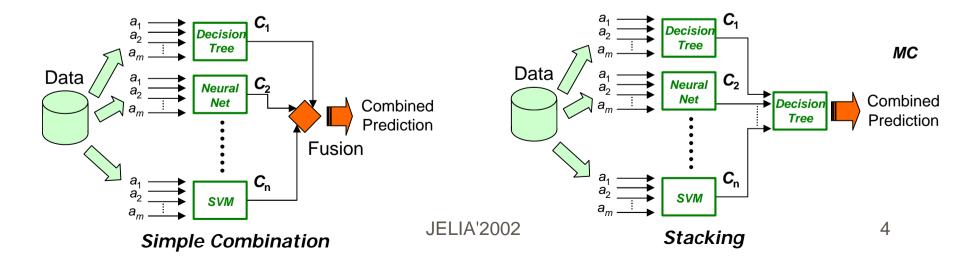
(-: (-: SMILES :-) :-) A Multi-purpose Learning System

Vicent Estruch, Cèsar Ferri,
José Hernández-Orallo, M.José Ramírez-Quintana
{vestruch, cferri, jorallo, mramirez}@dsic.upv.es
Dep. de Sistemes Informàtics i Computació,
Universitat Politècnica de València,
Valencia, Spain

8th European Conference on Logics in Artificial Intelligence JELIA'02, System Presentation Session Cosenza, Italy, September 23-26, 2002

Introduction

-SMILES:

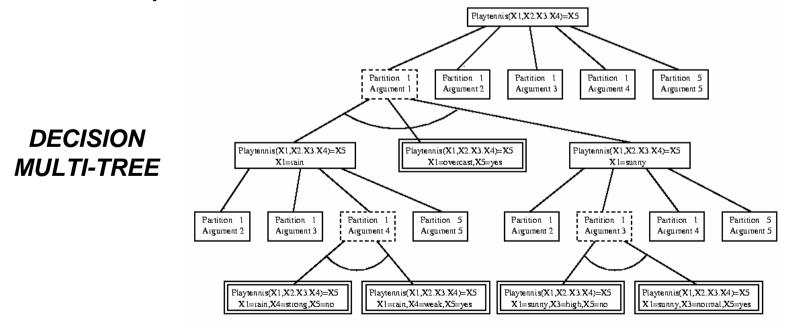

- integrates many different and innovative features in machine learning techniques.
- extends classical decision tree learners in many ways:
 - new splitting criteria
 - non-greedy search
 - new partitions
 - extraction of several and different solutions
- anytime handling of resources
- sophisticated and quite effective handling of costs.

Motivation

- Some hindrances for a wider applicability of Machine Learning:
 - Generation:
 - Computational costs: powerful methods in ML systems require huge amounts of memory and time to generate accurate hypotheses.
 - Application:
 - Prediction error costs: not all the errors have the same consequences: Cost matrices and ROC analysis necessary.
 - Test costs: not all the attributes can be tested economically. Especially in medical applications.
 - Intelligibility: the comprehensibility of the extracted models is critical for their validation, acceptance, diffusion and ultimate use.
 - Throughput (response time): complex models are difficult to be applied efficiently in real-time applications, such as fraud detection.

Ensemble Methods (1/2)

- Ensemble Methods (Multi-classifier or hybrid systems):
 - Aim at obtaining higher accuracy than single methods.
 - Generate multiple and possibly heterogeneous models and then combine them through voting or other fusion methods.
 - Good results related to the number and variety of classifiers.
 - Different topologies: simple, stacking, cascading, ...

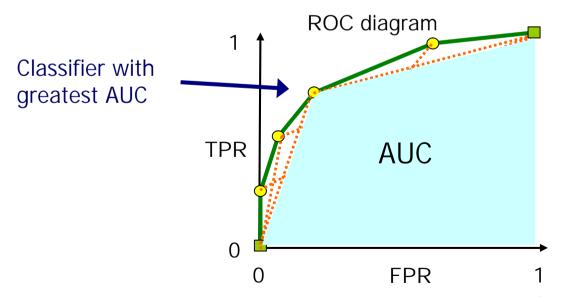


Ensemble Methods (2/2)

- Main drawbacks of Ensemble Methods:
 - Computational costs: lots of memory and time are required to obtain and store the set of hypotheses (ensemble).
 - Prediction error costs: most ensemble methods are based on the maximisation of accuracy and not other cost-sensitive measures.
 - Test costs: the use of several (and diverse) hypotheses forces the evaluation of (almost) all the attributes.
 - Intelligibility: the combined model is a black box.
 - Throughput: the application of the combined model is slow.
- The resolution of these drawbacks would boost the applicability of ensemble methods in machine learning applications.

Addressing Computational Costs

- Many ensemble solutions have common parts.
- Traditional ensemble methods repeat those parts: memory and time ↑↑↑
- **SMILES** is based on the construction of a *shared ensemble*:
 - Common parts are shared in an AND/OR tree structure.


Throughput is also improved by this technique.

Addressing Misclassification & Test Costs (1/2)

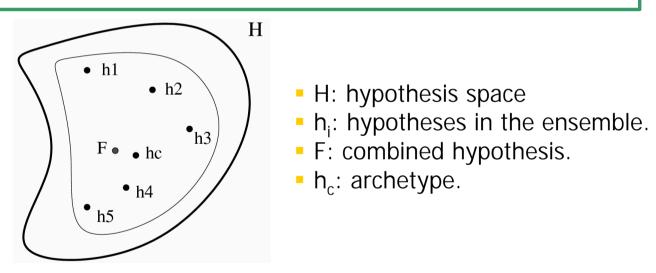
Many ensemble methods aim at increasing accuracy.

AUC (Area Under the ROC Curve)

- better measure when classification costs may be variable.
- can be used as a metric for comparing classifiers:

MAUC: Multi-class extension of the AUC measure (Hand & Till 2001).

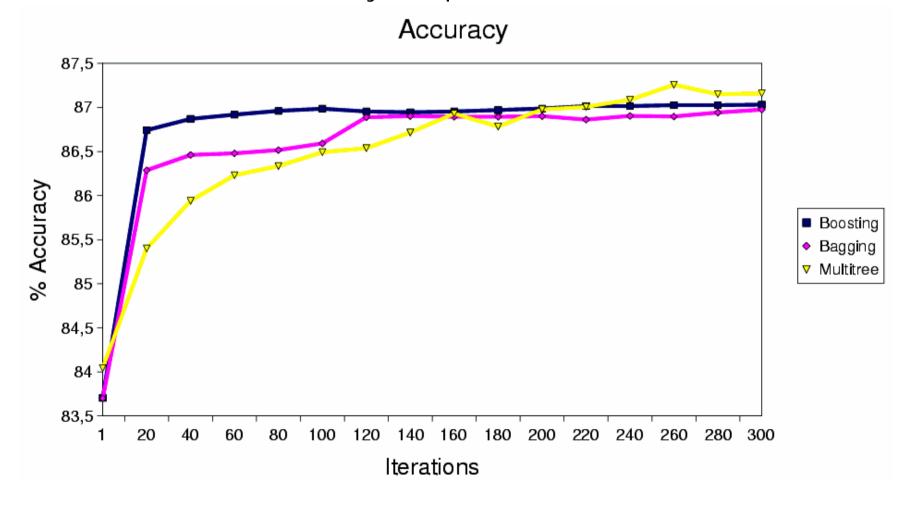
Addressing Misclassification & Test Costs (2/2)


- SMILES has splitting criteria based on the maximisation of the AUC
 - MAUCsplit: Adaptation of Multi-class extension of AUC.
 - MSEsplit: Adaptation of Minimum Squared Error as splitting criterion.
- Splitting criteria can also be modified to minimise the test cost.

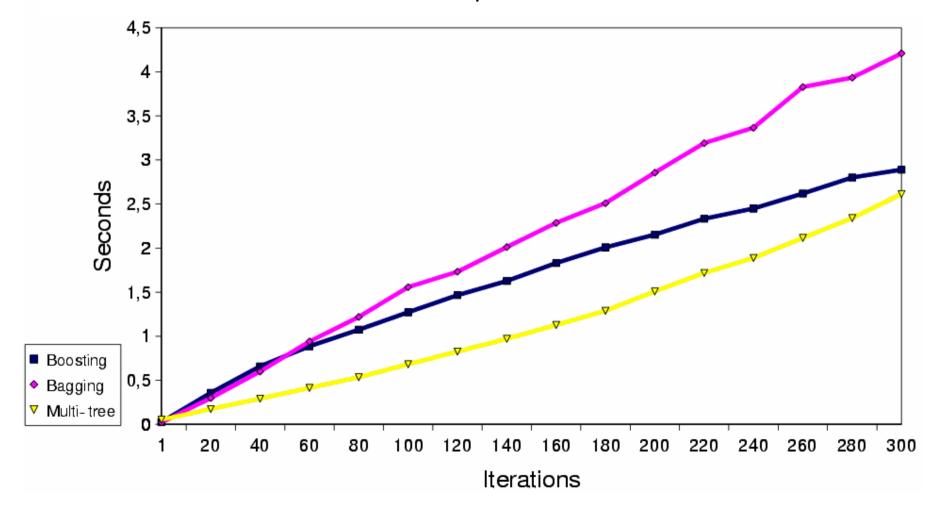
Addressing Test Cost and Intelligibility

- Ensemble methods (and many other ML methods) are:
 - Black boxes: no insight given by the model (ensembles, ANN, SVM...).
 - Attribute exhaustive: all or nearly all the attributes must be examined (ensembles, ANN, SVM, Bayes, ...).
 - Slow in real-time applications: all the classifiers must be evaluated.
- The Multi-tree structure (our shared ensemble) has also these problems.
- SMILES introduces the notion of "ARCHETYPE" of the ensemble.

Archetype


The archetype is the representative <u>single hypothesis</u> that is closer to the combined hypothesis.

- **SMILES** extracts the archetype from the multi-tree structure without the need of a validation dataset.
- Comprehensibility, test cost and throughput problems solved.


Some Experiments (1/4)

Combination Accuracy compared to other Ensemble Methods:

Some Experiments (2/4)

Combination Resources compared to other Ensemble Methods:

Some Experiments (3/4)

- Evaluation of splitting criteria wrt.:
 - accuracy
 - AUC
 - number of rules

GEOMEANS	GAINRATIO	MAUCSPLIT	MSESPLIT
Accuracy	87.45	87.19	87.05
M-AUC	87.42	88.08	87.98
Rules	23.27	21.19	22.99

25 Two-class datasets from UCI repository. Pruning enabled.

GEOMEANS	GAINRATIO	MAUCSPLIT	MSESPLIT
Accuracy	80.90	80.29	83.12
M-AUC	89.30	90.18	90.09
Rules	74.49	75.62	68.26

14 Multi-class datasets from UCI repository. Pruning enabled.

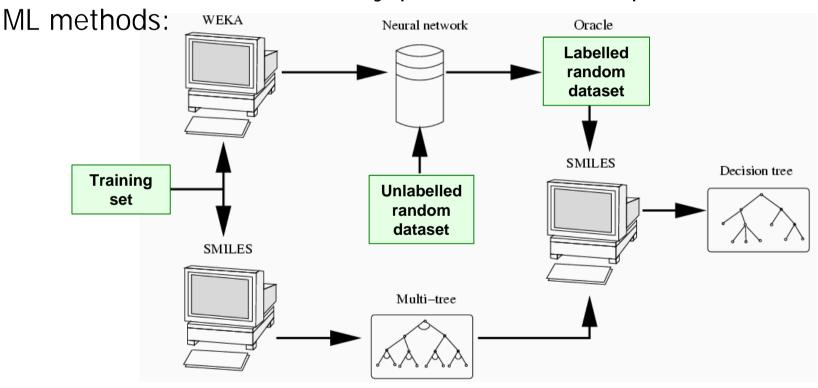
Some Experiments (4/4)

Evaluation of the Archetype:

#	Dataset	Size	1 10			100			1000						
#	Dataset	Size	1st	Comb	Arc	Occ	#Sol	Comb	Arc	Occ	#Sol	Comb	Arc	Осс	#Sol
1	monks1	566	92.3	96.1	96.0	96.5	107	100	100	100	8.7×10^{8}	100	100	100	1.6×10^{19}
$\parallel 2 \parallel$	monks2	601	74.8	74.9	74.3	74.3	148	77.4	76.1	72.5	$ 2.6 \times 10^{10} $	82.3	82.1		$ 3.2 \times 10^{20} $
3	monks3	554	97.5	97.7	97.7	97.6	46	97.5	97.6	97.5	80×10^{4}	97.7	97.7	97.6	$ 7.1 \times 10^{14} $
$\parallel 4 \parallel$	tic-tac	958	78.2	79.0	78.1	78.3	257	82.7	78.2	78.6	2.7×10^{12}	84.6	79.8	79.5	3.1×10^{38}
5	house-votes	435	93.6	94.9	94.2	93.9	63	96.0	94.4	93.6	26×10^{5}	95.7	94.1	93.9	$ 5.6 \times 10^{11} $
6	post-operative	87	60.9	63.8	61.8	60.0	55	66.3	63.8	62.3	59674	68.5	65.9	62.1	$ 2.1 \times 10^9 $
7	balance-scale	625	76.8	77.9	77.2	76.8	131	83.1	80.1	76.7	3.4×10^{8}	88.0	83.5		$ 1.2 \times 10^{18} $
8	soybean-small	35	97.3	97.0	98.0	97.5	23	96.5	96.5	96.8	38737	95.0	93.3		1.8×10^{18}
9	dermatology	358	89.8	91.3	90.6	90.1	92	93.6	90.6	90.2	3.3×10^{7}	93.8	91.1	90.8	1.2×10^{10}
10	cars	1728	89.0	89.6	89.1	89.0	151	91.0	89.6	89.1	$ 1.7 \times 10^9 $	91.6	90.0		$ 2.8 \times 10^{24} $
11	tae	151	62.9	62.5	62.3	61.9	97	64.5	61.9	62.1	1.5×10^{6}	64.5	60.9	61.1	$ 4.6 \times 10^{14} $
12	new-thyroid	215	92.6	93.2	92.6	92.6	26	92.6	92.8	93.0	3392	90.7	92.6	93.7	$ 6.1 \times 10^7 $
13	ecoli	336	77.5	79.1	77.6	77.8	57	79.9	79.4	78.4	1134750	80.3	78.2	77.0	3.8×10^{8}
82.41 83.49 82.85 82.55 78.31 85.45 83.78 82.91 $4.3 imes 10^7$							86.44	84.49	82.65	$ 6.2 \times 10^{14} $					
The second secon							*								

The accuracy gets close to the combined solution, and much better than the first single tree:

Availability


-SMILES is freely available at:

```
http://www.dsic.upv.es/~flip/smiles/
```

- -C++ sources.
- UNIX (Linux) and Windows versions.
- Many Examples (more than 30 datasets) adapted to SMILES format.
- Complete User Manual (90 pages).

Additional Applications

- SMILES can be used as a 'by-pass' for non-comprehensible

• It's different from stacking. The resulting model is semantically "similar" to the ANN but it is a comprehensible DT defined in terms of the original attributes.

Conclusions and Future Work

SMILES:

- combines and improves hypotheses combination and cost-sensitive learning (ROC analysis, AUC, test cost).
- The archetyping technique provides a novel and different way to take advantage of classifier ensembles, especially shared ensembles.
- Well suited for applications requiring high accuracy/AUC, low cost and high comprehensibility with flexible handling of resources.

Future work:

- Inputs and outputs in XML. (PMML standard)
- Graphical interface.
- Incremental extension.
- Expressiveness extension (functional-logic, higher-order, ...)