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Extended Abstract

After the initial relevance of deduction in AI, nowadays, inductive learning,
and all its varieties (abductive reasoning, reasoning by analogy, connectionism,
ILP, grammatical inference, HMM, EBR, etc.), are beginning to play a more
central and still agglutinative role in the proper subset of AI devoted to make
intelligent machines. The issue has been much clearer in discovery science,
where induction has been the prominent inference process.

In this trend, new unified frameworks for understanding reasoning have been
appearing, with the aim of integrating all the different inference mechanims [25].
In particular, a radical approach has been undertaken by Wolff, with the claim
that “all kinds of computing and formal reasoning may usefully be understood
as information compression by pattern matching, unification and search” [46].

In this paper, we will discuss critically a very influential and now classi-
cal issue in this line, which is based on the view of unsupervised learning as
compression [38], its famous operative Minimum Description Length (MDL)
Principle [32] and, mainly, its formal justification. The MDL [32] principle is
closely related with the Minimum Message Length (MML) principle [44] and
Maximum Likelihood Estimators, but the idea is formally older [38]. However,
they all are “fresh interpretations” [15] under Algorithmic Information Theory
of a much older idea attributed to William of Ockham 1290?-1349? which is
usually known as the Occam’s Razor.

The principle was rejected by Popper because he said that there is no objec-
tive criterion for simplicity. But Algorithmic Complexity C(x) or Kolmogorov
Complexity K(x) [24] is an objective criterion for simplicity. This is precisely
what R.J.Solomonoff proposed as a perfect theory of induction [43]. Algorith-
mic Complexity inspired J. Rissanen in 1978 to use it as a general modelling
method, giving the popular MDL principle [32]: The best model to explain a
set of data is the one which minimises the sum of: the length, in bits, of the
description of the theory; and, the length, in bits, of data when encoded with the
help of the theory. Then, we enclose the exceptions, if any.
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Recently, this idea of two-part code has been corrected to a one-part code
[34], but the same problem can appear intrinsically, some part can be very
compressed (the main rule) and other parts are quoted as exceptions.

Since the principle is not computable in general, it is usually approximated
or used in restricted descriptive mechanisms, like attribute languages. It has
been shown in practice [31] [14] [17] [16] [27] [48] [29] [15] that the MDL princi-
ple avoids over-generalisation (underfitting) and, usually, under-generalisation
(overfitting).

Our discussion is motivated from the apparent contradiction between the
so-called “no-free-lunch” theorems about induction [47] [36] stating that one
learner cannot be better than another when performance is averaged uniformly
over all possible problems. These results only allow that a learner could be
better than another for a particular distribution of problems. Vitanyi & Li [43]
show that the MDL principle is almost optimal for the universal distribution
2−K(x). Of course, the universal distribution (i.e. Occam’s Razor formalised)
is just a choice when you have not any information at all about the real origin
of the information, but is this the case in real applications of machine learning,
scientific discovering or even cognition? Are we always so autistic about the
source of the information that we pretend to discover?

Using the same information-theoretic approach, we study the case for finite
and short data and we arrive to a slightly different result: MDL is a good
principle but not the best one for finite data and/or perfect hypotheses. The
argument is based upon recently introduced variants and definitions around the
idea of Intensional Complexity, which intrinsically penalise or ’simply’ do not
allow exceptions, seen these as extensional descriptions. The idea is just to
distribute more uniformly the compression ratio between the model and the
data, avoiding that, for the sake of maximum compression, the model results
in a very compressed part plus some cases that are not compressed at all, (i.e.
quoted extensionally). This extensional part is not validated, making the whole
theory weak. An ontology is difficult to construct from here if the exceptions
are unrelated (not explained) with the other facts. That is to say, the point lays
between the anomaly and the expected noise.

Using intensional complexity, a parametrised Shortest Intensional Descrip-
tion (SID) is defined. This changes the statement that “optimal compression
(Minimum Description Length (MDL)) gives you the best hypothesis provided
the data are random with respect to the hypothesis, the data are not completely
perfect and the data grow to infinity” [43] into the following one “the SID cri-
terion gives you a more robust hypothesis when the data are perfect, ensuring
and not supposing that the data are random to the hypothesis.” Moreover, it
does not require that “the data grow to infinity,” so it can be used to under-
take finite real problems. More importantly, our definitions are free from the
“MDL’s principle paradox”, since the shortest hypothesis is never random to
the data. To solve this problem, we use time-space considerations or a resource-
bounded randomness to avoid paradoxes. In addition, this yiedls our criterion

2



computable.
Encompassing the ideas of compression there were presented different models

of learning: identification in the limit [19], PAC model [41], Query-Learning [2]
and others, all based on the ideas of ‘identification’, defined as the moment (the
limit) where no ‘mind change’ is possible. In the framework of incremental learn-
ing, it is shown that our intensional criterion is less conservative that the MDL
principle, and consequently it minimises the number of whole ‘mind changes’
(although these changes are usually more radical). Loosely, we should say that
the MDL principle complies with Kuhn’s philosophy of changing paradigms;
when the number of exceptions is too great, the paradigm must be changed. In
contrast, the SID usually anticipates this necessity since any exception forces
the revision of the model.

This engages with the classical dilemma between informative and probable
hypotheses. It is clear that an explanation must have some degree of plausibility
to avoid fantastic hypotheses, but in many applications, like scientific discovery
or abduction, we must regard an explanation as an investment, even a “risky
bet” that could be soon falsified. This is merely Popper’s criterion of falsifiability
[30]: one does not always want the most likely explanation, because sometimes
it is the less informative too.

The issue is clear when the data are random (and this usually happens with
short data because it makes no worthy any compression). The MDL princi-
ple just gives the data themselves, which does not correspond to the idea of
‘model’. More importantly, no learning has taken place. By forcing intension-
ality, different informative hypotheses can be induced. This gives clues to the
enigma of “hyper-learning” or “poverty of stimulus” in those cases where the
MDL principle cannot give the “intuitive” hypothesis in most of the bias.

Finally, we define a new formal notion for the “intensional value” of a hy-
pothesis, namely as a quotient between the computational effort that has been
made from the data to the hypothesis divided by the computational effort that
is made form the hypothesis to the data. In this way, the connection with learn-
ing and Levin’s “Universal Search Problems” is made explicitly. The complexity
of discovering is equal to the complexity of increasing the “intensional value”,
which is proven to be NP-hard.

From here, and very far from the classical notion of ‘identification’, we pro-
pose a different notion of learning (or discovering): the more a system learns
the more intensionally valuable the description is with respect to the data. Con-
sequently the blurry notions of underfitting and overfitting may be better un-
derstood.

In conclusion, the MDL principle works well in those environments where the
bias does not allow extensional descriptions or where the data are huge and from
statistical or imperfect sources. But, when faced to a concrete learning problem,
we have to tune length, computational time, robustness (or intensionality) and
‘informativeness’ of descriptions according to the expectation we have about the
source of knowledge. In our view, Occam’s Razor should be understood in this
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non-autistic way.
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ing, Intensional Complexity, Overfitting.
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