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Abstract. This paper presents Newton trees, a redefinition of proba-
bility estimation trees (PET) based on a stochastic understanding of
decision trees that follows the principle of attraction (relating mass and
distance through the Inverse Square Law). The structure, application
and, very especially, the graphical representation of these Newton trees
provide a way to make their stochastically driven predictions compatible
with user’s intelligibility, so preserving one of the most desirable features
of decision trees, comprehensibility. Unlike almost all existing decision
tree learning methods, which use different kinds of partitions depend-
ing on the attribute datatype, the construction of prototypes and the
derivation of probabilities from distances are identical for every datatype
(nominal and numerical, but also structured). In this way, Newton trees
can also be seen as a family of methods, since they can be parametrised
by using any set of distances in the literature. Although we present a
way of graphically representing the original stochastic probability esti-
mation trees using a user-friendly gravitation simile, Newton trees can
also be converted into crisp decision trees by deriving cutpoints. We in-
clude experiments showing that Newton trees outperform other PETs in
probability estimation and accuracy.

Keywords: Probability Estimation Trees, Decision Trees, Distance Meth-
ods, Inverse Square Law, Stochastic Decision Trees.

1 Introduction

Decision tree learning [23] is one of the most popular (and powerful) techniques
in machine learning and, very especially, in data mining. Two of the most im-
portant features of decision trees are their divide-and-conquer covering of the
problem space and the use of decisions defined over univariate conditions (al-
though multivariate variants exist). Decision tree learning has evolved through
the introduction of datatype-specific condition schemes, dozens of splitting cri-
teria, and many class assignment, pruning and stopping rules.

Probability Estimation Trees (PETs) [21][9], whose output is a probabil-
ity rather than a crisp decision, are heirs of this technology, and are generally
preferable over classical decision trees, whenever the goal is good rankings or
good probability estimation. Initially, PETs were improved by using smoothing
in the leaves [21] or through a pruning-smoothing [9]. The decision tree was



unaltered and the rules which were derived from it were consistent with its pre-
dictions. However, many other recent extensions of PETs use the decision tree as
a skeleton upon which a complex decision making process takes place. The way
the decision tree looks and the way it must be used to obtain the predictions are
no longer easy to understand or even consistent. So, these modern PETs have
no real advantage over tree ensembles, since, if the prediction for an instance
cannot be easily understood by looking at the decision tree, we lose the greatest
advantage of decision trees, i.e. intelligibility, and we can use boosted, bagged
or randomised tree ensembles instead, or even any other powerful black-box
technique, such as SVM or neural networks.

Many PET innovations have evolved in such a way that the resulting tech-
nique is not intelligible any more. One explanation for this is that the old condi-
tion patterns found in classical decision tree learning (X < value for numerical
values, X = value for nominal values, as in CART [4] or C4.5 [22]), have been
preserved when constructing the tree, but understood in a different way when
using the trees [18] [1] [2]. In other cases, new condition patterns (e.g. fuzzy,
[26]) are used, but the user is generally not familiar with the linguistic concepts
which are obtained in the fuzzyfication.

In an effort of getting the most from decision tree learning for probability
estimation, in this paper we present a new Stochastic Probability Estimation
Tree learning technique. Splits are constructed by using attribute prototypes
which work as attractors, following an inverse square law using the distance
to the prototype and its mass, similar to other ‘gravitational’ approaches in
machine learning [28][6][15][12][20]. We will present the details of Newton trees
in the following sections and we will show that they introduce a series of new
features and important contributions, namely:

– We use the notion of distance in a univariate way as a general way of treating
any kind of datatype (numerical, nominal, ordinal or structured).

– We construct the tree based on the principle of attraction and we derive the
probabilities, use and represent the tree using the same principle.

– We handle numerical, nominal and ordinal attributes in the same way. We do
not have to type the attributes but just provide a distance for each datatype.
For numerical attributes it is frequently the absolute difference and for nomi-
nal/ordinal attributes it is the identity function or any specific cost function.

– We use mediods (prototypes from the set of attribute values) and not cen-
troids, so properly handling both continuous and discrete datatypes. For
continuous datatypes we only construct a cluster per attribute and class,
and not a cutpoint between each pair of values. So, we have an order of
O(m) instead of O(n ·m) partitions to evaluate, where m is the number of
attributes and n is the number of examples.

– We provide a graphical representation of the trees to ease their interpreta-
tion.

– We evaluate the trees using one measure from each of the three most im-
portant families of measures to evaluate classifiers: accuracy, as a qualitative
measure of error, AUC (Area Under the ROC Curve) as a measure of rank-
ing quality, and MSE (Mean Squared Error) as a measure of calibration
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and refinement quality, and we show they are significantly better than other
PETs.

– Our trees are univariate but their partitions are not necessarily axis-parallel.
We see that the partitions can create more expressive boundaries than clas-
sical decision trees without going multivariate.

– We provide the option to convert our stochastic trees into crisp trees, which
can be written in the form of rules as in traditional decision trees.

The paper is organised as follows. The following section introduces notation and
basic terminology on decision tree learning and probability estimation trees, by
also reviewing some related work. Section 3 introduces Newton Trees, by first
describing thbe attraction function and then how trees are learned and used to
obtain the probability estimations. It also introduces a user-friendly representa-
tion of Newton trees based on the idea of attraction and gravitation. Section 4
includes a comprehensive bunch of experiments, which compare Newton Trees
with a common PET (C4.5 without pruning and Laplace estimation). Section
5 shows the extended non-axis-parallel expressiveness of Newton Trees and two
crisp derivations, by transforming the stochastic understanding of the attrac-
tion rule into a crisp cutpoint rule. Finally, section 6 closes the paper with the
conclusions and the future work.

2 Notation and Previous Work

Decision tree learning [23] was introduced by Breiman et al. [4], and later on
Quinlan developed some of the most well-known systems for learning decision
trees, such as C4.5 [22]. Most algorithms that generate decision trees to classify
instances employ a greedy top-down search. From a set of possible partitions
or splits, a splitting criterion is used to select the optimal one, according to a
given statistical or informational criterion. Each partition generates two or more
descendants. This process is repeated for each new descendant node.

2.1 Notation

The set of all possible unlabelled examples E is composed of all the elements
e = 〈e1, e2, ..., em〉 with m being the number of attributes. The attribute names
are denoted by 〈x1, x2, ..., xm〉. A labelled dataset D is a set of pairs 〈e, i〉 where
e ∈ E and i ∈ C, where C is the set of classes. The number of classes, |C|, is de-
noted by c. We define a probability estimator as a set of c functions pi∈C : E → R
such that ∀i ∈ C, e ∈ E : 0 ≤ pi(e) ≤ 1 and ∀e ∈ E :

∑
pi∈C(e) = 1. Deci-

sion trees are formed of nodes, splits and conditions. A condition is any Boolean
function g : E → {true, false}. A split or partition is a set of s conditions
gk : 1 ≤ k ≤ s. A decision tree can be defined recursively as follows: (i) a node
with no associated split is a decision tree, called a leaf; (ii) a node with an asso-
ciated split gk : 1 ≤ k ≤ s and a set of s children tk, such that each condition is
associated with one and only one child, and each child tk is a decision tree, is also
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a decision tree. Given a node ν, Children(ν) denotes the set of its children and
Parent(ν) denotes its predecessor node. The special node where Parent(ν) = ∅
is called the root of the tree. After the training stage, the examples will have
been distributed among all the nodes in the tree, where the root node contains
all the examples and downward nodes contain the subset of examples that are
consistent with all its ancestors’ conditions. Therefore, every node has particular
absolute frequencies n1, n2, ..., nc for each class. The cardinality of the node is
given by

∑
ni. A decision tree classifier is defined as a decision tree with an asso-

ciated labelling of the leaves with classes. Usually, the assigned class is the most
frequent class in the leaf. A probability estimation tree (PET) is a decision tree
which outputs a probability for each class. One typical way of generating these
probability estimates is to use relative frequencies in the leaves pi = ni/

∑
(ni)

or some smoothing (Laplace, m-estimate) of them.

2.2 Related Work

Existing Probability Estimation Trees output a probability but are not necessar-
ily probabilistic in nature. A first issue is that they typically use a divide-and-
conquer philosophy for constructing the tree but the same philosophy is used
to make a prediction. Given an example, a sequence of decisions will lead to a
leaf of the tree where a value is returned (a class in classification trees, a num-
ber in regression trees, a probability in PETs, etc.). The rest of the information
of the tree is wasted. In decision theory, though, this crisp view of decisions is
awkward, since each decision can have an associated probability, and the overall
probability must be computed by considering the whole structure of the tree.
This kind of trees are frequently (but not always) called stochastic decision trees
(e.g. [13]). In decision tree learning, the stochastic use of a decision tree is less
common that the use of several trees. Option trees [5][17] and shared multitrees
[11] are extensions of decision tree learning to consider alternative partitions at
each point in the tree, but in the end it is not a single tree which is learned, but
several, as in tree ensembles. More closely related to the notion of a stochastic
decision tree is a probabilistic or Bayesian aggregation to decide whether and
how a decision sequence has to be pursued or pruned (e.g. [5], [9]). However, to
our knowledge, only [18] used all the information of a tree in order to get better
probability estimates, apart from some fuzzy decision trees (e.g. [26]).

A second issue is that this use of all the paths in the tree, can be made in
such a way that the probabilities of the tree are independent to the instance
which is being processed. In fact, this has been the approach in [18], by using an
ad-hoc parameter which is used to determine the probability of each child in a
partition. More recent approaches, [1] [2] have made the probability depend on
the proximity to the cut-point for the attribute, using Kernel Density Estimates.
For instance, given a condition X > 3, it is assumed that the probability of pur-
suing that branch must be greater the highest the separation is to the cutpoint
3. However, these approaches still construct the tree in the classical way, and
may disregard the cardinalities (i.e. masses) when using the tree to derive the
probabilities. In other words, a tree can be constructed by a classical algorithm

4



(such as C4.5 [22] or CART [4]) and its probabilistic or stochastic interpretation
can be inconsistent to the way the decision tree was constructed. For instance,
[2] use a way to estimate probabilities which is completely different to the way
the tree is interpreted by humans, which is still done in a crisp way. In fact,
this is what happens with many of the multivariate extensions of decision tree
learning. They are limited to the leaves to preserve the intelligibility and the
essence of a decision tree. For instance, [16] uses Naive Bayes at each leaf, but
only in the leaves and not in the construction or in the internal nodes. In [29],
this Naive Bayes philosophy is extended through the whole tree, which makes
it difficult to extract knowledge from the trees, since it becomes a hierarchical
Naive Bayes rather than a decision tree.

A third issue is how different datatypes are handled. Many of the previous
approaches only deal with numerical attributes ([1], [2]) or only deal with nomi-
nal attributes. When handling both, the trees just preserve the very specific way
of handling numerical attributes with cutpoints and nominal attributes with
equalities, as C4.5 [22] or CART [4], which may have very refined (and some-
times ad-hoc) methods to derive the cutpoints. In fact, for numerical attributes,
this takes most of the time complexity of the algorithm. Other classical decision
trees, such as QUEST and CHAID [23] repeat this scheme: while ANOVA F-
tests or Levene’s tests are used for ordinal and continuous attributes, Chi-squared
tests are used for numerical attributes. Even in the case of fuzzy decision trees
(which in some cases provide a more integrated view of nominal and numerical
attributes) it is unclear how decision trees can be applied to problems where
some attributes are from other datatypes such as intervals, sequences, sets or
other kind of structured data.

Having all the previous approaches to PETs, in this work we propose a new
decision tree learning method which has been designed from scratch with the
goals of being stochastic in nature, general and flexible in the way it handles
data attributes, and intelligible. Our approach can be seen as a hierarchical or
divide-and-conquer centre splitting method [24][8] where the distance function
and mass is converted into a probability density using an inverse square law.

3 Stochastic Distance-based Probability Estimation Trees

In this section we define our Stochastic Probability Estimation Tree learning
technique which leads to Newton trees.

3.1 Gravitational Partitions

When constructing splits, decision trees typically generate conditions which are
then evaluated to see how well they separate the classes. Instead of that, we pro-
pose to define a node/cluster per class and then try to find the characterisation
of each node in terms of one attribute at a time (univariate).

Following this idea, one first approach is to use Kernel Density Estimation
[25] in order to derive a probability density function (pdf), from the examples
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belonging to each class. However, many of these techniques will construct a
parametrised or composite pdf that will make partitions unintelligible, apart
from having the risk of overfitting. Another (related) approach is to derive a
prototype for each node, and then, to derive a probability from the prototypes.
In order to treat discrete datatypes appropriately, we use a mediod (the element
in each cluster which its average distance to the rest is the lowest). If we generate
prototypes, one possibility to derive probabilities from them is to assume some
probability distribution. For instance, if we consider a normal distribution for
each node with centre at the prototype and with standard deviation equal to the
mean of distances of the elements of the node, we have a pdf. Figure 1 (left) shows
the pdf using a Gaussian with centres 3 and 8, with standard deviations 1 and
3.5 (respectively) and masses 20 and 100 (respectively). This can be converted
into probabilities by mere normalisation, as shown in Figure 1 (right).
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Fig. 1. Two normal distributions placed at centres 3 and 8, with standard deviations
1 and 3.5 (respectively) and masses 20 and 100 (respectively)(left). The probabilities
derived from the Gaussians (right).

The problem of the previous approach is that when masses are too despair,
one distribution can cover the other, giving a plain (and useless) partition where
all the elements go to one prototype. One criterion to avoid this is to give extra
importance to the distance in such a way that at distance 0 the probability is
always 1. A simple way to do this is to employ an inverse-square law such as in
gravitation. Using this, we define the following attraction function between an
element e of mass me (we will assume me = 1) and a prototype π of mass mπ

separated by a distance d(e, π) = d:

attraction(e, π) =
memπ

d(e, π)2
=

mπ

d(e, π)2

We are interested in deriving class probabilities considering this attraction. Fig-
ure 2 shows the attraction (left) and the probability (right) with the same pa-
rameters as before (note that the standard deviation is no longer used).

An interesting property is that when the distance goes to infinity the prob-
abilities tend to converge to the mass proportion. For instance, if we have two
centres at 3 and 8, and 8 has much more mass (as in the previous example),
it seems more logical to expect that the attraction to 8 will be higher than the
attraction to 3 for a point placed at −100.
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Fig. 2. Two gravitational centres at 3 and 8 with masses 20 and 100 (respectively)(left).
The probabilities derived from the gravitational centres (right).

Of course, the idea of using the gravitational law in machine learning is
not new at all, for instance in clustering ([28], [12]), in visualisation ([6]) or
classification ([20]). In fact, the same Inverse Square Law principle is present
in some variants of Kernel Density Estimation, several classification techniques
such as weighted kNN, where the weight is a kernel which is simply defined
as the inverse of the distance, or in some other clustering algorithms. To our
knowledge, its use for decision trees is new.

3.2 Tree Generation

We based our method on the use of prototypes and distances to define partitions
in a hierarchical way, which resembles the centre splitting method [24]. Basically,
the centre splitting method consists in dividing the input space in different re-
gions where each region is represented by a centre (which may match to an
existing example or not). In every iteration of the process, a centre is calculated
for every different class which is presented in the area. Then, every example is
associated to its nearest centre. This process is repeated until the area is pure.
One of the special features of this method is that the examples are managed
as a whole, which precludes the use of univariate partitions. This appreciation
leads us to propose a decision tree inference strategy where partitions are made
only taking into account one attribute at a time. In this way centroids are com-
puted considering only the values of one attribute, which allows us to join centre
splitting and decision tree learning techniques in an elegant way.

The detailed definition of the algorithm can be found in [19]. Here, we give
a more sketchy description. Basically, the tree generation algorithm works as
follows: for each attribute xr and for each class i, a prototype πr,i is calculated
as the attribute value with lowest mean distance to the elements of the class.
Once this process is finished, the splitting attribute is selected according to one
of the well-known splitting criteria (for instance, gain ratio [22]). Then, the split
proceeds by associating every instance to its closest attribute prototype, which
typically produces impure clusters. Note that, during the splitting process, we
apply the attraction function assuming that the mass is the unit. This is due to
the fact that the total mass of a node is not known until all the instances have
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been associated to its prototype. Under that assumption, the process becomes
simpler and more efficient. Although the computation of distances is quadratic on
the number of instances, we can reduce by using a distance matrix per attribute
(of size nr × nr, where nr are the number of different attribute values) prior
to the algorithm execution. For numerical attributes we can just compute a
mean if the absolute difference distance is used. But, more importantly, if we
have m attributes and nr values per attribute, we only construct (and evaluate)
O(m) partitions and not O(nr ×m), the typical order for classical decision tree
learning algorithms using midpoints for continuous attributes. Additionally, it
is important to note that distances are computed between attribute values and
not between whole examples. This issue is also crucial for efficiency.

Figure 3 shows an example of a traditional decision tree and an equivalent
distance-based tree constructed for a problem with a numerical attribute (x1), a
nominal attribute (x2) and two classes (Y ES and NO). The absolute difference
distance is denoted by dnum and the 0/1 discrete distance is denoted by dnom.

x1 < 3x1 < 3 x1 ≥ 3

x2 = A x2 = B x2 = C

YES

YES NO NO

YES

0 6

dnum(x1,0) < dnum(x1,6)dnum(x1,0) < dnum(x1,6) dnum(x1,6) < dnum(x1,0)

YES NO NO

A B C

dnom(x2,A) < dnom(x2,B)
dnom(x2,A) < dnom(x2,C)

dnom(x2,B) < dnom(x2,A)
dnom(x2,B) < dnom(x2,C)

dnom(x2,C) < dnom(x2,B)
dnom(x2,C) < dnom(x2,C)

Fig. 3. A traditional (Left) and distance-based (Right) decision tree.

3.3 Stochastic Probability Calculation

Now, we illustrate how a Newton Tree is used to estimate probabilities in a
stochastic way. In what follows, −→p (ν, e) = 〈p1(ν, e), . . . , pc(ν, e)〉 denotes the
probability vector of example e at node ν, where pi(ν, e) denotes the probability
that e belongs to class i at node ν. With p̂(ν, e) we denote the probability that e
falls into node ν (coming from its parent), which is derived from the attraction
that ν exert over e, that is

p̂(ν, e) =
attraction(e, ν)∑

µ∈Children(Parent(ν)) attraction(e, µ)

Given a new example e and a Newton tree T , the objective is to calculate the
probability vector at the root of T , −→p (root, e). Basically, the idea is to compute
downwards the probability of falling in each leaf, calculate the leaf probability
vector and then to propagate upwards the leaf probability vector to the root to
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Fig. 4. (Left) Newton Tree for the hepatitis dataset. (Right) The node probability vec-
tors, children probabilities and global probability vector for example (PROTIME=40,
ALK PH=120, SEX=FEMALE, FATIGUE= UNKNOWN)

obtain the total class probability vector −→p (root, e). The leaf probability vectors
can be obtained once the tree T has been built by applying Laplace as has been
shown in [21, 9]. For each example, we calculate the probability of choosing each
child node µ if placed at the parent node ν using the attraction (i.e., p̂(µ, e).
This probability is multiplied by the probability vector of the child (−→p (µ, e)):

Definition 1. Stochastic Probability Vector Estimation
Given an example e and a Newton tree T , the probability vector −→p (root, e) at
the root of T is estimated by applying

∀ν ∈ T : −→p (ν, e) =

{∑
µ∈Children(ν) p̂(µ, e) ·

−→p (µ, e) if ν is not a leaf

〈Laplace(1, ν), . . . , Laplace(c, ν)〉 if ν is a leaf

where Laplace(j, ν) is the Laplace correction of the frequency of elements of class
j in node ν.

The stochastic calculation of the probabilities seen above may seem too cryp-
tic for a general use of these trees if intelligibility is a requirement. If we take a
look at the representation of trees in Figure 3 (right), comprehensibility is highly
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at stake. In order to address this issue, we show a graphical representation of
Newton trees, which may help users understand how the stochastic probability
assignment is made, and to get insight from the tree.

Figure 4 (left) shows this user-friendly representation of a Newton Tree for the
Hepatitis dataset from the UCI repository [3]. Note that all partitions are binary
because this is a two-class problem, namely DIE and LIV E. The two first splits
are made over the numerical attributes PROTIME and ALK PHOSPHATE,
respectively, and the other two splits are made over the nominal attributes SEX
and FATIGUE. The nodes of the tree are represented as balls of a size which is
proportional to the node mass. For instance, the left-hand side node at the first
level of the tree has a mass of 17, which means that 17 training examples fall
into this node. The ball also shows in different colour the proportion of examples
of each class. Additionally, since each node is referred by its prototype, the value
for the attribute prototype is shown in the middle of each ball. For instance,
the value of attribute PROTIME is 31 on the left prototype at the first level
of the tree. Finally, the smoothed probabilities per class at the leaves are also
provided (in the figure, as a small table below each leaf). In order to ease the
understanding on how probabilities are derived, Figure 4 (right) shows the inter-
nal probabilities (vectors and node probabilities) and the top vector probability
for example (PROTIME = 40;ALK
PHOSPHATE = 120;SEX = FEMALE;FATIGUE = UNKNOWN),
which is (0.7316, 0.2684), a relatively clear DIE case. All these graphical ele-
ments we have included in the Newton Trees representation may help a possible
final user understand the way in that probabilities are estimated, making New-
ton trees less cryptic than other probability estimation tree methods, especially
those which are stochastic.

4 Experiments

The aim of this section is to compare Newton trees with a common implemen-
tation of Probability Estimation Trees, namely unpruned decision trees with
Laplace smoothing in the leaves as suggested by [21][9]. In particular, we chose
J48 (the variant of C45.) implemented in Weka [27]. We used Gain ratio as split-
ting criterion for Newton trees and J48. The evaluation has been performed over
30 datasets from the UCI repository [3], from which we removed instances with
missing values and classes without examples (see Table 1 for their characteris-
tics). We set up a 20 × 5-fold cross validation, making a total of 100 learning
runs for each pair of dataset and method (3,000 overall). As evaluation metrics
we used the three most important families of measures to evaluate classifiers as
defined in [10]: accuracy, as a qualitative measure of error, AUC (Area Under
the Curve) as a measure of ranking quality, and MSE (Mean Squared Error) as
a measure of calibration and refinement quality.

Table 2 shows the average accuracy, AUC and MSE obtained by the two
algorithms. At the bottom, we also show the mean values for all the datasets.
These means are just illustrative. To analyse whether the differences are signifi-
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DataSet Classes Nom. Num. Size Majority Class Minority Class

Anneal 6 32 6 898 (3)684 (4)

Autos 7 10 15 159 (0)48 (-3)0

autos 5c 5 10 15 156 (0)48 (3)13

Balance-Scale 3 0 4 625 (L),(R)288 (B)49

Breast-Cancer 2 9 0 277 (non-recurrence)196 (recurrence)81

chess-kr-vs-kp 2 36 0 3196 (won)1669 (nowin)1527

cmc 3 7 2 1473 (1)629 (2)333

Credit-a 2 9 6 653 (-)357 (+)296

Credit-g 2 13 7 1000 (good)700 (bad)300

Diabetes 2 0 9 768 (positive)500 (negative)268

Glass 7 0 9 214 (build wind non-float)76 (vehic wind non-float)0

Heart-statlog 2 0 13 270 (absent)150 (present)120

Hepatitis 2 14 5 80 (live)67 (die)13

Ionosphere 2 0 34 351 (g)225 (b)126

Iris 3 0 4 150 50 50

Monks 1 2 6 0 556 (0)278 (1)278

Monks 2 2 6 0 601 (0)395 (1)206

Monks 3 2 6 0 554 (1)288 (0)266

Mushrooms 2 22 0 5644 (e)3488 (p)2156

new-thyroid 3 0 5 215 (1)150 (3)30

pimaW 2 0 8 768 (0)500 (1)268

Sonar 2 0 60 208 (mine)111 (Rock)97

SoyBean 19 36 0 562 (brown-spot)92 (herbicide-injury)0

spectf train 2 0 44 80 (0)40 (1)40

Tae 3 2 3 151 (3)52 (1)49

Tic-TacW 3 8 0 958 (1)626 (0)332

Vehicle3C 3 0 18 846 (saab bus)435 (van)199

Vote 2 16 0 435 (democrat)267 (republican)168

Vowel 11 3 10 990 90 90

Wine 3 0 13 178 (2)71 (3) 48

Zoo 7 16 1 101 (mammal)41 (reptile)5

Table 1. Description of the datasets used in experiments.

cant, we used the Wilcoxon signed-ranks test with a confidence level of α = 0.05
and N = 30 data sets, as suggested in [7]. Significant differences are shown in
bold. Finally, in Table 3 we focus on these differences, showing an entry w/t/l
for each measure and dataset subset, which indicates that Newton trees win in
w, tie in t, and lose in l datasets, compared to the J48 PETs.

From the tables, we see that Newton trees outperform J48 PETs in the
three measures (Accuracy, AUC and MSE), and with the means in Table 2,
in any selection depending on the type of dataset (multiclass/binary, nomi-
nal/numerical/mixed). The strongest differences are found in AUC, which is
the recommended measure when evaluating PETs ([14]). If we look at the signif-
icance results in Table 3, we have a similar picture. The exception is the result
for nominal datasets. While AUC is still much better, the results in MSE are
worse (and as a result so is accuracy). This indicates a bad calibration of the
results for datasets with only nominal partitions, which might be caused by the
way discrete distances affect on the attraction measure, although more research
should be done to clarify this (since there are only 7 datasets in this subset).

5 Expressiveness and Non-stochastic Versions

Newton tree construction agrees with classical decision tree learners in that both
are based on univariate partitions, as we have shown in Section 3. In the case
of traditional algorithms, this means that partitions are axis-parallel and divide

11



Name Classes
Att Newton Trees Unpruned Laplace J48
Type Acc. AUC MSE Acc. AUC MSE

anneal 6 Mixed 97.5110 0.8943 0.0119 98.7800 0.8890 0.0073

autos 5c 5 Mixed. 79.5060 0.9043 0.0825 77.7130 0.8827 0.0840

balance-scale 3 Num. 79.5520 0.7962 0.1050 78.6880 0.8199 0.0998

breast-cancer 2 Nom. 73.0110 0.6436 0.1929 67.9360 0.6084 0.2233

chess-kr-vs-kp 2 Nom. 98.5050 0.9975 0.0135 99.3050 0.9988 0.0064

cmc 3 Mixed. 50.1720 0.6739 0.2025 49.1100 0.6658 0.2107

credit-a 2 Mixed. 84.9310 0.9107 0.1118 82.7960 0.8982 0.1256

credit-g 2 Mixed. 70.3300 0.7202 0.1897 68.2900 0.7016 0.2159

diabetes 2 Num. 71.8630 0.7801 0.1798 72.8070 0.7772 0.1877

glass 7 Num. 67.2940 0.7828 0.0901 67.0340 0.7895 0.0879

heart-statlog 2 Num. 78.0740 0.8626 0.1490 76.1850 0.8398 0.1753

hepatitis 2 Mixed. 83.4370 0.7570 0.1143 79.4370 0.6542 0.1498

ionosphere 2 Num. 88.9160 0.9235 0.0916 88.8460 0.9195 0.0917

iris 3 Num. 94.7660 0.9938 0.0315 94.0330 0.9710 0.0349

monks1W 2 Nom. 93.5230 0.9899 0.0606 92.7690 0.9761 0.0519

monks2W 2 Nom. 85.8750 0.9378 0.1124 61.3790 0.6456 0.2348

monks3W 2 Nom. 98.6730 0.9926 0.0166 98.6370 0.9909 0.0135

mushroom 2 Nom. 99.9910 0.9999 0.0193 100.0000 1.0000 0.0001

new-thyroid 3 Num. 92.6970 0.9854 0.0438 92.3480 0.9237 0.0454

pimaW 2 Num. 71.8630 0.7801 0.1798 72.7750 0.7772 0.1877

sonar 2 Num. 77.5990 0.8499 0.1538 73.3710 0.7888 0.2162

soybean 19 Nom. 89.2420 0.9771 0.0228 91.2270 0.9770 0.0183

spectf train 2 Num. 67.3120 0.7301 0.2097 71.7500 0.7365 0.2196

tae 3 Mixed. 58.7010 0.7398 0.1877 54.1660 0.7078 0.1996

tic-tacW 3 Nom. 78.1110 0.8526 0.1426 79.3990 0.8699 0.1393

vehicle3c 3 Num. 72.1210 0.8441 0.1355 73.0240 0.8807 0.1251

vote 2 Nom. 94.5020 0.9892 0.0383 95.1370 0.9827 0.0355

vowel 11 Mixed. 75.3580 0.9671 0.0578 79.5400 0.9157 0.0447

wine 3 Num. 94.3840 0.9905 0.0408 92.2070 0.9544 0.0471

zoo 7 Mixed. 94.9020 0.7243 0.0252 93.1610 0.7147 0.0234

Mean (All) 82,0907 0,8664 0,1004 80,7283 0,8419 0,1101

Mean (c = 2) 83,6503 0,8665 0,1146 81,3388 0,8310 0,1334

Mean (c > 2) 80,3084 0,8662 0,0843 80,0307 0,8544 0,0834

Mean (Nominal) 90,1592 0,9311 0,0688 87,3099 0,8944 0,0803

Mean (Numerical) 79,7034 0,8599 0,1175 79,4223 0,8482 0,1265

Mean (Mixed) 77,2053 0,8102 0,1093 75,8881 0,7811 0,1179

Table 2. Comparison between Newton trees and unpruned J48 with Laplace correction.

hhhhhhhhhhhhhhhhhhNetwon Trees

Unpruned Laplace J48
Acc. AUC MSE

All 14/6/10 18/8/4 14/4/12

Nominal 2/3/4 5/2/2 2/0/7

Numerical 5/3/4 5/5/2 7/3/2

Mixed 7/0/2 9/0/0 5/1/3

Table 3. Aggregated results using the statistical tests

the space into rectangular areas that determine the points of the input space
that belong to each class. However, Newton tree partitions are not axis-parallel.
This is due to the fact that class boundaries are defined stochastically, and infor-
mation from the whole tree is used. Figure 5 (Left) shows the class boundaries
for the Newton tree built for the Hepatitis dataset (only considering the two
upper levels). Axes represent the attributes used for the two first partitions (as
we have seen in Figure 4). Class DIE is represented in (dark) blue and class
LIV E in (light) pink. Near each axis, there are two little balls that represent
the prototypes (of the colour of its majority class), placed at their correspond-
ing values.This capability of constructing curved boundaries may explain part
of the increase of performance wrt. traditional PETs, even more when we in fact
evaluate a much lower number of partitions per node.
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We argued in Section 3 that Figure 4 allows users to get insight from the tree
and explain its predictions. Nevertheless, it seems reasonable to see whether we
can use Newton trees in a non-stochastic way and derive crisp partitions from
it. For nominal attributes and using the discrete distance the transformation is
trivial:

Definition 2. Let xi be a nominal attribute, and let πi,k, 1 ≤ k ≤ s be the
computed prototypes in a node. Then, this split is defined in a crisp way as the
set of s conditions xi = πi,k. If there are more attribute values than prototypes,
then we choose the most populated node and mark it as the “all the rest” node.

For numerical attributes, the idea is to calculate cutpoints:

Proposition 1. Given a numerical attribute xi using the absolute difference
distance and given two consecutive prototypes πi,j and πi,k, with πi,j < πi,k, the
values for the numeric attribute xi defined as

t1 = a+ sqrt

(
a2

4
− b

c

)
t2 = a− sqrt

(
a2

4
− b

c

)
where a = (mπi,k · πi,j − mπi,j · πi,k)/c, b = (mπi,j · π2

i,k − (mπi,k · π2
i,j) and

c = (mπi,j −mπi,k), satisfy that, if t1 < t2
1,

∀e :

 if ei < t1 then e falls into prototype πi,k
if t1 < ei ≤ t2 then e falls into prototype πi,j
if t2 ≤ ei then e falls into prototype πi,k

Proof. Since prototypes in Newton trees exert an attraction force over examples,
a given example e will fall into the prototype with the highest probability. As
we have seen in Section 3.1, probability densities are derived from attraction
forces. Given two prototypes and their probability densities, the points where
densities cut each other determine the interval in that each prototype prevails.
Those points are obtained by equalling the two attraction functions:

mπi,j

(t− πi,j)2
=

mπi,k

(t− πi,k)2

Solving this quadratic equation for t we have two solutions: t1 and t2. ut

Figure 4 (Left) shows the cutpoints for the two first partitions. Note that
one of the cutpoints is always between the prototypes and the other is on the
left or on the righ of one of the prototypes. According to Proposition 1, the first
partition for this examplecan be expressed by the conditions:

if (-183 < PROTIME) and (PROTIME <= 47.2) then fall into prototype 31 (...)
else fall into prototype 66 (class=LIVE)

1 If t2 < t1 the proposition trivially holds by exchanging both values.
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Now, crisp partitions are axis-parallel. Figure 5 (Center) presents the par-
titions corresponding to the two first splits for the Hepatitis dataset using the
two cutpoints. We can observe that the outside cutpoint typically limits the
classes in a very sparse region, whereas the cutpoint in between the prototypes
defines the class boundary in a much denser region. This suggests that only using
one cutpoint, as Figure 5 (Right) presents, we could obtain a simpler but still
competitive crisp transformation.

Fig. 5. Class boundaries for the Hepatitis dataset: original Newton tree (Left), Newton
tree with two crisp cutpoints (Center) and with one crisp cutpoint (Right).

In order to analyse how much performance we lose between the original
stochastic version and the crisp versions, we carried out an empirical evaluation
of our three approaches to assess their performance: Crisp Newton Trees with
one cutpoint, Crisp Newton Trees with two cutpoints and the original stochastic
Newton trees. Table 4 summarises the average results obtained for the datasets
used in the previous section. In order to simplify the process we restricted the
number of children per node to 2. We see that the crisp approaches (especially the
one with only one cutpoint) are competitive to the stochastic original version.
However, the stochastic version is better in terms of AUC and especially in
terms of MSE. This can also be related to the issue that we have restricted the
number of children, and this forces the nominal partitions to have a catch-all
(all-the-rest) by-default node.

NCrisp 1 NCrisp 2 Stochastic
ACC AUC MSE ACC AUC MSE ACC AUC MSE

Mean (All) 81.7344 0.8545 0.1728 81.2794 0.8468 0.1754 81.8084 0.8671 0.1008

Mean. (C = 2) 82.9629 0.8592 0.2523 82.8376 0.8567 0.2544 83.6503 0.8665 0.1146

Mean. (C > 2) 80.3304 0.8492 0.0819 79.4986 0.8354 0.0852 79.7033 0.8677 0.0851

Mean (Nom.) 90.0140 0.9266 0.2864 90.4361 0.9284 0.2862 89.8192 0.9311 0.0690

Mean (Num.) 79.0648 0.8498 0.1295 77.9973 0.8367 0.1352 79.7468 0.8618 0.1170

Mean (Mixt.) 77.0143 0.7888 0.1170 76.4988 0.7784 0.1183 76.5462 0.8100 0.1110

Table 4. NCrisp 1 = Crisp Newton Trees with one cutpoint , NCrisp 2 = Crisp Newton
Trees with two cutpoints, Stochastic = Stochastic Newton trees.

6 Conclusions and Future Work

This paper has presented a novel probability estimation tree learning method
which is based on computing prototypes in the partitions and applying an In-
verse Square Law that uses the distance to the prototype and its mass, in order
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to derive an attraction force which is then converted into a probability. The trees
can be graphically represented in such a way that their meaning and patterns
can be understood, and the predictions can be followed and explained, which is
not easy in decision trees which are used stochastically. Even though Newton
trees are still univariate, we have seen that they have the power to express and
construct non-axis-parallel boundaries, so its pattern expressiveness is higher
than traditional decision trees. Since Newton trees are relatively easy to imple-
ment, and we have presented a relatively user-friendly graphical represenation,
we think that they could appear in machine learning toolkits and data mining
suites in the future.

The use of prototypes (mediods) instead of centroids allows for the use of
our trees for any kind of datatype (continuous or discrete), as long as we provide
a distance function for each datatype. Consequently, we can apply our trees to
structured datatypes, such as sequences, sets, ordinal data (which would not re-
quire a numerisation but a proper distance), intervals or even images and texts.
More importantly, we can use the tree with a mixture of all these datatypes. If
distance matrices are preprocessed (only once for each attribute before start), the
computation of the prototypes is much more efficient than the split population
schemes in traditional decision trees, since we group by classes and then com-
pute the mediod of each cluster. Consequently, the number of different splits to
evaluate at each node is equal to the number of attributes and does not depend
on midpoints or the size of the dataset.

There are many research lines to pursue. One is to use the mass also when
constructing the tree or using all the attribute values as possible clusters. How-
ever, these two modifications would entail extra computational cost and could
only be justified if there is a significant improvement in the results.

The handling of null (missing) values is straightforward in our setting. Typ-
ically, since distance can be considered equal to every prototype, mass will be
the only factor for the probability, which seems quite reasonable. We have not
included null values in the experiments to make comparisons easier to follow, but
a study on whether our trees are more robust (as we expect) to missing values
(and also to outliers/noise) is an experiment we will have to perform in the near
future. As a more ambitious future work, we plan the application/extension of
Newton Trees to regression and clustering and other machine learning tasks.
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A Algorithm

Before introducing the different algorithms we requires some notation. C =
c1, . . . , ck is a set of k class labels. A (labeled) training example e = (x; y) is rep-
resented by a tuple of attribute values x = (x1, . . . , xn) and a class label y ∈ C.
An unlabeled example is represented by its attributes, that is e = (x1, . . . , xn).
Attrxj returns the j − th attribute of example e. Similarly, Class(e) returns
the class of example e. Additionally, two important functions to reduce the
complexity of computing the distances are needed: V alues(S,Xj) returns the
number of different values for the attribute xj and Card(v, S,Xj) returns the
number of occurrences of value v in the attribute xj in the sample S, namely
|{e inS : Attrxj = v}|. The function distance(x, y) computes the distance be-
tween the values of attributes x and y, which must be of the same type. The
attraction(e, π) function define the attraction between an instance e and a pro-
totype π such as explained in the seccion 3 . Finally we have two functions that
work with the nodes of decision tree: Children(ν) returns a set of all successors
of node ν and Parent(ν) returns the predecessor node of ν.

The algorithm 1 is the main procedure of our method. The inputs are a
training dataset of the form (x1, · · · , xn), n ≥ 1, a parameter m which limits the
maximum number of child nodes per division (if weset to m = 2 we only have
binary divisions) and a metric space ms where distances are defined between
different attributes of the set of examples.

Therefore, TreeGeneration algorithm is just a typical decision tree learning
algorithm which, in this case, determines, for each attribute, a ranked list of
prototypes which will lead to a set of children for each node. The main difference
with the classical decision trees learners lies in four functions: Compute Prototy-
pes, Attracts, ProbTree and ProbClass.

The function Attracts (see Algorithm 2) just determines which prototype is
assigned with a new example. This algorithm can be implemented in multiple
ways (eg, considering the density or not) but we have chosen the simplest: returns
the prototype nearest to the sample. In case of a tie, it returns the rigthmost
prototype.

The function Compute Prototypes (see Algorithm 3) is the most important
one. This function can be performed in many different ways. Below, we show
one of these possibilities. which just select the best prototype (in the way that
the distances to the prototype for the elements of the same class are minimised),
removes its class and the value of the attribute and looks for the next best
prototype for a different class and value for the attribute, and so on until the
limit m (given by the user) or the number of classes or attribute values is reached.
Once the list of prototypes has been calculated, each prototype is associated with
the examples that attracts.

Note that, the above procedure is independent of the attribute types. In
fact,it can be applied to any kind of attribute and not only to nominal and nu-
merical attributes as happens in classical decision tree algorithms. Even more,
all attributes are handled in a similar way. This does not occur in other decision
tree learners in which the partitions of numerics are made quite differently from
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Algorithm 1 TreeGeneration(S,m,ms)

Require: S is a set of examples of the form: (x1, · · · , xn), n ≥ 1, m is the maximum
number of children per node, ms is the metric space.

1: Heuristics← 0
2: ProtList← 0
3: if S = 0 then
4: return
5: end if
6: for all attribute xj do
7: Heuristicsxj ← Optimality(S, xj ,ms) //Gain ratio, GINI, etc.
8: end for
9: mxj ← Argmaxxj (Heuristics)

10: if Heuristics[mxj ] = 0 then
11: return Leaf
12: else
13: ProtList← ComputePrototypes(mxj , S,m,ms,C)
14: for i = 1 to length(ProtList) do
15: TreeGeneration(ProtList[i],m,ms)
16: end for
17: end if

Algorithm 2 Attracts(e, ProtList, xj)

Require: e an example, ProtList a ranked list of prototypes and xj a chosen attribute.
Ensure: Index of prototype that attracts e.
1: for i = 1 to lenght(ProtList) do
2: v ← attrxj (e)
3: if ∀k ≥ i, distance(attrxj (ProtList[i], v) ≤ distance(attrxj (ProtList[k]), v)

then
4: return i
5: end if
6: end for
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Algorithm 3 Compute Prototypes(xj , S,m,ms,C)

Require: xj is the attribute, S is the dataset, m is the maximum children of
prototypes,ms is the metric space, C is the set of classes.

Ensure: Multidimensional ranked list of prototypes.
1: for all class c ∈ C do
2: Sc ← {e ∈ S : class(e) = c}
3: if Sc 6= 0 then
4: Vc ← V alues(xj , Sc)
5: for all element v ∈ Vc do

6: MeanDistancec[v]←
∑
i∈Vc distance(v,i)∗Card(i,Sc,xj)

|Sc|
7: end for
8: end if
9: end for

10: UV ← 0
11: ProtList← 0
12: RC ← C
13: V alues← V alues(xj , S)
14: Prots← min(|C|,m, V alues)
15: for k = 1 to Prots do
16: BestProt← Argmine{MeanDistancec[Attrxj (e)]}c∈RC,e∈S,Attrxj (e)/∈UV
17: RC ← RC − Class(BestProt)
18: ProtList← append(ProtList, BestProt)
19: UV ← UV ∪Attrxj (BestProt)
20: end for
21: for i = 1 to length(ProtList) do
22: Ŝi ← {e ∈ S : i = Attracts(e, ProtList, xj)}
23: ProtListi ← ProtListi ∪ Ŝi
24: end for
25: return ProtList
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those of nominals. For instance, in order to select the best partition for a nu-
merical attribute, C4.5 evaluates all the intermediate cut points obtained from
the values of this attribute in the dataset. Analogously, in the case of nominal
attributes, C4.5 evaluates one split for each possible attribute value. So, this
makes our splitting criteria more efficient than those used in classical decision
tree learning algorithms. Additionally, it is important to note that distances are
computed between attribute values and not between examples. This issue is also
crucial for efficiency.

The previous functions are used for the generation of our learning system.
The last two functions which will be described are those that provide new func-
tionality to the classifying process for the instances. The first one, ProbTree
(Algorithm 4), is responsible for calculating, for each examples used to test the
system, the probabilities associated with each tree node. As explained through-
out this article, we use Newton Tree to estimate probabilities in a stochastic way.
With p̂(ν, e) we denote the probability that e falls into node ν (coming from its
parent), which is derived from the attraction function.

Finally, ProbClass (see Algorithm 5) returns a stochastic probability vec-
tor estimation which is obtained crossing the Newton Tree (with probabilities
calculated with the above function), from the leaves to root.

Algorithm 4 ProbTree(e, Children(ν))

Require: e an example, Children(ν) a set of succesors nodes (Prototypes).
1: if |Children(v)| = 0 then
2: return
3: else
4: for all k ∈ Children(ν) do

5: p̂(k, e)← attraction(e,k)∑
µ∈Children(Parent(k)) attraction(e,µ)

6: ProbTree(e, (Children(k))
7: end for
8: end if
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Algorithm 5 ProbClass(e, Children(ν))

Require: Children(ν) a set of succesors nodes (Prototypes).
Ensure: a set of class probabilities in the root of the tree.
1: if |Children(ν)| = 0 then
2: −→p (ν, e)← 〈Laplace(1, ν), ..., Laplace(c, ν)〉 · p̂(ν, e)
3: return −→p (ν, e)
4: else
5: for all k ∈ Children(ν) do
6: −→p (ν, e)← −→p (v, e) + ProbClass(e, Children(k))
7: end for
8: end if
9: return −→p (ν, e) · p̂(ν, e)
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