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Induction as Compression 
This maxim has become increasingly popular:  
 

• Occam’s Razor (Ockham 1290?-1349?) 

• Unsupervised Learning as Compression (Solomonoff 
1964) 

• Universal Distribution based on Description Length 
(Kolmogorov 60’s) 

• Minimum Message Length (MML) Principle (Wallace 
1968) 

• Minimum Description Length (MDL) Principle (Rissanen 
1978, 1996) 

• “All kinds of computing and formal reasoning may use-
fully be understood as information compression [...]” 
(Wolff 1995) 

 
ML Literature is full of assertions like: the shorter the the-
ory the better (the more likely, the more plausible...). 
 

Is this maxim valid for explanatory induction? 

 

Is this maxim valid for scientific discovery? 
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Formalisation of the MDL principle 
 
Karl Popper objected: 

“there is no criterion of simplicity”. 
 
Stochastic Complexity and Kolmogorov Complexity 
are well-established criteria of simplicity: 
 
DEFINITION  1. KOLMOGOROV COMPLEXITY 
The Kolmogorov Complexity (KC) of a string x on a bias β :  

Kβ(x|y) = min { lβ(px(y)) } 
 

where px denotes any “prefix-free” β-program for x using input y and 

lβ(px) denotes the length of px in β. 
 

Kβ(x) = Kβ(x|ε) where ε denotes the empty string. 
 

Kolmogorov Complexity is an absolute and objective 
criterion of simplicity. It is independent (upto a con-
stant term) of the descriptional mechanism. 
 
In absence of any other knowledge about the hy-
potheses distribution (autism), one choice is the prior 
distribution P(h) = 2−K(h) 
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Success of the MDL principle 
 

MDL Principle (Rissanen 1978) 
 

“The best model to explain a set of data is the one 
which minimises: 

• the sum of the length, in bits, of the description of 
the theory 

• the length, in bits, of data when encoded with the 
help of the theory. 

Then, we enclose the exceptions, if any.” 

 
The MDL principle matches with Kuhn’s notion of 
“changing paradigms”: 
Exceptions are patched until they are long enough to force 
the revision of the theory.  
 
By using approximations, it has been successful for 
different descriptive mechanisms and applications. 
 

Provides a compromise between: 

• over-generalisation (underfitting) 

• under-generalisation (overfitting). 
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Problems and Paradoxes of the MDLP 
 

• Not computable. K(h) is not computable. 

• Relative, in the end. Many computable approximations, 
like Kt(h), dynamically change as the learner knows that 
something can be further compressed. 

• Perfect data: the MDL under-fits perfect data: new exam-
ples are quoted until their compression is worthy. 

• Discontinuous: The reliability of the theory is not always 
increasing with the number of examples that have con-
firmed the theory. E.g. the sequence (anbn)* is more com-
pressible if n=1010 than if n= 78450607356. 

• Inconsistent with Deduction: e.g. given Ta and Tb, intuition 

(and logic) says that T = Ta ∨ Tb should have more prob-
ability, but the MDL principle assigns less probability to 
T because it is larger. 

• Frequently non-explanatory: For the sake of maximum 
mean compression, some part of the hypothesis may be 
not compressed at all. 

• Frequently unmanageable: For the sake of maximum com-
pression, the theory can be computationally intractable. 

• Frequently Non-Informative or Non-Creative: If the data is 

random (K(x) = l(x)) ⇒ theory = data 
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Problems with Explanation. Example 
 

EXAMPLE 1. Short data. 
Data: 1, 2, 3, 5, 7, 11, 13. 

• Shortest Description: 
 “1,2,3,5,7,11,13” 
 � Completely extensional. 

• Shortest ‘Predictive’ Description: 
 “Odd numbers until n=13 with positive exception 2 
and negative exception 9” + Definition of “Odd”. 

 � Partially extensional. 

• Intensional Description: 
 “Prime numbers until n=13” + Definition of “Prime”. 
 � Completely intensional. 
 
The last one matches with Popper’s criterion of falsifiability. 
 

Extensionalities can never be falsified 
� 

We should avoid exceptions… 
 

What is an intrinsic exception? 
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Approaches to the Idea of Exception 
Necessarily based on the idea of mean compression ratio: 

CR(T) = l(M(T)) / l(T) 
 

� First approach: A part E of a theory T such that: 
CR(E) << CR(T) 

 

� Corrected approach: A part E of a theory T such that 
can be removed such that the data which is now un-

covered M(T) − M(T−E) or erroneous M(T−E) − M(T), 
follows this equation: 

l{M(T) − M(T−E)} ∪ {M(T−E) − M(T)} / l(E) << CR(T) 
 

With ∆(p)= e we will denote the length (in bits) of the 
greater exception of a description p. 

 

• A formal definition of ∆(p) requires a general definition 
of subprogram or part. This must be certainly based on the 
idea of separation: “something is separable if the cost of de-
scribing the whole is similar to the cost of describing the parts”, 
which is also closely related to the idea of exception. 

 

∆(p) can be easily defined for Model-based lan-
guages, like first-order logic, equational languages, 
… 
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Intensional Complexity 
 

DEFINITION  2. INTENSIONAL COMPLEXITY 
The Intensional Complexity (IC) of a string x on a bias β :  

Eβ(x|y) = min { lβ(px(y)) : ∆(px)= 0} 
 

where px denotes any β-program for x using input y and lβ(px) denotes the 

length of px in β. 
 

i.e. the shortest program for x without intrinsic exceptions. 

 
E(h) integrates: 

• avoidance of exceptions, and 

• syntactical simplicity. 
 

The prior P(h) = 2−E(h) could be seen as an adaptation 

for explanation of the MDL principle (P(h) = 2−K(h)). 

• Simplicity is important but secondary. 

• Nothing is noise or casual, all must be explained. All is 
intensional. All has a meaning, a cause… 
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Explanatory Complexity 
Intensional Complexity is not enough for explanation. 

Something is an explanation only if 
it can be related to others. 

 
In the same way, 
 

DEFINITION  3. LEVIN’S LENGTH-TIME COMPLEXITY 
The Levin Complexity  of a string x on a bias β :  

Ktβ(x|y) = min { LTβ(px(y)) } 

where LTβ(px) = l(px) + log2 Cost(px) 
 

makes Kolmogorov Complexity Computable, 
 

DEFINITION  4. EXPLANATORY COMPLEXITY 
The Explanatory Complexity (EC) of a string x on a bias β :  

Etβ(x|y) = min { LTβ(px(y)) : ∆(px)= 0} 

where LTβ(px) = l(px) + log2 Cost(px) 
 

avoids intractable descriptions. 
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Intensional does not mean Creative 
Intensional Complexity is not always valuable when E(x) > l(x). 
 
EXAMPLE 2. 
 

p1

p2

p3

p4

p5

p6

p7

H1

H2

H3

H4

H5

 
 
H0 = p1 + p2 + p3 + p4 + p5 + p6 + p7 Extensional 
H1 = 1st order polynomial +p3+p6+p7 Partially Extensional 
H2 = 6th order polynomial Intensional 
H3 = 2nd order polynomial +p1+p4+p6+p7 Partially Extensional 
H4 = 1st order interpolation Approximation 
H5 = Two first order polynomial Intensional 
H6 = “Spanish petrol prices evolution in this decade” 
H7 = “Distance of satellite Europe last year” 

 
There is always an ‘easy’ intensional description (H2). 
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Computational Information Gain 
 

Which descriptions are really valuable?  

 
DEFINITION  4. COMPUTATIONAL INFORMATION GAIN 
The Computational Information Gain of a string x wrt. a string 

y on a bias β:  

Gβ(x | y) = Kt(x | y) / Kt(x) 

 
THEOREM 1. LIMITS OF Gβ(x | y) 
For every x and y, log l(x)/(l(x) + log l(x)) <+ G(x | y) ≤ 1. 

 
THEOREM 2. ROBUSTNESS TO POLYNOMIALITY 
Consider a learning or discoverer algorithm A* in ���� (i.e. 

polynomial), namely ∃∃∃∃p∈∈∈∈ ���� : O(np−−−−1) ≤≤≤≤ O(A*) ≤≤≤≤ O(np), 
being A* of constant size, i.e., l(A*)= c, such that this algo-
rithm deterministically transforms y into x, where x is a 
program for y, being n = l(y). 

If Kt(x) > k · p · log n, then G(x|y) ≤≤≤≤ 1 / k. 
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Proof of Theorems 1 and 2 
PROOF OF THEOREM 1. The second inequality G(x | y) ≤ 1 is 

obvious by choosing y = ε and the definition of Kt(x) as 

Kt(x | ε). The first inequality is justified by the fact that the 
numerator  

Kt(x | y) ≥ log l(x) 
because x must be printed and this takes at least l(x) units 
of time. In fact this limit can be come close if x = y because 
the program "print y" has cost approximately 2·l(x). The 
denominatior must follow  

Kt(x)  <+ l(x) + log l(x) 
because in the worst case, when x is random, we need l(x) 
+ c bits of information for the program "print x" and at least 
l(x) units of time to be printed. By (1) and (2) we have that 

log l(x)/(l(x) + log l(x)) <+ G(x | y). � 
 
PROOF OF THEOREM 2. For every string of data y, let us con-
struct x in the following way: x = “apply A* to y”. Since 
we can construct x from <A*,y> in an easy way p= “apply 
1st argument to 2nd argument” Kt(x / <A*,y>) <= LT(p) = 
l(p) + log cost (p)<= c + log n^p). It is obvious that Kt(x / 

y) <+ Kt(x / <A*,y>). So we have that ≤≤≤≤ log n^p = p log n. 
If, as supposed, Kt(x) > k · p · log n, then the quotient 

G(x|y) = K(x/y) / K(x) ≤ 1 / k.  � 
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Valuable Descriptions 
There are infinite descriptions and theories to some data. 
 

Which are useful to remember? 

 

Is it valuable to store the computational 
effort which has been invested? 

 
Gβ(x | y) provides a uniform measure to evaluate theories: 
 

If x is the theory and y is the data, we have 
 

Minimum: Gβ(x | y) = log l(x) / (l(x) + log(l(x)) ≈ 0 
The theory is evident from the data. It is very easy to 

describe the theory from the data. Kt(x | y) �� 
 Examples:  � the polynomial obtained using the data. 

  � Exceptions (Kt(x | y) ��) 
  � Extensionalities (part of x is in y) 
 

Maximum: Gβ(x | y) = 1 

We have that Kt(x | y) = Kt(x). The data is useless (in 
time-space terms) to describe the theory. It is necessary 
a great computational work on the data y to obtain the 
theory or there is a need for external information. 
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What is to Discover? 
 

A concept x is surprising wrt. y in a context β  iff: 
Gβ(x | y) �� 

 
A concept or theory x is a discovering wrt. y in a con-
text β  iff: 

Gβ(x | y) ��  and Gβ(y | x) ≈ 0 
i.e, x is surprising for y and x is an efficient theory for y. 
 
In a proper way, discovering must be accompanied 
by a confirmation, however x is valuable per se. 
 
Induction must be non-autistic in this way. The value 
of the inductive theory must be evaluated regarding: 

• Its intrinsic value. 

• The context. 

• The purpose. 
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Conclusions 
Motivation: 

We have commented on the problems of the maxim 
“learning as compression”. In any case, the maxim 
“discovering as compression” is not sustainable. 
Two main problems of MDL’s ‘autism’:  

• explanation 

• creativity or informativeness. 
Many times the MDL principle does not explain all the 
data and/or gives naive theories (few informative). 

 

Partial Solutions: 
• We have presented “Intensional Complexity” to ad-

dress the problems of “Kolmogorov Complexity” for 
explanation. 

• We have introduced the idea of “Computational In-
formation Gain” to clarify what is to discover and 
what is not. 

 

Current and Future Work: 
• Establish the relation between E and G. 

• Give a unified and operative alternatives to E and G. 

• Relate to other complexity notions like logical depth. 


