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Ensembles of Decision TreesEnsembles of Decision TreesEnsembles of Decision TreesEnsembles of Decision Trees

� Decision Tree:
� Each internal node represents a 

condition.

� Each leaf assigns a class to the 
examples that fall under that leaf.
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� Forest: several decision trees can be constructed.

� Many trees have common parts.

� Traditional ensemble methods 
repeat those parts:

� memory and time ↑↑↑.

� comprehensibility is lost.



Decision Tree Decision Tree Decision Tree Decision Tree SharedSharedSharedShared EnsemblesEnsemblesEnsemblesEnsembles

�Shared ensemble:

�Common parts are shared in an AND/OR tree structure.
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� Construction space 
and time resources 
are highly reduced.

� Throughput is also 
improved by this 
technique.



MultiMultiMultiMulti----tree Constructiontree Constructiontree Constructiontree Construction

�Suspended OR-node selection criteria:

�Rival ratio

�Rival absolute

�Random
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�Random

�Topmost

�Bottom



Node ForgettingNode ForgettingNode ForgettingNode Forgetting

� Method to filter some of the suspended nodes.

� Reduction of the computational resources

� Studied forgetting methods:

� Constant
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� Constant

� Logarithmic

� Logarithmic + Depth



Experiments Experiments Experiments Experiments (1/4)(1/4)(1/4)(1/4)

�Experimental setting:

�23 datasets from the UCI repository.

�10 X 10 Cross Validation.
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�Multi-tree implemented in the SMILES system.

�Splitting criterion: GainRatio (C4.5).

�Boosting and Bagging from WEKA.



Experiments Experiments Experiments Experiments (2/4)(2/4)(2/4)(2/4)

� Comparison among construction criteria:

28 datasets Bottom Rival Abs Random Rival Rat Topmost

Acc. GeoMean 80.56 80.70 82.45 80.69 83.61
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� Comparison among forgetting criteria:

Sec. GeoMean 0.10 0.14 1.34 0.46 9.12

28 datasets No forg Const=5 Log. Log+Dep.

Acc. GeoMean 82.45 82.22 82.38 82.55

Sec. GeoMean 1.34 1.16 0.99 1.23



Experiments Experiments Experiments Experiments (3/4)(3/4)(3/4)(3/4)

� Combination Accuracy compared to other Ensemble Methods:
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Experiments Experiments Experiments Experiments (4/4)(4/4)(4/4)(4/4)

�Combination Resources compared to other Ensemble Methods:
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ConclusionsConclusionsConclusionsConclusions

�Multi-tree as an alternative to other population 
strategies for shared decision tree ensembles:
�Anytime character

� The first tree is obtained in the same way as classical eager 
decision tree learning.
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decision tree learning.

� We ask for further solutions on demand.

�Population (and hence resources) is scalable and easy to 
be controlled.

�Same or even better accuracy results than other 
ensemble methods with significantly lower resource 
consumption.


