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Extended Abstract: 

We present computational definitions for the notion of ‘consilience’ of a theory. 
The term ‘consilience’ was coined by Whewell [Whewell 1847] to comprise the 
relevant basics in scientific theories: prediction, explanation and unification of 
fields. Since all of these criteria are desirable, consilience was informally introduced 
as a foundational issue for theory construction and modelling. However, a uni-
fied, formal and computational conception has not been presented to date, in-
tegrating in a consistent way prediction, explanation and unification of fields, 
allowing the growth and revision of knowledge. 

Nonetheless, the essence of our definition is based on a very well known 
psychological ground for ontology and epistemology: the notion of reinforce-
ment. Whatever the approach to knowledge construction, the construction or 
revision of knowledge must come from a gain or loss, respectively, of rein-
forcement (also known as apportionment of credit [Holland et al. 1986]). We 
present a way to compute the reinforcement map for a given theory, depending 
on past observations. 

The usual or pure reinforcement ρρT(r) of a rule r from a theory T wrt. to 
some given observation C = {c1, c2, …, cn} is computed as the number of proofs 
for ci where r is used. If there are more than one proof for a given ci, all of them 
are reckoned, but, in the same proof, a rule is computed only once. The (nor-
malised) reinforcement ρT(r) is defined as 

ρT(r) = 1 - 2-ρρ(r). 
From these definitions some properties are proven. For instance, in general, 

the most reinforced theory is not the shortest one but, in the limit, simplicity is a 
good criterion to obtain consilience. Somehow surprisingly, this is not the case in 

                                                           
1 Also at the Department of Logic and Philosophy of Science of the University of Va-
lencia. On-line papers: http://www.dsic.upv.es/~jorallo/escrits/ es-
critsa.htm. 

1 



finite situations, and even some kind of redundancy (investment) does not neces-
sarily imply a loss of reinforcement ratio. 

However, this measure of reinforcement of the theory suffers the appearance 
of fantastic concepts. The rationale relies on the fact that an invented rule, used in 
every other rule of the theory, could unjustifiably increase the reinforcement ratio 
of a theory. Although a simplicity criterion can be used to avoid these fantastic 
concepts, it would make our proposal lose some of its interesting properties. 
Fortunately, our peculiar way out comes by measuring the validation wrt. the data: 

The course χT(f) of a given fact f wrt. to a theory T is computed as the product 
of all the reinforcements ρ(r) of all the rules r used in the proof of f. If a rule is 
used more than once, it is computed once. If f has more than one proof, the 
greatest course is selected. 

With this definition, it is proven that no fantastic rule can be added in the 
previous way, but the good properties of the original definition are still preserved. 

From here, one has the dilemma of selecting the theory with the greatest mean 
of the courses of all the data presented so far, or maybe one wants a compensated 
theory, where a geometric mean can be used instead. Nevertheless, in explanatory 
induction, the theory must explain all the data, i.e., it cannot have any anomaly. 
Consequently, one would discard theories where a fact has a course value less 
than the mean divided by a strictness constant. It is shown that this strictness con-
stant corresponds to the degree of consilience we were looking for.  

The definitions are applied and illustrated with some examples of knowledge 
construction and revision, using first-order logic as representation language. 
Some theories are generated from the evidence using both descriptional induc-
tion (with no required consilience at all) and explanatory induction (with high 
consilience). The examples show that, only in the latter case, abduction can be 
naturally incorporated as a special case of explanatory induction. In abduction, 
new factual hypotheses are added to the theory in order to increase or maintain 
consilience. Obviously, this works as long as no anomaly is accepted to the 
theory; in misspelled words, the new evidence (or novelty) must be consiliated by 
the theory, but never quoted extensionally. 

In this way, our differentiation  between Enumerative (or descriptional) In-
duction and Best Explanation [Ernis 1968] [Harman 1965] [Hempel 1965] (see 
[Sharger & Langley 1990] for more modern contrasted positions in this debate) is 
not based on the predictive value of a theory but on the usability (in terms of a 
coherent explanation of reality) and the applicability of abduction. 

Moreover, in explanatory induction, deduction can and must play a very im-
portant role. The relation between consilience and the modern view of “ex-
planatory coherence” [Thagard 1998] as deductive constraint satisfaction is inves-
tigated. It seems that the combination of both represents the traditional notion of 
‘coherence’ of scientific theories [Thagard 1978], [Thagard 1989]. Summing up, 
consilience ensures that the theory is justified by the evidence and coherence 
ensures that the theory is the most compatible with the background knowledge 
constructed from other evidences. The clearest case happens when a compati-
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bility or satisfiability check for coherence shows that some explanation H is 
inconsistent with a previous knowledge T. In this case, the reinforcement of H 
wrt. to the new evidence E, i.e. χH(E), must be compared with the reinforcement 
of the past evidence which is in conflict with H. As a result, the usual alternatives 
are: the new hypothesis is discarded or the background theory revised (and 
perhaps in this process a consilient new theory can be found, i.e. an explanation)2.  

Finally, deduction must not be longer seen as a static and non-creative process 
that does not bring any information. In addition, induction and abduction should 
not be seen as inverse processes of deduction, in terms of information gain. Indeed, 
any computational induction and abduction must be done in a computational 
system, so it is deductive somehow3. Descriptional induction denies that deduc-
tion can increase information (although theorem proving, for instance, is a very 
informative field). In this point, further work is under development to reconcile 
deduction, induction and abduction [Hernandez-Orallo 1998].  

A last question deals with the choice of a reasoning process that can make 
consilient theories. We formally state that analogy favours consilience. Moreover, 
analogy is confirmed as the fundamental mechanism for obtaining consilient 
theories. The reason is simple: analogy extracts a common superstructure be-
tween two situations, and this ‘shared’ superstructure is reinforced by both 
situations but, as we have seen, only grounded concepts and not ‘forced’ fan-
tastic ones are allowed as valid analogies. 

In conclusion, consilience is the key for many kinds of explanatory induction 
(including analogical reasoning and abduction) and it can be seen as a basis for 
the growth of knowledge and theory revision. Many important traits are quite 
remarkable over descriptional induction: not only induction and abduction are 
informative processes; deduction can increase information (like [Hintikka 1970] 
advocated), without making the whole theory less likely. Therefore the classical 
view of probability and information inversely related by P(h) = 2-I(h) [Bar-Hillel & 
Carnap 1953] is neglected. 
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