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Abstract. In this work we analyse the relationship between distance and 

generalisation operators for real numbers, nominal data and tuples in the 

context of hierarchical distance-based conceptual clustering (HDCC). HDCC is 

a general approach to conceptual clustering that extends the traditional 

algorithm for hierarchical clustering by producing conceptual generalisations of 

the discovered clusters. This makes it possible to combine the flexibility of 

changing distances for several clustering problems and the advantage of having 

concepts which are crucial for tasks as summarisation and descriptive data 

mining in general. In this work we propose a set of generalisation operators and 

distances for the data types mentioned before and we analyse the properties by 

them satisfied on the basis of three different levels of agreement between the 

clustering hierarchy obtained from the linkage distance and the hierarchy 

obtained by using generalisation operators.  

Keywords: conceptual clustering, hierarchical clustering, generalisation, 

distances, propositional learning. 

1   Introduction 

One issue related to some data mining techniques is the lack of comprehensibility. 

Although several learning techniques have been tested as useful in the way that they 

offer good predictions, they do not give a description, pattern or generalisation which 

justifies the decision made for a given individual. For instance, it is useful to know 

that a given molecule belongs to a cluster according to a certain distance measure, but 

it is even more interesting to know what the chemical properties shared by all the 

molecules in that cluster are. 

Lack of comprehensibility is a common issue to clustering and classification 

techniques based on distances. The source of this problem is the dichotomy between 

distances and generalisations. It is well known that distances and generalisations give 
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rise to two different approaches in data mining and machine learning. On the one 

hand we have distance-based techniques, where we only need to count on a distance 

function for the data we are working with. However, distance-based techniques (such 

as [11, 12, 13]) do not provide patterns or explanations justifying the decisions made. 

On the other hand we have symbolic techniques [7, 8, 9, 10] that, unlike distance-

based methods, are founded on the idea that a generalisation or pattern discovered 

from old data can be used to describe new data covered by this pattern.  

An important issue when combining both techniques is to know whether the 

patterns discovered for each cluster by a distance-based technique are consistent with 

the underlying distance used to construct the clusters. Inconsistencies can arise when 

the notion of distance and generalisation are considered independently. That is, given 

a set of examples and a generalisation of them, it is expected that those examples that 

are close in a metric space according to its distance are covered by the generalisation, 

while those examples that are far away are expected to be outside the generalisation 

coverage. This problem has been extensively treated in [6]. In the present work we 

focus on the relationship between distances and generalisations in the context of 

HDCC [1], a general approach for agglomerative hierarchical clustering [2, 3]. 

HDCC, that stands for Hierarchical Distance-based Conceptual Clustering, constructs 

a cluster hierarchy by using a distance at the same time that in produces a hierarchy of 

patterns resulting in an extended dendrogram referred as conceptual dendrogram. The 

main aspect considered in [1] and that has been ignored by other conceptual clustering 

methods that use distances is knowing a priori whether the hierarchy of clusters 

induced by the underlying distance is consistent with the discovered patterns, i.e. how 

much the cluster elements covered by a given pattern reproduce the distribution of the 

elements in the metric space. Accordingly, in [1] three different levels of consistency 

between a distance and a generalisation operator have been defined. 

The present work is an instantiation for the propositional learning case of the 

general framework presented in [1]. Here, we give the results of a formal analysis 

carried out for a set of distances and generalisation operators useful for propositional 

clustering, where we prove that intervals and absolute difference distance for real 

numbers, and the union set and discrete distance for nominal data work well together 

in HDCC. More importantly, we have also shown that it is also the case when using 

them as generalisation operators and distances for tuples of real numbers and nominal 

data. This rounds up the approach for propositional learning. But, additionally, this 

composability result for tuples is obtained independently from the base data types. 

The property of composability allows our framework to be directly extended to tuples 

of any complex data type provided that the generalisation operators associated to the 

component data types satisfy the property wanted for tuples. For instance, we can 

assert properties of tuples of graphs, strings and numbers provided we know the 

properties for the underlying data types. Besides these theoretical results we also 

present some experiments. 

The paper is organised as follows. Due to space limitations, all necessary 

preliminary concepts about the HDCC approach can be found in [1] and the 

proposition proofs can be found in [14]. In Section 2 we propose pairs of 

generalisation operators and distances for numerical and nominal data, which are used 

in turn to define generalisation operators and distances for tuples. In Section 3 we 

present some experiments by applying the operators and distances proposed in 



Section 2, and we also compare the results obtained in HDCC wrt. traditional 

hierarchical clustering. Finally, Section 4 closes the paper with the conclusions and 

future work.  

2   Instantiation for Propositional Learning 

In this section, we present an instantiation of HDCC for propositional clustering 

where flat data are expressed in terms of attributes and instances. We propose 

generalisation operators for numerical and categorical data and also for tuples, which 

are the data types typically used in propositional learning. In all cases the different 

levels of consistency defined in [1] between the proposed operators and distances 

have been verified through a satisfability analysis of the strong and weak 

boundedness and acceptability properties given in [1]. 

2.1 "ominal Data 

A nominal data type, also referred as enumeration or categorical data type denotes a 

finite set of possible values that an attribute can take, e.g. gender, days of the week, 

colours, etc. A Boolean data type is a special case where there are only two 

possibilities. The metric space for nominal data type is composed of a set X, which is 

just a finite set of symbolic values, and a distance d. 

There are many distances defined for nominal values. Some of the most commonly 

used distances are the discrete distance –that returns 0 when both values match and 1 

otherwise– and the VDM (Value Difference Metric) distance [4], among others. In 

some cases, a distance defined by the user can be useful. For instance, in the metric 

space (X, d) where X = {XXL, XL, L, M, S, XS, XXS}, the distance d defined as 

d(XXL, XL) = 1, d(XXL, L) = 2, d(XXL, M) = 3, d(XXL, S) = 4, d(XXL, XS) = 5, 

d(XXL, XXS) = 6, d(XL, L) = 1, d(XL, M) = 2, d(XL, S) = 3, d(XL, XS) = 4, d(XL, 

XXS) = 5, d(L, M) = 1, d(L, S) = 2, d(L, XS) = 3, d(L, XXS) = 4, d(M, S) = 1, d(M, 

XS) = 2, d(M, XXS) = 3, d(S, XS) = 1, d(S, XXS) = 2, d(XS, XXS) = 1 organizes the 

points into a line where XXL and XXS are the extreme points. 

Typical patterns for nominal data are expressed as conditions over the values of the 

attributes, e.g. attribute�ame = XL or attribute�ame ≠ XL. However, since X is 

finite, the coverages1 of the possible patterns are also finite and they can be expressed 

extensionally as subsets of X. Thus, the pattern language L for nominal data can 

reduce to 2
X
. 

We propose for the generalisation of a pair of nominal values the set that contains 

both values. 

Proposition 1. Let (X, d) be a metric space, X a set of nominal data, and 2
X
 the 

pattern language. The function ∆: X × X → 2
X
 defined by ∆(e1, e2) = {e1, e2} is a 

binary generalisation operator2 for nominal data. 
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Given that patterns are sets of nominal values, we propose the set union as the 

generalisation of two patterns. 

Proposition 2. Let (X, d) be a metric space, X a set of nominal data, and 2
X
 the 

pattern language. The function ∆*
: 2

X
 × 2

X
 → 2

X
 defined by ∆*

(s1, s2) = s1 ∪ s2
 
is a 

pattern binary generalisation operator3 wrt. 2
X
. 

Proposition 3 gives the properties satisfied by the proposed operators ∆ and ∆*
. 

Proposition 3. Let ∆ and ∆*
 be the generalisation operators given in Proposition 1 

and Proposition 2, d a distance between nominal data and dL a linkage distance. ∆ 

and ∆* are (i) strongly bounded4 by d and dL, respectively; (ii) weakly bounded5 by d 

and dL, respectively; (iii) acceptable6. 

The example in Figure 1 (left) shows the use of HDCC for the evidence E = {XXS, 

S, M, XXL}. We have used the discrete distance, and the generalisation operators 

given in Proposition 1 and Proposition 2 to compute the patterns. Note that applying 

the user-defined distance given above, the dendrogram changes to that shown in 

Figure 1 (right).We can also affirm by Proposition 1 in [1] and Proposition 3 that both 

conceptual dendrograms are equivalent to the corresponding traditional dendrograms. 

 

Figure 1. Two applications of HDCC to nominal data under the single linkage distance, using 

the discrete distance (left) and a user-defined distance (right).  

3.1 "umerical Data 

Numerical data are widely used to express amounts and measures and many attributes 

of real word objects. A well known metric space for numeric data is (ℜ, d) where d is 

the distance defined as the absolute difference of two real numbers, i.e. d(e1, e2) = 

|e1−e2|. A usual generalisation for a set of numbers is the minimal interval whose 

extreme values are the least and the greatest values in the set. Thus the pattern 

language L we consider here is the set of all the finite closed intervals in ℜ. We 

propose for the generalisation in L of two elements in ℜ the minimal interval that 

includes both elements. 

Proposition 4. Let L be the set of all the finite closed intervals in ℜ. For all e1, e2 in 

ℜ such that e1 ≤ e2, the function ∆: ℜ × ℜ → L defined by ∆(e1, e2) = [e1, e2] is a 

binary generalisation operator for real numbers. 
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Next we propose for the generalisation of two intervals the minimal interval that 

covers both. 

Proposition 5. Let L be the set of all the finite closed intervals in ℜ. The function ∆*
: 

L × L → L defined by ∆*
([ei1, ef1], [ei2, ef2]) = [ei, ef], where ei is the least value in {ei1, 

ei2} and ef is the greater value in {ef1, ef2}, is a pattern binary generalisation operator 

wrt. L. 

Proposition 6. Let ∆ and ∆*
 be the generalisation operators of Proposition 4 and 

Proposition 5, d the absolute difference between numbers and dL a linkage distance. ∆ 

and ∆*
 are (i) strongly bounded by d and dL, respectively; (ii) weakly bounded by d 

and dL, respectively; (iii) acceptable. 

Figure 2 shows a simple application of HDCC under single linkage using the 

proposed operators and distance for real numbers. By Proposition 1 in [1] and by 

Proposition 6 the conceptual dendrogram is equivalent to the traditional one. 

 

Figure 2. Conceptual dendrogram using single linkage distance for a set of real numbers. 

3.2 Tuples 

A tuple is a widely-used structure for knowledge representation in propositional 

learning since examples are represented as tuples of nominal and numerical data.To 

define a generalisation operator for tuples, unlike the previous data types, we base it 

on the properties of the basic types from which the tuple type is constructed. We 

assume they are embedded in metric spaces, therefore we can use the distances 

defined over each space to define distances between tuples. Analogously, to define 

the pattern language for tuples, we also use the pattern languages defined for each 

space. 

Let (Xi, di) be a collection of metric spaces and Li a collection of pattern languages 

(i=1,…,n) corresponding to each of the n dimensions of a tuple. We denote X the 

space X1× … ×Xn. Therefore, if x ∈ X then x is a n-tuple (x1,…, xn), where xi ∈ Xi.  

Let di(·,·) be a distance function defined over Xi (i=1,…,n). The expressions shown 

in Table 1 are distance functions in X. In that follows, we denote as dT any of them. 

Table 1. Some distance functions for tuples. 
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We define the pattern language for tuples L by using the basic pattern languages Li 

(i=1,…,n) as L=( L1,..., Ln). Thus, the generalisation ∆ of two tuples x and y 

(formalized by Proposition 7 below) can be defined as the tuple whose components 

are the generalisations of the respective components in x and y, while the coverage of 

a pattern in L is given by Definition 1. 

Definition 1. Given p = (p1,…, pn) ∈ L, the coverage Set(p) of the pattern p over L is 

defined as {(x1,…, xn) ∈ X | xi ∈ Set(pi), i = 1,…, n}. 

For example, given the pattern p = ([34, 54], {XXL, XL, XS, XXS}, [0, 130]), the 

examples e1 = (54, XXL, 100) and e2 = (36, XS, 60) are covered by the pattern. 

However, the tuple (40, M, 70) is not covered by p since M ∉ Set({XXL, XL, XS, 

XXS}). 

Proposition 7. Let X = X1×...×Xn be the space of tuples, Li (i=1,…,n) a pattern 

language on the basic type Xi; ∆i: Xi × Xi→    Li a binary generalisation operator in Xi 

and L = (L
1
,…, L

n
) the pattern language of tuples. The function ∆: X × X→L defined 

by ∆((x1,…,xn), (y1,…,yn)) = (∆1(x1,y1),…,∆n(xn,yn)) is a binary generalisation 

operator for X. 

Given that patterns in L are tuples whose elements are patterns in Li, the 

generalisation of two tuples of patterns p and q can be defined as the tuple whose 

components are the generalisations of the respective components in p and q. This is 

formalised in Proposition 8. 

Proposition 8. Let L =( L
1
,…, L

n
) be a pattern language for tuples, with Li (i=1,…,n) 

a pattern language on a basic type Xi; ∆*
i: Li× Li→ Li a pattern binary generalisation 

operator in Li. The function ∆*
: L × L → L defined by ∆*

((p1, …, pn), (q1, …, qn)) = 

(∆*
1(p1, q1),…,∆*

n(pn, qn)) is a pattern binary generalisation operator wrt. L. 

In HDCC, generalisations of unitary sets are computed as the generalisation of the 

element with itself. Therefore, the pattern associated to a cluster with only one tuple 

{(x1, …, xn)} is given by ∆((x1,…, xn), (x1,…, xn)), i.e. (∆1(x1, x1),…, ∆n(xn, xn)). 

Proposition 9. (Composability of ∆∆∆∆) The binary generalisation operator ∆ for tuples 

given by Proposition 7 when applied to tuples in the space X = X1×…×Xn, where 

(Xi,di) (i = 1,…,n) is a metric space equipped with a binary generalisation operator 

∆i. is: 

(i) Strongly bounded by dT if ∆i is strongly bounded by di,  ∀ i: i = 1,…,n. 

(ii) Weakly bounded by dT if ∆i is strongly bounded by di, ∀ i: i = 1,…,n. 

(iii) Acceptable if ∆i is acceptable, ∀ i: i = 1,…,n. 

The dendrograms shown by Figure 3 (d) and (e) can be seen as instantiations of 

propositional clustering in X = ℜ×ℜ for the evidence given in Figure 3 (a). We have 

used the language of closed intervals in ℜ as pattern language for each dimension in 

X, and the absolute difference as the distance between real numbers. Note that a tuple 

pattern, in this case, describes an axis-parallel rectangle. Figure 3 (d) shows the 

conceptual dendrogram resulting from the application of HDCC using the single 

linkage distance d
s
L while Figure 3 (e) using the complete linkage distance d

c
L. We 

can see that the conceptual dendrogram is not equivalent to the traditional one under 

single linkage given that although the binary generalisation operator ∆ for tuples 

given in Proposition 7 is strongly bounded by dT by Proposition 9, ∆*
 is not strongly 

bounded by d
s
L since the generalisation of two rectangles p1 and p2 associated to 



clusters C1 and C2 is a rectangle p that cover points that can fall outside the balls with 

centre in the linkage points of C1 and C2 and radius d
s
L(C1, C2, dT), as it happens for 

instance with {i} which is covered by p4 (see Figure 3 (b)). 

 

Figure 3. (a) A set of points in ℜ×ℜ. (b) Discovered patterns under d s
L. (c) Discovered patterns 

under d c
L. (d) Application of HDCC for tuples using d s

L and (e) using d c
L. 

Note that the same could happen for tuples in X1×…×Xn when at least two domains 

Xi
 
are

 
instantiated to ℜ. Let us consider the following example. C1={(0, 0, x3,…, xn), 

(1, 1, x3,…, xn), (2, 2, x3,…, xn), (4, 4, x3,…, xn)} and C2 = {(5.1, 5.1, x3,…, xn)} with 

patterns p1 = ([0, 4], [0, 4], p3,…, pn) and p2 = ([5.1, 5.1], [5.1, 5.1], p3, …, pn), 

respectively. We have that ∆*
(p1, p2) = p = ([0, 5.1], [0, 5.1], p3,…, pn) and d

s
L(C1, 

C2, dT) = 1.55 where dT is the Euclidean distance. However, there exists x = (4.5, 0.5, 

x3,…,xn) that is covered by p but d
s
L({x}, C1, d) = 2.91 > 1.55, and d

s
L({x},C2,d) = 

4.63 > 1.55. 

In fact, the composability property of ∆* 
can only be proved wrt. the complete 

linkage distance d
c
L, as the next proposition establishes. 

Proposition 10. (Composability of ∆∆∆∆*) The pattern binary generalisation operator 

∆*
 for tuples in the space X = X1×…×Xn given by Proposition 8 when applied to 

patterns in the space L = L1×…× Ln, where Li (i = 1,…,n) is a  pattern language for 

elements in Xi and (Xi, di) is a metric space equipped with a pattern binary 

generalisation operator ∆*
i,  is: 

(i) Strongly bounded by d
c
L if ∆*

i is strongly bounded by d
c
L, ∀ i: i = 1,…,n. 

(ii) Weakly bounded by d
c
L if ∆*

i is strongly bounded by d
c
L, ∀ i: i = 1,…,n. 

(iii) Acceptable if ∆*
i is acceptable, ∀ i: i = 1,…,n. 

We can see in Figure 3 (c) that the application of HDCC to X = ℜ×ℜ under 

complete linkage produces a conceptual dendrogram that is equivalent to the 

traditional dendrogram as Proposition 1 in [1] establishes given that Proposition 10 (i) 

and Proposition 9 (i) hold. 

4   Experimental Results 

In the previous section we proposed a set of generalisation operators and distances for 

tuples that applied to HDCC under complete linkage distance produces equivalent 



conceptual dendrograms with the additional advantage of providing a description of 

each cluster in the hierarchy. We have also seen through an example that the same 

operators and distances when used under single linkage distance can produce 

dendrograms that are not equivalent. The experiments described in this section are 

aimed to (i) empirically illustrate the first result with a real dataset and (ii) show that 

the new conceptual clustering, coming from the on-line re-arrangement of the 

dendrogram, although not equivalent to the traditional dendrogram does not 

undermine cluster quality when applied under single linkage. 

A first experiment was conducted on the Iris Dataset [5]. The dataset consists of 

three classes, 50 instances each and four numeric attributes. Each class refers to a type 

of iris plant namely Iris Setosa, Iris Versicolor and Iris Virginica. The numeric 

attributes refers to the sepal and petal lengths and widths in cms.  

To assess the quality of the clustering we employed two different measures: (i) 

One internal measure, called S, which reflects the mean scattering over k clusters with 

ni (i = 1, …, k) instances each. This measure is given by eq. (1) where d denotes the 

Euclidean distance. The lower S is the better the clustering is. (ii) One external 

measure, the purity P given by eq. (2), where k is the number of clusters, n is the total 

number of instances and ni
j
 the number of instances in cluster i of class j. Purity can 

be interpreted as classification accuracy under the assumption that all the objects of a 

cluster are classified to be members of the dominant class for that cluster. Although 

the class was considered for obtaining purities, it was removed from the dataset to 

build the clusters. 
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Table 2 shows the patterns discovered by HDCC considering complete and single 

linkage. Each pattern is a 4-tuple where the component i is also a pattern that provides 

a description of attribute i. 

Table 2. Patterns discovered by HDCC for three clusters. 

 Pattern 

Single ([4.3,5.8],[2.3,4.4],[1.0,1.9],[0.1,0.6]) 
C1 

Complete ([4.3,5.8],[2.3,4.4],[1.0,1.9],[0.1,0.6]) 

Single ([4.9,7.7],[2.0,3.6],[3.0,6.9],[1.0,2.5]) 
C2 

Complete ([4.9,6.1],[2.0,3.0],[3.0,4.5],[1.0,1.7]) 

Single ([7.7,7.9],[3.8,3.8],[6.4,6.7],[2.0,2.2]) 
C3 

Complete ([5.6,7.9],[2.2,3.8],[4.3,6.9],[1.2,2.5]) 

 

In cluster C1 the dominant class was Iris Setosa, in C2 was Iris Versicolor and in 

C3 was Iris Virginica. 

In fact, each of these patterns can be seen as a rule. For instance the discovered 

pattern for C1 under complete linkage and single linkage is ([4.3, 5.8], [2.3, 4.4], [1.0, 

1.9], [0.1, 0.6]) that can be interpreted as the rule 

(sepallength ≥ 4.3 AND sepallength ≤ 5.8 AND sepalwidth ≥ 2.3 
AND sepalwidth ≤ 4.4 AND petallength ≥ 1.0 AND petallength ≤ 1.9 
AND petalwidth ≥ 0.1 AND petalwidth ≤ 0.6)  



where sepallength, sepalwidth, petallength and petalwidth are the 

1
st
 to 4

th
 attributes in the dataset, respectively. 

Table 3 shows the values of S and P for HDCC and the traditional hierarchical 

clustering algorithm under complete distance d
c
L and single linkage distance d

s
L for k 

= 3 that corresponds to the number of classes in the Iris dataset. As we can see the 

quality of the conceptual clustering does not differ from that of traditional hierarchical 

clustering even under single linkage and it provides useful descriptions that allow 

interpreting the meaning of each group of instances. This result, i.e. cluster quality 

preserved by HDCC, was confirmed by four experiments carried out on 100 artificial 

datasets each. Datasets were formed by 600 points drawn from 3 Gaussian 

distributions in ℜ2
. In each of the four experiments, means and standard deviations 

were set to the values reported in Table 4. In these experiments the average values of 

S over the 100 experiments were obtained for HDCC and the traditional algorithm 

under single and complete linkage. These values are also reported in Table 4. 

Table 3. Values of S and P for the traditional and conceptual dendrograms under d c
L and d s

L. 

Linkage distance STraditional SConceptual PTraditional PConceptual 

Single (d sL) 46.56 46.56 0.68 0.68 

Complete (d cL) 37.44 37.44 0.84 0.84 

Table 4. Values of S averaged over 100 experiments each for HDCC (Conc.) and the 

traditional hierarchical algorithm (Trad.) for 3 Gaussian distributions with (i) σ = 1 and µ ∈ [0, 

10] × [0, 10] ; (ii) σ = 1 and µ ∈ [0, 200] × [0, 200]; (iii) σ = 5 and µ ∈ [0, 100] × [0, 100]; (iv) 

σ = 5 and µ ∈ [0, 200] × [0, 200]. 

 Trad. 

(i) 

Conc. 

(i) 

Trad.  

(ii) 

Conc. 

(ii) 

Trad. 

(iii) 

Conc. 

(iii) 

Trad. 

(iv) 

Conc. 

(iv) 

d
s

L 524,820 514,417 282,605 282,605 1830,421 1851,406 1607,842 1595,194 

d
c

L 285,622 285,622 282,605 282,605 1401,350 1401,350 1410,499 1410,499 

5   Conclusions 

Hierarchical distance-based conceptual clustering provides an integration of 

hierarchical distance-based clustering and conceptual clustering. It can be easily seen 

that for complex datatypes (sequences, graphs, etc.) the original dendrograms are 

usually different to the dendrograms obtained by applying the generalisation 

operators. In order to cope with these (negative) results, the notion of conceptual 

dendrogram and three consistency properties that should be analysed for every pair of 

distance and generalisation operator have been proposed. Some pairs of distances and 

generalisation operators are compatible at some degree resulting in equivalent, order-

preserving or acceptable conceptual dendrograms while some other pairs are not, so 

showing that some distances and generalisation operators should not be used together. 

In this work, however, we have shown a much more positive picture. In a 

propositional world, and using the most common distances and generalisation 

operators for nominal data, numerical data and tuples, we have found out that the 



strongest properties (in fact all of them) hold. From these results, we can affirm that 

the integration of hierarchical distance-based clustering and conceptual clustering for 

propositional data (i.e., tables, which are still the bulk of most data mining 

applications) is feasible, congruent and relatively straightforward. 

Additionally, the composability result obtained with the tuple datatype and several 

distances, allow the handling of more elaborate information in the form of tables, 

where some attributes can have structure, provided that the distance and 

generalisation operators used for every attribute have some degree of consistency.  

In this regard, our immediate future work is focussed on finding operative pairs of 

distances and generalisation operators for common datatypes in data mining 

applications, such as sequences, graphs and multimedia objects. 
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