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Introduction

§SMILES: 
§ integrates many different and innovative features in 
machine learning techniques.

§extends classical decision tree learners in many ways:
§ new splitting criteria

§ non-greedy search

§ new partitions

§ extraction of several and different solutions

§anytime handling of resources

§sophisticated and quite effective handling of costs.
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Motivation

§ Some hindrances for a wider applicability of Machine Learning:

§ Generation:
§ Computational costs: powerful methods in ML systems require 

huge amounts of memory and time to generate accurate hypotheses.

§ Application:
§ Prediction error costs: not all the errors have the same 

consequences: Cost matrices and ROC analysis necessary.

§ Test costs: not all the attributes can be tested economically. 
Especially in medical applications.

§ Intelligibility: the comprehensibility of the extracted models is 
critical for their validation, acceptance, diffusion and ultimate use.

§ Throughput (response time): complex models are difficult to be 
applied efficiently in real-time applications, such as fraud detection.
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Ensemble Methods (1/2)

§ Ensemble Methods (Multi-classifier or hybrid systems):

§ Aim at obtaining higher accuracy than single methods.

§ Generate multiple and possibly heterogeneous models and then 
combine them through voting or other fusion methods. 

§ Good results related to the number and variety of classifiers.

§ Different topologies: simple, stacking, cascading, …
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Ensemble Methods (2/2)

§Main drawbacks of Ensemble Methods:
§ Computational costs: lots of memory and time are required to 

obtain and store the set of hypotheses (ensemble).
§ Prediction error costs: most ensemble methods are based on 

the maximisation of accuracy and not other cost-sensitive 
measures.
§ Test costs: the use of several (and diverse) hypotheses forces 

the evaluation of (almost) all the attributes.
§ Intelligibility: the combined model is a black box.
§ Throughput: the application of the combined model is slow.

§ The resolution of these drawbacks would boost the applicability of 
ensemble methods in machine learning applications.
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Addressing Computational Costs

§ Many ensemble solutions have common parts.
§ Traditional ensemble methods repeat those parts: memory and time ↑↑↑

§ SMILES is based on the construction of a shared ensemble:
§ Common parts are shared in an AND/OR tree structure.

DECISION 
MULTI-TREE

§ Throughput is also improved by this technique.
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Addressing Misclassification & Test Costs (1/2)

§Many ensemble methods aim at increasing accuracy.

§ better measure when classification costs may be variable.
§ can be used as a metric for comparing classifiers:

ROC diagram
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AUC (Area Under the ROC Curve)

§ MAUC: Multi-class extension of the AUC measure (Hand & Till 2001).
0 1FPR
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Addressing Misclassification & Test Costs (2/2)

§SMILES has splitting criteria based on the maximisation 
of the AUC

§ MAUCsplit: Adaptation of Multi-class extension of AUC.

§ MSEsplit: Adaptation of Minimum Squared Error as splitting 
criterion.

§Splitting criteria can also be modified to minimise the test 
cost.
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Addressing Test Cost and Intelligibility

§ Ensemble methods (and many other ML methods) are:
§ Black boxes: no insight given by the model (ensembles, ANN, SVM…).

§ Attribute exhaustive: all or nearly all the attributes must be examined 
(ensembles, ANN, SVM, Bayes, …).

§ Slow in real-time applications: all the classifiers must be evaluated.

§ The Multi-tree structure (our shared ensemble) has also these 
problems.

§SMILES introduces the notion of “ARCHETYPE” of the ensemble.
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Archetype

The archetype is the representative single hypothesis
that is closer to the combined hypothesis.

§ H: hypothesis space
§ hi: hypotheses in the ensemble.
§ F: combined hypothesis.
§ hc: archetype.

§ SMILES extracts the archetype from the multi-tree structure without 
the need of a validation dataset.

§ Comprehensibility, test cost and throughput problems solved.
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Some Experiments (1/4)

§ Combination Accuracy compared to other Ensemble Methods:
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Some Experiments (2/4)

§Combination Resources compared to other Ensemble Methods:
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Some Experiments (3/4)

§ Evaluation of splitting criteria wrt.:
§ accuracy
§ AUC
§ number of rules

 

GEOMEANS GAINRATIO MAUCSPLIT MSESPLIT 
Accuracy 87.45 87.19 87.05 
M-AUC             87.42 88.08 87.98 
Rules 23.27 21.19 22.99 

25 Two-class datasets from UCI repository. Pruning enabled. 
 

GEOMEANS GAINRATIO MAUCSPLIT MSESPLIT 
Accuracy 80.90 80.29 83.12 
M-AUC 89.30 90.18 90.09 
Rules 74.49 75.62 68.26 

14 Multi-class datasets from UCI repository. Pruning enabled. 
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Some Experiments (4/4)

§ Evaluation of the Archetype:

§ The accuracy gets close to the combined solution, and much 
better than the first single tree:
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Availability

§SMILES is freely available at:

http://www.dsic.upv.es/~flip/smiles/

§C++ sources.
§UNIX (Linux) and Windows versions.
§Many Examples (more than 30 datasets) adapted to 
SMILES format.
§Complete User Manual (90 pages).
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Additional Applications

§ It’s different from stacking. The resulting model is semantically “similar” to the 
ANN but it is a comprehensible DT defined in terms of the original attributes.

§SMILES can be used as a ‘by-pass’ for non-comprehensible 
ML methods:
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set Unlabelled

random
dataset

Labelled
random
dataset
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Conclusions and Future Work

§ SMILES:
§ combines and improves hypotheses combination and cost-sensitive 

learning (ROC analysis, AUC, test cost).
§ The archetyping technique provides a novel and different way to take 

advantage of classifier ensembles, especially shared ensembles.
§Well suited for applications requiring high accuracy/AUC, low cost 

and high comprehensibility with flexible handling of resources.

§ Future work:
§ Inputs and outputs in XML. (PMML standard)
§ Graphical interface.
§ Incremental extension.
§ Expressiveness extension (functional-logic, higher-order, …)


