
Towards the definition of learning systems with configurable operators and heuristics

Towards the definition of learning systems with
configurable operators and heuristics

Fernando Mart́ınez-Plumed, Cèsar Ferri, José
Hernández-Orallo, Maŕıa José Raḿırez-Quintana

NFMCP 2012

September 24, 2012

Towards the definition of learning systems with configurable operators and heuristics

Table of contents
1 Introduction
2 Setting

Principles
General Architecture
Rule and Program Repositories
System Operators
System Combiners
Reinforcement Module

3 Examples
Sequence Processing
Bunches of Keys
Web categorisation

4 Conclusions and Future Work
Conclusions
Future Work

Towards the definition of learning systems with configurable operators and heuristics
Introduction

Introduction

Machine learning techniques dealing with structured data:
Distances or kernel methods can be applied to any kind of
data (similarity functions).
Inductive programming (ILP, IFP or IFLP) are able to
tackle any kind of data (first-order logic, term rewriting
systems).

Towards the definition of learning systems with configurable operators and heuristics
Introduction

Introduction

The performance of these systems is linked to:
a transformation of the feature space to a more convenient,
flat, representation, which typically leads to incomprehensible
patterns in terms of the transformed (hyper-)space
use the original problem representation but rely on specialised
systems with embedded operators

It is very difficult to have general systems which are able to
deal with different kinds of complex data.

Towards the definition of learning systems with configurable operators and heuristics
Introduction

Introduction

We present a general rule-based learning setting where
operators can be defined and customised for each kind
of problem.

The generalisation operator to use depends on the structure of
the data.
Adaptive and flexible rethinking of heuristics, with a
model-based reinforcement learning approach.

Towards the definition of learning systems with configurable operators and heuristics
Setting

Principles

Setting

Machine learning operators are the tools to explore the
hypothesis search space.

Some operators are usually associated to some heuristic
strategies (e.g., generalisation operators and bottom-up
strategies).

Operators can be modified and finetuned for each problem:
Different to the use of feature transformations or specific
background knowledge.

This is a challenging proposal not sufficiently explored in
machine learning.

Towards the definition of learning systems with configurable operators and heuristics
Setting

Principles

Setting

Operators can be written or modified by the user
We need a language for defining operators which can integrate
the representation of:

Examples.
Patterns.
Operators.

Towards the definition of learning systems with configurable operators and heuristics
Setting

Principles

Setting

We have chosen a powerful popular programming language,
Erlang:

A functional programming language, with reflection and
higher-order primitives.
Operators can be properly linked with the data structures used
in the examples and background knowledge, so making the
specification of new operators easier.
The language also sets the general representation of examples
as equations, patterns as rules and models as sets of rules.

Towards the definition of learning systems with configurable operators and heuristics
Setting

General Architecture

General Architecture

POPULATION

RULES [R] PROGRAMS [P]

OPERATORS COMBINERS

REINFORCEMENT

MODULE

r
new

R

O

r
new

P p
new

Opt
new

Rew

EVIDENCE [E
+
,E

-
]

HEURISTIC

MODEL

Statet

BK

Rew

<oi,rj> RULES

GENERATOR

SYSTEM

SOLUTION

E

O C

Figure: Prototype System Architecture

Towards the definition of learning systems with configurable operators and heuristics
Setting

Rule and Program Repositories

Rule and Program Repositories

Two internal repositories containing rules and programs.
Initially, the set of rules R is populated with the positive
evidence E+ and the set of programs P is populated defining
unitary programs from the rules of R.
Both repositories are updated at each step of the algorithm:

1 The Rule Generator builds new rules (r new) and they are added
to R.

2 By applying the combiners, (r new) is mixed with the programs
in P generating a new program pnew , and it is added to P.

Towards the definition of learning systems with configurable operators and heuristics
Setting

System Operators

System Operators

The user can define his/her own set of operators, especially
suited for the data structures of the problem: Adaptive
system.
An operator is defined as a function which is applied to a rule
in order to generate new rules:

Given a rule f (X) → Y where the input attribute X is a list,
the operator can extract the head of X and return it as the rhs
of the new rule.
The operator could be defined as:

takeHead(f (X) → Y) [when X is a List] → (f (X) → head(X))

Towards the definition of learning systems with configurable operators and heuristics
Setting

System Combiners

System Combiners

Combiners evolve the population of programs.
Addition: adds the program that results from joining the new
rule r new generated by the Rule Generator with the best
program (in terms of optimality);
Union: joins the two best programs (also in terms of
optimality) in P.

Towards the definition of learning systems with configurable operators and heuristics
Setting

Reinforcement Module

Reinforcement Module

A reinforcement learning module guides the Rule Generator in
each step of the algorithm.

S represents the system state as the set composed by R and P.
An action A is a tuple < ri , oi > where ri is a rule and oi is an
operator.

Given an state S, an action A is chosen by the Heuristic Model
and sent to the Rule Generator. This creates new rules (and
programs), which causes the system to move to a new state.

Towards the definition of learning systems with configurable operators and heuristics
Setting

Reinforcement Module

Reinforcement Module

Initially, the Heuristic Model does not have enough evidence
and the choice is random, but after a few iterations, the
model is learnt by using a machine learning technique.
This model is trained to predict the reward after a given
action A, and with it we choose the action which maximises
the estimated reward.
Rewards:

From the optimality Optnew of the new program pnew , the
Reinforcement Module calculates a reward Rew .
Rew is used to update the optimality of the action
A =< ri , oi >.

Towards the definition of learning systems with configurable operators and heuristics
Examples

Sequence Processing

Sequence Processing

Learning a transformation over the words formed by a given
alphabet.

Alphabet Σ = {a, t, c, g , u}
Transformation just replaces t with u.

Instance

trans([t, c, g , a, t]) → [u, c, g , a, u]

Towards the definition of learning systems with configurable operators and heuristics
Examples

Sequence Processing

Sequence Processing

Background Knowledge

fat(a) → t; fcg (c) → g ; . . . (1)

Operators

applyMap(trans(X) → Y) ⇒ trans(X) → map(VF , X) (2)

addBKf (trans(X) → map(VF , X)) ⇒ trans(X) → map(f , X)

genPat(trans(X) → Y) ⇒ trans(VS) → Y (3)

Towards the definition of learning systems with configurable operators and heuristics
Examples

Sequence Processing

Sequence Processing

There is a simple sequence of operator applications which
turns a simple example into a general solution.
Given the instance trans([t, c, g , a, t]) → [u, c, g , a, u]:

Solution Sequence Processing problem

genPat(trans([t, c, g , a, t]) → [u, c, g , a, u]) ⇒ trans(VS) → [u, c, g , a, u]
applyMap(trans(VS) → [u, c, g , a, u]) ⇒ trans(VS) → map(VF , VS)

addBKftu (trans(VS) → map(VF , VS)) ⇒ trans(VS) → map(ftu , VS)

Towards the definition of learning systems with configurable operators and heuristics
Examples

Bunches of Keys

Bunches of Keys

Consider the well-known problem of determining whether a
key in a bunch of keys can open a door.
Each instance is given by a bunch of keys, where each key has
several features: two-level structure (sets of lists).

Instance

opens([[abloy , 3, medium, narrow], [chubb, 6, medium, normal]]) = >

Towards the definition of learning systems with configurable operators and heuristics
Examples

Bunches of Keys

Bunches of Keys

Background Knowledge

setExists(Key , Bunch) (4)

Operators

addBK(opens(X) = >) ⇒ opens(X) → setExists([], X) (5)

KCondcondi (opens(X) → setExists(C , X)) ⇒ (6)
opens(X) → setExists([condi |C], X)

genPat(opens(X) = Y) ⇒ opens(VL) → Y (7)

Towards the definition of learning systems with configurable operators and heuristics
Examples

Bunches of Keys

Bunches of Keys

If the prototype and operators are provided, given the original
evidence for this example (five > instances and four ⊥
instances), it will return the following definition:

Solution Key of Bunches problem

opens(X) → setExists([abloy , medium], X)

A bunch of keys opens the door if and only if it contains an
abloy key of medium length.

Towards the definition of learning systems with configurable operators and heuristics
Examples

Web categorisation

Web categorisation

Web classification problem: web pages are assigned to
pre-defined categories mainly according to their content
(content mining).
The evidence of the problem is modelled with 3 parameters
described as follows:

Structure: the graph of links between pages is represented as
ordered pairs where each node encodes a linked page
Content: the content of the web page is represented as a set
of attributes with the keywords, the title, etc.
Use: the information derived from connections to a web server
which is encoded by means of a numerical attribute with the
daily number of connections.

Towards the definition of learning systems with configurable operators and heuristics
Examples

Web categorisation

Web categorisation

The goal of the problem is to categorise which web pages are
about sports.
A training example may look like this:

Instance

sportsWeb(Structure, Content, Connections) → >

where:

Structure =
[{[olympics, games], [swim]}, {[swim], [win]}, {[win], [medal]}]

Content = [{olympics, 30}, {held , 10}, {summer , 40}]

Connections = 20

Towards the definition of learning systems with configurable operators and heuristics
Examples

Web categorisation

Web categorisation

Background Knowledge

graphExists(Edge, Graph) (8)

setExists(Key , List) (9)

Operators

addBKgraph(sportsWeb(S, C , U) → >) ⇒ (10)
sportsWeb(S, C , U) → graphExists({[], []}, S)

linklcondi (sportsWeb(S, C , U) → graphExists({X , Y }, S)) ⇒ (11)
sportsWeb(S, C , U) → graphExists({[condi |X], Y }, S)

Towards the definition of learning systems with configurable operators and heuristics
Examples

Web categorisation

Web categorisation

Operators

linkrcondi (sportsWeb(S, C , U) → graphExists({X , Y }, S)) ⇒ (12)
sportsWeb(S, C , U) → graphExists({X , [condi |Y]}, S)

genPat1(sportsWeb(S, C , U) → >) ⇒ (13)
sportsWeb(VS , C , U) → >

There are also some other operators to generalise the second and
third arguments.

Towards the definition of learning systems with configurable operators and heuristics
Examples

Web categorisation

Web categorisation

Our system found the following program which defines the
sportsWeb function:

Solution Key of Bunches problem

{sportsWeb(VS , VC , VU) → graphExists({[final], [match]}, VS).

sportsWeb(VS , VC , VU) → setExists([{athens]}, VC).

sportsWeb(VS , VC , VU) → setExists([{europe]}, VC). }

If the word ‘athens’ or ‘europe‘ appears in Content, and
Structure contains the link {[final], [match]} then this is a
sport web page.

Towards the definition of learning systems with configurable operators and heuristics
Conclusions and Future Work

Conclusions

Conclusions

More general systems can be constructed by a flexible
operator redefinition and the reuse of heuristics across
problems and systems.
In order to reduce the search space we rely on the definition of
customised operators, depending on the data structures and
problem at hand.
We need a language for expressing operators for defining new
operators easily.

Towards the definition of learning systems with configurable operators and heuristics
Conclusions and Future Work

Conclusions

Conclusions

The use of different operators precludes the system to use
specialised heuristics for each of them.
We have proposed this as a decision process, where operators
are actions to be taken, and this is also seen as a
reinforcement learning problem.

Towards the definition of learning systems with configurable operators and heuristics
Conclusions and Future Work

Future Work

Future Work

Transforming the prototype into a learning system, including
all the issues in the architecture.
We need to further develop and refine the heuristics module
of the system:

Improved description of the state
Better reinforcement learning models (which could eliminate
many useless explorations of the search space).

	Introduction
	Setting
	Principles
	General Architecture
	Rule and Program Repositories
	System Operators
	System Combiners
	Reinforcement Module

	Examples
	Sequence Processing
	Bunches of Keys
	Web categorisation

	Conclusions and Future Work
	Conclusions
	Future Work

