An Instantiation of Hierarchical Distance-based Conceptual Clustering for Propositional Learning

A. Funes^{1,2}, C. Ferri², J. Hernández-Orallo², M. J. Ramírez-Quintana²

¹Universidad Nacional de San Luis, San Luis, Argentina afunes@unsl.edu.ar ²DSIC, Universidad Politécnica de Valencia, Valencia, España {cferri, jorallo, mramirez}@dsic.upv.es

Agenda

- Motivation and objectives.
- Hierarchical Distance-based Conceptual Clustering (HDCC) algorithm.
- Analysis of consistency between distance and generalisation for propositional data.
- Experiments.
- Conclusions and future work.

Motivation

Two different approaches for machine learning

- □ Distance-based techniques
- Model-based techniques

Motivation

Distance-based techniques

□ Intuitive

□ Do not provide a description about a decision made for an individual.

Example: Clustering of molecules

Objectives

 Combine both approaches on the basis of agglomerative hierarchical distance-based clustering.

- Analyse the question:
 - □ Are the elements in the clusters induced by a distance and the discovered patterns consistent?
 - □ Are all the elements covered by a pattern close w.r.t. the underlying distance?

HDCC

A first approach

- □ On the basis of the traditional algorithm
 - Patterns are obtained either on-the-fly or as a post-process by using a *n*-ary generalisation operator.

Four examples of lists in (Σ^*, d)

Dendrogram using single linkage distance

HDCC

A first approach

☐ Inconsistencies between the distance and the generalisation can arise.

The coverage of pattern p = aa*

Dendrogram using single linkage distance

HDCC

- Our approach: Hierarchical Distance-based Conceptual Clustering (HDCC)
 - To overcome the inconsistency problem between the distance and the generalisation operator, HDCC performs at each iteration a coverage-reorganisation process.
 - Merge the two closest clusters according to the linkage distance.
 - Compute the pattern for the new discovered cluster using a pattern binary generalisation operator.
 - Merge to the new discovered cluster all those clusters completely covered by the pattern.

Traditional dendrogram

Conceptual dendrogram

Consistency between Distances and Generalisation Operators

- We can observed that:
 - The dendrograms can differ considerably.
 - □ The shape of a conceptual dendrogram depends on:
 - the linkage distance d_L between clusters;
 - the distance *d* between elements in the metric space;
 - the generalisation operators used.
 - The more similar the dendrograms are, the more consistent the distance and the generalisations are.
- We have defined different degrees of consistency between distances and generalisations on the basis of the similarity between a conceptual dendrogram and the traditional one.
 - Equivalent to the traditional dendrogram
 - Order-preserving
 - Acceptable

Consistency Levels

Equivalent Dendrograms

A conceptual dendrogram is equivalent to the traditional dendrogram if for each cluster C all its children are linked at the same distance l.

- Single linkage distance.
- Absolute difference.
- Closed intervals.

М

Consistency Levels

Order-preserving Dendrograms

- A conceptual dendrogram is order-preserving when the order in which its clusters are discovered is not swapped w.r.t. the traditional dendrogram.
- For any node (C, p, l) in the tree T, any child is linked at a same distance l, or it is linked by its pattern p at a linkage distance l lower than the linkage distance from any other cluster not covered by the pattern.

Consistency Levels

Acceptability Property

- A conceptual dendrogram is acceptable if it is the result of the use of an acceptable generalisation operator.
- Dendrograms can differ significantly.

Acceptable operators

A pattern should not cover elements whose distances to the old elements are greater than the maximum distance between the old elements.

Instantiation for Propositional Clustering

- Data are expressed in terms of instances and attributes.
- We analise the consistence of these datatypes:
 - Numerical
 - Nominal
 - □Tuples

Instantiation for Propositional Clustering

Nominal Data

- Discrete Distance; User defined Distance.
- Generalisation: set union.
 - Equivalent dendrograms.

M

Instantiation for Propositional Clustering

Numerical Data

- Absolute Distance.
- Generalisation: minimum closed intervals.
 - □ Equivalent dendrograms.

ye.

Instantiation for Propositional Clustering

Tuples

- Distances:
 - □ Manhattan: $d(x,y) = \sum_{i=1}^{n} d_i(x_i, y_i)$
 - □ Euclidean: $d(x,y) = \sqrt{\sum_{i=1}^{n} d_i(x_i, y_i)^2}$
 - □ Chebysev: $d(x, y) = \max_{1 \le i \le n} d_i(x_i, y_i)$
 - □ Weighted versions

Instantiation for Propositional Clustering

Tuples

- Generalisation:
 - □ The generalisation of two tuples x and y is defined as the tuple whose components are the generalisations of the respective components in x and y
- Coverage is defined in a similar way.

Instantiation for Propositional Clustering

Tuples

- Under the previous conditions:
 - □ The composability property of the generalisation can only be proved wrt. the complete linkage distance.

Setting A

- Generalisation operators and distances for tuples that applied to HDCC under complete linkage distance produces equivalent conceptual dendrograms
 - Now they provide a description of each cluster in the hierarchy.

Setting A

- Iris Dataset.
 - □ 150 instances, 3 classes
 - ☐ HDCC: complete and single linkage
 - Classes are not employed for learning

М

Experiments

Setting A

Clusters:

		Pattern
C1	Single	([4.3,5.8],[2.3,4.4],[1.0,1.9],[0.1,0.6])
	Complete	([4.3,5.8],[2.3,4.4],[1.0,1.9],[0.1,0.6])
C2	Single	([4.9,7.7],[2.0,3.6],[3.0,6.9],[1.0,2.5])
	Complete	([4.9,6.1],[2.0,3.0],[3.0,4.5],[1.0,1.7])
С3	Single	([7.7,7.9],[3.8,3.8],[6.4,6.7],[2.0,2.2])
	Complete	([5.6,7.9],[2.2,3.8],[4.3,6.9],[1.2,2.5])

Interpretation as a rule:

□ (sepallength \ge 4.3 AND sepallength \le 5.8 AND sepalwidth \ge 2.3 AND sepalwidth \le 4.4 AND petallength \ge 1.0 AND petallength \le 1.9 AND petalwidth \ge 0.1 AND petalwidth \le 0.6)

Results

- lacktriangle Clustering quality S reflects the mean scattering over the k clusters
- Purity P can be interpreted as classification accuracy under the assumption that all the objects of a cluster are classified to be members of the dominant class for that cluster.

$$S = \frac{1}{k} \sum_{i=1}^{k} \sqrt{\sum_{j=1}^{m} \sum_{l=j+1}^{m} d(x_{j}, x_{l})^{2}} \qquad P = \frac{1}{n} \sum_{i=1}^{k} \max_{j} (n_{i}^{j})$$

 Values of S and P for the traditional and conceptual dendrograms under complete and single linkage distances

Linkage distance	S _{Traditional} S _{Conceptual}		P _{Traditional}	P _{Conceptual}	
Single (d^s_L)	46.56	46.56	0.68	0.68	
Complete (d^c_L)	37.44	37.44	0.84	0.84	

Setting B

- If we use single linkage distance HDDC can produce different dendrograms
 - □ The new conceptual clustering does not undermine cluster quality when applied under single linkage.

Setting B

- Compare HDCC against the traditional version of the hierarchical clustering algorithm.
 - □ 100 artificial datasets by drawing points from k (k = 3) Gaussian distributions in \Re^2 . The centres are randomly located with a uniform distribution in [0,100] x [0,100].
 - □ Each dataset: 600 points (200 drawn from each of the 3 Gaussian distributions).
 - □ Four different experiments depending on the Gaussian distribution:
 - (i) av = 1 and sd in [0, 10] x [0, 10];
 - (ii) av = 1 and sd in[0, 200] x [0, 200];
 - (iii) av = 5 and sd in[0, 100] x [0, 100];
 - (iv) av = 5 and sd in [0, 200] x [0, 200].

Complete linkage distance

Single linkage distance

Results

■ The lower *S* is the better the clustering quality is.

	Trad. (i)	Conc. (i)	Trad. (ii)	Conc. (ii)	Trad. (iii)	Conc. (iii)	Trad. (iv)	Conc. (iv)
single	524,820	514,417	282,605	282,605	1830,421	1851,406	1607,842	1595,194
comp	285,622	285,622	282,605	282,605	1401,350	1401,350	1410,499	1410,499

There is no difference in clustering quality.

Conclusions and Future Work

- Hierarchical distance-based conceptual clustering provides an integration of hierarchical distance-based clustering and conceptual clustering.
 - New graphical representation (conceptual dendrogram).
- Generally, for complex datatypes (sequences, graphs, etc.), HDDC builds different dendrograms.
 - Some pairs of distances and generalisation operators are compatible at some degree resulting in equivalent, orderpreserving or acceptable conceptual dendrograms

Conclusions and Future Work

- With propositional data, and using the most common distances and generalisation operators the strongest properties hold
 - Integration of hierarchical distance-based clustering and conceptual clustering for propositional data is feasible.
 - □ Composability of tuples with complete linkage distance
- Our future work is focussed on finding operative pairs of distances and generalisation operators for common datatypes (graphs, sequences, etc..)

■ Thanks for your attention!

Questions?