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Motivation

� Two different approaches for machine 
learning

�Distance-based techniques

�Model-based techniques



Motivation

� Distance-based techniques

� Intuitive

�Do not provide a description about a decision 
made for an individual.

� Example: Clustering of molecules



Objectives

� Combine both approaches on the basis of agglomerative 

hierarchical distance-based clustering.

� Analyse the question:

� Are the elements in the clusters induced by a distance and the 

discovered patterns consistent?

� Are all the elements covered by a pattern close w.r.t. the 

underlying distance?



HDCC

� A first approach
� On the basis of the traditional algorithm

� Patterns are obtained either on-the-fly or as a post-process 
by using a n-ary generalisation operator.

Four examples of lists in (Σ*, d)
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HDCC

� A first approach
� Inconsistencies between the distance and the 

generalisation can arise.

The coverage of pattern p = aa∗
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HDCC

� Our approach: Hierarchical Distance-based 
Conceptual Clustering (HDCC)
� To overcome the inconsistency problem between the distance and the generalisation 

operator, HDCC performs at each iteration a coverage-reorganisation process.
� Merge the two closest clusters according to the linkage distance.
� Compute the pattern for the new discovered cluster using a pattern binary generalisation 

operator.

Traditional dendrogram Conceptual dendrogram

operator.
� Merge to the new discovered cluster all those clusters completely covered by the pattern.



Consistency between Distances 
and Generalisation Operators
� We can observed that:

� The dendrograms can differ considerably.

� The shape of a conceptual dendrogram depends on:
� the linkage distance dL between clusters;� the linkage distance dL between clusters;
� the distance d between elements in the metric space;
� the generalisation operators used. 

� The more similar the dendrograms are, the more consistent the distance and the 
generalisations are.

� We have defined different degrees of consistency between distances and 
generalisations on the basis of the similarity between a conceptual 
dendrogram and the traditional one. 

� Equivalent to the traditional dendrogram
� Order-preserving
� Acceptable



� A conceptual dendrogram is equivalent to the traditional dendrogram
if for each cluster C all its children are linked at the same distance l.

Consistency Levels
Equivalent Dendrograms

� Single linkage 
distance.

� Absolute difference.
� Closed intervals.



Consistency Levels
Order-preserving Dendrograms

� A conceptual dendrogram is order-preserving when the order in 
which its clusters are discovered is not swapped w.r.t. the traditional 
dendrogram.

For any node (C, p, l) in the tree T, any child is linked at a same � For any node (C, p, l) in the tree T, any child is linked at a same 
distance l, or it is linked by its pattern p at a linkage distance l’ lower 
than the linkage distance from any other cluster not covered by the 
pattern.



Consistency Levels
Acceptability Property

� A conceptual dendrogram is 
acceptable if it is the result of the use 
of an acceptable generalisation 
operator.
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Coperator.

� Dendrograms can differ significantly.

� Acceptable operators
� A pattern should not cover elements whose 

distances to the old elements are greater 
than the maximum distance between the 
old elements.
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Instantiation for Propositional 
Clustering

� Data are expressed in terms of instances 
and attributes.

� We analise the consistence of these � We analise the consistence of these 
datatypes:
�Numerical
�Nominal
�Tuples



Instantiation for Propositional 
Clustering

� Discrete Distance; User defined Distance.
� Generalisation: set union.

Nominal Data

� Generalisation: set union.
� Equivalent dendrograms.



Instantiation for Propositional 
Clustering

� Absolute Distance.
� Generalisation: minimum closed intervals.

Numerical Data

� Generalisation: minimum closed intervals.
� Equivalent dendrograms.



Instantiation for Propositional 
Clustering

� Distances:
� Manhattan: ∑
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Tuples

� Euclidean: 

� Chebysev:

� Weighted versions
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Instantiation for Propositional 
Clustering

� Generalisation:
� The generalisation of two tuples x and y is defined 

Tuples

as the tuple whose components are the 
generalisations of the respective components in x
and y

� Coverage is defined in a similar way.



Instantiation for Propositional 
Clustering

� Under the previous conditions:
� The composability property of the generalisation 

Tuples

can only be proved wrt. the complete linkage 
distance.



Experiments
Setting A

� Generalisation operators and distances for 
tuples that applied to HDCC under 
complete linkage distance produces 
equivalent conceptual dendrograms equivalent conceptual dendrograms 

�Now they provide a description of each cluster 
in the hierarchy.



Experiments
Setting A

� Iris Dataset.
�150 instances, 3 classes 

�HDCC: complete and single linkage

� Classes are not employed for learning



Experiments
Setting A

Pattern

C1
Single ([4.3,5.8],[2.3,4.4],[1.0,1.9],[0.1,0.6])

Complete ([4.3,5.8],[2.3,4.4],[1.0,1.9],[0.1,0.6])

� Clusters:

C2
Single ([4.9,7.7],[2.0,3.6],[3.0,6.9],[1.0,2.5])

Complete ([4.9,6.1],[2.0,3.0],[3.0,4.5],[1.0,1.7])

C3
Single ([7.7,7.9],[3.8,3.8],[6.4,6.7],[2.0,2.2])

Complete ([5.6,7.9],[2.2,3.8],[4.3,6.9],[1.2,2.5])

� Interpretation as a rule:
� (sepallength ≥ 4.3 AND sepallength ≤ 5.8 AND sepalwidth ≥ 2.3 AND 

sepalwidth ≤ 4.4 AND petallength ≥ 1.0 AND petallength ≤ 1.9 AND 
petalwidth ≥ 0.1 AND petalwidth ≤ 0.6)



Experiments
Results

� Clustering quality S reflects the mean scattering over the k clusters
� Purity P can be interpreted as classification accuracy under the 

assumption that all the objects of a cluster are classified to be 
members of the dominant class for that cluster.

� Values of S and P for the traditional and conceptual dendrograms 
under complete and single linkage distances
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Linkage distance STraditional SConceptual PTraditional PConceptual

Single (dsL) 46.56 46.56 0.68 0.68

Complete (dcL) 37.44 37.44 0.84 0.84



Experiments
Setting B

� If we use single linkage distance HDDC 
can produce different dendrograms 

�The new conceptual clustering does not 
undermine cluster quality when applied under 
single linkage.



Experiments
Setting B

� Compare HDCC against the traditional 
version of the hierarchical clustering 
algorithm. 
� 100 artificial datasets by drawing points 

from k (k = 3) Gaussian distributions in ℜ2. 
The centres are randomly located with a 
uniform distribution in [0,100] x [0,100]. 

Complete linkage distance

uniform distribution in [0,100] x [0,100]. 

� Each dataset: 600 points (200 drawn from
each of the 3 Gaussian distributions).

� Four different experiments depending on 
the Gaussian distribution:

� (i) av = 1 and sd in [0, 10] x [0, 10] ; 
� (ii) av = 1 and sd in[0, 200] x [0, 200];
� (iii) av = 5 and sd in[0, 100] x [0, 100]; 
� (iv) av = 5 and sd in [0, 200] x [0, 200].

Single linkage distance



Experiments
Results

� The lower S is the better the clustering quality is.

� There is no difference in clustering quality.

Trad.

(i)

Conc.

(i)

Trad. 

(ii)

Conc.

(ii)

Trad.

(iii)

Conc.

(iii)

Trad.

(iv)

Conc.

(iv)

single 524,820 514,417 282,605 282,605 1830,421 1851,406 1607,842 1595,194

comp 285,622 285,622 282,605 282,605 1401,350 1401,350 1410,499 1410,499



Conclusions and Future Work

� Hierarchical distance-based conceptual clustering 
provides an integration of hierarchical distance-based 
clustering and conceptual clustering.

� New graphical representation (conceptual dendrogram).

� Generally, for complex datatypes (sequences, graphs, 
etc.), HDDC builds different dendrograms.

� Some pairs of distances and generalisation operators are 
compatible at some degree resulting in equivalent, order-
preserving or acceptable conceptual dendrograms 



Conclusions and Future Work

� With propositional data, and using the most 
common distances and generalisation operators 
the strongest properties hold 
� Integration of hierarchical distance-based clustering 

and conceptual clustering for propositional data is and conceptual clustering for propositional data is 
feasible.

� Composability of tuples with complete linkage distance

� Our future work is focussed on finding operative 
pairs of distances and generalisation operators for 
common datatypes (graphs, sequences, etc..)



� Thanks for your attention!

� Questions?


