s2(2).s2(3).s2(5).s2(6) = 

abaaa. Since aabaa and abaaa are lcs for s1 and s2, M and M’ are optimal alignments. 

Although M’’ is a valid alignment it is not an optimal alignment since s1(1).s1(2) = 

s2(3).s2(5) = aa and aa is not a lcs of s1 and s2. 

The concept of optimal alignment is formalized by Definition 2. 

Definition 2. Let s1 and s2 be two elements in Σ*
 and M(s1, s2)=((i11, i12,..., i1n), 

(i21,i22,...,i2n)) an alignment of s1 with s2. M is an optimal alignment on Σ*
 iff 

s1(i11).s1(i12).….s1(i1n) is a lcs of s1 and s2. 

Given that more than one optimal alignment can be obtained from two sequences 

s1 and s2, and we are interested in obtaining only one optimal alignment, a total order 

≺ over the set of optimal alignments in Σ*
 is defined in order to specify the optimal 

alignment we want.  

Definition 3. Given two sequences s1 and s2 and the optimal alignments M = 

                                                           
3 For the definition of pattern binary generalisation operator, see [4]. 
4 A longest common subsequence (lcs) is given by the longest (not necessarily contiguous) 

subsequence of s1 and s2. Note that the lcs is not unique. 
5 “.” denotes the concatenation operator between sequences. 



((a11,a12,...,a1n), (a21,a22,...,a2n)) and - = ((b11,b12,...,b1n), (b21,b22,...,b2n)) of s1 and s2, 

we say that � ≺ � iff (a11,a12,...,a1n,a21,a22,...,a2n) <Lex (b11,b12,...,b1n,b21,b22,...,b2n) 

where <Lex is the lexicographical order between sequences. 

Remark 2. Note that Definition 3 applies not only for sequences in Σ*
 but also for 

sequences in L0 (patterns).  

Example 4. Following with the previous example, we have that � ≺ �′ given that (1, 

2, 3, 4, 5, 1, 3, 4, 5, 6) <Lex (2, 3, 4, 5, 6, 1, 2, 3, 5, 6). 

Every alignment between two sequences s1 and s2 induces a pattern p in L0, which 

covers6 both s1 and s2. This pattern is unique and it is called the pattern associated to 

an alignment on Σ*
. 

Definition 4. Let s1 and s2 be two sequences in Σ*
, M = ((i11,i12,...,i1n), (i21,i22,...,i2n)) an 

alignment on Σ*
 of s1 and s2, and  s the sequence of symbols s1(i11).s1(i12). … .s1(i1n). 

 p ∈ L0 is the pattern associated to the alignment on Σ*
 M iff  

i) The concatenation of the ground symbols in p is equal to s. 

ii) The variable symbols in p are distributed as follows: 

- The number of variables in the pattern p before the first ground symbol is 

equal to (i11 − 1) + (i21 − 1). 

- The number of variables in p between any pair of adjacent ground symbols 

s(j) and s (j+1), with j=1..n−1, is equal to (i1(j+1) − i1j − 1) + (i2(j+1) − i2j − 1). 

- The number of variables after the last ground symbol in p is equal to |s1| − i1n 

+ |s2| − i2n. 

Remark 3. If M is the empty alignment then p = V1V2… V|s
1
|+|s

2
| 

Example 5. The following table illustrates the concept of pattern associated to an 

alignment on Σ*
. 

s1 s2 M p 

aabaaa ababaa ((1,2,3,4,5),(1,3,4,5,6)) aV1abaaV2 

aabaaa ababaa ((2,3,4,5,6),(1,2,3,5,6)) V1abaV2aa 

aaab baa ((4),(1)) V1V2V3bV4V5 

aaa bb ((),()) V1V2V3V4V5 

We use the concept of pattern associated to an alignment on Σ*
 to define the 

generalisation operator ∆ for sequences in Σ*
 that it is given in Proposition 1. 

Proposition 1. Let Σ*
 the set of all sequences of ground symbols in Σ, and L0 the 

pattern language defined over Σ ∪ V ∪ {λ}. The function ∆: Σ*
 × Σ*

 → L0 defined by 

∆(s1, s2) = pM, where pM is the pattern associated to the minimum (≺) optimal 

alignment M between s1 and s2 is a binary generalisation operator for sequences. 

Proof. By definition 1 in [4], ∆: Σ*
 × Σ*

 → L0 is a binary generalisation operator iff 

for all s1 ∈ Σ*
, s2 ∈ Σ*

, s1 ∈ Set(p) and s2 ∈ Set(p), with p=∆(s1, s2). 

By definition of coverage, Set(p) = {s ∈ Σ*
| ∃ σ : pσ = s} and given that p is the 

                                                           
6 We say that a sequence s is covered by a pattern p in L0 if exists a substitutionσ such that s = pσ. 

A substitution σ is a set of pairs Vi/ei, with Vi ∈ V (Vi ≠ Vj, i ≠ j) and ei ∈ Σ ∪ {λ}, that applied to a pattern p 

returns a new pattern p’ obtained from p by simultaneously replacing each occurrence of the variable Vi in p 

by ei (i=1, …,n). 
Example. Sequences s1=aabaa and s2=ababaa are covered by pattern p=aV1abaaV2 given that exists 

substitutions σ1={V1/λ, V2/λ} and σ2={V1/b, V2/λ} such that pσ1=s1 and pσ2=s2. 

 



pattern associated to the minimum (≺) optimal alignment M between s1 and s2 we can 

build a substitution σ1 from the alignment  M, that revert the process of building the 

pattern associated to the alignment, such that pσ1 = s1 as follows: For each variable V 

in p, if V is the generalisation of a ground symbols e1 in s1  that do not much any 

symbol in s2, then the pair V/e1 must be added to σ1, otherwise V/λ. The same process 

can be done for s2.□ 

We define the pattern binary generalisation operator ∆*
 by analogy with ∆. We take 

into account when defining the alignment on L0 that symbols in pattern p1 match those 

in pattern p2 both when they are equal ground symbols or when one of them is a 

variable. We illustrate this concept in Example 6 and formalize it in Definition 5. 

Example 6. Given the patterns p1 = aV1V2V3aa and p2 = baa, some valid alignments 

on L0 of p1 and p2 are M1 = ((2, 3, 4), (1, 2, 3)); M2 = ((2, 5, 6), (1, 2, 3)); M3 = ((1, 

5),(2, 3)) and M4= ((4, 5, 6),(1, 2, 3)). 

M1= ((2, 3, 4), (1, 2, 3)) 

aV1V2V3aa 

  b  a  a 

M2 =((2, 5, 6), (1, 2, 3)) 

aV1V2V3aa 

  b        aa 

M3 = ((1, 5),(2, 3)) 

   aV1V2V3aa 

b a          a 

M4= ((4, 5, 6),(1, 2, 3))  

aV1V2V3aa 

          b aa 

Definition 5 Given two patterns p1 and p2 in L0, an alignment on L0 of p1 and p2 is 

given by the mapping M: L0 × L0 →  ℕ*×ℕ*
 defined by M(p1, p2) = ((i11, i12,..., i1n), 

(i21, i22,..., i2n)) such that  

i) p1(i1j) and p2(i2j) are equal ground symbols or at least one of them is a variable, 

with j=1.. n. 

ii) i1j < i1j+1 and i2j < i2j+1, with j = 1.. n-1. 

Once again, we are interested in minimum (≺) optimal alignments, but this time on 

L0. Therefore, we need formally define the concepts of optimal alignment on L0 and 

pattern associated to an alignment on L0, which is based on the concept of binary 

generalisation operator ∆Σ’ of symbols in Σ’ given in Proposition 2. 

Proposition 2. Let Σ’ the set of symbols in Σ ∪ V ∪ {λ}.  

The function ∆Σ’:Σ’ × Σ’ → Σ’ defined by  

∆
Σ

�	
� , 
) = �
�, �ℎ�� 
�, 
 ∈ Σ ��� 
� =  
 
��,                                   ��ℎ����
�� 

is a binary generalisation operator for symbols in Σ’. 

Proof. ∆Σ’ is a binary generalisation operator given that for any pair of symbols 


� and 
 in Σ’ 

(a) If  
�, 
 ∈ Σ  and 
� =  
 then, by definition of ∆Σ’ we have that ∆Σ’ (s1, s2) = p = 

s1  and trivially p ∈ Set(p). 

(b) Otherwise, by definition of ∆Σ’ we have that ∆Σ’ (s1, s2) = p=V1 and given that 

Set(V) = Σ’ for any variable V and s1, s2 ∈ Σ’, then s1 ∈ Set(V1) and s2 ∈ Set(V1).□ 

Definition 6. Let p1 and p2 two patterns in L0 and M(p1, p2)=((a11,a12,...,a1n), 

(a21,a22,...,a2n)) an alignment on L0 of p1 and p2. M is an optimal alignment on L0 iff it 

does not exist an alignment -(p1, p2) = ((b11,b12,...,b1m), (b21,b22,...,b2m)) such that m>n. 

Example 7. Let p1 = aV1V2V3aa and p2 = baa and M1, M2, M3 and M4 the alignments 

of Example 6. All are optimal alignments, with the exception of M3 whose length is 2. 

Definition 7. Let p1 and p2 be two patterns in L0, M = ((i11,i12,...,i1n), (i21,i22,...,i2n)) an 

alignment on L0 of p1 and p2, and p’ = ∆Σ’(p1(i11), p2(i21)). ∆Σ’(p1(i12), p2(i22)). … 

.∆Σ’(p1(i1n), p2(i2n)), p∈L0 is the pattern associated to the alignment on L0 M iff the 



symbols in p are distributed as follows: 

- The number of variables in p before the first symbol p’(1) is equal to (i11−1)+(i21−1). 

- The number of variables in p between any pair of adjacent symbols p’(j) and 

p’(j+1), with j=1..n−1, is equal to (i1(j+1) − i1j − 1) + (i2(j+1) − i2j − 1). 

- The number of variables in p after the last symbol p’(n) is equal to |p1|−i1n + |p2|− i2n. 

Remark 4. If M is the empty alignment then p = V1V2… V|p
1
|+|p

2
| 

Example 8. Following with Example 5, we have that the patterns pM
1
, pM

2
and pM

4  
in L0 

associated to the alignments M1, M2 and M4 are equal to V
4
aa, while pM

3 
 = VaV

3
aV. 

Proposition 3. Let L0 the pattern language defined over Σ ∪ V ∪ {λ}. The function 

∆*
: L0 × L0 → L0 defined by ∆*

(p1, p2) = pM, where pM is the pattern associated to the 

minimum (≺) optimal alignment M on L0 between p1 and p2 is a pattern binary 

generalisation operator. 

Proof. By definition 2 in [4], ∆*
: L0 × L0 → is a pattern binary generalisation operator 

iff for all p1 ∈ L0, p2 ∈ L0: Set(p1) ⊆ Set(p) and Set(p2) ⊆ Set(p), with p=∆*
(p1, p2). 

The coverage of a pattern is given by the set of sequences that are covered by the 

pattern. Note that a pattern in L0 not only generalize sequences of ground symbols but 

also other less general patterns, i.e. Set(p) = {p’ ∈ L0 | ∃ σ’ : pσ’=p’}. Given that p is 

the pattern associated to the minimum (≺) optimal alignment M on L0 between p1 and 

p2 we can build a substitutions σ’1 such that pσ’1=p1 as follows: 

For each variable V in p, 

- If V is the generalisation of a variable in p1 and any other symbol in p2 then V/V. 

- If V is the generalisation of two different grounds symbols e1 and e2  in p1  and p2  

respectively, then V/e1  . 

By following the same reasoning we can prove that p2∈ Set(p)□ 

2.3  Analysis of Consistency between Distances and Generalisations 

Figure 1(b) shows a simple example of an application of HDCC for lists using the 

edit distance, the single linkage distance d
s
L and the generalisation operators given in 

Proposition 1 and Proposition 3. The evidence in the example is given by the set of 

lists E = {baaa, aaaa, ba, bbb, caccc}. In Figure 1(a), we can also see the 

corresponding traditional dendrogram for the same evidence.  

From the example, it follows that this first pair of generalisation operators do not 

satisfy any of the consistency levels proposed in [4] when applied under single 

linkage distance d
s
L and the edit distance, namely: 

(a) The conceptual and the traditional dendrograms are not equivalent and therefore, 

we can affirm by Proposition 1 in [6] that either ∆* 
or ∆ is not strongly bounded by the 

single linkage distance d
s
L. In fact, as we show below in point (c), ∆ is not strongly 

bounded by the single linkage distance d
s
L and ∆* 

either given that, for instance, 

d
s
L({baaa, aaaa}, {ba}) = 2 and its pattern VaV

3 
covers cluster {caccc} whose single 

linkage distance to {baaa, aaaa, ba} is 4. 

(b) ∆* 
is not weakly bounded by d

s
L given that {caccc} is linked to {baaa, aaaa, ba} 

by its pattern VaV
3
 before than {bbb} that is not covered by VaV

3
 and whose linkage 

distance to the cluster {baaa, aaaa, ba} is 2 < d
s
L({baaa, aaaa, ba},{caccc}, d) = 4. 

(c) ∆* 
is not acceptable either given that the greatest distance between any pair of 



elements in cluster {baaa, aaaa, ba} is 3 and its pattern VaV
3
 covers {caccc} whose 

minimum distance to {baaa, aaaa, ba} is 4. 

 
Figure 1. (a) Traditional dendrogram using d s

L. (b) Conceptual dendrogram using d s
L.  

 

 
Figure 2. (a) Traditional dendrogram using complete linkage distance d c

L. (b) Conceptual 

dendrogram using d c
L. (c) Conceptual dendrogram using d c

L and less general patterns.  

In Figure 2(b) we show the conceptual dendrogram for the evidence E={aaaa, 

baaa, bbb, ba, ccccc} using the same generalisation operators but under complete 

linkage distance d
c
L. Figure 2(a) depicts the corresponding traditional dendrogram. As 

we can see from this example, these operators are not consistent with the edit and d
c
L 

either. One problem with these generalisation operators comes from the number of 

variables in the resulting patterns. These patterns have a number of variables grater or 

equal to the maximum edit distance between the generalized elements and we need 

operators that return patterns whose number of variables is equal to the maximum edit 

distance to guarantee the strongest level of the consistency: the strong boundedness. 

Figure 2 (c) shows the conceptual dendrogram we get when applying this idea to the 

resulting patterns. Next section presents a new pair of generalisation operators based 

on this notion. 

2.4  A Pair of Strongly Bounded Generalisation Operators 

In this section, we propose a new pair of generalisation operators ∆* 
and ∆ that 

satisfy the property of strong boundedness given in [4] and [6]. These operators 

produce patterns having a number of variables equal to the maximum edit distance 

between the generalized elements, guarantying under complete linkage distance d
c
L 

the strong boundedness property. Accordingly, we need to redefine the concept of 

pattern associated to an alignment in Σ* 
and in L0 in order to make the number of 

variables equal to the edit distance.  

Definition 8. Let s1 and s2 be two sequences in Σ*
, M = ((i11,i12,...,i1n), (i21,i22,...,i2n)) an 

alignment on Σ*
 of s1 and s2, and  s the sequence of symbols s1(i11).s1(i12). … .s1(i1n). 

5 

4 

3 

2 

1 

{
b

a
a

a
}

 

{
a

a
a

a
}

 

{
b

a
}
 

{
b

b
b

}

{
cc

cc
c}

 

5 

4 

3 

2 

1 

{
b

a
a

a
}

 

{
a

a
a

a
}

 

{
b

a
}
 

{
b

b
b

}
 

{
cc

cc
c}

 

 bV3 

 V5 

5 

 VaaaV 

5 

4 

3 

2 

1 

{
b

a
a

a
}

 

{
a

a
a

a
}

 

{
b

a
}
 

{
b

b
b

}
 

{
cc

cc
c}

 

  Vaaa 

 bV2 

  V4 

V5 

6 

5 

4 

3 

2 

1 
{
b

a
a

a
}

 

{
a

a
a

a
}

 

{
b

a
}
 

{
b

b
b

}
 

{
ca

cc
c}

 

6 

5 

4 

3 

2 

1 

{
b

a
a

a
}

 

{
a

a
a

a
}

 

{
b

a
}
 

{
b

b
b

}
 

{
ca

cc
c}

 

VaaaV 

V5 

4 

VaV3 



 p ∈ L0 is the pattern associated to the alignment on Σ*
 M iff  

i) The concatenation of the ground symbols in p is equal to s. 

ii) The variable symbols in p are distributed as follows: 

- The number of variables in the pattern p before the first ground symbol is equal to 

max{(i11 − 1); (i21 − 1)}. 

- The number of variables in p between any pair of adjacent ground symbols s(j) and 

s (j+1), with j=1..n−1, is equal to max{(i1(j+1) − i1j − 1); (i2(j+1) − i2j − 1)}. 

- The number of variables after the last ground symbol in p is equal to max{|s1| − i1n; 

|s2| − i2n}. 

Informally, the generalisation of two sequences s1, s2 in Σ* 
is the pattern associated 

to the minimum optimal alignment on Σ*
 of s1 and s2 according to a total order on 

optimal alignments that considers the number of variables the patterns associated to 

the alignment have and then their lexicographical order. In this total order, the 

minimum is given by the optimal alignment that has the less number of variables or if 

there is more than one then the minimum is given by the lexicographical order. We 

formalize this concept in Definition 9 and, in Proposition 4, we formally propose the 

corresponding binary generalisation operator ∆. 

Definition 9. Let s1 and s2 be two sequences, M = ((a11,a12,...,a1n), (a21,a22,...,a2n)) and 

- = ((b11,b12,...,b1n), (b21,b22,...,b2n)) two optimal alignments of s1 and s2, and pM and p- 

the patterns associated to the alignments M and -, respectively. 

� ≺! � iff #var(pM) < #var(p-) or (#var(pM) = #var(p-) and (a11, a12,..., a1n, a21, 

a22,..., a2n) <Lex (b11, b12,..., b1n, b21, b22,..., b2n)), where #var(p) is the number of 

variables in pattern p and <Lex is the lexicographical order between sequences. 

Remark 5. Definition 9 applies for sequences in Σ*
 and in L0 (patterns).  

Example 9. Given the sequences s1= baaa and s2 = aaaa and the optimal alignments 

M=((2,3,4),(1,2,3)) and M’= ((2,3,4),(2,3,4)) and their associated patterns pM = 

VaaaV and pM’ = Vaaa. According to Definition 9, we have that �′ ≺V �. 

Proposition 4. Let Σ*
 the set of all sequences of ground symbols in Σ, and L0 the 

pattern language defined over Σ ∪ V ∪ {λ}. The function ∆: Σ*
 × Σ*

 → L0 defined by 

∆(s1, s2) = pM, where pM is the pattern associated to the minimum (≺!) optimal 

alignment M between s1 and s2 is a binary generalisation operator for sequences. 

Proof. By following the same reasoning that in Proposition 1.□ 

Next, we propose the new pattern binary generalisation operator ∆*
 defined by 

analogy with ∆. Consequently, we also need to redefine the concept of pattern 

associated to an alignment on L0 . This is done in Definition 10. 

Definition 10. Let p1 and p2 be two patterns in L0, M = ((i11,i12,...,i1n), (i21,i22,...,i2n)) an 

alignment on L0 of p1 and p2, and p’ = ∆Σ’(p1(i11), p2(i21)). ∆Σ’(p1(i12), p2(i22)). … 

.∆Σ’(p1(i1n), p2(i2n)), p∈L0 is the pattern associated to the alignment on L0 M iff the 

symbols in p are distributed as follows: 

- The number of variables in p before the first symbol p’(1) is equal to 

max{(i11−1);(i21−1)}. 

- The number of variables in p between any pair of adjacent symbols p’(j) and 

p’(j+1), with j=1..n−1, is equal to max{ (i1(j+1) − i1j − 1); (i2(j+1) − i2j − 1)}. 

- The number of variables in p after the last symbol p’(n) is equal to max{|p1|−i1n ; 

|p2|− i2n }. 



Proposition 5. Let L0 the pattern language defined over Σ ∪ V ∪ {λ}. The function 

∆*
: L0 × L0 → L0 defined by ∆*

(p1, p2) = pM, with pM the pattern associated to the 

minimum (≺!) optimal alignment M between p1 and p2 is a pattern binary 

generalisation operator. 

Proof. By following the same reasoning that in Proposition 3.□ 

Proposition 6 shows that ∆ is a strongly (and weakly) bounded binary 

generalisation operator.□ 

Proposition 6. Let L0 the pattern language defined over Σ ∪ V ∪ {λ}, ∆: Σ*
 × Σ*

 → 

L0 the binary generalisation operator given in Proposition 4, and d the edit distance.  

(a) ∆ is strongly bounded by distance d. 

(b) ∆ is weakly bounded by distance d. 

Proof. (a) Given two sequences s1 and s2 with edit distance d(s1, s2), we want to show 

that any sequence s3 covered by the pattern p = ∆(s1, s2) is at most at distance d(s1, s2) 

from s1 and s2. 

We know that (i) By definition of ∆, the edit distance d(s1, s2) determines the number 

of variables v in a pattern p = ∆(s1, s2), so d(s1, s2) = v. (ii) Any element covered by p 

can differ from other in at most v symbols, i.e their edit distance must be less or equal 

to v. Given that s1, s2 and s3 are covered by p we have d(s3, s1) ≤ v and d(s3, s2) ≤ v. 

From (i) and (ii), d(s3, s1) ≤ d(s1, s2) and d(s3, s2) ≤ d(s1, s2).  

(b) Given that by (a) ∆ is strongly bounded by d, by part (ii) of Proposition 2 in [6] we 

have that ∆ is weakly bounded by d.□ 

Proposition 7. Let L0 be a language of patterns defined over Σ ∪ V ∪ {λ}, d the edit 

distance, d
c
L(., ., .) the complete linkage distance and ∆*

: L0 × L0 → L0 the pattern 

binary generalisation operator given in Proposition 5.  

(a) ∆*
 is strongly bounded by the complete linkage distance d

c
L. 

(b) ∆*
 is weakly bounded by the complete linkage distance d

c
L. 

(c) ∆*
 is an acceptable pattern binary generalisation operator. 

Proof. (a) We want to show ∀ p1, p2 ∈ L0, C1 ⊆ Set(p1), C2 ⊆ Set(p2), C ⊆ Set(∆*
(p1, 

p2)) – (Set(p1) ∪ Set(p2)) : d
c
L(C,C1,d) ≤ d

c
L(C1,C2,d) ∨ d

c
L(C,C2,d) ≤ d

c
L(C1,C2,d).  

Let us suppose that exists a cluster C ⊆ Set(∆*
(p1, p2)) – (Set(p1) ∪ Set(p2)) : d

c
L(C, 

C1, d) > d
c
L(C1, C2, d) ∧ d

c
L(C, C2, d) > d

c
L(C1, C2, d) with s1 and s2 the linkage points 

between C1 and C2. It means that exists x ∈ C and y ∈ C1 such that d(x, y) > d(s1, s2). 

Given that s1 and s2 are the complete linkage points, d(s1, s2) is the grater distance 

between any pair of points in C1 and C2, and we know also that d(s1, s2) = number of 

variables in ∆*
(p1, p2). Since x and y are covered by ∆*

(p1, p2), the distance d between 

them is bounded by the number of variables in ∆*
(p1, p2), that is d(x, y) ≤ d(s1, s2). 

(b) Given that by (a) ∆*
 is strongly bounded by d

c
L, by part (i) of Proposition 2 in [6] 

∆*
 is weakly bounded by d

c
L. 

(c) We want to show that for any pair of patterns p1 and p2 in L0 and for any sequence 

s in Set(∆*
(p1, p2)) exists a sequence s’ in Set(p1) ∪ Set(p2) such that d(s, s’) ≤ 

d
c
L(Set(p1), Set(p2), d). 

The edit distance d between any element covered by a pattern p=∆*
(p1, p2) is less or 

equal to the number v of variables in p. Since s and s’ are covered by p then d(s, s’)≤v. 

By definition of ∆*
, the maximum distance between the elements in Set(p1) and 



Set(p2) determines the number of variables in p, then d
c
L(Set(p1), Set(p2), d) = v. 

Consequently, d(s, s’) ≤ d
c
L(Set(p1), Set(p2), d).□ 

Although ∆* 
is strongly bounded by the complete linkage distance d

c
L, it is not 

strongly bounded by the single linkage distance d
s
L. We illustrate this in Figure 3 by 

showing that the traditional (Left) and conceptual (Right) dendrograms for the 

evidence {baaa, aaaa, ba, bbb, cacc} are not equivalent. Given that ∆ 
is strongly 

bounded by d then, by Proposition 1 in [6], ∆* 
cannot be strongly bounded by d

s
L. 

In Figure 3 we can also see that ∆* 
is not weakly bounded by d

s
L either given that 

pattern VaV
2
 covers {cacc} whose single linkage distance to {baaa, aaaa, ba} = 3 is 

grater than 2, the single linkage distance from {baaa, aaaa, ba} to cluster {bbb}, 

which is not covered by the pattern VaV
2
.  

We want to remark that although these operators are not bounded by the single 

linkage distance d
s
L, we always get conceptual dendrograms that satisfy the property 

of acceptability (see page 54 in [6]). In fact, as it has been proved in part (c) of 

Proposition 7 and in part (a) of Proposition 6, ∆* 
is an acceptable generalisation 

operator for any linkage distance with the edit distance d and ∆ is strongly bounded 

by d satisfying in this way the sufficient conditions for getting acceptable conceptual 

dendrograms in HDCC. 

 

 
Figure 3. Traditional (Left) and Conceptual dendrogram (Right) using d s

L. 

3   Conclusions and Future Work 

It can be easily shown that when integrating traditional hierarchical distance-based 

clustering with conceptual clustering, the conceptual dendrograms obtained by 

applying generalisation  operators can differ significantly from the hierarchy induced 

only by the distance. Having in mind this problem, the notion of conceptual 

dendrogram and three different levels of consistency have been defined on the basis 

of the similarity between a conceptual dendrogram and its corresponding traditional 

dendrogram. At the same time the sufficient conditions the used generalisation 

operators ∆* 
and ∆ 

must satisfy to obtain a given level of consistency have been also 

defined. This has given place to a general framework that allows the analysis of 

different pairs of generalisation operators, which can result compatible with the 

distances at some degree while some other pairs cannot, showing, therefore, that some 

distances and generalisation operators should not be used together. 

In this sense, we have found and presented here a positive result for a particular 

kind of structured data type: sequences of elements. We have proposed a pair of 

generalisation operators ∆ 
and ∆* 

that, when using the most common distance for 

sequences, i.e. the edit distance, and under complete linkage, they meet the higher 

5 

4 

3 

2 

1 

{
b

a
a

a
}

 

{
a

a
a

a
}

 

{
b

a
}
 

{
b

b
b

}
 

{
ca

cc
}
 

5 

4 

3 

2 

1 

{
b

a
a

a
}

 

{
a

a
a

a
}

 

{
b

a
}
 

{
b

b
b

}
 

{
ca

cc
}
 

V4 VaV2 

3 Vaaa 



level of consistency with respect to the underlying distances, giving place in HDCC to 

conceptual dendrograms equivalent to the traditional ones. It is also important to note 

that, although this result does not hold under single linkage, we have shown that the 

proposed generalisation operators produce acceptable dendrograms under single 

linkage.  

From these results, we can affirm that the integration of hierarchical distance-based 

clustering and conceptual clustering for sequences of any kind of elements is feasible, 

congruent and relatively straightforward. At the same time, we have increased our set 

of consistent generalisation operators for several datatypes, namely numeric and 

nominal data and tuples of numeric and nominal data that have been proposed in [7]. 

In this regard, we plan to find new operative pairs of distances and generalisation 

operators for other data types used in data mining applications, such as sets, graphs 

and multimedia objects. Part of our immediate future work is also directed to do some 

experiments to determine the quality of the resulting clustering under single linkage 

and see if the new conceptual clustering, coming from the on-line re-arrangement of 

the dendrogram, although not equivalent to the traditional dendrogram does not 

undermine cluster quality when applied under single linkage. 

References 

1. R. W. Hamming. Error detecting and error correcting codes. Bell System Technical Journal., 

26(2):147-160, (1950) 

2. Levenshtein, V. I. Binary codes capable of correcting deletions, insertions, and reversals. 

Soviet Physics Doklady., 10:707–710. (1966) 

4. Funes, A., Ferri, C., Hernández-Orallo, J., Ramirez-Quintana, M.J.: Hierarchical Distance-

based Conceptual Clustering. LNAI 5212, pp. 349–364. ©Springer (2008) 

5. Estruch, V.: Bridging the gap between distance and generalisation: Symbolic learning in 

metric spaces. PhD thesis, DSIC-UPV (2008) http://www.dsic.upv.es/~vestruch/thesis.pdf 
6. Funes, A.: Agrupamiento Conceptual Jerárquico Basado en Distancias, Definición e 

Instanciación para el Caso Proposicional. Master Thesis, DSIC-UPV (2008). 

7. Funes, A., Ferri, C. , Hernández-Orallo, J., Ramírez-Quintana, M. J.: An Instantiation of 

Hierarchical Distance-based Conceptual Clustering for Propositional Learning. LNAI 5476, 

pp. 637–646, 2009. Springer-Verlag Berlin Heidelberg (2009) 

8. Cover, T. and Hart, P.: Nearest neighbour pattern classification, in IEEE Transactions on 

Information Theory, pp. 13–27. (1967) 

9. MacQueen, J. B.: Some methods for classification and analysis of multivariate observations, 

Proc. of the 5th Berkeley Symposium on Math. Statistics and Probability, pp. 281–297, 

Univ. of California Press. (1967) 

10. Fisher, R.: The use of multiple measurements in taxonomic problems, in Ann. Eurgenics, 

Vol. 7, Part II, pp. 179–188. (1936) 

11 Johnson, S. C.: Hierarchical clustering schemes, Psychometrika, Vol. 2, pp. 241–254. (1987) 

12 Michalski, R. S.: Knowledge acquisition through conceptual clustering, in Policy Analysis 

and Information Systems, Vol. 4, pp. 219–244. (1980) 

13 Michalski, R. S. and Stepp, R. E.: Machine Learning: An Artificial Intelligence Approach, 

Learning from Observation: Conc. Clustering, pp. 331–363, TIOGA Publishing Co. (1983) 

14. Jain, A. K., Murty, M. N.  and Flynn, P. J., “Data clustering: a review”, ACM Comput. 

Survey, Vol. 31, Nº 3, pp. 264-323, (1999). 

15. Berkhin, P. “A Survey of Clustering Data Mining Techniques”, Grouping Multidimensional 

Data, pp. 25-71, Springer (2006). 


