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Abstract and Keywords 
 

This work is devoted to the formal study of inductive and deductive concept 
synthesis usefulness and aftermath in terms of information gain and reinforcement 
inside inference systems. The set of measures which are introduced allow a detailed 
and unified analysis of the value of the output of any inference process with respect 
to the input and the context (background knowledge or axiomatic system). 

Although the main measures, computational information gain, reinforcement and 
intensionality, are defined independently, they (alone or combined) make it possible 
to formalise or better comprehend several notions which have been traditionally 
treated in a rather ambiguous way: novelty, explicitness/implicitness, 
informativeness, surprise, interestingness, plausibility, confirmation, 
comprehensibility, ‘consilience’, utility and unquestionability. 

Most of the measures are applied to different kinds of theories and systems, from 
the appraisal of predictiveness, the representational optimality and the axiomatic 
power of logical theories, software systems and databases, to the justified evaluation 
of the intellectual abilities of cognitive agents and human beings. 

 

Keywords: Inference Processes, Evaluation Measures, Induction, Deduction, Information, 
Kolmogorov Complexity, Reasoning, Inference Paradox, Information Gain, Inference Confirmation, 
Reinforcement, Intensionality, Measurement of Cognitive Abilities, Evaluation of Logical Theories, 
Knowledge-Based Systems, Machine Learning, Inductive Logic Programming, Intensionality. 
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Resumen y Palabras Clave 
 

Esta tesis se centra en el estudio formal de la utilidad y resultados de la síntesis de 
conceptos inductivos y deductivos en términos de ganancia de información y 
refuerzo en sistemas de inferencia. El conjunto de medidas que se introducen 
permiten un análisis detallado y unificado del valor del resultado de cualquier proceso 
de inferencia con respecto a la entrada y el contexto (conocimiento previo o sistema 
axiomático). 

Aunque las medidas más importantes, ganancia computacional de información, 
refuerzo e intensionalidad, se definen de manera independiente, permiten (solas o 
combinadas) formalizar o comprender mejor varias nociones que han sido tratadas 
tradicionalmente de una manera bastante ambigua: novedad, la diferencia entre 
explícito e implícito, informatividad, sorpresa, interés, plausibilidad, confirmación, 
comprensibilidad, ‘consiliencia’, utilidad e incuestionabilidad. 

La mayoría de las medidas se aplican a diferentes tipos de teorías y sistemas, desde 
la estimación de la capacidad de predicción, la optimalidad de representación, o el 
poder axiomático de teorías lógicas, sistemas software y bases de datos, hasta la 
evaluación justificada de las habilidades intelectuales de agentes cognitivos y seres 
humanos. 

 

Palabras Clave: Procesos de Inferencia, Medidas de Evaluación, Inducción, Deducción, 
Información, Complejidad Kolmogorov, Razonamiento, Paradoja de la Inferencia, Ganancia de 
Información, Confirmación de la Inferencia, Refuerzo, Medición de Capacidades Cognitivas, 
Sistemas Basados en el Conocimiento, Aprendizaje Computacional, Programación Lógica 
Inductiva, Intensionalidad. 
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Extended Abstract 
This work introduces several evaluation measures which are applicable, in a 
consistent and effective way, to different inference processes. In particular, these 
measures are established through two main tools: 

• The theory of Kolmogorov Complexity, and especially Levin’s space-time 
variant, allow the definition of a measure of information gain which depends 
on the effort that has been invested in any given inference process. 

• The theory of reinforcement, understood as the propagation of truth or 
certainty degrees from some statements to others, makes it possible to define a 
theory of confirmation which includes in a quantitative way both deductive 
and inductive confirmation. 

Both tools are not (strictly) semantical, and it is precisely this fact which allows the 
measurement of different dimensions which have not been tackled successfully to 
date from purely semantical approaches: informativeness, plausibility, ‘consilience’, 
intensionality, intelligibility and utility. 

The first part of this thesis is based on the fact that processes that are apparently 
so unlike as induction and deduction can be explained in a computational framework 
as inference processes that both generate an output from an input. Obviously, they 
must observe different criteria or restrictions, which have been widely studied in 
philosophy of science and mathematical logic, respectively. In this computational 
framework, both processes are regarded as non-omniscient processes, i.e., resource-
demanding processes. Levin’s variant, which weighs the additional amount of 
information and computational time which is required to perform an inference, is 
used to define a single gain measure of that inference. 

The leading results are obtained by applying the gain measure in an equally 
clarifying and unifying way to both inductive and deductive processes. In the case of 
induction, the information gain represents how informative the hypothesis is with 
respect to the observations, in Popper’s sense, and it is compared with other 
evaluation criteria for induction, mainly simplicity. In the case of deduction, 
information gain also represents how much informative the conclusion is from the 
premises, which establishes a generic measure of the gain obtained whenever an 
explicit knowledge is extracted from an implicit knowledge. In fact, this represents a 
generalisation of Hintikka’s notions of surface and depth information for first-order 
logic. 

Apart from its unifying and explanatory power, the measure of information gain 
which is presented, although computable, is, as expected, computationally intractable, 
and it is not directly applicable to concrete systems. Accordingly, a more efficient and 
detailed measure is introduced, based on the reinforcement or use of the components 
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of an inductive theory or axiomatic system. Reinforcement represents a measure of 
the confirmation of a theory, which includes the propagation of confirmation by 
deductive and inductive inference (thus giving a measure of plausibility or utility, 
too). Moreover, reinforcement is easy to compute and it is positively related to 
information gain. 

Another connection is established between the idea of implicitness and the notion 
of intensionality of a description. It is shown not only that extensional definitions 
have no gain at all but also that intensional definitions, the latter understood as 
definitions without exceptions, have a great probability of showing a high 
information gain. Moreover, the theory of intensionality allows the formalisation of 
the idea of comprehension, and helps to make the difference between descriptive 
induction and explanatory induction, the latter requiring that all the evidence should 
be ‘consiliated’ by the theory, by avoiding exceptions or extensional cases. 

The previous measures are particularised for logical theories and are compared 
with other measures in the literature, especially the Minimum Description Length 
(MDL) principle. It is shown that the measure of reinforcement is more detailed and 
comprehensive. Furthermore, it is more robust, because it avoids the problem of 
induction for finite and random evidences, where the MDL principle suggests the 
evidence itself and, consequently, nothing is learnt. 

The non-omniscient view of inference processes makes it possible to relate the 
computational capability of a rational agent with several inference problems. More 
precisely, the difficulty of an instance (or problem) can be defined in terms of the 
information gain from the problem to the solution and the intrinsic complexity of 
the solution. A comprehension test is then devised, and correlates, at the sight of 
results, with classical psychometric tests, representing a formal and non-
anthropomorphic alternative to the Turing test.  

Finally, several applications of information gain and reinforcement are shown for 
other inference processes such as abduction or analogy, and many others are 
sketched for artificial intelligence and computer science: rational agents with limited 
resources, knowledge-based systems, and knowledge discovery in databases.  

All in all, the most important result of this work is an operative clarification of the 
relationship between the notions of inference, information and confirmation. As a 
conclusion, the view of induction and deduction as inverse processes in terms of 
information gain is definitively dismissed for non-omniscient systems and for agents 
with limited-resources, human beings and computers included among them. 
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Resumen Extendido 
Esta tesis introduce varias medidas de evaluación que son aplicables, de una manera 
consistente y efectiva, a diferentes procesos de inferencia. En particular, dichas 
medidas se establecen a partir de dos herramientas fundamentales: 

• La teoría de la complejidad de Kolmogorov, en especial, la variante de Levin 
espacio-temporal, permite definir una medida de ganancia de información que 
depende del esfuerzo que se haya invertido en cualquier proceso de inferencia. 

• La teoría del refuerzo, entendida como propagación del grado de verdad o 
certeza de unos enunciados a otros, permite definir una teoría de la 
confirmación que incluye de una manera cuantitativa tanto la confirmación 
deductiva como la confirmación inductiva. 

Ambas herramientas no son semánticas, y es precisamente este hecho lo que permite 
medir con éxito diferentes dimensiones que no han sido bien abordadas hasta ahora 
desde aproximaciones puramente semánticas: informatividad, plausibilidad, 
‘consiliencia’, intensionalidad, inteligibilidad y utilidad. 

La primera parte de esta tesis se basa en el hecho de que procesos aparentemente 
tan diferentes como son inducción y deducción pueden explicarse en un marco 
computacional como procesos de inferencia que generan una salida a partir de una 
entrada, y que deben cumplir ciertos criterios o restricciones, ampliamente estudiados 
en filosofía de la ciencia y en lógica matemática, respectivamente. En este marco 
computacional, ambos se pueden ver como mecanismos no omniscientes, es decir, 
procesos que consumen recursos. La variante de Levin que pondera la cantidad de 
información adicional para llevar a cabo la inferencia y el tiempo computacional 
empleado en ella, es utilizada para definir una medida única de la ganancia de dicha 
inferencia. 

Los primeros resultados se obtienen al aplicar dicha medida de manera igualmente 
clarificadora y unificadora tanto en procesos inductivos como deductivos. En el caso 
de la inducción, la ganancia de información representa cuán informativa es la 
hipótesis respecto a las observaciones, en el sentido de Popper y se compara con 
otros criterios de evaluación de teorías inductivas, principalmente el de simplicidad. 
En el caso de la deducción, la ganancia de información también representa cuán 
informativa es la conclusión a partir de las premisas, estableciendo una medida 
genérica de la ganancia obtenida al extraer un conocimiento explícito a partir de un 
conocimiento implícito, tal como fuera apuntado por Hintikka con las nociones de 
información superficial y profunda para la lógica de primer orden. 

Aparte de su poder unificador y explicativo, la medida de ganancia de información 
que se presenta, aunque computable, es, como era de esperar, intratable 
computacionalmente, y no es aplicable directamente a sistemas concretos. Por esta 
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razón se introduce una medida más eficiente y detallada, basada en el refuerzo o uso 
de los componentes de una teoría inductiva o de un sistema axiomático. Aunque el 
objetivo inicial, como se ha apuntado antes, es proporcionar una medida de 
confirmación de una teoría que incluya la propagación de la confirmación por 
inferencia deductiva o inductiva, dicha medida se relaciona positivamente con la 
ganancia de información. 

Por último, se establece la conexión entre la idea de conocimiento implícito y la 
noción de intensionalidad de una descripción, mostrando no sólo que las definiciones 
extensionales tienen ganancia cero sino que las definiciones intensionales, entendidas 
éstas como definiciones sin excepciones, tienen gran probabilidad de tener ganancia 
de información alta. Además, la teoría de la intensionalidad permite formalizar la idea 
de comprensión, y ayuda a diferenciar entre inducción descriptiva e inducción 
explicativa, requiriendo ésta última que todas las observaciones sea ‘consiliada’ por la 
teoría, evitando excepciones o casos extensionales. 

Las medidas anteriores se particularizan para teorías lógicas y se comparan con 
otras medidas de la literatura, especialmente el principio de la descripción de longitud 
mínima (MDL), y se muestra que la medida de refuerzo es más detallada y 
comprensiva. Asimismo, es más robusta, ya que evita los problemas de inducción 
para evidencias finitas y aleatorias, donde el principio MDL sugiere la evidencia 
misma, no dando así ninguna explicación para la evidencia y, más aún, no 
aprendiendo nada. 

La visión de los procesos de inferencia como no omniscientes permite relacionar 
la capacidad computacional de un agente racional con diversos problemas de 
inferencia. En particular, se define de una manera formal la dificultad de una 
instancia (o problema) a partir de la ganancia de información desde el problema a la 
solución y la complejidad intrínseca de la solución. Esto permite realizar tests de 
comprensibilidad, que correlan, a la vista de los resultados, con los clásicos tests 
psicométricos y suponen una alternativa formal no antropomórfica al test de Turing.  

Finalmente, se muestran diversas aplicaciones de la ganancia de información y el 
refuerzo a otros procesos de inferencia como la abducción o la analogía, y se esbozan 
otras muchas en el campo de la inteligencia artificial y la computación, desde los 
agentes racionales con recursos limitados, los sistemas software basados en el 
conocimiento, hasta el campo de “descubrimiento automático de conocimiento” en 
bases de datos.  

En definitiva, el resultado más importante de esta tesis es el esclarecimiento de la 
relación entre las nociones de inferencia, información y confirmación. Como 
conclusión, la visión de inducción y deducción como procesos inversos en términos 
de ganancia de información se descarta definitivamente en sistemas no omniscientes 
y de recursos limitados, entre ellos los seres humanos y las computadoras. 
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Certa amittimus, dum incerta petimus1 

Plauto, II century BC, Pseudolus, 685 

 

 

 

 

 

  

 

Abstract: This chapter introduces the motivations for this work, by realising some problems that 
pervade the conception of inference processes, mostly their joint interpretation in terms of information 
and plausibility, or its traditional view as inverse processes derived by Carnap’s probabilistic 
calculus. Some precedents that recognise these problems, mainly the deductive inference paradox and 
Popper-Miller’s argument, and some partial solutions, such as Hintikka’s distinction between depth 
and surface information, are discussed. New tools, such as Kolmogorov Complexity, especially 
Levin’s space-time variant, are required to account for non-omniscient deduction, where the effort of 
any inference, either deductive or inductive, would be recognised. Moreover, a constructive extension of 
a theory of reinforcement could also address the confirmation problem of both inductive and deductive 
inference. These non-strictly semantic tools also centre the scope of this work. Hence, the concrete aims 
are given by the measurement of different dimensions under this machinery: informativeness, 
plausibility, consilience, intensionality, intelligibility and utility. The end of the chapter includes an 
overview of each of the chapters, and some necessary notation. 
 

Keywords: Evaluation Measures, Inference Processes, Induction, Deduction, 
Semantic Information, Kolmogorov Complexity, Reasoning, Inference Paradox.

                                                           
1 We abandon the certain for seeking the uncertain. 
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1.1 Introduction 

Reasoning involves different inference processes. Logic has traditionally studied 
deduction from a semantic point of view, according to completeness and correctness, 
devoted to ascertain which inference rules and conclusions are sound. Induction, 
however, is a quite different matter. For any sufficient expressive language, there are 
infinite valid hypotheses for any given evidence. The main and pristine question of 
induction has always been the establishment of hypotheses selection criteria, either 
epistemological or methodological. Plausibility (or likeliness), utility, 
comprehensibility and informativeness have been the most vindicated criteria, 
although they can all be understood in many different (even contradictory) ways. 
These measures have been adapted and applied to other hypothetical inference 
processes, such as abduction and analogy, but rarely addressed as fundamental issues 
for deduction. The reason is quite simple: a theorem prover is not intended to rate its 
theorems, it must only state which formulae are theorems and which are not. 

However, reasoning is much more than theorem proving, much more than 
inductive generalisation and much more than abduction, analogy and other partial 
inference processes. And it is much more than the sum of all of them. If we can 
combine consistently and profitably different inference processes, we will enlarge the 
power and applications of the separate advances in different fields of logic, 
philosophy of science, artificial intelligence, automated reasoning and machine 
learning that have taken place in the last half of the XXth century. This would allow 
that the progress in these different areas would be applied to make intelligent 
systems, capable of acquiring and deriving new knowledge. 

The subject of this work is the unified evaluation of inference processes, under 
different dimensions, mainly plausibility, utility, comprehensibility and 
informativeness. The interest and extension of this work will be devoted to those 
pairs (dimension, process) which lack appropriate measures. On the other hand, in 
the case an existing theory accounts for a given pair of dimension and inference 
process, it will be referred, as the case of plausibility for monotonic and non-
monotonic deduction. 

For such a study it is necessary to evaluate the contribution of each inference, in 
order to invest resources towards useful and valuable results. The result of an 
inference process, in many cases, is a (new) concept, assertion or fact (as a simple 
hypothesis, a theorem or property, a proof, a whole (or part of a) theory, a change of 
confirmation degree...). A concept may appear in all its varieties, including necessary, 
auxiliary, inductive and synthetic concepts. Apart from a proper concretisation of the 
term ‘concept’ (determining different approaches depending on the representation), 
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it is first required to settle on such fundamental issues as deduction, induction, 
information and complexity, as they are known to date. 

Different tools will be used in this work, which will also determine its scope. The 
first necessary tool is a universal and independent measure of information, which 
could be used for both induction and deduction. This measure of information is 
represented by Kolmogorov Complexity. Since the appearance of the idea of the 
shortest algorithmic description for a given object in the sixties, the theory has been 
successfully applied to fundamental areas of mathematics, computer science, artificial 
intelligence, physics and philosophy of science. To our concern, Kolmogorov 
Complexity has addressed fundamental problems of statistics, induction, information 
and complexity. However, little work has been done to address two important topics: 
representation and deduction. Representation issues have been neglected due to the 
invariance theorem (i.e. any universal machine can emulate any other universal 
machine with a constant additional space and time cost) and the process of 
deduction has been usually forgotten because the absolute version of Kolmogorov 
Complexity, denoted by K(x) and defined in section 1.5, does not consider the time 
of computation. 

As we will see, many insights can be drawn about information transformation, be 
it inductive or deductive, by using as theoretical tools the absolute Kolmogorov 
Complexity K(x) and, especially, Levin’s version, denoted by Kt(x) and also defined in 
section 1.5, which weighs space and time. Derived concepts from K and Kt will allow 
to account for some dimensionalities: informativeness, comprehensibility, and, 
partially, plausibility. 

The other important tool is the idea of reinforcement, well-known in psychology 
and machine learning but under-exploited in theoretical and philosophical 
considerations. The idea can be found in a philosophical context by many 
empiricists, and concretely Quine’s “empiricism without dogmas” [Quine 1953], 
where any conflict with experience on the periphery of knowledge entails 
readjustments in the inner parts of the field: truth values must be re-distributed 
between some of the previous statements. The idea of propagation, later on 
exploited by artificial neural networks, is clearly stated by him: “Once the values are re-
distributed among some statements, it is also necessary to re-distribute the values of other statements 
which can be logically connected with the first (...)” [Quine 1953]. 

Although the idea of a propagation of confirmation from the outer part of 
perception to the inner part of cognition has been successful for artificial neural 
networks, it has not been extended to more constructive and expressive frameworks. 
The reason may possibly be found in that a direct use of reinforcement for 
constructive representational languages leads to paradoxes since it is possible to add 
fantastic concepts which are used for the rest of a theory, and reinforcement of the 
whole theory is increased in a tricky way. This problem will be solved in chapter 5, as 
a point in between Hempel’s quantitative and Carnap’s qualitative solutions to the 
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problem of inference confirmation, so triggering many different applications2 that 
were handicapped by this paradox. 

1.2 Motivation and Precedents 

Traditionally, induction and deduction have been seen as complementary inference 
processes. However, during the last half of the XXth century, induction has 
frequently been seen as the inverse of deduction, in terms of information gain, i.e., 
induction increases information and deduction decreases it. This view was 
axiomatised by Carnap, who formalised in the fifties [Bar-Hillel and Carnap 1953] 
Popper’s notion of semantic information, informally introduced in the thirties, as a 
counterpart to statistical information, represented by Shannon’s mathematical theory 
of communication.  

Semantic Information was defined as the negative logarithm of the probability as 
given by Carnap’s Probabilistic Interpretation of First-Order Predicate Calculus. It 
has the following well-known properties: 

p( 
_
||||                 ) = 0 

p(   ⊥  ) = 1 

p(P ∧ Q) = p(P ∩ Q) 

p(P ∨ Q) = p(P ∪ Q) 

p(¬P) = 1 − p(P) 

p(P) ≤ p(Q) if P |= Q 
 

From the very beginning the difficulties to harmonise semantic information and 
statistical information theory were shown clearly. As we will comment later, Hintikka 
(see for instance [Hintikka 1970a]) introduced the difference between surface and 
depth information in order to establish the intuitive fact that both deduction and 
other truth-preserving processes (such as the introduction of auxiliary concepts) 
could as well generate information, improve the utility and manageability of the 
deductive system by changing syntax while preserving its semantics. 

Without any note related to Hintikka’s work, the justification of induction which 
is used in the field of Inductive Logic Programming (ILP) (see e.g. [Muggleton 1996], 
resorts to “Shannon’s information theory” for introducing, without more discussion, 
the usual assignment I(P) = −log p(P). From here, if P |= Q, then we have, from the 
                                                           
2 Utility is not directly addressed by reinforcement but what I will show in chapter 5 is that 
reinforcement can be used for utility if actions are also considered to be reinforced. Even more, 
reasoning actions can also be reinforced, and this makes it possible for improving the reasoning 
abilities of a system.  
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last property of Carnap’s Probabilistic Calculus, that p(P) ≤ p(Q). By using this 
assignment we have that I(P) ≥ I(Q), i.e., the premise must have more information 
than the consequence.  

After this rationale, the popular assertion “deduction loses information and induction 
increases it” seems compelling. However, this restricted view of information precludes 
any possibility of deduction as a useful, valuable process, known as the inference 
paradox, which I will discuss below. But even more, Shannon’s information theory 
has been substituted by the more general and accurate view of information, 
Descriptional or Kolmogorov Complexity, making popular the Minimum 
Description Length (MDL) principle for induction. The MDL principle, a 
formalisation under information theory of Occam’s razor, chooses the theory which 
minimises I(T | E) with T being the hypothesis and E the data. Since the evidence is 
correct, I(E) = 0, and taking logarithms to Bayes’ rule we have: 

 

 I(T | E) = I(T) + I(E | T) 
 

In this moment, I(x|y) is sometimes [Muggleton et al. 1992] [Muggleton and Page 
1994] computed by its Kolmogorov Complexity K(x|y), i.e., the minimum encoding 
of T.  The result is that the shorter the hypothesis with respect to the data, the more 
likely. Although this usually works for logic programs, we have a very 
counterintuitive result of using K(x) instead of I(x): deduction increases length and 
induction decreases length. Thus the length (or K(x)) cannot be a good 
approximation to the intuitive idea of information according to Carnap. This seems 
to comply with Popper in his denial of an objective measure for information.  

The roots of these problems, however, can be found in the view of deduction as 
an omniscient, complete and perfect process, which leads to the inference paradox and, 
as a consequence, the inductive paradox (or impossibility of inductive probability), also 
known as the scandal of deduction [Hintikka 1973] and the scandal of induction 
(advocated by Hume), respectively. 

Let us see first the inductive paradox. Popper and Miller started a vigorous debate 
(see [Mura 1990] for an extensive account) on the relationship between deductive 
relations and probabilistic support with their paper A Proof of the Impossibility of 
Inductive Probability [Popper and Miller 1983]. Popper and Miller made the claim that 
any positive probabilistic support of evidence e for a hypothesis h, as measured by 
s(h,e) = p(h,e) − p(h) is due solely to deductive relations (properly understood) 
between e and h. An immediate corollary is that inductive (i.e. non-deductive) 
probabilistic support does not exist. In other words, Popper and Miller claim that all 
probabilistic support is deductive. 

Their argument is based on an omniscient view of logic, i.e., complete: “we find 
that what is left of h once we discard from it everything that is logically implied by e, 
is a proposition that in general is counter-dependent on e” [Popper and Miller 1983]. 



6 José Hernández Orallo - Doctoral Dissertation 

 6 

Let us see this result by using elementary logic, directly from [Cussens 1998]: 

Definition 1.1  For any proposition b, Cn(b) is the class of all consequences of b 
which are not logical truths. Cn(b) = {x: b |= x and  |≠ x }. 

Definition 1.2  Two propositions, a and b, are deductively independent if and 
only if Cn(a) ∩ Cn(b) = ∅. Otherwise they are deductively dependent. 
 

Lemma 1.1  For any two propositions a and b, Cn(a) ∩ Cn(b) = Cn(a ∨ b). 

PROOF.  

 x ∈ Cn(a) ∩ Cn(b)  ⇔ a |= x, b |= x, |≠ x 

  ⇔ |=  ¬a ∨ x, |= ¬b ∨ x, |≠ x 

  ⇔ |=  (¬a ∨ x) ∧ (¬b ∨ x), |≠ x 

  ⇔ |= (¬a ∧ ¬b) ∨ x, |≠ x 

  ⇔ |= ¬(a ∨ b) ∨ x, |≠ x 

  ⇔ a ∨ b |= x, |≠ x 

  ⇔ x ∈ Cn(a ∨ b)  � 
 

Corollary 1.2  For any two propositions a and b, a and b are deductively 
independent if and only if |= a ∨ b , i.e., (a ∨ b) is a logical truth. 

PROOF.  Using Lemma 1.1, Cn(a) ∩ Cn(b) = ∅ ⇔ Cn(a ∨ b) = ∅ � 

 

Corollary 1.3  b is deductively independent of a if and only if ¬a |= b. 

PROOF. |= a ∨ b ⇔ ¬a |= b. The result follows immediately from Corollary 1.2 and 
Definition 1.2. � 

 

There are two problems with Popper-Miller’s focus on pure inductive support. 
Firstly, for the dependence between a and b to be purely inductive, it apparently has 
to be the case that a and b are deductively independent, but this is equivalent to 
having ¬a |= b. So, if the dependence between a and b is purely inductive, the 
deductive dependence between ¬a and b has to be maximal. This connection 
between pure inductive dependence and deductive consequence shows that it is not 
possible to define a notion of purely inductive dependence, which is free from 
deductive contamination3. 

                                                           
3 It is remarkable to see that, from the descriptional point of view, i.e. K(x), deductive dependence and 
independence are extremely close, namely a |= b and ¬a |= b. 
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As [Cussens 1998] points out “However, there seems no reason to suppose that inductive 
(i.e. ampliative) inference should not be deductively contaminated. There can be a relation between 
deduction and induction, without the two types of inference being equivalent, or one reducible to the 
other. In fact, I take the investigation of this relation by Popper and Miller to be the most useful 
contribution made by the Popper-Miller argument”. 

This clearly neglects the modern view of induction and deduction as inverse 
inference processes. Even more, “any notion of ‘induction’ as a sort of complement to 
deduction seems untenable” [Cussens 1998]. 

A more proper conception is based on the idea that deduction preserves 
semantics whereas induction amplifies it, so in this way they can be very different 
processes but not exactly inverse. The paradox also arises when these two main 
inference processes are evaluated in terms of knowledge. Simplistically, the role of 
acquiring new knowledge is left to induction whereas deduction is just used to 
retrieve this knowledge when necessary (the deductive database viewpoint).  

But whoever has some original view of deduction, namely some non-omniscient 
view of deduction (such as any who has worked on automated deduction or has 
practised mathematics), knows well that many deductive inferences give us much 
information inside the same axiomatic system, without changing the model (or set of 
inferable facts). Even more, this information is worth enough being ‘remembered’ or 
maintained explicitly. 

As it has been said, the problem of deduction is derived from the classical 
“inference paradox”, mainly indicated by Mill (he is not the first to insinuate the 
problem but the classical source of the discussion), also recognised as the main 
unsolved problem for the justification of deduction by [Dummett 1973] and 
expressed in these terms by [Cohen and Nagen 1935]: “if the conclusion of an inference is 
not contained in the premises, it cannot be valid; and if it is not different from them, it is useless; 
however, the conclusion cannot be contained in the premises and be at the same time novel; 
consequently, inferences cannot be both valid and useful.” 

Both the inductive paradox and the inference paradox are motivated by the 
thought that deduction is omniscient while induction is not. Two escapes are 
possible. The first one is to consider both deduction and induction omniscient, 
which would mean that reasoning is useless and the only increase of information can 
be given by perception. The second possibility is much more conspicuous: to 
consider both deduction and induction as imperfect or incomplete inference 
processes which require some effort, and, consequently, they are valuable because 
they help to make explicit what was implicit. 

The main idea of this thesis is to consider information and use dependence instead 
of deductive dependence. Nonetheless, information dependence cannot be used in 
an absolute (time independent) way as it is given by absolute Kolmogorov 
Complexity. Namely, if we have a |= b then K(b | a) = 0 (unless b is a subset of all the 
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consequences of a), however K(a | b) is usually greater then 0. In other words, if time 
is not considered (omniscient deduction) the classical result is obtained once again: 
deduction does not give information and induction can provide it. The things change 
radically if we consider the same relation using time-space variants of K. That is to 
say, if we consider Levin’s Kt, we have that both Kt(b | a) and Kt(a | b) can be greater 
than 0, because if the deductive system has limited resources, it has not omniscience 
or it is incomplete, the deductive inference of b from a can provide information as 
well, depending on how explicit a |= b is in the system. 

For the case of use dependence, valid and interesting inferences help to shorten 
proofs and are useful to compact a theory or make it more comprehensible. For 
instance, consider a |= b and c |= d. The discovery of the following deductive 
connections a,c |= e, e |= b and e |= d is valuable because both b and d can be derived 
only from e and this derivation could be much easier. Consider now a |= c and b |= c. 
The discovery of the inductive concept d such that d |= a and d |= b is valuable because 
both a and b are a consequence of d, and this d may help to explain both facts or to 
unify the evidence. Although induction has recognised this gain, it is deduction 
which still lacks a general and widely accepted account of deductive informativeness 
and novelty, despite the fact there are some fields of artificial intelligence which 
urgently demand such an assessment. 

The first field which requires measurements of information gain is automated 
reasoning, or more properly, automated theorem proving (ATP), which is highly 
interested in avoiding useless inferences and maintaining explicit those properties 
that can be useful to find a proof of a theorem. 

The second field is more related with artificial intelligence, and is known as 
bounded-rationality, in the search of deduction methods which are efficient and 
where the cost of a deductive inference is recognised as an important factor which 
should be minimised, by many different means, such as avoiding the re-derivation of 
useful and common facts which are costly to derive from the axioms. A rational 
system is seen in a dynamical way [Girard et al. 1989], distinguishing what is 
potentially derivable (i.e. provable), what is feasibly derivable, and what is explicitly 
known in a given situation. 

Finally, in my opinion, there is a heritage in Philosophy and a practice in Artificial 
Intelligence of studying deduction and induction in a separate way. As we have seen, 
many works are untenable when they are contrasted with the deductive/inductive 
counterpart in terms of information. So it seems attractive to study a possible 
‘conciliation’ among induction, deduction, use and information. In particular, a clear 
account of knowledge and representation shifts via conceptualisation is not possible 
if the previous question is not clarified first. 

Although the view of omniscient deduction still pervades many philosophical 
investigations about the relation between induction and deduction, there are, of 
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course, some precedents. Different non-semantic evaluation measures for deduction 
and induction have been introduced in the literature. However, they have almost 
always been studied separately. 

Surely, it is induction which has introduced more evaluation criteria, motivated by 
the problem of the justification of induction. From the point of view of plausibility, 
many selection criteria have been advocated. Simplicity, exemplified by Occam’s razor 
and its modern formalisation as the Minimum Description Length (MDL) principle is 
the most vindicated and successful one, because it is both a plausibility and 
methodological criterion. Other related criteria are cross-validation, maximum 
likelihood estimators (MLE) according to a selected prior, generality, specificity, 
explanatory power, etc. Some of them will be reviewed in the next chapter. 

In general, if we consider a concept as a new creation (either as a result of and 
inductive, abductive, analogical or deductive process) one must distinguish some 
main characteristics of that concept4. 

According to hardness, many subjective and informal distinctions have been 
presented between hard and easy concepts. Basically, a concept is hard if the 
disjuncts of the concept to be obtained are “spread out” in the instance space, but it 
can yet be formulated with the given features [Kramer 1995]. On the contrary, easy 
concepts are those that can be secured even by simple reasoners [Holte  1993]. 

According to necessity, [Ling 1991] distinguishes informally between accessory or 
useful concepts, which are not crucial but help to compress or better express a 
theory, and necessary, i.e., concepts that make it possible to learn or define a given 
concept. The first ones can only improve the form of the solutions but the latter can 
be necessary to find the solution. 

According to nature [Kramer 1995] we can distinguish among extensional and 
intensional. Extensional concepts, often known as features, are defined as an 
extensional definition of a set. On the contrary, intensional concepts are defined as a 
comprehensive property or function for them. A finer division may be established 
between intensional concepts with and without recursion. Concepts without 
recursion can be intensional, but just if they are derived or defined from other 
concepts. [Thagard and Nowak 1990] call them concept combinations. On the other 
hand, recursive concepts are usually intensional: they are derived concepts such that 
in the definition the concept itself appears directly or indirectly. The connection 
between recursive concepts and necessary concepts has been studied in logic5 and 
also in machine learning [Stahl 1995], and some authors [Ling 1991] state that they 
are the only ones that are necessary. 
                                                           
4 It is relevant to highlight that if one allows definition rules in a deductive system, one may observe 
the similarities between learning a concept (which can be identified as an induction) and defining a 
new concept from other (which can be identified as a usual deductive task). 
5 Frege was the first to clarify the notion of concept invention in formal theories, with its informal 
explanation of the difference trivial and non-trivial definitions in logic and mathematics. 
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A last additional aspect is the comprehensibility of induced concepts (generally, 
referred to humans) and this is not the same as compressibility or syntactical 
simplicity (although sometimes elegance has been seen as a unified term for both 
comprehensibility and simplicity [Quine 1953] [Chaitin 1998]), as [Kramer 1995] 
points out “[...] comprehensibility and syntactical complexity might be correlated, but surely are 
not the same.” 

Despite all this variety, only plausibility criteria have been formalised in a 
convenient way. Hardness, necessity, nature and comprehensibility have generally 
been studied in an informally and usually unrelated way. 

For the case of deduction, the scene is still worse. Deduction has traditionally 
lacked from this interest, and logic has mainly been devoted to ascertain the 
correction of a deductive inference, its semantic validity, its completeness, and not its 
practical or informational value. Even epistemic and modal logics have almost always 
(see e.g. [Duc 1997]) taken logical omniscience for granted. Apart from Hintikka’s 
approach,  only recently has there been a renewed interest about the evaluation of 
deductive inference, precisely in the fields of automated theorem proving and 
bounded rationality seen before. It is then compelling to recognise the importance of 
auxiliary concepts in a formal framework and state in a clear way that deduction can 
also increase information. An expected question to this urgency is whether we are in 
a better situation now to address this problem than some decades ago.  

Since the time Hintikka tried to clarify the paradoxes of induction and deduction 
in terms of information gain and utility, the accepted view of information has 
changed in a very important way, towards the more general and universal view based 
on Kolmogorov Complexity. Moreover, some fields of AI, such as machine learning 
and knowledge-based systems have helped to clarify the problem and recognise the 
cost and non-omniscient character of both induction and deduction. All this allows 
much more challenging goals with a reasonable chance of success. 

1.3 Aims 

The main aim of this work is the formal study of concept synthesis usefulness and aftermath in terms 
of information gain and reinforcement inside inference systems. The measures to be developed should 
be consistently and equally applicable for both deductive and inductive inference.  

The central concern will be the evaluation (and not the generation) of concepts, 
although some issue in this regard will be punctually addressed. For this evaluation, 
several coherent measures should be devised, valid both for deduction and induction. 
Concretely, the specific objectives of this work are given by the measurement of the 
following dimensions: 

• Informativeness: a new measure will assign the information gain of a given 
inference from a concept x to a concept y. This will allow to clarify the notions 
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of explicitness and implicitness, and to give general and alternative notions to 
Hintikka’s surface and depth information of deductive systems and Popper’s 
informativeness for induction. 

• Plausibility:  this dimension is not applicable for classical deduction. We will 
measure this dimension for non-truth-preserving processes (induction, 
approximate or non-monotonic deduction, abduction, ...) by means of a theory 
of reinforcement, given by the necessary use of each part of a theory or system in 
the rest and the evidence. 

• Consilience: this dimension, informally introduced by Whewell in 1847, is 
related to the degree of uniformity to which a theory covers its consequences, 
and it is also usually referred (with slightly different nuances) as coherence or 
unification. It has usually vindicated in explanatory induction, where the theory 
must be comprehensive with the evidence, in the way that all the examples 
must be covered or unified by the same general rule or cause. 

• Intensionality: a pristine question associated with any definition is whether it 
is extensional (by extension) or intensional (by comprehension). A first analysis 
of this question will show that it is not appropriate to assign a Boolean answer 
to it. Consequently, a degree of intensionality will be introduced, closely related 
with the idea of exception.  

• Comprehensibility / Intelligibility: A measure will be introduced to sacle 
the difficulty of comprehend, namely the degree of comprehensibility or 
intelligibility of a given concept. It will also be particularised to estimate the 
difficulty of different problems of inductive and deductive character. This will 
allow the measurement of intellectual abilities, without anthropomorphic 
contamination. 

• Utility: in deductive systems, the utility of the introduction of new concepts 
for different purposes is informally clear: a better understanding of the whole 
theory, a more concise expression of the same idea, a reduction of the 
computational time and size of future deductions (i.e. proofs), etc. This 
necessity of intermediate information will be formally shown. In the case of 
induction the notion of utility is closely connected to plausibility, as it will be 
represented by the use of reinforcement for measuring utility in deductive and 
inductive inference.  

It is obvious to see that most of these dimensions are dependent or counter-
dependent, and this is admissible provided they represent intuitively different and 
useful measures. This phenomenon is also motivated by the use of different 
representational mechanisms, and some of these ‘dependences’ cannot be elucidated 
in an absolute way because they may depend on the descriptional mechanism. In this 
sense, it is stronger the intention to allow that these measures could be applied to any 
representational mechanism, although in some cases some minor restrictions could 
be assumed, in order to allow finer and more practical measures.  
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Some derived measures for optimality of the representation and the whole 
behaviour of any deductive system will be sought. For deduction, this can be done 
without the collation with the outer experience. This inner feedback, similar to the 
notion of experimental mathematics, is clearly shown in game theory, a topic that 
was also tackled by Hintikka jointly with the distinction between depth information 
and surface information [Hintikka 1973]. Some classical notions of philosophy of 
mathematics will be attempted for a clarification, as the choice of the set of axioms 
and important theorems to work on. Utilitarian and simplicity justifications 
[Tymoczko 1986] are usually pointed out but rarely formalised. 

For induction, though, the outer evidence is the main (but not exclusive) factor 
that determines the goodness of a theory. Nonetheless, an inductive theory can be 
constructed for different purposes: explain the evidence, predict future evidence, to 
describe the evidence, to be comprehensive, etc. 

Finally, the combination of induction, deduction, confirmation and information 
gain will be particularised for the evaluation of logical theories, but its application to 
different aspects of modern databases and complex software systems will be essayed. 

1.4 Overview and Organisation 

The rest of this work is organised as follows: 

 

Chapter 2, On Inference Processes and Their Relationship, reviews some necessary 
background about inference processes and their relationship. Although a brief 
description and history of deduction, induction, abduction and analogy is discussed, 
the emphasis is lain on computational approaches for both induction and deduction, 
mainly in a logical framework. Automatic Theorem Proving (ATP), usually known 
simply as automated reasoning, and resource-bounded rationality are highlighted as 
the computational approaches of deduction which more urgently require the 
integration of evaluation measures because inductive techniques are beginning to be 
used. On the other hand, Inductive logic programming (ILP) is shown as a machine 
learning paradigm which uses logical theories as representational language and the 
role of deduction could also be exploited. Other inductive paradigms are just referred 
to the literature, such as grammatical inference, propositional learning, and artificial 
neural networks. Obviously, it is vain to address the nature of even a single inference 
process in one chapter, or even in a book, but a brief review of them may show their 
differences, relationships and similarities. Among the latter we have some important 
ones that motivate this work: first, every inference is usually guided by an interest to 
obtain a new assertion or new knowledge, not explicitly present previously and, 
secondly, the result of an inference process must be evaluated in order to discern if 
the result is valuable enough to be preserved or discarded (forgotten), according to the 
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effort which has been performed to obtain it, its plausibility or degree of confirmation, 
and its interest or utility. 

 

Chapter 3,  Information and Representation Gains, introduces the first and most 
theoretical measure of the thesis. The main purpose is to evaluate the amount of 
information that has been made explicit in a reasoning step. Initially, a measure of 
time-ignoring information gain V(x|y) represents the degree of information of x 
which is implicitly in y. For non-omniscient systems, where the notion of effort makes 
sense, the intuitive notion of information is re-understood in terms of resource 
consumption. The choice of the function LT, which weighs space and time, as an 
appropriate measure of effort, neglects the idea of effort exclusively based on time or 
space. A new effective function, called computational information gain G(x|y), which 
depends on the computational effort (time and space), measures the proportion of x 
which can be easily obtained by the help of y. Some of its properties are studied, and 
it is compared with different informal but outstanding notions: implicitness vs. 
explicitness, some questions about aesthetics and interestingness. Finally, some 
notions for whole systems or theories are introduced, such as Representation Gain, a 
general notion of Simplification and the definition of a Representational Optimality 
criterion.  

 

Chapter 4, Information Gain and Inference Processes, takes advantage of the definitions 
and measures given in the previous chapter. Computational Information Gain, 
namely G, is used to explain the informativeness of a hypothesis with respect to 
some evidence and to explain the gain or the reduction of effort that takes place 
when a conclusion or theorem is deductively established from an axiomatic system. 
In the case of induction, Popper’s idea of informativeness is grasped by the use of G. 
Moreover, a new notion of authentic learning is introduced, ensuring that learning 
has taken place, independently of how compressible the evidence is, unlike the MDL 
principle. In the case of deduction, different adaptations of G are introduced for 
several deductive paradigms. Appropriate approximations for logical programs are 
derived and illustrated, which make it possible for measuring in practice these gains. 
This chapter also includes a comparison with Hintikka’s ideas, establishing the 
relationship between G and Surface Information, and between V and Depth 
Information. Several general measures of System Optimisation and Systematic Power 
are also introduced, which show the usefulness of Intermediate Information in ATP 
and mathematical practice. The conciliation among induction, deduction and 
information is made possible if omniscience is neglected, although it is recognised 
that a measure of utility or plausibility is also necessary to account for the whole value 
of an inference process. 
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Chapter 5, Constructive Reinforcement, presents an operative measure of confirmation 
for general constructive theories, studying the growth of knowledge, theory revision, 
abduction and deduction in this framework. The new approach performs an 
apportionment of credit with respect to the ‘course’ that the evidence or set of 
derivables makes through the rules of the learnt/axiomatic theory. For the case of 
induction it is shown to be both a utility and plausibility criterion, and it is connected 
with other classical evaluation criteria, such as cross-validation and the MDL 
principle. For the case of classical deduction, since confirmation is fully propagated, 
it turns out to be a utility criterion that establishes how useful a property, lemma or 
theorem is for the rest of the theory. It is also applied to other inference 
mechanisms, such as analogy, approximate deduction, abduction and explanatory 
induction, the latter represented by a balanced distribution of reinforcement, so 
formalising the notion of consilience. The theory is also extended with negative 
reinforcement, so connecting this approach with more classical notions of 
reinforcement, based on rewards and penalties. In the end, reinforcement and 
information gain are compared. 

 

Chapter 6, Intensionality and Explanation, addresses the problem of formally 
distinguishing between an extensional definition or description and an intensional 
one (or by comprehension)6. This notion is quite difficult to grasp formally for finite 
concepts because there are many different ways to disguise an extensional description 
to look like an intensional description. A first formalisation for the case of logical 
theories of the idea of intensionality is introduced in terms of avoidance of 
exceptions, these seen as extensional or non-validated parts of a theory. The 
definition of intensionality and reinforcement to any descriptional language is 
essayed, based on a formal and general definition of subprogram, but the 
formalisation is much more complicated that the one made for rule-based 
representational languages. Different concepts based on descriptional complexity are 
introduced, such as projectible descriptions and stable descriptions to account more 
easily for the notion of intensionality in general. The final approach allows the 
definition of an explanatory variant of Kolmogorov Complexity, which allows to 
define an explanatory counterpart to the MDL principle. Some connections are also 
established. First, intensionality is closely related to information gain, since 

                                                           
6 Intensional (or indexical) logic is the study of assertions and other expressions whose meaning 
depends on an implicit context or index, such as time or spatial position. This type of logic was 
originally developed (by Kripke, Carnap, Montague, Church, Tarski and others) to help understand 
natural language, in which such expressions abound. Obviously, an indexical definition cannot be 
extensional because it depends on other definition or concept in order to find the thing referred. 
However, our notion of intensional definition is self-contained and is quite different from the notion 
of indexical expression. The use of this logic should not be confused with the proposal of chapter 6, 
although some roots of the difference between induction and abduction may be found in the 
distinction between self-contained explanations or contextual explanations. 
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extensional descriptions are neither intensional nor informative. Secondly, 
explanation is also related to the notion of unquestionability, which is given when 
there are not alternative explanations, and the notion of comprehension, both 
notions being necessary for chapter 8. 

 

Chapter 7, Evaluation and Generation of Logical Theories, initially reviews the most 
classical criteria for the evaluation of Logic Programs used in ILP, especially two 
variants of the MDL principle. Next they are compared with reinforcement, 
intensionality and gain, as defined in the preceding chapters, and the first positive 
results are shown. In terms of plausibility, reinforcement is manifestly better than the 
MDL principle, either for whole positive evidence, partial positive evidence and 
partial positive and negative evidence. Intensionality can be computed to know in 
which degree the data is ‘conciliated’ by the theory, and in some cases it can be a 
prerequisite (abduction, explanatory reasoning, etc.). Finally, for the case of 
evaluation, gain has only some auxiliary use, mainly for ascertaining when a real 
learning has taken place, i.e., the theory is original with respect to the data. Apart 
from evaluation, the question of how reinforcement and gain can be combined for 
guiding a machine learning algorithm is discussed. First, it is shown that the 
enumeration algorithm is compatible with an increase of gain, because the theories 
are not data but hypothesis driven. Secondly, a data-driven approach can still be 
constructed with the help of randomised approaches such as genetic programming, 
where the selection criterion (oblivion criterion) is a combination of the optimality of 
the program (the individual) and the gain (unusual or rich genotype). 

 

Chapter 8, Measurement of Intellectual Abilities, presents the most fascinating 
application of this thesis. Initially, the main factor of intelligence is identified as the 
ability to comprehend, derived from the notion of comprehension introduced in 
chapter 6. However, some technical problems arise when this factor is to be 
measured, especially unquestionability, as originally defined in chapter 6, and an 
absolute scale of difficulty of comprehension. Both problems are solved in this 
chapter and the result is a comprehension test, or C-test, exclusively defined in terms 
of universal descriptional machines. Despite the absolute and non-anthropomorphic 
character of the test it is equally applicable to both humans and machines. Moreover, 
it correlates with classical psychometric tests, thus establishing the first firm 
connection between information theoretic notions and traditional IQ tests. From 
here, a factorisation is outlined, considering other inductive and deductive factors, 
thus allowing a theoretical study of their inter-dependence, something that has only 
been possible in an experimental way, by the statistical correlations studied in 
psychometrics. 
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Chapter 9, Prospective Applications, includes some proposals that are mainly at a 
theoretical stage. The first application is given for information systems, popularly known 
as databases. According to the optimal representation measures seen in chapters 3 
and 4, the best organisation for deductive databases is discussed, in order to improve 
the performance of database operations depending on which operations are more 
frequent and the degree of regularity of the data. Finally, both deductive and 
inductive processes (and their integration) will be increasingly more important in 
future databases, which will be better known as knowledge bases or knowledge 
systems, with data-mining (inductive) abilities. Another application is the study of 
validation and maintenance characteristics of software systems under the analogy 
between software science and philosophy of science or, more precisely, between 
software construction and machine learning. Reinforcement measures from chapter 5 
are adapted to define a measure of software ‘predictiveness’, which is identified with 
software validation, to represent the stability of a system. An inversely related 
measure, the probability of modification, is also obtained for each component and 
for the whole system. Some models of maintenance cost are presented, based on a 
detailed combination of predictiveness and modifiability, and different software 
arrangement topologies are studied theoretically under these models. Finally, some 
other applications are outlined, especially related with language, meaning, and 
communication, and their applications to agents communication. 

 

Finally, Chapter 10, Conclusions, comments on the results of this work, its main 
contributions, the open questions and the future work. The Appendix A is devoted 
to give a quick and comprehensive review on Kolmogorov Complexity and some of 
the properties and related concepts which are used from chapter 3 to chapter 8. The 
Appendix B references the publications originated from this thesis. The work is 
closed by Appendix C, which contains any reference which is alluded to in this 
dissertation or have been used as a base or motivation for this work, Appendix D, 
which includes the acronyms used throughout the dissertation and Appendix E, an 
analytical index. 

 

The following figure illustrates a graph of dependences of this dissertation. The 
graph has only suggestive character because the chapters have not been written to be 
read independently, and a sequential reading is more recommended: 
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Since chapter 2 is a review of inference processes, anyone who is familiar with them, 
namely deduction, induction, abduction and analogy may prefer to take only a 
reading to its last section. This section is devoted to their relationship, which is aimed 
to be clarified in this work. 

1.5 Terminology and Notation 

In general, notation will be introduced when needed in each chapter. Even acronyms 
are always quoted in their extended form the first time they appear (and a list of 
acronyms is included in appendix D). 

Nonetheless there is some basic terminology, which will be used throughout all 
the dissertation, that I have preferred to include here. The reader may come back 
here from any subsequent chapter if any notation seems odd. 

Unless specified, a finite alphabet Σ composed of symbols will be used. If not 
specified, Σ = {0, 1}. A string, concept or object is any element from Σ*, with � being 
the composition operator, usually omitted or represented by <a,b> = a · b. The 
empty string or empty object is denoted by ε. The term l(x) denotes the length or size 
of x in bits and log n will always denote the binary logarithm of the value n. The 
relation <lex between two objects denotes precedence in the left-to-right 
lexicographic order, considering 0 <lex 1. The term yn..m, with n ≤ m, denotes the 
symbols from position n to position m. Note that by a position we refer to the virtual 
space between two symbols, i.e., y0..l(y) denotes the whole string y, and y0..l(y)−1 . 
Consequently there is always one more position than symbol in any string. For every 
string y and every natural number n, yn..n = ε. With y..m , yn.., and yk we denote y0..m, 

yn..l(y), and yk−1..k, respectively. A string x is a substring of y iff there exist two strings 
z,w such that y = zxw, or, what is equivalent, yn..m = x with n = l(z) and m = l(z) + l(x). 
A string x is a prefix of y iff there exists a string z such that y = xz, or, what is 
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equivalent, x = y0..m being m = l(x). Given any string x, x-d = x0..l(x)−d denotes the prefix 
of x with length 0..l(x)−d, i.e. the string x without its d elements. The term x¬i 
represents exactly the same string as x but changing the ith bit by its complement., i.e. 
x¬i = x0..i · 1 · xi+1..l(x) iff xi = 0 and x¬i = x0..i · 0 · xi+1..l(x) iff xi = 1. 

Some theoretical results which are obtained in this work are asymptotic, and the 
following notation will be quite useful: a =+ b means a = b + O(1), a <+ b means a < b + 

O(1), and a =log b means a = b + O(log(var(b))), where var(b) denotes the variable or 
size of b. 

A universal machine φ will be any machine which can emulate a universal Turing 
machine. φ(p,y) denotes the result of the execution of p in φ with input y. Costφ(p,y) 
denotes the computational cost (steps of the machine φ) of executing the program p 
with input y. From here, the following definitions can be given,  

Definition 1.3  Kolmogorov Complexity. 

K(x|y) = min { l(p) : φ(p,y) = x } 

It is also supposed that the machine φ uses a prefix-free codification method for 
programs. 

The term x
* denotes the first minimal program for x in enumeration order. 

Consequently l(x*
) = K(x). 

Definition 1.4  Levin Complexity. 

Kt(x|y) = min { LT(p) : φ(p,y) = x } 

where LTφ(p) = l(p) + log2 Costφ(p,y). 

These two definitions just only give a hint about Kolmogorov (or Algorithmic) 
complexity K and its space-time variant Kt. Many other properties and derived 
concepts will be used or referenced throughout all the dissertation. Hence, it is 
recommended that the reader takes a look first at appendix A if she is not familiar 
with the theory. 
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For every belief comes either through syllogism or from induction. 

Aristotle, Prior Analytics, Book II, Chapter 23, 330 BC 

 

 

 

 

 

 

 

 

Abstract: This chapter gives a quick account (or recall) of inference processes: deduction, induction, 
abduction and analogy. More specifically, the emphasis is lain on computational approaches of 
induction and deduction, mainly in a logical framework, such as Automatic Theorem Proving 
(ATP), Resource-bounded Rationality, and Inductive Logic Programming (ILP). Instead of 
highlighting their differences, the major similarities among them are considered. Any inference process 
requires an effort to make explicit something that was implicit, and how this is distributed 
determines the difference between lazy inference methods and eager ones. It is also shown how 
inference processes can be equally understood in terms of confirmation, provided a quantitative (and 
not a qualitative) propagation is used. Finally, the combination of different inference processes is 
discussed and some precedents in this line illustrate the need of unified evaluation measures for all of 
them. 

 

 

 

Keywords: Inference, Logic, Reasoning, Induction, Deduction, Abduction, Analogy, 
Information, Semantic Information, Explanation-Based Learning, ILP. 



20 José Hernández Orallo - Doctoral Dissertation 

 20 

2.1 Introduction 

Any work that deals about deductive and inductive inference cannot begin from 
scratch. It would be folly to do that. However, the acceptance of the heritage of 
centuries of philosophical enquiries about the matter has the advantage of using what 
has been solved and clarified, but also has the drawbacks of reluctant paradoxes and 
weak foundations, carried along the way. It is not my intention to open a discussion 
about these foundations, especially about the problems of inductive inference. The 
reader should not consider this a disclaim from discussion, but the first sections of 
this chapter must be understood as a kind of anthology and introduction of notions 
which may be useful for the rest of the dissertation. Anyone familiar with deduction 
and induction can step directly to the last section of this chapter, which discusses the 
problems and utility of the combination of different inference methods. 

Let us begin by introducing a definition of inference: “a process of reasoning by 
which an agent modifies (part of) its beliefs”. According to this common definition, 
there are some important traits of any inference process that are implicit in it. First of 
all, there is an intentional character in any inference process, with the aim to obtain 
new knowledge from some new data or previous beliefs, either real or imaginary. 
Secondly, there is an epistemological character of any inference, because it provides 
novel information, which was not explicitly known before the inference process. This 
new knowledge may be a concept (a fact, a rule or property), or the refutation or 
confirmation of a previous or assumed belief. Any intermediate plausibility 
assignment for a belief, between refutation (this is not the case) and confirmation 
(this is the case), is also possible, and is given by the degree of reinforcement that 
several inference processes have assigned from other beliefs and their corresponding 
‘plausibilities’. Note that, in this context, the fundamental issues for understanding 
inference seem to be the notions of information, novelty, belief, explicitness and 
reinforcement. 

In some way, any inference process involves an argumentation with own’s beliefs, 
and, in principle, is more related with dialectics than with analytics. However, in the 
context of logic, it is usual to see a distinctively different notion of inference, as correct 
argumentation. Hence, the interest is to discover sound rules of inference to make a 
logic, in order to associate “what can be inferred” with “what follows logically”. This 
is what is sometimes called “the logico-maniacal version of inference” [Vega 1987] 
which is usually accompanied with assumptions such as “the result of any inference 
is a necessary result from its premises”, “an inference is only justified if and only if it 
is a correct application of a rule of inference”, which leads to the paradox of 
inference that I have commented in the previous chapter and I will also discuss in 
this one. 
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This view of deduction has been majority since Aristotle (384/3-322 BC) until the 
XXth century, and logic has been mainly concerned in distinguishing valid inference 
schemata from invalid ones. This view, however, precluded the study of some other 
kinds of plausible inference to account for a theory of plausible inferences which are 
used in everyday situations. 

Accordingly, the kind of valid or truth-preserving inference, or what [Flach 1995a] 
properly calls satisfaction-preserving inference7, more commonly known as deduction, 
was, during many centuries, granted the prominence (when not the exclusivity) of 
reasoning. On the contrary, induction, as the process of inferring plausible general 
rules or concepts from a factual evidence, had been indirectly addressed by Plato 
(427-348 BC), in his study of perception and reality, and by Aristotle himself, but it is 
not until the works of the philosophers Bacon (1561-1626), Locke (1632-1704), 
Berkeley (1685-1753), Hume (1711-1776), Kant (1724-1804) and Mill (1806-1873) 
when an important and deserved role is given to inductive reasoning. 

More recently, during the XXth century and mostly under the field of Artificial 
Intelligence, there has been an increasing interest on other inference processes. 
Abduction is a kind of hypothetical inference introduced in the XIXth century by 
Peirce (1839-1914) because, in his opinion, neither deduction nor induction, alone or 
combined, could unveil the internal structure of meaning [Yu 1994]. Recently, 
abduction has been shown to be one of the most practical inference mechanisms for 
AI applications such as diagnosis or problem solving. Analogical reasoning has also 
been elected as a different reasoning mechanism that pervades all our thinking [Polya 
1957]. However, the great difference of analogy with respect to deduction, induction 
and abduction is that the result of an analogical inference process is not intended to 
be plausible, and this process is more related with creativity, value, problem-solving 
abilities, intelligence, etc., than with validity or correctness. 

The existence of different inference processes has led to the accepted view that 
reasoning must be composed of many of them, with diverse characteristics, aims and 
mechanisms, and in a convenient combination. In order to achieve a successful 
combination it is necessary to ascertain the characteristics and differences of each of 
them. A first classical characterisation of deduction as a truth-preserving inference 
process and the rest of processes as plausible (hypothetical) ones has changed 
radically after the development in the XXth century of different modal and non-
classical logics. Although in Prior Analytics, Aristotle also introduced the four most 
important modal particles; the extension of the figures was never intended to fall 
outside the framework of what is valid or what is not. However, recent non-classical 
logics, such as probabilistic, fuzzy and nonmonotonic logics, are not truth-
preserving, in the way that deductive inferences are assigned a degree of probability or, 

                                                           
7 Michalski affirms that deduction is truth-preserving while induction is falsity-preserving [Michalski 
1993]. 
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simply, they are just plausible in a more or less vague way and, finally, can be 
defeated. Hence the name defeasible logics for them. 

Consequently, the dual classification between deduction and other inference 
processes cannot be found, in general, in terms of validity or truth-preservation. It 
cannot also be found in a difference among general to specific (deduction), specific 
to general (induction) and specific to specific (abduction and analogy) since it is easy 
to find different counterexamples. In fact, mathematical induction is a truth-
preserving mechanism by which a general property can be derived from single facts, 
which, in fact, was also first introduced by Aristotle in his Posterior Analytics. 

Simplistically, but more pragmatically, it is usual to characterise these inference 
processes in the following way, under semantic considerations. Given the following 
implication, 

A, B  = C 

each process can be understood as taking A, B, C as inputs or outputs. 
• Deduction: if A represents the axioms or premises, B the background 

knowledge, and A and B are given, then C can be obtained by deduction, and 
it is called the consequence of A in the context of B. An example of deduction 
could be “Input: Every banana is yellow. This fruit is a banana. Output: this 
fruit is yellow”.  

• Induction: if B represents the background knowledge, and C represents the 
evidence, and B and C are given, then A can be obtained by induction and it is 
called a rule or description of C under B. An example of induction could be: 
“Input: These 6 fruits are yellow and 5 of them are bananas. Output: 
Presumably, every banana is yellow”. 

• Abduction: if B represents the background knowledge, and C represents the 
evidence, and B and C are given, then A can be obtained by abduction and it is 
called the explanation or assumption of C under B. An example of abduction 
could be: “Input: This fruit is yellow. Bananas are yellow. Output: This fruit 
may be a banana”. 

Note that the distinction between induction and abduction as it has been illustrated is 
only terminological. More concretely, in the case of induction, it is usually assumed 
that C is a set of examples and A is a general rule for them. In the case of abduction, 
C may be a single fact and A is usually also a fact that explains the occurrence of C 
under the context B. In many cases, this A should be selected from a set of abducibles. 

Sometimes the difference between deduction, induction and abduction is made in 
the context of causality. Given a rule, deduction would discover the future effect of a 
perceived cause. Abduction would discover the past cause of a perceived effect. 
Induction would discover the rule given the cause and the effect repeatedly. 
However, this view also presents some problems because deduction is sometimes 
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propagated backwards to the cause or conditions (e.g. “The light is on. Necessarily 
the lamp is ok”), although some authors would say that this is an abduction. 

Distinctively, analogy cannot be seen in the context of an implication of the form 
A, B  = C. On the contrary, it must be seen in a context of similarity or association. 
In fact, analogy is sometimes considered a suggestive process (or source of 
connections) rather than an inference process. 

• Analogy: Given A is-to A’ and C, obtain C’ such that A is-to A’ as C is-to C’ 
in the context of B. An example of analogy could be: “Input: John has three 
children. Yesterday, he entered Susan’s shop and bought three scarves. Peter 
has two children. Today, Peter has entered Susan’s shop. Output: Possibly, 
Peter has bought two scarves.”. 

In some way, analogy can be described as an induction to a temporary rule, followed 
by a deductive or abductive inference over this rule. For the previous example, the 
generalisation is that “every father buys in Susan’s shop as many scarves as the 
number of children he has”, which, although quite unbelievable in general, may serve 
to draw the deductive conclusion that “Peter has bought two scarves”. An abductive 
conclusion would be given in the case the example would be changed to “Input: 
John has three children. Yesterday, he entered Susan’s shop and bought three 
scarves. Today, Peter has entered Susan’s shop and has bought two scarves. Output: 
Probably, Peter has two children”. The context is extremely important for analogy. 
Consider for the first example that yesterday it was terribly cold and today it is sunny 
and hot. Maybe, Peter has bought two bathing shorts. 

Analogy suggests another way of classifying an inference process. Some inference 
processes work on the fly, i.e. they are lazy, in the way that they are only used when 
needed, such as analogy or abduction. Other inference processes, though, are more 
eager, in the way that they try to obtain concepts or rules that would be necessary in 
the future, as constructive induction performs. Finally, deduction is sometimes lazy, 
such as everyday deductive inferences, and sometimes eager, such as mathematical 
practice. 

In this chapter we will make a quick review of these different inference processes 
and some of their most successful computational realisations and, finally, their 
relationship and the problems of their combination. Obviously, it is vain to address 
the nature of even one of them in a single chapter, but a brief review of them may 
show their differences, relationships and similarities. This would highlight some 
deficiencies of their combination which are given mainly due to a poor measurement 
of their value, as it was shown in the motivations of the previous chapter and as it is 
going to be further justified here. 
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2.2 Deduction 

Surely, deduction is the inference process that has been studied more deeply in the 
history of philosophy, mathematics and logic. In fact, it is the inference process par 
excellence and it is even still considered a synonym for inference or reasoning, although 
this chapter is partly devoted to make the reader forget that idea. The word 
deduction has usually been related with logic, consequence, entailment, proof, 
syllogism, truth, etc. In the end, although it is the best-known inference process, 
there still many open and fundamental questions, what gives a hint of how poorly 
known the other inference processes are. 

The formulation of logic, and the formalisation of deduction within it, is known 
and used nowadays in the way that Boole and, mainly, Frege, developed in the XIXth 
century. Later on, up to the half of the XXth century, some crucial ideas for modern 
logic were developed: Russell’s theory of types, Gödel’s incompleteness theorems, 
Skolem functions and Herbrand Universe (also due to Skolem), the notion of 
interpretation and unification (Herbrand), Natural Deduction and Sequent Calculus 
[Gentzen 1935][Prawitz 1965].  

But it is the advent of computer science and the notion of computation that 
forces a re-understanding of deduction. The works of Turing, Post, Church and 
Kleene established the major connections among lambda-definable functions, 
Turing-computable functions, general recursive functions and the intuitive notion of 
computable functions. The notion of computable function is crucial for different 
reasons, but for the case of deduction is especially important for two things. First, 
the most important notion which is derived from computation is precisely that of 
incomputability, which, translated to deduction, corresponds to the notion of not 
provable or undecidable propositions. Secondly, the connection between lambda-
definable functions and computable functions allows the extension of most results 
given in computation to deduction, mainly complexity results derived from Blum’s 
notion of ‘computational cost’ and ‘complexity classes’ [Blum 1967]. In other words, 
not every feasible deduction takes the same amount of time to be performed, i.e., 
computed. 

This has allowed talking about three dimensions: consistency, completeness and 
pragmatics of any deductive system. The connection between the first two 
dimensions began with Gödel’s famous incompleteness result: it is well known that a 
consistent system that is able to express arithmetic cannot be complete. More 
recently, the study has centred on the relation between the two last dimensions: 
completeness and pragmatics. It has been shown that even for very restricted 
representation mechanisms (such as propositional logic) if completeness is desired, 
there is no efficient deduction method8. Only very reduced representations, such as 

                                                           
8 Provided NP ≠ P, i.e. Non-Polynomial problems are not reducible to Polynomial ones. 
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strict subsets of propositional logic are consistent, complete and computational 
feasible (or, what is equivalent, polynomial). 

The relationship among these three dimensions was also studied in the most 
general case by Chaitin who established the correspondence of Gödel 
incompleteness results in terms of descriptional complexity [Chaitin 1982]. More 
importantly, he showed the apparently intuitive conclusion that a compromise is to 
be found among the space of the theory, its degree of (in-)completeness and its 
computational complexity. In his words: “any formal system in which it is possible to 
determine each string of complexity less than n has either (...) few bits of axioms and needs incredibly 
long proofs, or it has short proofs but an incredibly great number of bits of axioms. (...)This is 
analogous to the dilemma of a scientist who must choose between directly publishing his observations, 
or publishing a theory that explains them, but requires very extended calculations in order to do 
this.” [Chaitin 1974]. 

As a result of these many negative results (and the strictness of classical logic for 
artificial intelligence applications), there has been an enormous effort towards non-
classical logics (see e.g. [Haack 1978] for a review). Modal logics, although already 
introduced long ago by Aristotle, have been formalised recently, under the works of 
Lukasiewicz, Lewis, Carnap, Kripke, Hintikka and Lemmon. From the possible 
worlds semantics [Moore 1984] and Kripke’s semantics [Kripke 1963], different 
logics of believe and modal logics are studied under the following axioms [Konolige 
1992]: 

 

(K):L(φ ⊃ ψ )⊃ (Lφ ⊃ Lψ )

(D):Lφ ⊃ ¬L¬φ
(T ):Lφ ⊃ φ
(4):Lφ ⊃ LLφ
(5):¬Lφ ⊃ L¬Lφ
(P):φ ⊃ Lφ   

Axiom (K) is known as the axiom of deduction, (D) is the non-contradiction axiom, 
(T) is the axiom of infallibility, (4) is the axiom of the conscience of own’s knowledge 
(or positive introspection axiom), (5) is the axiom of the conscience of ignorance (or 
negative introspection axiom) and (P) is the axiom of complete wisdom. 

Some combinations of these axioms have intuitive interpretations and others are 
just impossible or lead to very intuitive results (see e.g. the discussion about the 
different uses of S5, KD45, K45 in [Halpern 1997]). 

Other logics are many-valued logics (Lukasiewicz9, Rosser), free logics (Lambert), 
intuitionistic logic ([Brouwer 1907] and [Heyting 1920]), constructive logic ([Martin-
Löf 1982]), linear logic (Girard), dialogics (Lorenzen), combinatorial logic ([Curry 
1920]), deontic logic ([von Wright 1951]), epistemic logic (Hintikka 1962), pragmatic 
                                                           
9 See the essay “On three-valued logic” (1920) in [Lukasiewicz 1970]). 
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logic (Montague10), intentional logic ([Zalta 1998]), restrictions of predicate logic 
formalising semantic networks ([Woods 1975]), such as terminological or description 
logics [Brachman 1977] [Baader et al. 1992] [Patel-Schneider and Swartout 1994] 
[Donini et al. 1997], fuzzy logic [Zadeh 1965, 1972], probabilistic logic [Nilsson 
1986] and other non-monotonic logics [Marek and Truszczynski 1993] [Antoniou 
1997]: default logic (Reiter 1980), defeasible logic (Nute 1988, 1991), possibilistic 
logic, temporal logics (situation calculus [McCarthy 1968], event calculus [Kowalski 
and Sachi 1997]), etc.  

Although some of them have been applied successfully (deontic, fuzzy, temporal, 
many-valued) or have provided interesting theoretical results (intuitionistic, linear), 
many of the problems of pragmatics have not been solved by these variants (except to 
those which restrain considerably the expressiveness such as description logics 
[Borgida 1996]). Additionally, higher-order logic [Leivant 1994] has developed 
pragmatic and creative inference methods and techniques, because higher-order 
deduction is incomplete, and the relevance is then given to tractability. 

There are two areas where pragmatics has been addressed as a fundamental or 
even foundational issue. The first one is automated deduction, which deals with feasible 
computational deduction and, consequently, has given one of the most successful 
applications for computer science, the logic programming paradigm. The second one 
is called resource-bounded deduction, and it is devoted to employ optimally the 
computational resources available (space and time) for deductive problems. The 
paradigm is also applied to other problems that require reasoning (and this is the 
reason why it is also called resource-bounded rationality). Let us review both areas. 

2.2.1 Automated Deduction and Logic Programming 

The idea of an automated calculus of logic is firstly introduced by Llull (1235-1315) 
with his Ars Magna, which would be determinant for Leibniz’s (1646-1716) “De Arte 
Combinatoria” where the notion of logic as reckoning or calculus is explicitly 
vindicated or, more exactly, longed for. But it is not until the advent of the first 
computers that automated deduction becomes a reality.  

The aim of the first systems was Automatic Theorem Proving (ATP) and this may 
be the reason for ATP being an alternative name (although more restrictive) for 
automated deduction. These first essays evolved very closely to the development of 
the first years of artificial intelligence. There were two main streams. A first one tried 
to emulate human mechanisms of reasoning justified by the fact that mathematician 
do no use strict rules and symbolic rules to prove a theorem. The second stream 
considered logic a better tool to obtain their goals. The best results have always been 
given by the second approach, as it is clearly justified by Alan Bundy: “[…] logic-based 
approaches have been frequently criticised, but have survived due to the failure of alternative 

                                                           
10 See (Dowty et al. 1981). 
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approaches. In fact, most attempts to produce non-logic based automated reasoning end up 
reinventing logic — except that the new wheel is usually more hexagonal than circular. Techniques 
such as semantic nets, frames and production rules have each had a brief flowering, before being 
recognised as the old wolf in sheep’s clothing. There are successful non-logic based techniques, for 
instance neural nets, but they cannot simulate sustained arguments, e.g. mathematical proofs.” 
[Bundy 1991]. 

Inside of the logical stream, the initial idea was to put into practice the most 
popular deductive systems, in particular Gentzen’s sequent calculus. Accordingly, for 
the first systems that were implemented, such as SAM (Semi-Automated 
Mathematics), human intervention was crucial. In 1966, the release 5 of this 
interactive prover proved the first new lemma for mathematics (in lattice-theory), that, 
in its honour, is called SAM’s lemma. 

However, these efforts drew little attention to mathematicians. On the contrary, 
and due to the growth of the field of program verification motivated by the software 
crisis of the sixties, computer scientists were indeed the most interested in an 
automatisation of proofs, which, in the case of program verification, were especially 
tedious. 

But in 1963, when the field seemed more open, Robinson introduces the 
resolution principle [Robinson 1965]; it is in the Argonne Laboratories where Wos, 
Robinson and Carson programmed in 1965 the first prover based in binary 
resolution. The same year, Robinson introduces the concept of hyper-resolution 
[Robinson 1965b]. This turns out to be a major swift towards the paradigm 
introduced by Herbrand in 1930, especially the unification algorithm, (re-discovered 
by Prawitz in 1960), and the theoretical concepts of universe, interpretation and 
model. 

In 1969 Green discerned the possibility of using the resolution principle to solve 
problems of any kind [Green 1969] and, just in 1970, the ATP community provided 
one of the most contributions to AI, the programming language Prolog. The same year, 
Kowalski presented its formal semantics and Colmerauer designed its first 
interpreter. 

The use of a theorem prover as a programming language [Kowalski 1974] boosted 
the paradigm of logic programming. In addition, first-order logic was even more used 
than initially expected in many applications of artificial intelligence and computer 
science (e.g. databases). In this context, the works on variants of resolution have 
been countless since then. Only in 1978, Loveland [Loveland 1978] already included 
in his book 25 variants of resolution. 

From this moment and after the initial important applications and successes of 
SLD (selective linear resolution for definite clauses) and SLDNF (selective linear 
resolution for definite clauses with negation as failure), discouragement soon 
appeared; resolution is complete and improves the combinatorial explosion but it 
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does not eliminate it. The negative results re-appeared, as if they had been forgotten: 
the proof of an arbitrary fact under resolution is NP even for the case of 
propositional logic. ATP Programs of the time got lost in many useless ways to find 
the proof of complex theorems.  

In the three last decades, Automatic Theorem Proving has advanced remarkably 
in techniques, results and applications, according to the proof of new non-trivial 
theorems, as well as the time that is required to prove some existing ones with 
current systems. According to [Wos 1994]: “to gain an appreciation of the progress that has 
occurred in this young field in but three decades, one need only realize that the more effective 
programs used now are more capable of solving problems that require reasoning than are the vast 
majority of people, even if restricted to university students. Perhaps the error that underlies the 
position taken by those who assert that automated reasoning programs offer little and that the field 
has made essentially no progress rests with comparing these programs to the better (sic) 
mathematicians and logicians”. 

Most of these advances do not come from new theoretical results in logical 
systems, but from the use and development of AI techniques, e.g. heuristics, the 
realisation of the relevance of intermediate information and a convenient use of 
resources (memory and time). However, the techniques that are beginning to being 
used are more related with hypothetical inference than deduction: “Concepts like 
analogy, use of examples and counterexamples, special cases, and much more of this kind would 
account for an additional dimension to be added to our space of methods. It is only then that 
mathematicians would begin to get truly interested in using such systems in their daily work and 
discover proofs perhaps even for long-standing and well-known conjectures in a cooperative way” 
[Bibel 1991]. For instance, some new approaches such as that of [de la Tour et al. 
1987] and some new tools such as the resonance strategy [Wos 1996] use analogy. 

Abstraction has also been one of the main techniques in automated deduction, 
which, if it is used hand-made corresponds to the use of schemata, as they were 
introduced by [Plaisted 1980], where the skeleton of first-order proof is extracted to 
apply to other proofs. The idea has been more and more sophisticated since then and 
nowadays the proofs are made through the use of ‘proof plans’ [Bundy 1991]. 

Furthermore, these plans and meta-information are beginning to be incorporated 
in higher-order deductive systems. An example of this is the HOL system, a typed 
higher-order deductive system, based on the LCF system, which used rewriting 
techniques.  Additionally, HOL also includes backward proofs, based on the notion 
of tactic, introduced by Robin Miller [Milner 1978]. A remarkable feature of HOL is 
that the system is extensible and the set of consequences (usually infinite) of a theory 
are not considered until they have been proven in the system. In other words, 
theories are extensible and dynamical systems. 

The current stage, as we have said, is the introduction of inductive generalisation 
and hypothetical reasoning in these systems, in order to discover new schemata. This 
is easier to do in higher-order systems because they are able to represent inside the 
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language the concepts of proof, tactic, schema, etc. Finally, a new question arises: is 
the use of inductive techniques for deduction a paradox? 

2.2.2 Resource-Bounded and Non-omniscient Deduction 

Resource-bounded reasoning was introduced by I.J. Good [Good 1971] and H. 
Simon [Simon 1982] as a way to make reasoning in the large feasible for artificial 
intelligence applications [Russell and Wefald 1991]. The most technical stream of this 
proposal evolved from the theoretical notions of approximate or anytime algorithms. 
“Anytime algorithms offer a trade-off between computation time and quality of 
results” [Zilberstein 1995]. This resource-bounded rationality (see [Zilberstein 1996] 
for a survey) involves randomised heuristics in order to obtain approximately the 
solution of a problem. The reason for this approach is simple: for some problems “it 
is not feasible (computationally) or desirable (economically) to compute the optimal answer” 
[Zilberstein 1996]. In the case of deduction, under this context, the idea is not to find 
a proof for a theorem in some system but obtain a degree of plausibility for it. Since 
it is inspired in approximate algorithms, the techniques are usually based in Monte-
Carlo like methods or genetic algorithms, which usually give a probabilistic correct 
answer whose probability depends on the time the algorithm is supplied. For 
instance, there are approximate algorithms that give with an astonishing high 
probability of success, whether a number is a prime, and they are used in practice 
instead of other exact, but intractable, algorithms. 

In the context of first-order logic, entailment and subsumption can be re-defined 
into resource-bounded entailment or resource-bounded subsumption, respectively 
[Sebag and Rouveirol 1997]. Obviously, this approach entails new problems, since 
deduction may be inconsistent. In Zilberstein’s words, “(there are) two sources of 
uncertainty. The first source is internal to the system and relates to its capability to produce 
incrementally improving solutions and to assess their quality. The second source of uncertainty is 
external and relates to unpredictable change in the environment in which the system operates” 
[Zilberstein 1999]. The effort has been centred to deal with these inconsistencies. 

Non-omniscient deduction is closely related with this entire problem, although it 
is something more general that must not be necessarily based on approximated 
deductive methods but originated from different sources, such as multi-agent 
systems. In the end, non-omniscience is something much more frequent that could 
be expected because, for any high expressible system (e.g. able to formalise 
arithmetic), deduction is incomplete, so any deductive inference is valuable, since it 
not only clarifies the doubt of whether something holds or not (which is implicitly in 
the premises for a complete system), but provides information about whether it is 
possible to know whether it holds or not. Even in complete systems (e.g. resolution 
for Herbrand logic), non-omniscient deduction may also come from a lack of 
resources, and this is more conspicuous in real-time applications. 
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In any case, since we are dealing with inconsistencies, it is necessary to consider 
theory revision. As a result, other inference processes different from deduction are 
much more necessary and the term non-omniscient rationality (for a review see 
[Moreno 1998]) is used instead. The idea is to loose the standard epistemic modal 
axioms of the system and let other inference processes arrive to some conclusions 
and increase and improve its knowledge. 

Moreover, when resources are scarce it is necessary to have a measure to evaluate 
which reasoning actions are valuable to perform according to the expected gain and 
the resources they require. And this depends highly on the distribution of time-space 
limitations. In the case of hard spatial limitations, only few costly things should be 
maintained in an explicit way and time will be used to derive everything from them. 
On the contrary, if time is crucial and memory is large, then the system will use a lot 
of intermediate information, in order to accelerate any further needed inference (this 
is the deductive database viewpoint). However, comprehensive measures to evaluate 
and act in these situations have not been introduced to date, and as I stated in 
chapter one, and they are the main goal of this work. 

For the approach that begins in the next chapter, not many other concepts about 
deduction will be needed. A basic notion of deduction as given from an introductory 
logic course is sufficient, although for some chapters it is required some familiarity 
with logic programming, where the classical source is [Lloyd 1987]. For the reader 
who is not familiar with computational notions is also advisable to take a look at 
some book about logic and computation (e.g. [Boolos and Jeffrey 1989]). 
Additionally, but not necessarily, the reader may be interested in extending some of 
the topics which have been so briefly introduced in this section: for a history of logic 
see e.g. ([Kneale and Kneale 1984] or [Heijenoort 1967]) and for more information 
about ATP see e.g. [Bibel 1991] or [Mackenzic 1995]. 

2.3 Induction 

The term ‘induction’ has always been surrounded by controversy. There is no widely 
accepted definition for it and even some philosophers deny that it can exist such a 
thing as “inductive reasoning”. Nonetheless, almost everyone associates the word 
induction with the process of theory abstraction from facts, the problem usually 
faced by a scientist. The main problems arise when it has been tried to “logicise”, 
trying to imitate the same treatment as deduction. It has been even known (in my 
opinion improperly) as the “logic of discovery”, but there has not been any 
appropriate formalisation of induction under a logical system. 

Although the process of induction is still poorly known, its objectives are widely 
recognised as the construction of a hypothetical theory to explain past facts and/or 
predict future experiences. The set of facts is usually called evidence or observations and 
the theory is usually known as hypothesis. In many occasions, there is a background 
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knowledge or bias that can constrain the inductive problem. In practice, the synthesis 
of theories from facts is still nowadays a fundamental problem to cognitive science 
and philosophy of science. There is a common and broader view of induction, called 
learning, which is used by every human being and many animals, that is still less 
known and even more intriguing. 

As said before, the attention to induction was highlighted by Bacon in his Novum 
Organum (1960) and later converted into methodology by Mill in his System of Logic 
(1843). However, there is also a statistical view of induction, which begins with Bayes 
(1702-1761) in his “Essay towards solving a problem in the doctrine of chances” [Bayes 1764], 
continues with Laplace and, finally, Boole in his “The Laws of Thought”, which was 
the first applications of logic algebra to probability. Later on, this would allow 
Carnap to develop its probabilistic calculus. In addition, many purely statistical 
induction tools have been developed in the last two centuries, e.g. regression 
techniques. 

There are three stages in induction (and hypothetical inference in general): 
generation, evaluation and confirmation. Generation has only been addressed without 
mysticism recently, under the machine learning community, initially motivated by 
Turing’s paper ‘Can machines think?” [Turing 1950], where he argued that a machine 
could learn if it is programmed to programme itself. Simplistically, there are three 
main methods for induction: data-driven induction, schema-driven induction and 
enumeration approaches. Obviously, most systems use a combination of them.  

Evaluation is the most remarkable and discussed issue of induction. The concept 
of verisimilitude [Popper 1968] is the level of agreement with the facts. A theory t1 has 
more verisimilitude that t2 if t1 implies as many true observational sentences as t2 and 
has less false observational sentences (exceptions). However, he then argued that the 
most scientific criterion was that of “falsifiability”, i.e., the best theory is the one that 
is the easiest one to falsify. Intuitively, if a theory is intrinsically easy to falsify and it 
cannot be falsified by essaying possible examples then it is much more reliable than a 
theory that provides no way to make experiments to refute it. 

Kuhn was more pragmatic. In his opinion, a theory or paradigm that is refuted by 
a single or more facts can still be used if there is no alternative better paradigm. 
Obviously, after some time, a great amount of anomalies forces the introduction or 
generation of another paradigm [Kuhn 1970]. 

Machine Learning (ML) is the subfield of artificial intelligence that studies the 
techniques and possibilities for making machines learn. It has been shown that both 
generation and evaluation issues are extremely coupled in practice. After some initial 
systems which learned some simple problems from IQ tests, plans and some toy 
domains, the study took a more theoretical character. The seminal paper of Gold in 
inductive inference [Gold 1967] introduced the notion of “identification in the limit”. 
In this paradigm several strong results were proven, mainly that even regular or 
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propositional concepts were not learnable in the limit from positive data only [Blum 
and Blum 1975] [Angluin and Smith 1983].  

Due to this discouraging result, [Valiant 1984] introduced Probably Approximate 
Correct learning (PAC-learning) in an effort to make a more realistic theory of 
learning, which could be made feasible for more expressible representation 
languages. The machine learning community implicitly accepted Kuhn’s paradigm, 
because most of its applications deal with approximate learning. With the same aim, 
Angluin introduced the paradigm of query learning [Angluin 1987], as a learning 
session that is helped by the possibility of making arbitrary queries to a teacher. After 
that, most of the papers in computational learning theory are concerned with these 
two paradigms [Blumer et al. 1987] [Blumer et al. 1989] [Board and Pitt 1990]. 

In the last decade, there have been many revisions and critiques of these 
paradigms because they are still too pessimistic, in the way that they always consider 
the worst case and not the mean case. See for instance [Abe 1997] or [Freivalds et al. 
1995]. 

Finally, confirmation is the last aspect of induction. At first sight, it seems the easiest 
thing: a hypothesis can be refuted or confirmed by the evidence. As we will see, 
confirmation is not that easy, because “theories may be refuted, but they cannot be confirmed 
beyond any doubt” [Popper 1968]. We will return on confirmation in the last section of 
this chapter.  

2.3.1 The MDL principle and other Selection Criteria 

From all the selection criteria that have been discussed in the literature of induction, 
simplicity is the most vindicated and recurrent one. It is attributed to William of 
Ockham 1290?-1349? (although the same idea was held by John Duns Scotus twenty 
years before) this theme in philosophy of science and induction: 

Occam’s Razor Principle: “if there are alternative explanations for a phenomenon, then, 
all other things being equal, we should select the simplest one”. 

This principle was rejected by Popper because he said that there was no objective 
criterion for simplicity. But descriptional complexity,  K(x), gives an objective 
criterion for simplicity, as it is seen in appendix A. This is precisely what R.J. 
Solomonoff proposed [Solomonoff 1964] as a ‘perfect’ theory of induction, in [Li 
and Vitányi 1997] words. 

Moreover, Descriptional Complexity inspired J. Rissanen in 1978 to use it as a 
general modelling method, giving the popular MDL principle [Rissanen 1978, 1986, 
1996]: 
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Minimum Description Length (MDL) principle: 

The best theory to explain a set of data is the one that minimizes the sum of: 
• the length, in bits, of the description of the theory; and 
• the length, in bits, of data when encoded with the help of the theory. 

In the second term we enclose the exceptions, if any. 

Philosophically, the MDL principle matches with Kuhn’s notion of “changing 
paradigms” [Kuhn 1970]: Exceptions are patched until they are long enough to force 
the revision of the paradigm (or model) of the theory. 

Apart from its success, the first justified reason to use the MDL principle is 
avoiding overgeneralisation. When two generalisations cover all the cases, we select 
the shortest one. In some way, the MDL principle finds a good compromise between 
generality and specificity that improves the predictability of the hypotheses. [Li and 
Vitányi 1997] give an informal justification of the predictability of the MDL principle 
in the following way: 

[...] a priori we consider objects with short descriptions more 
likely than objects with only long descriptions. That is, objects 
with low complexity have high probability while objects with high 
complexity have low probability. Pursuing this idea leads to the 
remarkable probability distribution 2−K(x) [...]. 

If not explained, the term “a priori” makes of this no justification. The arbitrariness 
of its use is given by the following explanation: when we decide to study a 
phenomenon that we deem is not random (for instance the course of the planets) it 
is because we expect some mechanism behind it. A mechanism is an algorithm, so if 
we expect to know it and to be usable, it has to be relatively simple. So this “a priori” 
distribution is not so arbitrary, it is a methodological criterion. From here a formal 
proof derived from Bayes Rule can be found in [Li and Vitányi 1993] (pp. 308-309). 

This is the reason why it is commonly said that “the shorter the hypothesis the 
more predictable it is”, which supports the MDL principle. In conclusion, it has been 
usually recognised by the machine learning community that learning and induction 
can be understood as data compression [Blumer et al. 1987] [Blumer et al. 1989]. 
However, as it will be discussed, the MDL principle gives many problems for 
explanatory induction and, mostly, when combined with deduction. 

There are many other evaluation criteria. Among the probabilistic selection 
criteria, Maximum Likelihood Estimators [Case and Smith 1983] and Bayesian 
Learning are based on posterior probability. A special case of these is Quinlan’s Gain 
Ratio, which has given the most successful machine learning algorithm: ID3 [Quinlan 
1986, 1990]. Other criteria are not probabilistic but still based on statistical roots, 
such as cross-validation. Cross-validation is based on a simple idea. Consider an 
evidence, which is composed of n examples. Select a random sample of m examples 
(m < n). Use whatever generation algorithm to obtain different hypotheses for these 
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m examples. The best hypothesis would be the one that better behaves for the data 
which has been reserved (m − n examples). 

Another evaluation criterion is known as ‘consilience’, introduced by Whewell in 
1847 for the evaluation of scientific theories. Informally, as it has been used to date, a 
model or theory is ‘consilient’ if it is predictive, explanatory and unifies the evidence. 
Since all of these criteria are desirable, consilience was informally introduced as a 
fundamental issue for theory construction and modelling. Consilience has always 
been alluded in the context of scientific explanation or explanatory induction 
[Harman 1965] [Hempel 1965] [Ernis 1968]. Moreover, one of the important traits of 
abduction, seen as the inference to the best explanation, is that the abductive 
hypothesis (known as assumption) must be the most ‘compliant’ with the 
background knowledge. This can also be identified with the notion of ‘coherence’ 
[Thagard 1978]. 

Just another popular (and simple) criterion is to choose the most general 
hypothesis. This criterion is only useful for some restricted representations, because 
for positive data only, the most general theory would be “everything is true”. On the 
contrary, if we have (or may have) negative data also, it is quite related with the most 
falsifiable hypothesis, as vindicated by Popper. 

To make an idea of the disparity of some selection criteria, there are many other 
applications where the most specific theory is preferable. For instance, the first rule 
used for induction of logic programs was the relative least general generalisation (rlgg) 
introduced in the late 1960s by Reynolds and Plotkin [Plotkin 1970]. For more 
ambiguity, another term exists for this rule, which is known as the subset principle 
[Wexler 1992], i.e., if two hypotheses cover the data, we select the most specific one. 
It is curious that this principle was identified as an intensional principle because it 
solved some cases of ‘hyperlearning’ or “Plato’s problem on the poverty of 
stimulus”, when the number of samples were two small or only positive examples 
were given. In general, however, the most specific hypothesis is the data itself, which 
is useless. 

Finally, some connections between the former evaluation criteria have been 
established. Theoretically, the MDL principle is closely related to the Minimum 
Message Length (MML) principle and Maximum Likelihood Estimators [Case and 
Smith 1983]. It has also been compared with cross-validation [Kearns et al. 1999] and 
Bayesian Learning [Gull 1988]. 

There have been little interest about other quality criteria not related with 
plausibility (accuracy and coverage). For instance, according to understandability, the 
most important work is [Sommer 1995b], which recapitulates old criteria and 
introduces new ones for evaluating the quality, in terms of understandability, of 
induced theories. Some of them, although rudimentary, are closely related with some 
of the measures that will be introduced in this work, especially reinforcement and 
intensionality.  
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2.3.2  Grammatical Inference and Induction of Functional Programs 

A great amount of the ML literature during the last decades is devoted to non-
symbolical learning technique such as regression, neural networks, fuzzy systems, and 
Bayesian trees. Since deduction is not relevant for them, the combination of 
inference processes is not a problem nor a necessity at the moment. 

Therefore, we are interested in the important development of symbolic 
approaches, initially originated by universal representational languages, such as 
Turing machines and LISP. Initially, universal Turing machine programs were used 
from the most theoretical point of view to study induction, serving as an arbitrary 
machine for the works of [Solomonoff 1964], [Kolmogorov 1965] [Levin 1973] 
[Chaitin 1969]11 and many others. The relation between algorithmic (or Kolmogorov) 
complexity and induction appeared soon, reformulating the foundations of statistics. 
Despite its enormous importance in any work on induction in the last three decades, 
only recently these ideas have been used practically directly [Schmidhuber et al. 1997] 
or indirectly in ILP [Muggleton et al. 1992] [Muggleton and Page 1994]. 

Grammatical inference (see a classical source [Angluin and Smith 1983] or a more 
recent one [Sakakibara 1997]) began after the seminal paper of Gold in inductive 
inference [Gold 1967], studying the learnability of different kinds of languages and 
other theoretical issues. Nowadays, a second grammatical inference stage is more 
centred in efficient induction (generally using the state merging operators instead of 
enumeration techniques) of regular or context-free grammars for pattern recognition 
applications, generally using sequential [Velenturf 1978] or subsequential automata 
[Oncina et al. 1993]. 

Apart from Chaitin, LISP was also initially used as a representational language for 
induction in the works of [Summer 1975] [Biermann 1978] (see [Smith 1984] for a 
survey), with execution traces techniques. The goal of these systems was more 
concerned with automatic programming than learning. Later, the induction of 
functional programs has been retaken with modern techniques (evolutionary 
programming, MDL principle, folding) [Olson 1994], [Olson 1995] also with the aim 
of program synthesis from examples. 

Recently, ILP has been presented as a means to undertake both the learning and 
the automatic programming views in the same framework, since program synthesis 
can be understood also in these terms, if the hypothesis must cover exactly all the 
data. It also unveils novel uses: relational data mining, and the semi-automatic 
generation of new scientific theories.  

                                                           
11 Nowadays, Chaitin uses to work with elegant LISP programs. 
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2.3.3  Inductive Logic Programming (ILP) 

Despite its popularity in the last decade, inductive Logic Programming (ILP) is just a 
framework of learning in first order logic. Seen more pompous, “ILP bridges 
Machine Learning, Computational Learning Theory, Statistics and Logic 
Programming” [Muggleton et al. 1995]. 

Inside the general framework of learning and induction, the recent importance of 
ILP may be justified by many reasons. First, one of the advantages of ILP is the 
ability of using background knowledge and the understandability of theories, 
differing radically with other novel approaches such as fuzzy systems or neural 
networks. Second, ILP is a more tractable and natural framework for many problems 
and has all the hypothesis validation efficiency of SLD-resolution. Third, due to the 
logical representational language, it is easier to state formal considerations about the 
hypotheses, the evidence and their relationship. Fourth, the induction time of some 
classical problems (list reversal, sorting) has been reduced to the order of seconds12 
instead of minutes [Olson 1994], which makes ILP feasible for new applications. A 
last reason may be found in the aim to reconvert those people who many years ago 
entered Logic Programming with AI views, remarkably the Japanese heritage of the 
fifth generation, being relegated in the late eighties to theorem-proving, databases 
applications and automatic programming. 

The problem addressed by ILP can be simply stated as the inference of a theory (a 
logic program) from facts (or evidence logic theory) using a background logic theory. 
Evidence can be only positive E+ or both positive and negative {E+, E−}. 
Additionally, a background knowledge theory B (another logic program) can be used. 
Finally, the desired theory or hypothesis H must observe the following properties. 

B ∧ H = E+  (posterior sufficiency) 

B ∧ H ∧ E− ≠ � (posterior satisfiability) 

Besides, it is assumed that, 

B ∧ E− ≠  � (prior satisfiability) 

B ≠ E+ (prior necessity) 

In a broader sense and under the conditions of perfect learning (no error allowed in 
the posterior sufficiency property), ILP can be considered just as a special case of 
logic program synthesis from formal specification. According to [Deville and Kung-
Kiu 1994] there are three main methods of program synthesis: constructive synthesis 
where a program is the result of a constructive proof of a conjecture (the 
specification), deductive synthesis including a lot of techniques where some deduction 
rules make the final program correct with respect to the specification, and, inductive 
synthesis, which is exemplified by ILP. 

                                                           
12 The computational power of modern workstations has also influenced in these results. 
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The evidence E+ and E− is usually given in an extensional manner (i.e., as facts) 
but the framework does not exclude intensional (i.e., theories) as evidence. However, 
most of ILP systems cannot deal with intensional evidence and usually make a pre-
processing to generate sample outputs from it or make some kind of saturation to 
complete it from the background knowledge [Rouveirol 1994]. It is important to 
note here that if the evidence is given as a theory, it can be regarded as a program-
transformation problem. Clearly, there is a strong relation between generalisation-
specialisation techniques in ILP and program transformation techniques. 

[Shapiro 1981] can be considered the seminal work for ILP. Shapiro’s Model 
Inference System (MIS) is the best representative of the incremental family of ILP 
systems. In MIS the initial program is empty and the model is refined using a so-
called refinement operator. He claimed that there is a most general refinement 
operator, complete for clausal logic. But, as it is shown in [Niblet 1993], his operator 
is not complete and no “natural” refinement operator can exist without introducing 
redundancy or incompleteness. This means that Shapiro’s enumeration of logic 
programs according to the order that is established by his refinement operator is not 
complete. Despite this fact and the combinatorial explosion for complex problems 
[Furukawa et al. 1997], most incremental top-down ILP systems are inspired in it. 
From the current top-down systems, FOIL [Quinlan 1990] [Quinlan and Cameron-
Jones 1995] is the most important and efficient one. 

The bottom-up solution consists in finding the Most Specific Hypothesis (MSH) 
according to Plotkin’s Relative Least General Generalization (RLGG) [Plotkin 1970] 
(see [Mizoguchi and Ohwada 1995] for extensions in ILP) which means that the 
minimal hypothesis (according to set inclusion) is sought. Popular systems of this 
kind are Duce and Cigol (in propositional logic and first-order logic respectively), 
which use the so-called refinement operators: 

Absorption: 

q ← A  p ← A, B 

q ← A  p ← q, B 

Identification: 

p ← A, B p ← A, q 

q ← B  p ← A, q 

Intra-Construction: 

p ← A, B          
 p ← A, C 

q ← B        p ← A, q       q ← C 
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Inter-Construction: 

p ← A, B          
 q ← A, C 

p ← r, B r ← A       q ← r, C 

Intra-Construction is specially interesting for predicate invention. These operators 
can be used to modify the configuration of the bottom-up search. 

Golem [Muggleton and Feng 1990] also uses a subsumption lattice. To ensure a 
complete and non-redundant lattice, the rlggs constructed by Golem are forced to 
have only a tractable number of literals by requiring ij-determinate definite clause 
theories [Muggleton and Feng 1990]. Golem was the first ILP system used 
successfully in many applications, some of them traditionally studied with regression 
techniques. 

Recently, the system Progol has been devised [Muggleton 1995] based also on a 
subsumption lattice over MSH. The power of Progol originates from its new mode 
operations and some new ad-hoc statistical considerations to balance the length of 
the hypothesis with its generality in the case of positive data only and to maximise 
compression in the case of both positive and negative data. According to [Muggleton 
1995], the Progol approach is of a more fundamental nature, based on the inversion 
of model-theory deduction (inverse entailment), than that of inverse theorem 
proving techniques (inverting resolution) of Duce and Cigol. 

Progol has been applied for learning relations on scientific problems, mainly the 
prediction of mutagenic molecules [Srinivasan et al. 1994] and other molecular 
chemistry applications. This use for practical applications [Bratko and Dzeroski 1995] 
has been highlighted as the most relevant feature of ILP. 

One of the most remarkable things about ILP is that it has made clear the 
necessity of inventing new predicates as bias shift operation [Stahl 1995]. Moreover, 
they have popularised the difference between useful and necessary predicates. An 
example of useful predicate is “parent(X,Y)” to express the idea of 
“grandparent(X,Y)”. It is not necessary because we can make do with “father(X,Y)” 
and “mother(X,Y)”. An example of necessary predicate is “ancestor(X,Y)” to express 
the idea of “relative(X,Y)”. As it was seen in the first chapter, useful predicates allow 
the hypothesis to be shorter, but the generalisation is not strictly necessary. The 
second ones are recursive ones that are strictly necessary to learn a concept. 

In our opinion, predicate invention could be better tackled using high-order logic. 
In this sense, but with different purposes, Lloyd [Bowers et al. 1997] proposed a 
jump from ILP to Higher-Order Logic, using a new programming language called 
Escher [Lloyd 1995], based on Church’s simple theory of types [Church 1940], with 
emphasis on constructs that would be useful for induction. 
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Finally, there are many other non-symbolic techniques for learning in the machine 
learning community: artificial neural networks, fuzzy approaches, regression... but, as 
said before, are less interesting for this thesis and can be found in [Mitchell 1997]. 
For an up-to-date covering of a more philosophical and logical view of induction I 
recommend Flach’s thesis dissertation [Flach 1995a]. For ILP I recommend [Lavrac 
and Dzeroski 1994][Muggleton and De Raedt 1994][De Raedt 1996] [Nienhuys-
Cheng and de Wolf 1997]. 

2.4 Abduction 

Abduction (sometimes wittily called Sherlock Holmes’ intelligence [Josephson and 
Josephson 1994]) is a kind of hypothetical inference process introduced by Sanders 
Peirce (1839-1914). Peirce asserted [Peirce 1867/1960] that neither deduction nor 
induction can help us to unveil the internal structure of meaning [Yu 1994]. He 
thought that another kind of reasoning was necessary to account (jointly with 
induction and deduction) with all the aspects of human reasoning. 

Although we will get back on the problem of meaning in subsequent chapters, 
nowadays, abduction is usually considered as a special kind of induction or, at most, 
both are seen as different kinds of hypothetical inference, as [Michalski 1987] points 
out: “inductive inference was defined as a process of generating descriptions that imply original facts 
in the context of background knowledge. Such a general definition includes inductive generalisation 
and abduction as special cases”. 

More concretely, it is usually accepted that abduction is a mechanism for 
completing knowledge about a certain individual (generally inventing a fact to fit with 
a theory that is given), thus explaining why the given observations were not predicted 
by the initial knowledge. On the contrary, induction tries to extend knowledge (or to 
make a new theory) for predicting future observations. 

In our view, the difference may be more of nature than of purpose: induction 
works without constraint (although an auxiliary background theory can be used) 
whereas abduction tries to find a hypothesis that is ‘compliant’ with some higher law 
that constrains how hypotheses can be. In this way, abduction may be seen as 
induction in a fixed context, closer to Peirce’s original postulate [Flach 1996]: 

The surprising fact, C, is observed; 

But if A were true, C would be a matter of course. 

Hence, there is reason to suspect that A is true. 

This “matter of course” is usually represented as a background theory or common-
sense theory T (known as paradigm in philosophy of science or a constraint bias in 
inductive learning). Accordingly, abduction can be represented as usually: 

A ∪ T = C 
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but with the additional condition that A cannot be an anomaly in the context of T 
and it cannot be an invention either (a fantastic but possible assumption). As any 
hypothetical inference process, many A’s could be found; consequently, some 
selection criteria must be chosen in order to find the most appropriate one. 

In general, a clear distinction between induction and abduction has not been 
presented to date (see e.g. [Flach and Kakas 1999] for a state of the art). Abduction is 
then generally seen as the process of making assumptions to explain some facts. It is 
related to explanatory induction (completion of the data), commonly described as 
“inference to the best explanation” [Harman 1965]. For instance the fact “the shoes 
are wet” can be explained because “the grasp was wet” and the latter because “it 
rained last night”. “Explanatory induction” distinguishes from enumerative induction 
[Ernis 1968] by using some coherence criteria (or metrics [Ng and Mooney 1990]). 
Given an observation, in the absence of noise, an explanation must give the causes 
for the whole observation. For instance, if we have seen smoke and fire co-occurring 
999 times over 1000 times, we can describe this observation as “P(smoke-fire) = 
0.999” and we have a reliable prediction. However, no explanation is given, mainly 
because there is not any underlying mechanism justifying the co-occurrence nor the 
anomaly. 

Finally, as we said, there is another trait of abduction related with causation, and 
this has motivated the alternative name ‘retroduction’ for abduction [Hanson 1958]. 
Different frameworks for formalising causation soon appeared with the early expert 
diagnosis systems, exemplified by causal networks, especially Peng and Reggia’s causal 
abductive network [Peng and Reggia 1987], along with other probabilistic or possibilistic 
frameworks such as Pearl’s Causal Theories, using a Bayesian belief network [Pearl 
1988], [Pearl 1993]. In this context, an explanation that consists of an only cause for 
all the data is frequently preferable over separate causes for co-occurring phenomena, 
following Reichenbach’s principle of common cause [Reichenbach 1956].  We will get on 
these topics in subsequent chapters. 

Many people (Peirce among them) have considered abduction a rather different 
reasoning mechanism. As a result, ALP (Abductive Logic Programming) [Kakas et al. 
1993] has appeared in the area of logic programming as an isolated paradigm, with 
numerous applications in databases. Impressively, in some reviews (e.g. [Eiter et al. 
1997]) no reference appears to ILP or any induction-related paradigm. [Adé and 
Denecker 1994] proposed unsuccessfully AILP (Abductive Inductive Logic 
Programming): “... we argue that both abduction and induction are different, yet related forms of 
reasoning on incomplete knowledge. They are both forms of hypothetical reasoning and attempt to 
“complete” the knowledge by proposing additional hypotheses. However, they differ in the sort of 
hypothesis”. They just see the role of ILP in finding general rules to explain some data 
and see ALP in finding some data that fills some gaps in proposed theories. 

Also, EBL (Explanation-based Learning) and Abductive Explanation Based 
Learning can be considered more specific cases of abductive reasoning. 
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To settle momentarily the question, in my opinion, the major difference originates 
mainly from the different aims and utility, and what is given, which usually turns 
abduction much easier and constrained than induction. In abduction we try to complete 
our knowledge about a certain individual, by generally inventing a (past) fact to fit 
with a theory that is given, while in induction we want to extend (make a new theory) 
our knowledge to predict (future) individuals.  

For an up-to-date covering of abduction I recommend Aliseda’s thesis 
dissertation [Aliseda-Llera 1997]. For the relation between induction and abduction I 
recommend [Flach and Kakas 1999]. 

2.5  Reasoning by Analogy 

As it has been said, an analogy is a transference of information from the 
characteristics of one situation to the characteristics of another situation. Analogy is 
also a hypothetical inference process that can sometimes provide correct results 
(such as whales are mammals) or incorrect (such as the ancient view of the stars as 
wholes in a black sphere which separated the world from fire). In fact, analogy has 
always been used as a pragmatic tool and also as a source of metaphors, even for 
aesthetic purposes. 

How to distinguish plausible analogies from fantastic ones has also been the main 
question of analogy, as an augmented version of the main problem given in 
induction. Recently, a pragmatic use of analogy has been addressed in AI, which has 
generated an extensive bibliography about learning by analogies [Kling 1971] 
[Gentner 1983] [Greiner 1988] [Hall 1989] [Derthick 1990] [Winston 1992] 
[Hofstadter et al. 1995]. Analogy can be seen as two-layer explanatory induction (or as 
[Holland et al. 1989]’s second-order morphisms), following the known fact that some 
rule or structure [Gentner 1983] is shared between two previously independent facts, 
so making possible the transfer of rules and methodologies from one case into the 
other one. This kind of creative analogy or inductive analogy is known also as 
interpretative analogy [Indurkhya 1991].  

There is a close connection between analogy and induction, analogy and 
abduction, and even analogy and deduction, as it is seen in mathematical practice. As 
we said in the introduction, an analogical inference can be seen as an inductive step 
followed by an abductive (or deductive) step. 

2.5.1  Case-Based Reasoning 

Case-based reasoning appeared to address the problem of everyday abductive 
explanation [Kass 1986],  [Leake and Owens 1986], [Schank 1986], [Leake 1992], 
[Shank et al. 1994]. Its main feature is its non-constructive character. Instead, it is 
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schema-based and analogy-based, i.e., every explanation is based on a similar case on 
prior episodes from memory. 

The question arises: how can a case-base reasoning system start? It must record 
always the first episodes (and after a time it will have an intractable amount of 
samples to compare with) or “it assumes that the system begins with a fairly extensive set of 
schemas —a sufficient set to capture the classes of events that are of interest” [Leake 1995]. This 
implies accounting only for “stereotyped events” schematised in “frames”, “scripts” 
or “MOPs” [Charniak 1978], [Cullingford 1978], [DeJong 1979], [Lebowitz 1980], 
[Minsky 1975], [Schank and Abelson 1977], [Schank 1982] [Plaza 1992]. It is 
supposed that some kind of analogy has to be made between past experiences and 
new facts. The difference is that the required mappings are used for just one situation 
and not constituted as a general rule. 

Despite the limitation of pure case-based reasoning (in our view), one remarkable 
thing is the clarification of the issue when to explain. The case-based model proposed a 
method for automatically generating appropriate targets to fill in gaps in 
understanding, based on detection of comprehension failures revealed by anomalies 
that arise during the understanding process. In [Leake 1995] words: the “explanation 
process is triggered when anomalies arise”. But “anomalies not only provide guidance 
about when to explain, but of what to explain as well” [Leake 1995]. In this way, 
statistical and MDL-based induction is not useful for explanations, because 
anomalies are not detected until a great number of them force a change of model. 
The ‘best’ explanation is based on “probabilities” or “costs” of the assumptions. 
These ‘costs’ are usually measured in terms of “Occam’s razor” but based on the 
“number of assumptions” and “structure coherence” [Ng and Mooney 1990] 
[Thagard 1989] much more than on a simplistic MDL principle. Case-based 
explanation is strongly influenced by similarity to previous-explained episodes and to 
stereotyped patterns. Some methods [Charniak and Shomony 1994], [Hobbs et al. 
1993], [Pearl 1988] assume that the information on the probability or “cost” of each 
assumption and rule is available to the explainer. Case-based reasoning, in general, 
assumes that only “coarse-grained” likelihood information is available [Leake 1995]. 

For more information and technical details about analogy I recommend [Winston 
1992].  [Hofstadter et al. 1995] is suited for more philosophical or psychological 
issues of analogy. 

2.6  On the Relation between Inference Processes 

There are many open questions about the nature of each inference process, as long 
as many more technical problems. The things get even more complicated when one 
tries to understand the relation between different inference processes and to study 
their combination. The emphasis has almost always been lain in highlighting their 
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differences and seeing them as opposed inference processes rather than 
complementary. 

In principle, it may seem clear that induction must, in some way, depend on 
deduction, because every hypothesis must be deductively checked with the evidence. 
However, this should not boldly lead to the view of induction as the inverse of 
deduction13. The following words of Stanley Jevons [Jevons 1874] state clearly this 
view: 

Induction is, in fact, the inverse operation of deduction, and 
cannot be conceived to exist without the corresponding 
operation, so that the question of relative importance cannot 
arise. Who thinks of asking whether addition or subtraction is the 
more important process in arithmetic? But at the same time much 
difference in difficulty may exist between a direct and inverse 
operation; the integral calculus, for instance, is infinitely more 
difficult than the differential calculus of which it is the inverse. 
Similarly, it must be allowed that inductive investigations are of a 
far higher degree of difficulty and complexity than any questions 
of deduction; ...  

They are “both modern sounding and relevant” [Muggleton 1995] to current 
techniques. The view is also endorsed by from the logical interpretation of 
probability, initiated by John Maynard Keynes [Keynes 1921] and Rudolf Carnap 
[Carnap 1950, 1952], although the main ideas can be found in the work of George 
Boole. 

Carnap acknowledged that probability “has two distinct, legitimate meanings: that of a 
degree of confirmation (related to the subjectivists’ concept of probability), and that of a relative 
frequency (as used by frequentists). To make the distinction clear, Carnap uses Probability1 to denote 
the former, and Probability2 to denote the latter. Carnap’s main interest was with Probability1. 
Unlike the subjectivists, however, Carnap postulates that Probability1 is a purely logical concept, and 
that values Probability1(h | e) can be correctly determined by a purely logical analysis of h and e.” 
[Jaeger 1998], h being the hypothesis and e the evidence. 

Carnap aimed to define P(h, e, S, N), where S is a finite subset of an infinite 
vocabulary of unary relations and N a finite domain of constants14. Carnap takes for 
granted that this will actually be independent of S and reduces the problem to obtain 
P(h, e, N). Even with these restrictions and assumptions, Carnap concludes, after 
studying some possibilities, that the best of them “is not entirely inadequate” ([Carnap 
1950, p. 565]). In Jaeger’s words “Looking back at these works by logicists we can probably 

                                                           
13 Except the 'abductivistics', considering abduction as a different category from deduction and 
induction. 
14 The reason for this restriction is simple, if the language is infinite and we consider non-unary 
relations it is not always possible to determine all the consequences of a statement, by Gödel’s First 
Incompleteness Result, and this probability is ill-defined. 
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rightfully say that their original program has failed. A purely logical concept of probability has not 
proven to be viable. An obvious reason for this is the fact that we have essentially unlimited and 
arbitrary choices for which language to choose for expressing probabilistic information” [Jaeger 
1998]. A purely logical concept of induction has not been possible either as it is 
shown in [Flach 1995a], who is able to give a logical account for abduction but not 
for induction. Note that a similar problem was found by Hintikka in his formulation 
of surface and depth information [Hintikka 1970a] for deduction.  

There have been other investigations on the search of a proper view of semantic 
information (e.g. [Wittgenstein 1922], [Mackay 1959] [Devlin 1992] [Maddox 1993]), 
but they have never obtained the popularity of probabilistic accounts of information 
and logic, or other utilitarian views of information ([Howard 1966] [Aisbett and 
Gibbon 1999]). 

In the end, the best that could be drawn from the probabilistic view of logic (or a 
logical view of probability) is Carnap’s Probabilistic Calculus [Bar-Hillel and Carnap 
1953], exhaustively developed in [Kemeny 1953], which, in fact, has been highly 
influential to the view that induction and deduction are inverse processes in terms of 
information. The main rule of Probabilistic Calculus is, as we reminded in the 
previous chapter, the following one: 

p(P) ≤ p(Q) if P |= Q 

According to it, deduction decreases information and induction increases it. Note, 
however, that this omniscient view of deduction is incompatible with the notion of 
inference we have begun this chapter “a process of reasoning by which a person 
modifies (part of) its beliefs.”. Deduction decreases information and, consequently, 
does not change belief (provided premises are not forgotten). This does not motivate 
at all a system to perform deductive inference, because, under this paradigm, it is 
useless. 

Nonetheless, the omniscient view of deduction was already rejected by Kant. He 
was especially concerned to study what kind of knowledge can be provided by both 
induction and deduction. He distinguished truths that are a priori and a posteriori 
(empirical) but, more importantly, he recognised that some a priori propositions may 
be synthetic, in the way they are derived from other a priori propositions15. In this 
sense, synthetic (both a priori and a posteriori) propositions are valuable in the way 
that they can amplify our knowledge (i.e., informative). However, Kant was flustered 
by the following question: How is it possible to establish propositions that are 
universally valid and, at the same time, amplify our knowledge? Or in its more 
modern formulation, how deduction can provide some new knowledge? By that 
time, the idea of computational cost or resource consumption was not even augured, 

                                                           
15 Even for the empiricists (like Quine), for which there cannot be an absolute distinction between the 
analytic and the synthetic, Kant represents the recognition of inference as a mean of synthesis of new 
concepts, not explicitly given before the inference process (or processes) has taken place. 
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so Kant’s solution was found in what he called Transcendental Aesthetics. Curiously, this 
transcendental aesthetics was based on the notions of space and time, although from 
a much more existential point of view from the notions of space (bits) and time 
(computation steps) that will be used in this work. 

2.6.1 Inference Processes, Effort and Lazy/Eager Methods 

The Ancient Greeks were not interested in the effort that any inference requires. 
Their passion for philosophical and scientific meditation did not motivate an interest 
to reduce this effort of reasoning, which, for the Greek Culture, was even pleasant. It 
is only with the advent of the notion of machine and its applications to artificial 
intelligence and other many different practical problems, that effort and cost turn out 
to be relevant. 

I have been discussing the differences between inference processes. When we 
consider information and effort, some similarities begin to shine: first, every 
inference is usually guided by an interest to obtain a new assertion or new 
knowledge, not explicitly present previously and, secondly, the result of an inference 
process must be evaluated in order to discern if the result is valuable enough to be 
preserved or discarded (forgotten), according to its interest and the effort which has 
been performed to obtain it. 

This engages with the field of resource-bounded reasoning, where this effort is 
beginning to be weighed with the value of the expected results: “Instead of building 
systems that find a ‘good’ answer, the goal of resource-bounded reasoning techniques is to find an 
‘optimal’ answer. Optimality, however, is defined with respect to the system knowledge and 
computational capabilities” [Zilberstein 1999]. For such a measure of optimality it is 
necessary to evaluate the effort in computational capabilities from what was known 
before an inference process and what is known after it.  In other words, a resource-
dependent information gain measure is required. 

The case of analogy also suggests another way of classifying inference processes. 
Some inference processes work on the fly, i.e. they are lazy [Aha 1997], in the way they 
are only used when needed, such as analogy or abduction, and other inference 
processes are more eager, in the way they try to obtain concepts or rules that would be 
necessary in the future, as constructive induction performs.  

More concretely, eager learning extracts all the regularity from the data in order to 
work with intensional knowledge, i.e., a model. Examples of eager learning are Model 
Based Reasoning (MBR) and Inductive Logic Programming (ILP). The MDL 
principle gives a theory that is usually eager for compressible data and lazy for 
uncompressible data. I will investigate in this thesis more eager criteria, in order to 
anticipate or ‘invest’ in more complex (or intensional) theories.  

There has also been a very important and fruitful research in lazy learning 
methods [Aha 1997]. Examples of lazy learning methods are k-neighbouring or 
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distance-based techniques, case-based reasoning (CBR) or instance-based reasoning 
and analogical reasoning. As we have seen in some of these methods, examples are 
memorised as extensional knowledge with some information about their results and 
other characteristics. In the moment of a query or a new problem, the system works 
hard to extract which previous experiences are more appropriate to the new 
problem, by selecting the most similar cases or by making the most plausible analogy. 

A quite updated comparison of lazy and eager (also called inductive in this paper) 
methods can be found in [López de Mántaras and Armengol 1998]. Some works 
[DeJong and Mooney 1986], [Mooney 1990] have introduced flexible frameworks to 
combine EBR and induction, known as “explanation-base schema acquisition” 
(EBSA). The difference in laziness of CBR and EBSA is illustrated by [Leake 1995]: 

A key difference between case-base explanation and explanation-
based schema acquisition concerns the preferred level of 
generalization. Explanation-based schema acquisition assumes a 
sufficiently high-quality domain theory to allow immediate 
generalization of new episodes whenever licensed by the rules of 
the domain theory. Whenever explanation-based schema 
acquisition systems encounter new situations that do not fit 
previous generalizations, they first explain the situation by doing 
backwards chaining, using their library of previous rules and 
schemas. After completing an explanation, they immediately 
perform explanation-based generalization of the explanatory chain 
to form a new generalized schema for future use. Case-based 
explanation instead takes a very conservative approach to 
generalization. At the time an explanation is generated, case-based 
explanation simply stores that specific explanation. If that explanation 
must be generalized to apply to another situation, the 
generalization is done only at the time that the explanation must 
be re-applied, and only to the extent required to explain the new 
situation. 

Despite this continuous repetition of things that have been done several times 
before, the advantages of lazy methods are their flexibility and the economy of 
resources in the short and medium terms, because a reasoning effort is only done 
when a new problem appears. Another important advantage is that revision is 
unnecessary, because no model of reality is constructed. 

In contrast, the advantages of eager methods are given by the fact that they can be 
constantly pre-processing all the received information and they can profit idle time 
resources. If the model is accurate, the answer to a new problem is immediate. 
Moreover, most of the given examples can be forgotten when their model is reliable 
enough, reducing storage and increasing manageability in the large. 

This distinction, however, has not been clearly stated in the literature for 
deduction. Nonetheless, deduction can also be sometimes lazy, such as everyday 
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deductive inferences, and sometimes eager, such as mathematical practice. Only 
program specialisation and transformation techniques [Pettorossi and Proietti 1990, 
1996a, 1996b] [Dershowitz and Reddy 1992] deal with the transformation of 
deductive systems or programs into more efficient ones, preparing the program 
representation to the expected facts it should cover, something that could be seen as 
eager or anticipative deduction. 

The reaction time of both inductive and deductive inference is crucial in action 
systems, and the quotient between reaction time and quality of response is the main 
point, highlighted by [Horvitz 1990]. Since then, there has been an increasing interest 
in the context of resource-bounded systems, and it has been shown that the question 
not only depends on the expectation of kind of problems (problem type prediction) 
but also on the preparation and representation of the background knowledge, i.e. the 
theory, from which quick inferences must be generated. According to this 
expectation (or past problems) a measure of representational optimality could be quite 
useful. 

The choice between lazy and eager inference methods clearly depends on time 
and space resources but also on the frequency of use. For instance, almost everyone 
of us reminds explicitly how old we are but usually do not store explicitly how many 
years have passed since we finished secondary school. Hence, some time (and effort) 
must be employed to derive that information when it is needed. In other words, an 
oblivion criterion is required to discern which things should be maintained explicitly. 

Finally, complexity connections between different inference processes have also 
been established in terms of computation, which make even clearer that deduction 
and induction are not inverse processes. It is little surprising then the recent result 
that “Some Learning Systems are Interactive Proof Systems” [Sempere 1998]. 

2.6.2 Inference Processes and Confirmation 

Another common trait of any inference process is that an inference can be confirmed 
or refuted. Even in the case of non-hypothetical inference, i.e. classical deduction, it 
is completely different to state “B is a logical consequence from A” that to state “B is 
a logical consequence from A due to proof C”. This also highlights that a theorem 
prover provides useful information, because a proof does supply new knowledge, 
meta-knowledge about the certainty of other pieces of knowledge. In fact, 
mathematics is full of conjectures, which may or may not be confirmed or refuted. 
But even in the case of computational deduction we must admit some possibility of 
error, and, consequently, additional confirmations are useful. Obviously, for 
hypothetical inference, the role of confirmation is more blatant because evaluation 
criteria are usually not sufficient to select the ‘right’ hypothesis with certainty. 

The consideration of confirmation propagation motivates a refinement in 
terminology, perfectly illustrated by these words from [Li and Vitányi 1997]: 



48 José Hernández Orallo - Doctoral Dissertation 

 48 

The Oxford English Dictionary defines induction as “the process 
of inferring a general law or principle from the observations of 
particular instances”. This defines precisely what we would like to 
call inductive inference. On the other hand, we regard inductive 
reasoning as a more general concept than inductive inference, 
namely, as a process of reassigning a probability (or credibility) to 
a law or proposition from the observation of particular instances. 

In other words, inductive inference draws conclusions that accept 
or reject a proposition, possibly without total justification, while 
inductive reasoning only changes the degree of our belief in a 
proposition. We need also to distinguish inductive reasoning from 
deductive reasoning (or inference). In deductive reasoning one derives 
the absolute truth or falsehood of a proposition. This may be 
viewed as a borderline case of inductive reasoning. 

It is somehow startling for the author of this work to note that the solution for this 
confirmation propagation, which will be given in chapter 5, accounts both for 
deductive and inductive confirmation by regarding deductive confirmation as a limit 
(or borderline) of inductive confirmation. Moreover when [Li and Vitányi 1997] are 
strenuous upholders of the MDL principle. 

After this regard to terminology, let us review two different solutions for the 
confirmation problem. Two philosophers and logicians from the Wiener Kreis 
addressed the problem: Carnap and Hempel. A quantitative concept of degree of 
confirmation, as a value between 0 and 1 for a hypothesis given an evidence, was 
developed by Carnap, who associated it, as we have said, with a notion of probability. 
On the contrary, Hempel introduced a qualitative concept of confirmation, i.e., a 
Boolean relation between hypothesis and evidence, in the way that E confirms H or 
E does not confirm H. In order to devise such a logical relation of confirmation, 
Hempel introduced five adequacy conditions [Hempel 1943, 1945]. Let us recall 
them (from [Flach 1995a]): 

(H1) Entailment condition: any sentence which is entailed by an observation report 
is confirmed by it 
(H1.1) Any observation report is confirmed by itself. 

(H2) Consequence condition: if an observation report confirms every one of a class 
K of sentences, then it also confirms any sentence which is a logical 
consequence of K. 
(H2.1) Special consequence condition: if an observation report confirms a hypothesis H, then it 

also confirms every consequence of H. 

(H2.2) Equivalence condition: if an observation report confirms a hypothesis H, then it also 
confirms every hypothesis which is logically equivalent with H. 

(H2.3) Conjunction condition: if an observation report confirms each of two hypotheses, 
then it also confirms their conjunction. 
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(H3) Consistency condition: every logically consistent observation report is logically 
compatible with the class of all the hypotheses which it confirms. 
(H3.1) Unless an observation report is self-contradictory, it does not confirm any 

hypothesis with which it is not logically compatible. 

(H3.2) Unless an observation report is self-contradictory, it does not confirm any 
hypotheses which contradict each other. 

(H4) Equivalent condition for observations: if an observation report B confirms a 
hypothesis H, then any observation report logically equivalent with B also 
confirms H. 

(H5) Converse consequence condition: if an observation report confirms a hypothesis 
H, then it also confirms every formula logically entailing H. 

Loosely, H1 and H2 can be identified as deductive (downward) confirmations, H3 is 
an inductive confirmation in Popper’s sense (the theory has not still been refuted by 
the evidence), and H5 is an abductive (upward) confirmation. H4 is the most natural 
and doubtless one, at least if modalities are not taken into account. However, H2 and 
H2.1 turn out to be inconsistent with H5, a problem known as the “confirmation 
paradox” [Hempel 1943, 1945] [Hesse 1974]. His solution is to drop one of the two 
conditions, but, as Flach points out, “Hempel solves the problem on the formal level by 
dropping the converse consequence condition in favour of the consequence condition. However, on the 
intuitive level the paradox remains, since Hempel does not provide a clear justification of his choice” 
[Flach 1995a]. Moreover, H2.2 generates some problems with general formulae that 
Hempel tries to solve through a narrower relation of direct confirmation, which is 
somehow closely related to the subset principle, i.e., if two hypotheses cover the 
data, choose the most specific one. Flach’s qualitative solution is much more 
convincing; he separates two subsets of adequacy conditions which account 
separately for explanatory (abductive) and confirmatory (descriptive) reasoning, so 
enlightening some classical distinctions between inductive and abductive reasoning. 
However, in my opinion, the original view of confirmation is not represented by the 
second choice alone, nor by the first one. The problem is that a qualitative account 
of confirmation cannot conciliate H2 with H5, i.e., downward or forward (deductive) 
confirmation with upward or backward (abductive) confirmation, because both have 
different strength. 

One claim of this thesis, which is especially defended by the results of chapter 5, 
is that it is possible to weigh consistently both sources of confirmation, although it 
cannot be done with a measure of probability, in a strict sense, but a measure of 
plausibility, which does not comply with Carnap’s Probabilistic Calculus. Another 
reason for this is to avoid the non-informativeness problem of probabilistic 
approaches of confirmation, as pointed out by Popper: “Those who identify confirmation 
with probability must believe that a high degree of probability is desirable. They implicitly accept the 
rule: ‘Always choose the most probable hypothesis!’ Now it can be easily shown that this rule is 
equivalent to the following rule: ‘Always choose the hypothesis which goes as little beyond the evidence 
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as possible!” ([Popper, 1963, pp. 289-90]), or maybe, just take the evidence itself as a 
complete extensional hypothesis. Carnap, on the contrary, obviates this problem by 
separating the problem of probability from that of interestingness: “Inductive logic alone 
does not and cannot determine the best hypothesis on a given evidence... This preference is determined 
by factors of many different kinds...” ([Carnap 1950, p.221], from [Flach 1995a], p. 30). 
Maybe an intensionality degree or an information gain measure could be in Carnap’s mind.  

More precisely, the approach for a theory of confirmation that will be undertaken 
in the chapter 5 of this dissertation is based on a gradual (non-Boolean) propagation 
of confirmation, a solution in between Hempel’s and Carnap’s, which allows to 
include both H2 and H5, a theory which is also between the MDL principle and 
Popper’s informativeness criterion. This measure of reinforcement will be shown to 
be useful for deduction, induction and abduction. 

2.6.3 Towards a Combination of Inference Processes 

The research in artificial intelligence has usually studied inference processes in a 
separate way. Although abduction has sometimes been seen in conjunction with 
deduction in nonmonotonic models of reasoning or probabilistic logics, induction, as 
the way to generate theories from facts or learn in an automated way, has usually 
been a separate thing, addressed by the machine learning community. 

Apart from Popper and Miller’s view that every inductive support is deductive 
(quite reasonable if we assume that for all a and b, a → b ≡ ¬b → a), there have even 
been some essays to see induction as deduction, with the illusion that all the 
problems of combination would be solved, because there would only be a unique 
inference process. [Shanahan 1989] studied the use of deduction for prediction and 
abduction for explanation and [Gregoire and Saïs 1996] claimed that inductive 
reasoning is sometimes deductive. In my opinion, these results are obtained by 
misconceptions or a different understanding of some of the inference methods 
involved, which, in any case, do not solve the main problem of their combination. 

In the last decade, the first successes of ML have motivated the punctual use of 
ML techniques for other problems of deductive character, such as software 
engineering and automated deduction [Langley and Simons 1995]. But only recently, 
agent theory addressed the problem of reasoning with combined inference processes, 
at least in an informal way. There is again some interest about the association of 
different inference processes in order to make more intelligent systems. In fact, it has 
been realised that many different processes of learning or knowledge acquisitions can 
be explained as suitable combinations of basic inference processes: induction, 
abduction and deduction. In [Michalski 1993], different combinations and variants of 
hypothetical reasoning are given in the following table: 
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Variant INPUT Background 
Knowledge 

OUTPUT 

 

Empirical Inductive 
Generalisation 

Dawski’s paintings, 
“A girl’s face” and 
“Lvov’s cathedral” 
are beautiful 

 Maybe all Dawski’s 
paintings are 
beautiful 

Constructive Inductive 
Generalisation  

(generalisation + deductive 
derivation) 

Dawski’s paintings, 
“A girl’s face” and 
“Lvov’s cathedral” 
are beautiful 

Beautiful paintings tend to 
be expensive (and opposite)  

Maybe all Dawski’s 
paintings are 
expensive. 

 

Inductive 

Specialisation 

John lives in Virginia Fairfax is a “subset” of 
Virginia 

(Living in x implies living in 
superset of x) 

Maybe John lives in 
Fairfax 

 

 

Concretion 

 

John is going to New 
York 

John likes driving 

(“Driving to” is a special 
case to “going to”) 

Liking to drive m-implies 
driving to places 

Maybe John is 
driving to New York 

Abduction There is smoke in 
the house 

Smoke usually indicates fire 
(and conversely) 

Maybe there is fire in 
the house 

Constructive abductive 
generalisation  

(generalisation + abduction) 

Smoke is in John’s 
apartment 

Smoke usually indicates fire 
(and conversely) 

John’s apt. is in the Golden 
Key building 

Maybe there is fire in 
the Golden Key 
building 

Table 2.1. Different combinations and variants of hypothetical reasoning. 

The purpose of the preceding table is to illustrate how classical inference processes 
can be ‘camouflaged’ under different names. Moreover, it shows that the view of 
deduction as specialisation and induction as abstraction or generalisation is 
completely erroneous; abduction can generalise or specialise and induction can also 
generalise or specialise. 

The question is then, if these complex or derived inference processes are 
composed of simpler or basic inference processes, does this mean that plausibility, 
informativeness and confirmation must be assigned as a sum of its parts? And, if this 
is the case, is it possible to combine plausibility criteria of induction with plausibility 
criteria of nonmonotonic deductive inference? Does have the same meaning 
informativeness for abduction, induction and deduction? The things seem even more 
complicated if we intend to measure the value, novelty, or internal utility of these 
inferences, depending of a background knowledge that has been constructed as well 
from varied inference processes. In other words, which results are to be maintained 
explicitly? 

There have been, of course, some approaches to solve this problem. The most 
successful ones, although in limited domains, are based on combinations of 
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reinforcement learning and effort or resource optimisations [Barto et al. 1995] 
[Schmidhuber et al. 1997a, 1997b] [Martin 1998]. 

The first symbolic approach in this direction is SOAR [Newell 1990], but it is 
based on a single learning method called chunking. The main feature of SOAR but it 
highlights when and why a reasoning process should be triggered. The system 
THEO [Mitchell et al. 1991] is also a self-improving system that integrates more 
learning methods. 

The system Noos [Arcos and Plaza 1996] combines problem-solving (deductive) 
techniques with multiple learning methods [Plaza and Arcos 1993] (induction and 
CBR [Armengol and Plaza 1994]). The major feature of this latter system is that 
includes metalevel capabilities and reflection about the learning strategies and how 
the goals have been achieved. 

 However, there has not been presented to date a general theory that would 
account for this combination in general. A partial effort in this line [Aisbet and 
Gibbon 1998, 1999] is based on the use of utility to account for information in a 
logical framework, or the MOBAL system [Morik et al. 1993][Sommer et al. 1995], 
which restructures a theory according to different criteria while retaining the set of 
computed answers. 

In the end, there is a need for evaluation criteria that solve the main characteristics 
of inference, as we saw in the introduction: information, novelty, belief, explicitness 
and confirmation. In the end, as an outcome of this problem of inference 
combination, a necessity arises: new unified and coherent evaluation measures. 
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3. Information and 
Representation Gains 

    

 
Al funesto aforismo de que “el saber no ocupa lugar” —lo cual, 

en rigor, es falso– opongo siempre este otro: “pero el aprender 

ocupa tiempo” y mientras se aprende una cosa podría 

aprenderse otra de más sustancia. 

Miguel de Unamuno, 1865-1937, Sobre la enseñanza del clasicismo. 

 

 

 

 

Abstract: this chapter introduces a theoretical measure for evaluating the amount of information 
that has been made explicit by the effort of a reasoning step. The properties such a measure should 
observe are discussed. Initially, a measure of time-ignoring information gain V(x|y) is essayed, 
which represents the degree of information of x which is implicitly in y. However, it does not take 
into account time, and, consequently, it does not grasp the idea of effort. For non-omniscient systems, 
where the notion of effort makes sense, the intuitive notion of information is re-understood in terms of 
resource consumption. The choice of the function LT, which weighs space and time, as an appropriate 
measure of effort, neglects the idea of effort exclusively based on time or space. A new effective 
measure of computational information gain G(x|y), which depends on the computational effort (time 
and space), measures the proportion of x which can be easily obtained on the help of y. Some of its 
properties are studied, and it is compared with different informal but outstanding notions: 
implicitness vs. explicitness and some questions about aesthetics and interestingness. Finally, some 
definitions for whole systems are introduced, such as Representation Gain, a general notion of 
Simplification and a Representational Optimality criterion. 

Keywords: Reasoning, Information, Bounded Rationality, Computational Resources, 
Information Gain, Transformation Gain, Explicit vs. Implicit, Interestingness. 
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3.1 Introduction 

Reasoning can be characterised as a kind of computational process that transforms 
information. As we said in the preceding chapter, for many centuries, the attention 
was focused on characterising reasoning in terms of truth. Long before the modern 
notions of computation and information were developed, philosophers strove for 
understanding and formalising logic as a truth-preserving deductive process. Later 
on, induction was distinguished as a probabilistic or non-truth-preserving process 
where knowledge could be amplified from. 

Nonetheless, it has been patently clear in artificial intelligence that truth 
considerations are not sufficient for characterising reasoning. Infinite many different 
extensions of logic have been introduced accordingly: non-monotonic, modal, multi-
valued, fuzzy, default, ... with more or less outstanding theoretical results and 
applications in different areas. However, there is a feature of formulae that is as 
important as truth. It is their value or utility. Tautologies are true formulae, but most 
of them are useless. This suggested the classical conception of information related to 
the number of excluded worlds, so leading to the assignment I(x) = 2−P(x). This entails 
that any two different representations of the same concept have always the same 
information and probability. For instance, “log (x � y) = log x + log y” has the same 
information as “x+x = 2x”, and, in this world and at this moment, “the capital of 
France is Paris” has the same information as “Paris is Paris”. However, their 
informativeness is quite different. Apart from their significance in the philosophy of 
language and the study of meaning, it is a general issue that pervades reasoning. 
Modalities, quotes, partial derivations/evaluations have been exhaustively studied in 
the literature, especially in automated deduction, but only utility criteria have given 
auspicious results. Despite relative utility criteria, there are absolute criteria that affect 
the value of a concept. These absolute criteria are centred in the degree of intension of 
a concept. We will get back on this question on chapter 6. In this chapter and the 
following one we will study reasoning dynamically, as a computational process that 
transforms information into more convenient representations. 

Recently, as it has also been commented, there has been an increasing interest in 
regarding reasoning as a resource-bounded process ([Simon 1982], see [Zilberstein 
1996] for a survey) as a reaction [Moreno 1998] to the wide use of Kripke’s semantics 
[Kripke 1963] of possible worlds for formalising rational agents. Reasoning involves 
effort, which can be computationally expressed as resource consumption, especially 
space and time. Accordingly, cognitive systems organise their space resources (i.e. 
their memory) in order to minimise this effort in the future. Since memory resources 
are finite, intelligent cognitive systems usually memorise the information they receive 
in a selective and intensional way. Some information that was already implicitly or 



3. Information  and Representation Gains 

 

55

55

explicitly present in the system's knowledge is discarded whereas new and interesting 
information is included in a convenient way. 

If a system is omniscient, any implicit information can be made explicit without 
effort. In this case, it is easy to determine what is ‘new’ information: any piece of data 
such that is not covered or subsumed by previous knowledge, i.e. it is independent to 
it. Thus, the knowledge of an omniscient system increases as new and independent 
information is being added. Under this classical view, the knowledge of a system can 
only change from the interaction with a world or reality. A paradoxical and usually 
neglected consequence of this is that an omniscient system does not need to think, 
because only external perceptions have influence on knowledge. In this way, 
information can be seen as energy; a close system cannot increase its 
energy/information. 

On the contrary, if a system is not omniscient, reasoning is mainly devoted to 
make explicit what was implicit16, which includes the connection of different parts of 
knowledge, the detection of redundancies, the construction of plans and its 
consequences, the imagination of what-if, etc. Moreover, if it is neither omniscient 
nor completely consistent, it may detect inconsistencies and improve the robustness 
and ontology of knowledge. In other words, non-omniscient systems have many 
more functionalities to study on, much more dynamics, and, mainly, they are more 
realistic. 

As a result, a non-omniscient system has another kind of uncertainty. This is 
precisely what motivated Hintikka’s difference between shallow and deep 
information: “The alleviation of this kind of uncertainty must be reflected by any realistic measure 
of information that we have effectively available (insofar as distinct from the information that in some 
way we have potentially available)” [Hintikka 1973]. Therefore, a reasoning step from y to 
x will be more valuable as more implicit information of y is made explicit. In other 
words, given a y and an x we want to measure how much information of x is 
explicitly in y. If all the information of x is already explicitly in y, then x is not much 
valuable with respect to y, i.e. x is obvious from y and there is no significant 
reduction of uncertainty. On the contrary, if most of x is not explicitly or implicitly in 
y or it is hard to make it explicit, then there is an information gain of x with respect 
to y. 

The goal is then a measure that evaluates the information gain that any reasoning 
process can obtain from a given knowledge y to the result x. Among theses processes 
we have: 

a) Problem Solving: y as a problem and x is one solution. 
b) Consistence Checking: y can be inconsistent and x makes it manifest. 
c) Deductive Inference: x a deduction from y. 

                                                           
16 Although Kirsh gives this role to computation: “computation is a process of making explicit, 
information that was implicit” (Kirsh 1990). 
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d) Inductive Inference: x an induction from y. 
e) Abductive Inference: x an abduction from y. 
f) Analogical Inference: x is analogous to y (or x shows the analogy between y1 and y2, 

with y = < y1, y2>). 
g) Representational Transformation: x and y are alternative representations for z. 
h) Conceptual Simplifications: x is a simplification of y. 
i) Conceptual Optimisation: x is a better representation for z than y. 

It is clear that process a) can be conveniently defined to subsume processes b), c) and 
d), and g) subsumes processes h) and i). In this chapter we will centre on processes a) 
and e) in a generic way, in order to introduce different measures of information gain. 
The next chapter will be devoted to study inference processes b) c) d) and e) f) in a 
detailed way. 

As we have said, a function F(x, y) of information gain from y to x must evaluate 
how informative is x with respect to y. This measure should conform with the 
following fundamental properties:  

1) F(x, y) should be smaller as long as x is more obvious from y and it should be 
greater as long as x is more difficult to obtain from y. 

2) F(x, y) = min∀x,w(F(x, w)) iff x = y. In other words, no transformation, minimum 
gain. 

3) F(x, y) = max∀v,w(F(v, w)) iff y is useless for x. 

The last property can be understood in two ways: y can be useless for obtaining x 
because x and y are absolutely independent, or, y has common information with x 
but it is useless because it is extremely intricate or difficult to discover. Since, as we 
will see, it is not computable to know whether two objects are absolutely 
independent, we will consider the last interpretation. 

In what follows we will introduce different measures and we will study their 
properties. We will dub “information values” those measurements which can be 
negative and positive, comparing the effort from y to x with the effort from x to y. In 
the cases studied, they all result to be inconsistent with most of the preceding 
properties. Their introduction is justified because they are useful to understand the 
measures that are presented later on. 

Finally, we will establish some technical properties in order to make the function 
measure the proportion and degree (0...1) of the information of x which is explicitly 
in y: 

4) 0 ≤ F(x, y) 

5) F(x, y) ≤ 1 

We will only use the name of Information Gain for any measure for which properties 
1, 2, 3 hold and Normalised Information Gain if it is also compliant with properties 
4 and 5. 
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Hintikka claimed that “a measure of information that would not be effectively 
computable is almost absurd” [Hintikka 1973]. According to this, a last property will 
be taken into account: 

6) F must be computable. 

This last property depends on how the effort from implicit information to explicit 
information is measured. As we will see, F will only be computable if time is 
considered as a factor of the effort.  

3.2 Resource Consumption and Gain 

The difference between explicit and implicit can only be made if reasoning entails an 
effort or difficulty (if not, everything implicit would be explicit). Any effort must be 
measured according to some resource consumption (time, energy, external additional 
data, accuracy loss, ...). Consequently, depending on which measures of resources 
were chosen, different measures of information gain could be obtained.  

From a computational point of view there are two main resources to be 
considered: space and time. Without loss of generality, given a system φ, any piece of 
information x which represents an object or a fact from the world can be coded as a 
binary string. However, if φ is a universal descriptional system, there are infinite 
many representations for x in φ, i.e., different strings d such that φ(d) = x, that we 
denote by {dx}. In order to measure the resource-optimality of each dx it is sufficient 
to define a resource-function over space and time, i.e., a function over the length of 
the description, denoted by l(dx), the additional space which is required to go from dx 
to x, denoted by Space(dx), and the time cost, denoted by Cost(dx). In this way, if we 
define the resource-function R = F(l, Space, Cost), the best R-representations of x 
can be generically obtained in the following way: 

Opt(x) = argmin { R(dx) | φ(dx) = x }  
 

Note that Opt(x) is a set since there can be more than one representation that makes 
R(�) minimal. Finally, the resource-complexity can be defined as RC(x) = min { R(dx) 
| φ(dx)=x }. 

If we simply define R as l(dx), we have that RC(x) = K(x), i.e., the Kolmogorov 
Complexity of x. This measurement of resource as space of the description ignores 
time. As a result, it only recognises the implicit information that cannot be made 
explicit unless some extra information is added. It does not recognise that something 
can be implicit because it requires time to make it explicit. Some unintuitive 
consequences are derived. For instance, an encrypted document would be explicit 
information, because there is a very short program (try all the combinations for the 
key) that would finally decrypt the document to make it ‘explicit’). 
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On the other side, if we define R as Cost(dx), we would have that RC(x) = l(x) if x 
is finite and RC(x) = ∞ if x is infinite. If we measure the information gain under this 
resource we would have even more unintuitive consequences, because any extra 
information is not included in the resource function and the information gain from y 
to x would always be the time it takes to print y, because y could always be given 
without cost. 

As we will see, the compromise is found by measuring both time and space. In 
this case, it is possible that some implicit information cannot be made explicit unless 
some extra information is added. Moreover, it recognises that something can be 
implicit because it requires time but no extra information to make it explicit. The 
question is how to weigh space and time. In 1973 Levin showed that the weighing 
R(dx) = l(dx) + log Cost(dx) can be used to construct a “universal optimal search 
algorithm” as an enumeration algorithm ordered by R(dx) that were optimal (up to a 
multiplicative constant factor) for any inversion problem (given a y and a function f, 
obtain x such that f(x) = y). This function R, which is usually denoted by LT, 
produces the well-known Kt complexity. 

The rationale for LT is simple: suppose the solution of a problem has size n and 
to check the solution is made by an oracle. In order to obtain the correct solution we 
can provide the n bits of the solution extensionally or we can essay all the possible 2n 
combinations without providing any additional information to guess the correct 
answer. The first method has the cost of n bits of additional information whereas the 
second method has the cost of 2n computations (and questions to the oracle). By 
using LT both methods have the same cost: n. Normally, the optimal way from the 
problem to the solution is given by a balance between both methods: some 
information (hints) is given extensionally and some other information is computed. 
As Kirsh points out: “it seems that there is a principled difference between space and time. But 
we have learned otherwise. Accordingly, just taking computational effort as the measure of 
explicitness, there is no way of choosing whether to represent a given block of information by a 
powerful procedure plus limited data or by a weak procedure plus exhaustive data” [Kirsh 1990].  

For the purposes outlined at the beginning, it provides a good compromise 
between space and time17. However, different parameterised factors could be added 
according to the system’s characteristics. After these notions of ‘effort’ it would seem 
easy to define a notion of ‘value’ increase or ‘gain’ from an object to another. 
However, an effort can be done in vain, so it may entail no information gain. We will 
see how to avoid partially or completely this ‘vain effort’ phenomenon. 

Sections 3.3 and 3.4 investigate the possibilities of K(x) for defining an 
information gain, inspired in well known derived notions of K(x), as mutual 

                                                           
17 Using the logarithm of the cost instead of the cost or the product of l(p) * cost(p) allows the 
consideration of short programs that are NP-hard (or exponential), that otherwise would be replaced 
by the program "PRINT x", because it would have less complexity. 
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information and information distance. Section 3.5 introduces Computational 
Information Gain based on Kt(x), which will be shown to comply with the properties 
sketched in the previous section. Section 3.6 relates it with some classical concepts of 
computational complexity, showing the robustness of the definition. Section 3.7 
introduces a variant that it is theoretically free from the addition of new and 
unrelated information (vain effort phenomenon) in order to inflate information gain. 
Section 3.8 presents a measure that compares 3 objects instead of only 2 to formalise 
the idea of representational transformation. This special case is dubbed 
representational gain. Finally, section 3.9 compares information gain and other 
measurements that are introduced in this chapter with existing related notions 
appeared in the literature. 

3.3 Relative Information Value 

Kolmogorov Complexity (K(x)) is an objective measure of the absolute amount of 
information of an object, up to a fixed constant, which depends exclusively on the 
descriptional system that is used. Conditional Kolmogorov Complexity (K(x|y)) is an 
objective measure of the relative amount of information of an object x with respec to 
an object y.  

One of the most significant properties of K(·|·) is that, in general, K(x | y) ≠ K(y | x), 
known as the asymmetry of Kolmogorov Complexity. It is straightforward then to 
understand K(x | y) as the data ‘cost’ or ‘effort’ necessary for going from y to x. In the 
same way, the time-weighted variant Kt(x | y) can be viewed as the data and time 
‘cost’ or ‘effort’ necessary for going from y to x. Moreover, it is easy to adapt these 
functions to follow two of the three properties of a metric (at least asymptotically), 
namely, (1) F(x, y) =0 iff x=y, because K(x | y) and Kt(x | y) are always strictly greater 
than 0 and (2) F(x, y) + F(y, z) ≥ F(x, z). As we have just commented on, they do not 
follow the third property of a metric, symmetry.  

In fact, this has given many problems for the definition of a proper measure of 
universal distance [Bennett et al. 1998] between objects because “The conditional 
complexity K(y|x) itself is unsuitable [...]. K(ε|x), where ε is the empty string, is small for all x, yet 
intuitively a long random string x is not close to the empty string”. Nonetheless, it is precisely 
this asymmetry which makes information transformation worthy and allows the 
possibility of measuring information gain. 

The first idea of information value can be based on measuring the cost or effort in 
one way with respect to the cost or effort in the other way. For instance, if x is a 
program for y, it is usually more valuable to have x than to have y, because, 
intuitively, if one has x then one has y. The idea is to compare the way from y to x 
with the way back from x to y. This leads exactly to the definition of relative 
information value:  
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Definition 3.1 The relative information value of x with respect to y, denoted W'(x 
| y) is defined as: 

W'(x  |  y)  =  K(x  |  y)  −  K(y |  x)             [Zurek 1989a]  

 

This measure W' was introduced by Zurek as the thermodynamic cost of 
computation. Some of its properties are studied in [Zurek 1989a]. 

For our purposes, it is easy to check that W'(x | y) does not follow any of the 
properties of the introduction. For instance, W'(x | y) would be negative if y is more 
valuable than x and positive if x is more valuable than y.  

However, it is interesting to study some other properties in order to know where 
the definition can be modified to make the way towards better definitions such as 
those introduced in sections 3.4 and 3.5. The first reader can perfectly step to these 
sections directly. 

3.3.1 Properties 

Theorem 3.1 If x and y are independent, i.e., the common information I(x:y) =
+
 0, 

we have that W'(x | y) =
+
 K(x) − K(y), so the value of x with respect to y only 

depends separately on the minimal lengths of objects x and y. 

PROOF. By the following property Ic(x : y) =
+ Ic(y : x) =

+ I(x:y), the result is 
straightforward. If x and y are independent, we have that the contained 
information of y with respect to x is 0, i.e. Ic(x : y) = K(y) − K(y | x) =

+ 0 and the 
contained information of x with respect to y is 0, i.e., Ic(y : x) = K(y) − K(y | x) =

+ 0. 
Hence K(y) =

+ K(y | x) and K(x) =
+ K(x | y) resulting in W'(x | y) =+ K(x) − K(y). �  

Our main concern, however, is precisely centred when x and y have a close relation 
as problem-solution, premise-conclusion, evidence-hypothesis, etc. For instance, the 
closest relation is given by the following theorem, when x is a program for y. 

Theorem 3.2  If x is a program for y we have that W'(x | y) =+ K(x | y). 
PROOF. Since x is a program for y we can construct the program p = “Execute 

the input ”, which is of constant size. Hence, K(y | x) = l(p). From here, W'(x | y) 
= K(x | y) − l(p) =

+
 K(x | y). � 

 

Consequently, if x is a program for y, the information value is reduced to the 
measurement of the relative information of x with respect to y. This suggests the use 
of some properties of relative information and their extension to information value. 
For instance, obtaining the first shortest program for a given y is not much valuable: 
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Theorem 3.3  If x=y*, i.e., the first minimal program for y, we have that: 

W'(x |  y)  <+  log l(y)  + 2  log log l(y)  

PROOF. From Theorem 3.2, since x is a program for y, W'(x | y) = W'(y* | y) =+ K(y* 

| y). Additionally, for all x, K(x* | x) =+ K(K(x) | x). The > sense is obvious and the 
other sense is explained by the following construction: if we know K(x), then we 
know l(x*) and we can construct the 2l(x*) programs of length l(x*) and execute 
one step of each of them (in lexicographical order) instead of running them 
sequentially. The first one that gives x is x*. 

Moreover, in [Li and Vitányi 1997] it is shown that the complexity of the 
complexity function K results to be K(K(x) | x) <

+
 log l(x) + 2 log log l(x). 

Consequently, W'(x | y) = W'(y* | y) =+ K(y* | y) <+ log l(y) + 2 log log l(y). � 

 

Since log log l(y) is negligible with respect to log l(y), the first shortest program for a 
string y is at most log l(y) worthy from having simply y. In other words, finding y*, 
which is not only a very hard problem but also not computable in the general case, 
turns out to be only worthy log l(y). The explanation can be found in that the 
shortest program for y has a short description “the shortest description for y”. An 
important question is whether this phenomenon generalises for any compression 
ratio between x and y, or this unintuitive result only happens for maximal 
compression. 

Let us first formalise the notion of compression ratio: 

 

Definition 3.2  Let x be a program for y. We define the compression ratio of y 
with respect to x as: 

R(x :y)  = l(y)/ l(x):1  

or simply R(x:y) = l(x)/l(y). 

 

From here, the following theorem shows that there is no monotonic relation 
between W’ and the compression ratio. 

Theorem 3.4 Consider the set S={<x,y>, x is a program for y }. In S, W'(x | y) is 
non-monotonic with respect to R(x:y) and non-monotonic with respect to R(y:x) 
either. 

PROOF. The non-monotonicity with respect to R(x: y) can be clarified if we see 
that there is a y such that we can find a non-minimal compressed program x for y 
with l(x) > K(y) with K(x | y) > log l(y) + 2 log log l(y). This is justified because if 
we choose x= <z, r> where z is any program for x and r is an uncompressible 
string such that K(r) = K(r/y) = K(r/y*) = l(r), and x is still a program for y. By 
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choosing l(r) > log l(y) + 2 log log l(y) we have K(x | y) > K(z) + log l(y) + 2 log log 

l(y). 

By Theorem 3.3, W'(y* | y) <+ log l(y) + 2 log log l(y), but we have just seen that 
there exists a z such that , W'(x | y) > log l(y) + 2 log log l(y),. By the way x was 
constructed it is necessarily longer than y* so R(y*:y) > R(x:y). 

The non-monotonicity with respect to R(y:x) is easy to show. Just choose x=y
p, i.e. 

the program "PRINT y". Obviously W'(x | y) =
+
 0. Just choose a y that is 

compressible. There is a program y’ l(y’) < l(y) where W'(y’ | y) > 0 (just use y* and 
add random bits). Since y is compressible R(y’:y) > 1 = R(yP : y). � 

 

It is reasonable to accept that most non-first-minimal programs for y are more 
informative than the first-minimal program. This makes the first non-monotonicity. 
The contrary non-monotonicity is more expectable. In the end, Theorem 3.1, 
Theorem 3.2 and Theorem 3.3 are sufficient to discard W’ as a measure of gain. 
Moreover,  Theorem 3.4 shows that W' is not appropriate for measuring a clear 
relation (ignoring time) between the compression achieved between x and y, either, 
so the applications of W’  for measuring some kind of information value or gain are 
discarded. 

3.4 Time-Ignoring Information Gain 

The previous definitions did not follow any of the properties of the introduction. 
Here we will introduce new measures to approach the final solution. In addition, in 
the previous section, we have unveiled the main problems of the preceding measure: 
time-independence and the arbitrary addition of random information. In this section 
we present two different ways to avoid or reduce the latter problem whereas the 
following section introduces a time-dependent version to solve the former.  

As it has been said, the aim of the following definition is to avoid the increase of 
W'(x|y) by the addition to x of random information.  

 

Definition 3.3  The weighed and normalised (time-ignoring) relative information 
value of x with respect to y is defined as: 

V'(x  |  y)  =  W'  (x  |  y)  /  K(x)  

The function is undefined iff x = ε and it is well defined for any x ≠ ε since K(x) > 0. 

It is easy to show that V'(x | y) ≤ 1. However it can be a very large negative 
number if K(y | x) is much greater than K(x | y). 

Theorem 3.5  If x and y are independent then V'(x | y) = 1 − K(y) / K(x). 
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The proof is trivial from Theorem 3.1. 
 

Once again, a relevant case is precisely when x is a program for y. 

Theorem 3.6  If x is a program for y we have that V(x | y) =+ K(x | y) / K(x). 

The proof is trivial from Theorem 3.2. 

 

This last theorem and the fact that new and arbitrary information can still be 
unrelated in any case without being compensated by K(y | x) suggests to neglect this 
term and propose a new definition. 

 

Definition 3.4  The normalised relative (time-ignoring) information gain of x with 
respect to y, denoted V(x | y) is defined as: 

V(x  |  y)  =  K(x  |  y)  /  K(x)  

 

The function V(·|·)is undefined iff x = ε and it is well defined for any x ≠ ε since K(x) 
> 0. For every x and y, it is obvious that 1 ≥  V(x | y) > 0. These are properties 4 and 5 
of the introduction. The upper limit is precisely given when y does not contain any 
information about x, i.e., Ic(x:y)= 0, as in Theorem 3.5. This complies with property 3 
of the introduction if we understand it in one of the two possible ways: y is useless 
for obtaining x because x and y are absolutely independent (and not the other 
interpretation: y has common information with x but it is useless because it is 
extremely intricate or difficult to discover).  

The lower limit is given when x = y (which is the property 2 of the introduction) 
but also when y is a program for x. In the latter case, when the execution of y is 
complicated, we may have an important transformation from y to x, so property 2 is 
not completely fulfilled. Apparently, x can be obtained from y, but the computational 
time may be extremely high, so y is not so useful to obtain x, something that is not 
reflected by V. 

Moreover, property 1 is only accomplished if the terms ‘difficulty’ or ‘effort’ are 
made equivalent with data size. Finally, the major problem is that K(�) is not 
computable, which makes V not computable, contrarily to property 6. Let us study 
in the next subsection a computable version of information gain, which, in addition, 
solves many of the preceding problems. 
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3.5 Computational Information Gain 

In section 3.2 we saw that the solution relies in not to measure only the data nor only 
the time. A much more appropriate solution is based on a weighed length-time (LT) 
foundation. 
 

Definition 3.5  The normalised relative time-space information gain of x with 
respect to y, denoted G(x | y) is defined as: 

G(x  |  y)  =  Kt(x  |  y)  /  Kt(x)  

where Kt(x | y) = argmin {LT(p): φ(<p,y>) = x} and Kt(x) = Kt(x | ε) and LT(p) = l(p) + 

log Cost (p,y), with Cost being the computational cost18 of executing p with input y, 
(the same weighing as Levin’s Kt) because it provides a good compromise between 
space and time, as seen before, but another relation could be tuned. As before, the 
function G(x|y) is undefined iff x = ε and it is well defined for any x ≠ ε since Kt(x)>0. 

 

The major advantage of G is that it is computable, and due to this fact, in the 
following we will use the name ‘computational information gain’ or, simply, if there 
is no confusion with V, information gain. 

Since G(x | y) is pondered by Kt(x), information gain measures the proportion 
(between 0 and 1) of x which is obtained on the help of y. The use of Kt(x | y) implies 
that the measure mixes both the portion (which parts of x are obtained from y) and 
the degree (if each of these parts are obtained in a more or less difficult way from x). 

For instance, given a ‘problem’ y = “(a − 3)(a + 2)(a5 + 4a4 − 18a3 − 64a2 + 17a + 
60)” and its solution x =“the roots are a = 3, a = −2, a = −3, a = −5, a =4, a = −1, a 
= 1”, and a system that has the knowledge for finding roots of arbitrary polynomials 
(among other abilities), the function G(x | y) measures the length of stating correctly 
the problem “Find the roots of the following polynomial:”, the logarithm of a 
negligible time for discovering the roots of “(a − 3)(a + 2)” and finally, the minimum 
between the logarithm of a considerable time for obtaining the roots of “(a5 + 4a4 − 
18a3 − 64a2 + 17a + 60)” and the length of the direct quoting of the solution “a = 
−3, a = −5, a =4, a = −1, a = 1”. In the case that the best Kt(x | y) is obtained 
through solving “y” there is a part of x which is not helped by y, which is exactly the 
length of “the roots are:”. However, the rest is not profited in the same way, there is 
a part of x, where y turns to be extremely useful, which is “a = 3, a = −2”, but there 
is another part where y is only slightly useful, which is “a = −3, a = −5, a =4, a = −1, 
a = 1”. 
                                                           
18 The term Cost (p(y)) does not take into account the cost of a first reading y if it is not necessary for 
computing x, so for every y we have Kt(ε | y) = 0. 
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It is quite doubtful that ‘portion’ and ‘degree’ could be isolated in general by any 
measure (a very similar problem is realised in chapter 6). Fortunately, it is natural to 
consider both factors in a measurement of information gain, due to property 1: “F(x, 

y) should be smaller as long as x is more obvious from y and it should be greater as 
long as x is more difficult to obtain from y”. 

Finally, it is necessary to state clear now that G(x | y) does not measure the degree 
of certainty of x with respect to y. For this reason, if y is a Boolean problem, there are 
only two possible values for x, and both of them, true or false, have a gain of Kt(x | y) / 
Kt(x) ≈ 1 provided y has a significant complexity. 

Once we have unveiled part of the meaning of the function G, it is necessary to 
study more properties of it. 

3.5.1 Fundamental Properties 

Let us show in this first subsection some of the properties that were claimed on the 
introduction. The second subsection is motivated but some difficulties to comply 
with property 2. The last subsection discusses other properties. 

Apart from the first property which we have seen, namely that G is computable 
(property 6), we can see that all the other properties of the introduction also hold. 
For instance, properties 4 and 5 are shown by the following theorem: 

Theorem 3.7 There exists a constant c such that for every x and y, log l(x)/(l(x) + 

log l(x) + c) < G(x | y) ≤ 1. 

PROOF. The second inequality G(x | y) ≤ 1 is obtained by considering that y must 
only be read if it is necessary for obtaining x, so ∀x,y Kt(x | y) ≤ Kt(x). The limit 1 
is obvious by choosing y = ε and the definition of Kt(x) as Kt(x | ε). 
The first inequality is justified by the fact that the numerator follows 

Kt(x |  y)  ≥  log l(x)   (1)  

because x must be printed and this takes at least l(x) + c2 units of time. In fact this 
limit can be come close if x = y because the program “print the input” has a 
temporal cost of approximately 2 � l(x). The denominator must follow this 
disequality. 

Kt(x)  <  l(x)  + log l(x)  + c (2)  

because in the worst case, when x is random, l(x) + c1 bits of information are 
needed for the program “print x” and at most l(x) + c2 units of time to be printed. 
Both constants can be represented by a negligible new constant c.  By (1) and (2) 
we have that log l(x)/(l(x) + log l(x) + c) < G(x | y). � 

 

When G is near to the maximum 1, a great computational effort (in information and 
time) is needed to compute x from y. Therefore, y is useless to describe x in less time-
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space, as property 3 stated. Contrariwise, when G is near to the minimum log l(x) / 

l(x) (very close to 0) it means that y is very useful for describing x.  

At first sight, it may seem that G complies with property 2 (i.e. if x = y, G is 
minimum), but this is not the case as the following counterexample shows: 

If x = y then Kt(x | y) ≤ c1 + log ( 2 � l(x) + c2) because x must be read from the 
input and written on the output and this takes l(x) steps for reading and l(x) for 
writing. However, the LT-best program p for x can be such that log l(x) << l(p) << 
l(x) and it outputs x in l(x) steps. In this case, Kt(x | p) ≤ c3 + log (l(p) + l(x) + c4) << 
c3 + log (l(x) + l(x) + c4) = c3 + log (2 � l(x) + c4). Since log l(x) << l(p), it is not 
worthy to use p for Kt(x | y) and since p is the LT-best program for x we have that 
Kt(x | y) = c1 + log ( 2 � l(x) + c2). Depending on these c1, c2, c3, c4, it may be the case 
that Kt(x | p) < Kt(x | y) and consequently G(x | p) < G(x | y). So we have found a 
counterexample when G(x | y) is not minimum. 

To give a more concrete example, consider x = 1,2,3,4,5, ..., n. It is natural to 
think that there is an n such that the best program p for x follows that log n << l(p) 
<< n. It is just a matter of properly selecting this n to make Kt(x | p) < Kt(x | x). 

The rationale is that for long but highly (and easily) compressible strings, it is not 
much valuable to read the whole string as an input but describing it in a more 
intensional way. This is something intuitive and it is clearly reflected by situations 
when G(x | x) = 1. In the end, the difference that is necessary for making property 2 
hold for G can be at most equal to the difference between G(x | y) = log l(x)/(l(p) + 

log l(x) + c) and G(x | y) = log (2 · l(x))/(l(p) + log l(x) + c) which is precisely 1 / (l(p) 
+ log l(x) + c). Since this situation appears only for long strings, this term can be 
ignored in practice. However, let us see how to solve this minor problem in general. 

3.5.2 Unique Interface Formulation 

The preceding definitions are applicable to any universal descriptional mechanism: 
Turing machines, lambda calculi, logical theories, programming languages, etc. In this 
section we present a particularisation of G that has additional properties, property 2 
being among them 

Just choose a Turing machine φ with two tapes, an input-output tape and a work 
tape with three symbols: 0, 1 and a delimiting symbol δ. Initially, the position of the 
machine is at the first cell of the input-output tape and the input is considered from 
this cell up to the delimiting symbol. When the machine halts, the output is precisely 
defined from the position where the machine has stopped at the input-output tape 
up to the delimiting symbol. We dub this kind of machines unique interface machines. 

If we also define Ktφ(x) = Ktφ(x | ε) in this reference machine, the following 
properties are straightforward: 
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• For every x, Ktφ(x | x) = 0, since the input-output tape does not need to be 
affected.  

• Ktφ(ε | x) = c, being this constant term c small. The necessary time and 
information to put the delimiting symbol at the current position of the output 
tape. 

• Ktφ(ε) = Ktφ(ε | ε) = 0 because the delimiting symbol is at the current position 
in the output tape. 

It is clear then to see that for every x and y, 0 ≤ Gφ(x | y) ≤ 1, and precisely the 
minimum happens only when x = y , i.e. for every x and y, Gφ(x | y)  = 0 iff x = y, 
which is still stricter than property 2 of the introduction. 

Any universal descriptional system can be ‘wrapped’ into a unique interface 
machine in order to work with a single input-output tape as the only external 
interface. Consequently, all the properties of the introduction hold if the system is 
modified accordingly. In the following I will refer to G in general and we will 
concretise to Gφ if necessary. 

3.5.3 Other Properties 

In the same way we made for other measures, we can express G(x | y) in some other 
ways, be it for the general case or for special cases. For instance, in Theorem 3.5 we 
could express V’(x | y) = 1 − K(y) / K(x) if x and y were independent. 

In the case of G, the ‘space-time’ independence between x and y is given when 
Kt(x | y) = Kt(x) and Kt(y | x) = Kt(y). For G only the first equality has some 
significance, and this is precisely when y is useless for x and G(x | y) = 1.  

Finally, we will express G(x | y) in function of Kt(y). As expected, the following 
theorem only relates them under a disequality. 

Theorem 3.8 There exists a c, such that for every x and y, it holds that G(x | y) > 1 
− (Kt(y) + c) / Kt(x). 

PROOF.  Let us prove first that there exists a c such that for every x and y, we have 
Kt(x) < Kt(x | y) + Kt(y) + c. Use the Kt-minimal program yt that constructs y. Then 
x can be generated from it by the less Kt-minimal program p for x given y. Both 
can be joined for constructing a program for x directly with length l(yt) + l(p) + c1 
and Cost(yt) + Cost(p) + c2. So there exists a constant c’ such that Kt(x) < l(yt) + 
l(p) + c’ + log(Cost(yt) + Cost(p))) ≤ l(yt) + log(Cost(yt))  + l(p) + log(Cost(p)) + c’. 
If we separate both processes, there exists a constant c such that Kt(x) < Kt(x | y) + 
Kt(y) + c. 

From here, Kt(x) − Kt(y) − c < Kt(x | y) and hence G(x | y) > (Kt(x) − Kt(y) − c) / 
Kt(x) = 1 − (Kt(y) + c) / Kt(x). �  
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For instance, the previous theorem serves to make patently clear that if Kt(x) >> 
Kt(y) then G(x | y) ≅ 1. In other words, complex concepts (in terms of Kt) are always 
an information gain over simple concepts. 

3.6 Information Gain and Complexity 

In this section we will study the computational complexity required for increasing the 
information gain and which are the relationships with other concepts of Kolmogorov 
complexity, such as information potential. 

The following theorem states the difficulty of obtaining, in an exclusive 
algorithmic way, an x from a y with a gain close to 1: 

Theorem 3.9 Consider a learning algorithm A* in P (i.e. polynomial), namely 
∃p∈N

+ : O(n
p−1
) ≤ O(A*) ≤ O(n

p
), A* being of constant size, i.e., l(A*)= c. This 

algorithm deterministically transforms y into x, where x is a program for y, with n 

= l(y). There is a τ such that for all x and y, if n > τ and Kt(x) > k · p · log n, then 
G(x|y) ≤ 2 / k. 

PROOF. For every string of data y, let us construct x in the following way: x = 

“apply A* to y”. Since we can construct x from <A*, y> in an easy way p= “apply 
1st argument to 2nd argument” Kt(x |<A*, y>) ≤ LT(p) = l(p) + log cost (p) < c’ + 
log np). It is obvious that Kt(x|y) < Kt(x |<A*, y>). So we have that Kt(x|y) < c’ + 
log np = c’ + p log n. 

If, as supposed, Kt(x) > k · p · log n, then the quotient G(x|y) = Kt(x|y) / Kt(x) ≤ ((c’ 
/ (p · log n )) + 1) / k. Since p > 0, just choose τ = n such that c’ / (p · log n) < 1. 
From here, G(x|y) ≤ 2 / k. � 

 

More plainly, the theorem states that if both x and y are long enough and there exists 
a polynomial algorithm from y to x, then G(x|y) must be low. This means that the 
measurement of Kt(x|y) is very dependent on the existence of an algorithm from y to 
x and which complexity this algorithm has. Moreover, it shows the difference 
between deduction (you have to tell which algorithm to use) and deterministic 
computation (the algorithm is systematically used). This difference is represented in 
G by the length of A*, which can be significant. In other words, it is very different 
the assertion that A* can be used from the assertion that A* with input y necessarily 
gives x. In the next chapter we will concretise this difference. 

 

Before, we have seen that information gain is very dependent to the complexity of 
x per se. For instance, if x is a Boolean answer to a question y, the complexity of x is 
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very simple, namely 1 bit, so Kt(x) is usually an exiguous 1 + c and this usually forces 
Kt(x|y) = Kt(x) and logically G(x|y) =1.  

There is a concept derived from Kolmogorov Complexity that captures and 
generalises this idea with respect to the length of x. Let us take the definition from 
appendix A: 

Definition 3.6  A string x is k-potent if k is the least positive integer such that Kt(x) 
≤ k log l(x). 

For instance,  the string 1n is 1-potent because Kt(x) ≈ 1�log(n) whereas an 
incompressible string s is (l(s)/log l(s) +1)-potent since Kt(s) ≈ l(s) + log l(s).  

If we regard set of concepts as sequences, a potent sequence can be the formal 
correspondent to the notion of a hard-to-obtain concept. Obviously, for a potent x 
there cannot be a short y such that Kt(x | y) would be small, because this would entail 
that x could be obtained and described from y and hence Kt(x) would be also small. 
The following theorem formalises and limits this idea: 

 

Theorem 3.10  For every x and y, if x is k-potent then G(x | y) > 1 / k. 

PROOF. If x is k-potent then (k−1)log l(x) < Kt(x) ≤  k � log l(x). Since Kt(x | y) > 
log l(x) because it must print x we have that G(x | y) = Kt(x | y) / Kt(x) > log l(x) / 
(k � log l(x)) = 1 / k. � 

 

Since Theorem 3.10 marks a lower limit, it is only illustrative when k is low, namely 
when x is very easy to obtain, and whatever y cannot be used for obtaining x with 
less effort. For the previous example, x = 1

n, since there is a constant c such that x is 
1-potent for every n > c, we obtain that for every y, G(x | y) = 1. 

Theorem 3.10 holds for every y, even the case y = x, although in this special case 
we have that G(x | x) = Kt(x | x) / Kt(x) < Kt(x | x) / ((k−1) � log l(x)) < 2 log l(x) / 
((k−1) � log l(x)) = 2 / (k−1) which leaves an interval (1 / k, 2 / (k−1)). 

 

Finally, let us see with two examples how information gain applies for NP 
problems. Consider the SAT problem, i.e. to decide whether a given Boolean 
formula in conjunctive normal form is satisfiable. If we consider y the problem and x 
a certificate of the true solution (and we consider NP ≠ P), and y has n variables, this 
certificate requires n bits to be expressed (a bit for each variable). Since the best 
algorithm for solving the SAT problem, as far as it is known to date, is exponential, y 
is not directly useful for x because the cost of solving the problem would be 2n and 
log 2n = n so G(x|y) ≅ n / n  = 1. 
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Even in the case that part of y can be profited if some extra information z is 
provided such that m = l(z) < n and x can be computed from y and z. The question is 
the cost of computing x from y and z. This cost cannot be less in the general case 
than 2n-m , because otherwise x could be computed from y by evaluating all the 
possible z (and there are 2m possibilities) and then it would have cost less than 2m � 2n-

m = 2n, placing the problem in P. As a conclusion, we can only obtain again an upper 
limit 1 for the general case of this NP problem (although in many particular cases it 
may happen that G(x | y) << 1). 

As a second example, consider the colouring problem, i.e., the problem of 
deciding whether a given graph of n nodes can be node coloured with k colours, 
such that no edge connects two nodes of the same colour. It is known that this 
problem is an NP-complete problem, due to its reducibility to the decision problem 
SAT. Let us consider again y the problem and x the solution (and we consider NP ≠ 
P). If the graph has n nodes, the solution will consist of a string of length n as (c1, c2, 
..., cn)  where each ci represents that node i has colour ci. In the worst case, this string 
has length (in bits) n � log k. In this case the cost of solving the problem still depends 
on the essay of the 2n · log k combinations. Since log 2n · log k

 = n · log k we are still close 
to the same upper limit G(x | y) ≅ n � log k  / n � log k = 1. 

3.7 True Information Gain 

Although G(x | y) follows all the requirements of the introduction and many stability 
and robustness properties that have been shown in the previous section, it is 
important to be able to distinguish whether the gain G(x | y) is obtained by an 
addition of random and unrelated information or, on the contrary, is obtained 
because the computational effort from y to x is high, but no additional information is 
needed. Since the result is relative to the complexity of x, this effect is somehow 
reduced in G(x | y) but not eliminated. It is possible to compare G(x | y) with G(y | x) 
to exclude some cases of unrelated information. In general, however, it is impossible 
to know effectively when x does not contain random and unrelated information, 
because this information can be interlaced with the rest in many intricate ways (even 
in a cryptographical way). However K(x | y) exactly represents (but not computes) this 
common information. This allows the following definition: 
 

Definition 3.7  The true information gain of x with respect to y, denoted TG(x | y) 
is defined as: 

TG(x |  y)  = (Kt(x |  y)  −  K(x |  y))  / Kt(x)  

 

The name true information gain is justified by the fact that it compensates what it is not 
easily in y or it is not at all in y (Kt(x | y)) and what it is not at all in y (K(x | y)). The 
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result is a measure of exclusively what is in y but it is not easy to obtain19. In other 
words, TG measures how much information of x is hardly implicit in y. 

For example, in the previous NP problems we have that K(x | y) is very low (just 
essay all the possibilities), so in these cases TG(x | y) ≅ G(x | y). This makes TG a 
measure of computation time gain. 

Consequently, if new unrelated information w is added to x and the rest z can be 
obtained from y without regarding time-resources, TG(x | y) = (Kt(x | y) − K(x | y)) / 
Kt(x) = (K(w) + Kt(z | y) − K(w)) / Kt(x) = Kt(z | y) / Kt(x), which only considers the 
gain which is produced from z and ignores the unrelated information w. 

One can wonder why we have not restricted before this additional information in 
this way. The rationale is simple.  It is useful for the measurement of the value of a 
solution with respect to a problem, because the answer is implicitly in the question. 
However, it would not be useful in the case of inference processes such as deduction 
and induction because both of them require some additional information. In the case 
of deduction we must select which conclusion of all the possible ones is x and in he 
case of induction we must provide a selection criterion. 

In the end, TG is not necessary if we use both V(x | y) and G(x | y) to perfectly 
distinguish both cases. For instance if V(x | y)>0 there is new and unrelated 
information which has been used to ‘inflate’ x. On the contrary, if V(x | y)=0 and G(x 

| y)>0 we  know that all that is measured by G is a true information gain. This serves 
as a distinction between explicit and implicit information. Explicit information is 
characterised when V(x | y) = 0 and G(x | y) ≅ 0 or, in Kirsh’s words “information is 
explicitly only when it is ready to be used. No computation is necessary to bring the content into a 
usable form” [Kirsh 1990]. On the other side, implicit information is given when V(x | 

y)=0 and G(x | y)>0. Again, Kirsh’s words show the correspondence with the 
informal notion of implicitness “the hallmark of implicit information is (what) it is not 
explicit but could be made explicit”.  

Moreover, G(x | y) is still useful for problem-solution matters because one can 
constrain externally the introduction of random information. The advantage is that it 
is more flexible and, more importantly, G(x | y) is computable whereas TG(x | y) and 
V(x | y) are not. In other words, to know whether some piece of information is 
implicitly in another piece of information is not computable. 

3.8 Representation Gain 

Information gain allows to compare any two objects x and y. In the special case 
where x is a program or representation for y the gain can still be between almost 0 to 

                                                           
19 Note that Kt(x | y) − K(x | y) = min { LT(px) : φ(px | y) = x } − min { l(px) : φ(px | y) = x } is not equal to 
min { log Cost(px) : φ(px | y) = x }. 
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1. However, there may be the case one wants to compare three objects x, x’ and y 
with the following relationships: x is a representation for y and x’ is also a 
representation for y. 

We can use directly G to compare x and x’. In the case x and x’ are 
representations for y we will say that G(x’ | x) is the representation gain from x to x’. 
However for most cases, we will have that G(x’ | x) = 1 and G(x | x’) = 1 because x 
and x’ are unrelated descriptions for y. 

For example, consider a system φ which solves arithmetic expressions. It reduces 
the following expressions: 

sqrt(81) / 3 = 9 / 3 = 3 

45 − 42 = 3 

and let us denote the different terms as x = “sqrt(81) / 3”, x’ = “9/3”, y = “3” and 
x’’= “45 − 42”. In the system, if x, x’ or x’’ are computed, all of them produce the 
output y. It is natural to obtain that G(x’’ | x) = 1 and G(x | x’’) = 1. However, it is 
expectable that G(x’ | x) < G(x | x’’). This is because G(x’ | x) is small, although not 
minimal because it is necessary to say where the evaluation must take place and up to 
which extent. G shows precisely what gives it name, the informativeness of the 
description: x is more informative than x’ but it cannot be said that x is more or less 
informative than x’’. In addition, it seems that the expression x’’’ = “log5(78 − 10! + 
1218567124) + 27 − 37” is not more informative than “3’’. Accordingly, G(x’’’|y) = 
G(y |x’’’) = 1, despite the fact that the first term results into the second one, the 
computational cost is high and then it is not useful for obtaining “3” since it is more 
economical to quote “3” directly. 

But it is precisely this meaning of information gain what makes G inappropriate 
for the discernment of a closely related notion, simplification. We would like a non-
semantical function that says that y is the result of all of them, that x’ is a 
simplification of x and that x’’ and x are alternative representations for “3”. 

3.8.1 Universal Simplification 

For the previous example, we know that V(y | x) = V(y | x’) = V(y | x’’) = 0 and it is 
expectable that G(y | x) > G(y | x’). But V(x’ | x) ≠ 0 because we must say that the 
derivation must stop before the complete evaluation of the term. If we choose that x’ 
is a simplification of x exclusively because G(y | x) > G(y | x’), the problems arise 
immediately because usually G(y | x) > G(y | x’’) despite the fact that x’’ is not a 
simplification of x. As a result, we must add the condition that x’ can be obtained 
from x (and not the reverse way), i.e., V(x’ | x) is low but not necessarily V(x | x’). 
Note that we are using V and not G because a simplification may take a long time. 

The following definition formalises this idea: 
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Definition 3.8  A concept or formula x' is a (r1,r2)-simplification of x in φ iff ∃y = 
φ(x)=φ(x'), i.e. x  and x’ are program for y in φ, and 

G(y | x’)<G(y | x)  and K(x' |  x)  ≤  r1�log K(x’) and K(x |  x')>r2�log K(x’) 
 

Intuitively, y is easier to obtain from x’ than from x, and x’ is implicitly in x but not 
otherwise. We have used the logarithm in order to make the parameters (r1,r2) range 
more appropriately. In addition, the last disequality has denominator K(x’) and not 
K(x). This is because K(x) is usually greater than K(x’). 

Note that the condition φ(x)=φ(x') forces that x and x’ are denotationally 
equivalent. The first disequality says that x’ is a simpler representation than x for y. 
The last disequalities favour that  K(x) would be usually greater than K(x’) (but it is 
not always the case). 

Since there is no definite limit when a transformation can be considered an actual 
simplification, the parametres (r1,r2) can be used to adjust the definition for different 
purposes. Normally, r2 > r1. The choice of these constants is even more important 
because we are talking about programs, which are usually of small size, and constants 
are important. 

A direct property of the preceding definition is that if x' is a (r1,r2)-simplification 
of x, V(x |x’) > (r2−r1) � log K(x’) and V(x’ |x) < (r1−r2) � log K(x’), which illustrates 
the difference in effort of both ways. 

The reader could be tempted to recover more traditional notions of simplification: 
“x’ is a simplification of x if x’ appears in a subsequent step of a derivation from x’ 
to x”. This is a quite comfortable definition but it is also pretty restrictive. First of all, 
it requires the notion of deduction instead of computation, because computation has 
only one possible derivation. Secondly, it only contemplates the possible derivations 
that are allowed by the system, and it excludes some other possible simplifications. 
Thirdly, and most importantly, there are intermediate steps in a derivation that are 
not in any way a simplification. 

Consider the alternative derivations for the previous example: 

 sqrt(81) / 3 = sqrt(81 / 9) = sqrt(9) = 3 

 45 − 42 = 5 − 2 = 3 

 45 − 42 = 45 − 42 + 0 = 3 

The first one should be excluded by most innermost functional evaluators, although it 
is the most efficient way in this case. Moreover, few would recognise sqrt(9) as a 
simplification of sqrt(81) / 3 without knowing the middle step. The second one is a 
rule that is only used by humans, because few arithmetical systems have imbedded 
that kind of rules. The third case shows a derivation where the second step is not a 
simplification of the first one. 
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To account for these cases, there is a possible mixture of both approaches: 
 

Definition 3.9  A concept or formula x' is a derivational simplification of x in φ 
iff ∃y = φ(x)=φ(x'), i.e. x  and x’ are program for y in φ, and 

G(y|x’)  < G(y|x)  and there is a derivation from x to y which uses x’ as an 
intermediate step. 

 

This does not solve all the preceding problems because it allows that the following 
possible derivation: 

 sqrt(81) / 3 = 9 / 3 = 3 = 5 − 2 = 45 − 42 = 3 

would make “45 − 42” a simplification of “sqrt(81) / 3”. 

In this case, it is better to use Definition 3.8, because the notion of simplification 
must depend on the notions of effort and complexity. 

Definition 3.8 does not only mean that the cost from x to x' is less than x' to x but 
that the information cost from x to x' must be small. This implies that if x’ and x are 
programs for y and x’ is shorter than x but a great extra-data effort is required to 
transform x into x’, we cannot talk about a simplification, because x and x’ are 
alternative and differentiated programs. We will get back on the questions of 
evaluation and simplification in the next chapter. For the moment, let us introduce 
the notion of reduction. 

 

Definition 3.10  A concept or formula x is (r1,r2)-reduced iff ¬∃x' such that x' is a 
simplification of x. 

This is the descriptional correspondence to normal form or completely evaluated 
formula of functional programming. 

3.8.2 Representational Optimality 

The previous subsection formalised the ideas of simplification and normal or 
reduced form in a generic and non-semantical way. However, we have not dealt with 
representational optimality, i.e., the fact that there are better representations than 
others. For instance, 256 is the decimal representation for s(s(s(... 256 times ... 
(s(s(0)))...))), and 28 is another representation for 256, and consequently for s(s(s(... 
256 times ... (s(s(0)))...))). Naturally, s(s(s(...256 times... (s(s(0)))...))) is a representation 
of itself. The question is: is there any optimal representation for this object? 

Given any three objects x, x’ and y, x and x’ being representations of y, by using 
information gain directly we could compare that x’ is better than x by G(y | x’) < G(y | 

x). As we have seen this would yield the normal form as the best representation. On 
the contrary, if we say that x’ is better than x if G(y | x’) > G(y | x), we would have 
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that long and intricate descriptions are optimal. True information gain is not valid 
either because the information of the representation is not implicitly coded in what is 
represented (it is just otherwise). 

Fortunately, the notion of optimal descriptions is the major issue of descriptional 
complexity and, as was remarked in the introduction (and Appendix A), we can 
measure the length (the shorter the better), the time (the faster the better) or a 
combination of both. If we choose this last option (and the function LT again) we 
can say that a representation x' is LT-better than a representation x iff ∃y = 
φ(x)=φ(x'), i.e. x  and x’ are programs for y in φ, and LT(x’) ≤ LT(x). 

In the previous case the representation 256 is usually better than both s(s(s(... 256 
times ... (s(s(0)))...))), and 28 because either it is shorter and still efficient for obtaining 
the normal form (in unary notation) or it is approximately of the same size but much 
more efficient. We can generalise this idea: 

 

Definition 3.11 The representation enhancement between two representations x' 
and x for y is defined as  

RE(x’ ,  x)  = (LT(x)  −  LT(x’))  / Kt(y)  

 

This allows the definition of a concept that can be understood as a “maximum” or 
optimal representation: 

Definition 3.12  A representation x for y is LT-optimal iff ¬∃x' such that 
RE(x',x) > 0. 

 

This definition is equivalent to the following one: x is LT-optimal iff LT(x) = Kt(y), 
the less complex (in LT terms) description. In chapter 2 we commented on the 
choice of simple descriptions for induction and we will get back on this in the next 
chapter (instead of y as the normal form, we will use y as the best representation). 

A different result can be obtained if we combine the definition of simplification 
with the definition of representation enhancement to obtain the following definition 
of local optimality: 

Definition 3.13  A representation x for y is locally optimal iff ¬∃x' such that x’ is 
a simplification of x or x is a simplification of x’ such that RE(x',x) > 0. 

 

In some way this represents a topological concept. There are infinite many 
representations for a given string y, but they can be classified into different derivation 
lines (a representation can be in different lines). In the previous example, if we 
consider that the representation 28 is better than s(s(s(... 256 times ... (s(s(0)))...))) then 
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we have that 256 and 28 cannot be simplified one into another. In other words, they 
are alternative representations. Moreover if both are local optima, we have that they 
are alternative canonical representations for s(s(s(... 256 times ... (s(s(0)))...))). 

Since for every finite string y there is always a program yP= “PRINT y”, we can 
abuse notation and say there is a representation enhancement (or optimisation) 
between y and x, being x another program for y.  

Finally, it is important to distinguish the different notions that have been seen in 
this section: representation gain, simplification, and optimisation. Representation 
gain and simplification are inversely related notions in general, since gain usually 
increments information and a simplification usually decrements it. Optimisation is a 
more classical notion that it is somehow between the other two. We will get back on 
them in the next chapter.   

3.9 Comparison with Related Information Measures 

The motivation of the introduction of new measures of information gain was the fact 
that not only new and independent information can augment an agent’s knowledge. 
The rationale is clear: first, there are no omniscient systems in practice, and, 
secondly, there cannot be such a thing, because to know if two pieces of information 
are independent is undecidable in general. 

Nonetheless, almost every measure of information or information gain that has 
been introduced to date has been given in unbounded terms (i.e., without 
considering space or time resources). We will comment in the next chapter some 
exceptions from the literature. However, there are related notions dubbed with 
different terms that consider the notion of effort or resource consumption. Some 
measures have led to complete theories. In this section we will revise three of these 
theories, Kirsh’s theory of explicitness, Nake’s Theory of Aesthetics and 
Schmidhuber’s Interestingness, which are mainly informal. The use of information 
gain is useful to formalise them, and, in some cases, the outcomes are direct and 
enlightening. 

Many other measures are related with induction, with deduction or with both, 
such as Pietarinen’s Systematic Power (both), Hintikka’s Deep Information 
(deduction), Quinlan’s Gain Ratio (induction), MDL principle (induction) and 
Bounded Rationality (both). We leave the discussion about these measures for the 
next chapter. In fact, Quinlan’s gain ratio is the measure which is perhaps most related 
with the information gain that we have presented in this chapter, because gain ratio 
turns out to be essentially the same as V(x|y) (or, more properly, essentially its 
contrary).  

Let us begin with a problem that solely justifies the introduction of information 
gain: the difference between explicit and implicit information.  



3. Information  and Representation Gains 

 

77

77

3.9.1 Kirsh’s Theory of Explicitness 

In “When Is Information Explicitly Represented?” [Kirsh 1990] Kirsh affirms that most 
discussions of knowledge and representation fall into paradoxes due to weak and 
ambiguous notions of the terms ‘explicit’ and ‘implicit’. Although initially moved by 
the ‘deeper’ notion of implicitness, he soon recognises that explicitness has also been 
problematic. Under the premise that clarifying explicitness is a prerequisite to clarify 
implicitness because “implicit is that which is not explicit but which could be made so” [Kirsh 
1990], he introduces a theory of explicitness, postponing a theory of implicitness. 

The four conditions of explicit information are stated as follows: 
• Locality: “the symbols which explicitly encode information must be easily 

separable from each other”.  
• Movability: “An ambiguous language may explicitly encode information only if 

it is trivial (non-ambiguous) to identify the syntactic and semantic identity of 
the symbol” 

• Immediately readable: “symbols explicitly encode information if they are 
readable in constant time”. 

• Meaning: “the information which a symbol explicitly encodes is given by the 
set of associated states, structures, or processes it activates in constant time” 

If we consider x the information to be represented explicitly by y in a computational 
way, then y is a program for x. The first two conditions can be easily fulfilled under 
the notion of computation. The first one requires only to consider a code such that if 
φ(x) = a and φ(y) = b then φ(xy) = ab, i.e., incontextual. The second condition is 
imbedded by the non-ambiguous nature of computation.  

By the third condition, we are forced to have Kt(x | y) ≤ k � log l(x) (linear time) or 
even stricter Kt(x | y) ≤ k because y is a program for x and x must be obtained from y 
in constant time. This usually implies that G(x | y) would be low if x has some 
complexity. 

Finally, the last condition can also be understood in this framework if we consider 
y as an expression, x as its meaning and z as the background knowledge (associated 
states, structures, or processes it activates). In this case we have that Kt(x|<y,z>) ≤ k 
because the meaning of x can be obtained from y and z and it must be obtained in 
constant time. Again, this implies a low value of G(x|<y,z>). 

If we relax the condition of y being a program for x, we can generalise the 
previous results on explicitness as a degree between implicitness and explicitness. 
Moreover, this has been done in this chapter; we have already presented two 
functions that formally state the degree of implicitness and explicitness. In addition, 
most of Kirsh intuitions about the matter are fulfilled by these functions. Concretely, 
V(x | y) measures how much information of x is implicitly present in y. If V(x | y) ≅ 0, 
then x is all implicitly in y. If V(x | y) ≅ 1, then no part of x is implicitly in y. On the 



78 José Hernández Orallo - Doctoral Dissertation 

 78 

other side, G(x | y) measures how much information of x (and in which degree) is 
explicitly present in y. If G(x | y) ≅ 0, then x is all explicitly in y. If G(x | y) ≅ 1, then x 
is not explicitly in y. 

But all this also shows that Kirsh’s premise is false: explicitness is not necessary to 
ascertain implicitness. Moreover, V(x | y) and G(x | y) generalise the notions of 
implicitness and explicitness. The following table summarises this relation: 

 

V(x | y) G(x | y) TG(x | y) V(x | y)/G(x | y) Meaning 

1 1 0 1 x is neither implicitly nor 
explicitly in y 

0 1 1 0 x is deeply implicitly in y 

1 ≅ 0 - - Impossible 

0 ≅ 0 ≅ 0 0 x is explicitly in y 

Table 3.1.  Different cases and degrees of implicitness and explicitness. 

 

Although V(x | y) / G(x | y) is well-defined and it is always between 0 and 1, it is not 
sufficient to separate the three different cases (rows) covered by table 3.1, and TG 
cannot differentiate them either. It is necessary then to use two functions. However, 
from the definition of V, it is important to realise that only explicitness is 
computable, so the first two cases of table 3.1 are effectively indistinguishable. This, 
once again, justifies the use of G(x | y) as the only practical function to discern how 
much information is explicitly or implicitly present between two concepts. 

3.9.2 Nake’s Theory of Aesthetics and Schmidhuber’s Interestingness 

Nake [Nake 1974] suggested that maximally interesting and aesthetically pleasing 
input data exhibits an ideal ratio between expected and unexpected information. In 
other words, things are considered boring if they are either too random or too 
predictable. 

Although this view of interestingness can be found earlier than Nake more or less 
definitely, it is only recently that this idea has been adopted for AI. In particular, 
Schmidhuber gets inspired by this notion of interestingness to propose a ‘curious’ 
agent [Schmidhuber 1997b] and a theory of incremental self-improvement 
[Schmidhuber 1997a], which tries to augment its knowledge incrementally from 
interesting things, ignoring what is known and what is too complicated for the agent. 
Although Schmidhuber only formalises this idea for a particular agent architecture, 
the issue is to measure the effort from the agent’s knowledge to a given knowledge 
to obtain its “difficulty”. 
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In an absolute way, this theory of interestingness could be well formalised by K(x) 
or Kt(x), namely x is interesting if 0 << K(x) << l(x) or in the space-time variant x is 
interesting if log(l(x)) << Kt(x) << l(x) + log(l(x)). A more detailed study could even 
lead to the notion of logical depth or sophistication, which will be treated in chapter 
6. 

However, if we relativise for an agent, this turns out to be the following 
definition: x is interesting iff log(l(x)) << Kt(x | y) << l(x) + log(l(x)), being y the 
knowledge of the agent. In other words, if Kt(x | y) is close to the minimum, then x is 
known by the agent. On the contrary, if Kt(x | y) is close to the maximum Kt(x), then 
x is extremely novel but also interestless. 

Nonetheless, this formalisation of Schmidhuber’s ideas would make that short 
random objects would always be interesting since Kt(x | y) is low but still significant. 
This problem is not clarified by Schmidhuber, because he always refers to long pieces 
of knowledge. 

Fortunately, the solution to this problem is precisely information gain, because it 
weighs the complexity Kt(x): 

 

Definition 3.14  Interestingness 

A concept x is interesting to an agent with a knowledge y iff 

b − c < G(x | y) < b + c 

where 0 ≤ b ≤ 1 is the agent’s boldness and 0 ≤ c ≤ 1 its curiosity threshold.  

 

For instance, an agent with high boldness b= 0.7 and low curiosity c= 0.1 would be a 
presumptuous agent (a know-all). 

A final note about interestingness is that it is difficult to separate it from the 
notion of purposed interest, which depends on many more things than knowledge 
only; agent’s goals and desires. However, as we have shown, not only “there is no 
knowledge without interest” [Habermas 1972] but knowledge also affects interest, 
and this bi-directional influence should not be neglected. 

3.10 Summary and Contributions of This Chapter 

In the introduction we argued on the necessity and possibility of a measure of 
information gain that evaluates the amount of information which has been made 
explicit in a reasoning step. In order to make sense, we must be involved with non-
omniscient systems, where reasoning has the main goal of transforming knowledge 
and obtaining ‘new’ results that were not obvious initially. We proposed several 
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properties that a function of information gain should comply with. Consequently, the 
first part of this chapter is devoted to give a measure under these requirements. 

In section 3.2 we made clear that the difference between explicit and implicit must 
be based on a measure of effort, and this must be based on a measure of resource 
consumption or resource complexity. In particular, we justified the use of LT = l(x) 
+ log Cost(x) because it weighs in a very convenient way space and time resources. 

Sections 3.3 and 3.4 have discussed in some previous definitions from 
Kolmogorov Complexity which were introduced for other purposes. We showed 
that these measures are not valid for our goals but, more importantly, we have 
discovered the reasons-why they are not valid and what they lack. This insight is 
exploited in Section 3.5, which introduces Computational Information Gain G(x | y), 
the main contribution of this chapter. Despite its simple definition based on Levin 
Complexity (Kt(x | y)), it fulfils all the properties stated in the introduction. In section 
3.6 we studied other properties of Computational Information Gain. Especially, we 
related it with some classical concepts of computational complexity, showing the 
robustness of the definition in front of polynomial transformations. We have applied 
G(x | y) to some NP problems and we have obtained intuitive results. 

In Section 3.7 True Information Gain TG(x | y) is introduced as a variant of G 
that avoids the addition of new and unrelated information. This definition and some 
previous ones are used later to definitely clarify and formalise the difference between 
implicit and explicit. 

Section 3.8 deals about representations, that is to say, concepts that are 
descriptions of other concepts. In this case we are interested in comparing two 
different descriptions of the same concept, so we needed a measure that compares 
three objects instead of only two. This leads to the notion of representation gain 
between x and x’, which is just a particularisation of gain when x and x’ are 
descriptions of a third concept y. If both x and x' are programs (representations) for y 
we should retain the best one according to some criterion. Then we talked about 
simplifications, and we clarified this notion, usual in computational and deductive 
systems. Finally, we studied optimality, and we used again Kt(x) to measure this 
resource optimality. Representation gain and simplification are inversely related 
notions in general, since gain usually increments information and the simplification 
usually decrements it, whereas optimisation between the other two.  

Section 3.9 compared information gain with other information measurements 
presented by other authors which are closely related with our proposal and we have 
discussed the problems they have left open or have not formalised. They are easily 
covered and clarified under our theory. In particular, we have formalised Kirsh’s 
theory of explicitness, Nake’s Theory of Aesthetics and Schmidhuber’s 
Interestingness, which were mainly informal. Information gain has enlightened and, 
in some cases, generalised them. 
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As leading outset, the main contributions of this chapter are: 
• The justification of a necessity of re-connecting the intuitive notion of 

information with resource consumption or computational/reasoning effort. 
• The choice of LT as an appropriate measure of effort, neglecting the idea of 

effort exclusively based on time or space. 
• A measure of time-ignoring information gain V(x | y) which represents the 

degree of information of x which is implicitly in y. 
• A new effective measure of computational information gain G(x | y), which 

depends on the computational effort (time and space) and measures the 
proportion of x which can be easily obtained on the help of y. In other words, 
the degree of information of x which is explicitly in y. 

• The study of its properties and the verification of their robustness with respect 
to non-polynomial algorithms. 

• Representation Gain as a special case of information gain. A general notion of 
simplification and the definition of a representational optimality criterion. 

• The comparison and clarification of different informal but outstanding 
notions: implicitness vs. explicitness, aestheticism, and interestingness. 

Some of the previous results could be, per se, quite outstanding. However, the 
potential of these definitions, especially G, and their full utility will be still unveiled in 
the next chapter. 
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4. Information Gain 
and Inference 

Processes  
    

 
Quaerendo invenietis20 

J.S. Bach, from a canon of Musical Offering (1747) 

 
 

 

 

 

Abstract: the notions introduced in the previous chapter are exploited here. The function G is used 
to explain both the informativeness of a hypothesis with respect to some evidence (in Popper’s sense) 
and the gain that takes place when a conclusion or theorem is deductively established from an 
axiomatic system. Additionally, a new notion of authentic learning is introduced, ensuring that 
learning has taken place, independently of how compressible the evidence is, unlike the MDL 
principle. In the case of deduction, different adaptations of G are introduced for several deductive 
paradigms, especially for logical programs, which illustrate the measuring in practice of these gains. 
This chapter also includes a comparison with Hintikka’s ideas, establishing the relationship between 
G and Surface Information, and between V and Depth Information. Several general measures of 
System Optimisation and Systematic Power, where Intermediate Information is recognised useful in 
ATP and mathematical practice, are also introduced. Finally, an oblivion criterion is defined, as 
well as a characterisation of eager and lazy inference methods. 

Keywords: Inference processes, Induction, Deduction, Bounded Rationality, MDL 
Principle, Information Gain, Discovery, Machine Learning, Informativeness, 
Creativity, Eager and Lazy Inference, Systematic Power. 

                                                           
20 Seeking you will find. 
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4.1 Introduction 

The characterisation of inference processes was reviewed in chapter 2, following the 
current practice in artificial intelligence, which likewise has taken the notions of 
deduction, induction and abduction from philosophy. However, some adaptations of 
these processes to artificial intelligence have been quite careless, mainly 
terminologically. In general, the applications have usually been performed by using 
inference process alone, with the view that they are separate inference processes. In 
fact, the main branch of artificial intelligence, mostly devoted to deduction, has held 
little relation with the machine learning community, mostly devoted to induction.  
More recently, though, traditional paradoxes and inconveniences have been re-
appearing whenever more than one inference process is required to be integrated in 
one application or system. The thing is especially blatant in the conjunction of 
induction and deduction, because measures and paradigms used for deduction are 
not only useless for induction but many times are inconsistent with it. Some reasons 
of this failure of a consistent integration are: 

• The deductive-nomological fallacy of explanatory induction introduced in 1949 
by Hempel and Oppenheim [Hempel 1965] is a mistake (see e.g. [Thagard and 
Shelley 1997]), because the necessary general laws (nomos) must be frequently 
discovered by the process and not initially given, as the very special case of 
non-monotonic deduction. This is only possible for abduction, i.e., non-
constructive induction, that can be seen as non-monotonic inference, although 
some authors are not precise about terminology [Grégoire and Saïs 1997, even 
using the term induction for abduction [Helft, 1989] [Núñez et al. 1995]. 

• The dilemma between selection criteria based on informativeness and selection 
criteria based on likelihood. Despite the fact that Occam’s razor (and its 
incarnation in the MDL principle) has been successful, any criterion based on 
likelihood requires the definition of a prior distribution, which always is an 
arbitrary choice. It seems more reasonable to understand any selection criteria 
from a methodological point of view and let reality refute the wrong 
hypotheses. In this way, more easily refutable hypotheses are preferable, as 
Popper has always argued. 

• The confusion among three related but different processes: amplificative 
deduction, as the process of obtaining new theorems of a given axiomatic 
system, theorem proving, as the process of obtaining the proof of given 
theorems, and computational deduction (e.g. logic programming) which 
identifies theorem proving with program computation. Although the last 
equivalent was neglected some time ago [Fetzer 1988] [Fetzer 1991], it is still 
common in AI the erroneous view of deduction as a deterministic process. 
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• The thought of deduction as a perfect process, which is omniscient and truth-
preserving. We discussed in the previous chapter that omniscient reasoners are 
not only unrealistic but also paradoxical in general. But the idea of deduction 
as always truth-preserving is also unrealistic in real systems (even computers). 
For instance, humans make errors and this does not preclude them to make 
deductive reasoning. Consequently, we must accept that deductive reasoning can 
also be non-truth-preserving, but not only in the way that it can be approximate 
(such as many modern and non-monotonic logics have formalised) but 
possibly erroneous. 

• The thought that deduction is non-informative impedes that a system can be 
motivated to obtain new deductive inferences, because the process from 
premises to theorems is not valuable, because the conclusion has less 
information than the premise. 

• The apparent computational indistinguishability of deterministic induction and 
deduction. Consider the following paradox: under a descriptional system φ, we 
have that data x can be interpreted as a valid program for φ. If executed in the 
system φ, it gives φ(x) = y, which, casually, turns out to be also a valid program 
for φ. Even more casually, the result of executing the program y, i.e., φ(y), is the 
data x. In other words, φ(x) = y and φ(y) = x, giving a fix point φ(φ(x)) = x. In 
this case, it is difficult to say whether y is a deduction of x or is an induction of 
x. 

To clarify most of the preceding questions it is necessary to distinguish between 
deterministic and non-deterministic inference processes. Given a computational 
system φ, deterministic deduction is the same process as computation in φ, i.e., given 
some axiomatic system x there is only one possible deduction, φ(x). In the other way, 
deterministic induction, transforms a given data d in a more intensional 
representation x, either exact or approximated, such that d is a deterministic 
deduction of x, namely that x is a program for d, i.e., φ(x)= d. 

On the other hand, non-deterministic deduction is an information-demanding 
process, in the way that an axiomatic system x can potentially give many different 
consequences, and it is necessary then to provide more information to select which 
one. In other words, if d is a consequence of x, then there is a need of information in 
order to obtain d alone, even in the case that the deductive system would be 
omniscient and ideal.  

As it is well known, non-determinism can be formalised by computation by the 
use of non-deterministic Turing machines. Although the extreme complexity of 
physical systems can disguise their final deterministic nature (at least to the level of 
atoms), a fully deterministic system can always introduce some randomness in part of 
its processes, thus emulating non-deterministic systems. Consequently, it is sufficient 
to characterise non-deterministic deduction as deterministic computation in the 
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following way. Given a computational system φ, d is a consequence of an axiomatic 
system x iff there exists some selection data w such that φ(<x, w>)= d, where w 
represents which axioms of x should be used, in which order and up to which extent. 
More formally, we can distinguish three kinds of deductive systems: 

Definition 4.15 A Computational Deterministic Derivational (or simply 
Deductive) System (DS) is defined as a deterministic computer φ which only 
accepts programs of the form φ(<x, w>), where x is an axiomatic system and w is 
the selection information which indicates which axioms from x must be used, 
which occurrences must be selected and in which order. Finally, the following 
condition must also be satisfied: 

φ(<x, w>)  = d     →     x |−  d    and w is a proof for d in x.  

In contrast, 

Definition 4.16 A Computational Theorem Prover (TP) is defined as a 
deterministic computer φ, which only accepts programs of the form φ(<x, t>), 
where x is an axiomatic system and t is a well formed formula of x such that: 

φ(<x, t>)  = 1w   →   x |−  t ,  and w is a proof for t in x and 

φ(<x, t>) = 0    →   x |−/ t 

 

Note that for highly expressible axiomatic systems, φ may not end for some 
theorems. 

Aside from randomness, non-determinism is usually simulated by the use of 
backtracking (e.g. Prolog), which gives different proofs for t. Note that Definition 
4.15 and Definition 4.16 are ‘structurally equivalent’. The difference only depends on 
the interpretation of the input (w and t respectively) and the output (d and the proof 
respectively). Note also that Definition 4.16 gives only one possible proof. The 
definition could be modified to give the best proof according to some criterion. 

Definition 4.17 A Computational Accepter (AC) is defined as a deterministic 
computer φ, which only accepts programs of the form φ(<x, t>), where x is an 
axiomatic system and t is a well formed formula of x such that: 

φ(<x, t>)  = 1    →   x |−  t ,  and 

φ(<x, t>) = 0    →   x |−/ t 

 

A clear example of an accepter is a grammar, and these can be classified according to 
Chomsky’s hierarchy, and both deduction and induction are increasingly complex 
from type 3 to type 0. In addition, instead of a Boolean accepter, where there are two 
values {0, 1}, this definition can be generalised for any set of values or classes { c1, c2, 
... , cn } and we have a classifier system, where the system tells to which class ci the 
input t belongs to. 
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The difference between Definition 4.16 and Definition 4.17 is notorious and 
fundamental in proof theory. For our purposes it is still more important, since G(w | 
<x, t>) for Definition 4.16 can be high but G(a | <x, t>) for Definition 4.17 will be 
usually low because both outputs (0 or 1) are easy to describe extensionally. In 
practice, however, many deductive systems (e.g. a Prolog interpreter under slight 
modifications) are able to perform the three kinds of deductive paradigms mentioned 
above. 

Once the main deductive paradigms are defined in terms of deterministic 
computation, we can also define the main non-deterministic inductive paradigms. 

Definition 4.18 Non-deterministic Induction. Given a computational 
deterministic deductive system φ, non-deterministic induction is defined as a 
transformation from a given data or evidence d into a more intensional 
representation x, according to some criterion κ, represented by ϑ(<d, κ>)= x, 
such that exists a w which makes φ(<x, w>)= d.  In this case, φ(<x, �>) represents 
the generalisation that has been produced by the inductive process (the 
predictions). 

A more general view of induction as theory acquisition and revision can also be seen 
in this context. 

Definition 4.19 Incremental Theory Construction. A first piece of data or data 
example d1 generates an x1 such that there exists a w1 such that φ(<x1,w1>)= d1.  
The second piece of evidence d2 modifies (extends or revises) x1 into a new theory 
x2 such that there exist two w2,1, w2,2 such that φ(<x2,w2,1>)= d1 and φ(<x2,w2,2>)= 
d2. This kind of incrementality is seen in the following chapter. 

Concept learning, which is just a kind of inductive inference, can be defined directly 
from an accepter or classifier system in the following way: 

Definition 4.20 Concept Learner. Given an accepter or classifier system φ, a 
concept learner transforms an evidence d = { <t1, c1>, <t2, c2 >, ..., <tn, cn> } into 
a more intensional representation x, such that φ(<x,t1>)= c1, φ(<x,t2>)= c2, ..., 
φ(<x,tn>)= cn. Once again, φ(<x, �>) represents the generalisation that has been 
produced by the inductive process (all the new values that can be classified). 

It is important to realise that the preceding definitions have given account for the 
main paradigms of deterministic and non-deterministic induction and deduction, 
exclusively based on computation (φ(<�, �>)=�, ϑ(<�,�>)=�). Deduction and 
induction have been defined avoiding the use of the notion of semantics or truth, i.e., 
without making difference between a truth-preserving process such as deduction and 
a hypothetical process such as induction. This allows the use of computation-based 
concepts such as K(�) and Kt(�), and the derived notions of the previous chapter, to 
deal with deduction and induction. As a result of the course of this chapter, we will 



88 José Hernández Orallo - Doctoral Dissertation 

 88 

see that deduction and induction are not inverse processes in terms of information or 
transformation gain, or, in other words, it is possible to apply the same measure of gain 
for both of them. 

In this chapter we will apply computational information gain G(x | y) for both 
induction and deduction, according to the paradigms that have been defined in this 
section. In the case of induction, information gain forces the hypothesis to be 
informative (or computationally hard to discover) with respect to the evidence, so it 
provides a formal account of what is to discover and what is to learn. In the case of 
deduction, computational information gain distinguishes easy deductions from hard 
ones, and allows, finally, to find a compromise for distinguishing which deductions 
are worth leaving explicitly, and for which ones it is preferable to deduce them when 
needed. 

4.2 Information Gain and Induction 

It seems more natural to study first our measure of information gain for induction, 
because it has been usually argued that induction is the only informative inference 
process. More precisely, it has been said that the more general the more informative 
and the more specific the less informative. This idea was informally introduced by 
Popper in the thirties and then formalised by Bar-Hillel and Carnap in 1953 for first-
order theories, giving the famous Carnap’s Probabilistic Interpretation of First-Order 
Predicate Calculus. However, this relation between probability and semantic 
information has some counterintuitive properties, as we commented in chapter 2. 
For instance, p(T) = 0, which implies I(T) = ∞, or, in other words, the theory 
“everything is true” is the most informative one. 

On the other hand, there is an exclusively syntactic view of information, 
represented by Kolmogorov Complexity. This soon motivated the view of 
“induction as compression” [Solomonoff 1964], popularised by Rissanen’s Minimum 
Description Length (MDL) Principle [Rissanen 1978, 1996]. Although it has been 
successfully applied in many fields, this view gives many paradoxes too, as we also 
saw in chapter 2. 

For instance, the first unintuitive consequence arises when one intends to assign 
probabilities to theories. In order to do this, it is necessary to use the prefix-free 
version of Kolmogorov Complexity K(h), that makes the usual prior P(h) = 2

−K(h) be a 
probability. But this prior provokes the following paradox. Suppose a given evidence 
y and two deterministic theories (descriptions) x and x’ such that φ(x) = φ(x’) = y 
where K(x’) < K(x). Under this prior, x’ should have more probability than x. 
However, this is not intuitive since both represent the same theory (the prefix-free 
condition still allows this). The point is that K(φ(x)) = K(φ(x’)) but K(x’) is not equal 
to K(x). It seems that this problem can be solved by using P(h) = 2

−min{l(h’): φ(h) = φ(h’)}
 = 
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2
−K(φ(h)), taking into account that the evidence is a prefix of φ(h). However, this 

solution has not been commented in the literature (to my bibliographical knowledge) 
probably because the resulting value P(h) is not a probability (ΣP(h) > 1). 

In the case of non-deterministic induction, the same problem can be reproduced 
as well. For most criteria, there can be two theories x1 and x2 such that not only there 
exists a w1 which makes φ(<x1, w1>)= d and there is also a w2 which makes φ(<x2, 
w2>)= d but φ(<x1, �>) = φ(<x2, �>), i.e. they are semantically equivalent. Moreover, 
in the case that ϑ(<d, κ>)= x1, one theory would be better than the other, simply 
because it is better according to some criterion. In other words, it is reasonable to use 
a selection criterion for choosing between different possible theories, but not a prior 
criterion to assign probabilities. 

By using the MDL principle even without a prior, another important problem 
appears: nothing can be learnt from random strings. Prediction is not possible since 
the program x= “PRINT y” (the shortest program if y is random) is not enumerative 
and it cannot even predict the following bit of y. Although we can easily force x to be 
enumerative by converting it into “PRINT y FOREVER”, several questions arise: Is 
this the best option for prediction? Is it informative? Is it valuable? 

Instead of talking about the best model, it would be even more insightful to 
evaluate how valuable it is to obtain a concrete description and whether it is worthy 
to remember or forget it. This would be especially useful if an inductive method can 
consider different hypotheses at a time, because some surprising, strange, difficult to 
obtain, or curious hypotheses which have not been still refuted can be kept for future 
use. On the other hand, obvious or easy hypotheses can be forgotten because they 
would be easily generated again when needed.  

In this way, G(x | y) provides a uniform measure of the relative value of the 
hypothesis with respect to the data, the gain of the computational effort which has 
been invested in the process from the data to the hypothesis. More precisely, if x is 
the theory and y is the data, the two extreme cases are illustrative: 

• Minimum: G(x | y) = log l(x) / (l(x) + log(l(x)) ≈ 0. The theory is evident from 
the data. In other words, it is very easy to describe the theory from the data. 
Some examples of this minimum are: a description full of exceptions or with 
great extensionalities since they can be quoted easily from the data, or the nth 
order polynomial obtained from n+1 data.  

• Maximum: G(x | y) = 1. The theory is surprising or creative with respect to the 
data. The data is useless (in time-space terms) to describe the theory (Kt(x | y) = 
Kt(x)). It is necessary a great computational work on the data y to obtain the 
theory and/or there is a need for external information. In other words, the 
computational effort invested justifies x to be retained, because it is valuable. 
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It is important to highlight that G(x | y) measures the gain from y to x and not the 
plausibility of x. For instance, the data “aaa...a” suggests the plausible theory “repeat 
a for ever” which is easy to obtain from the data. At this point a clear distinction 
between plausibility criteria and methodological criteria should be done: 

• A Plausibility Criterion: a classical selection criterion that chooses the most 
likely hypotheses. This criterion must be based on prior information, bias 
information, context, etc. In chapters 5 and 6 we will address this question 
again. 

• A Methodological Criterion: for want of a reasonable plausibility criterion, a 
methodological criterion can be used to select the most convenient theory for 
operational purposes (reduction of complexity, optimisation of the whole 
process, robustness). 

For instance, Popper’s falsifiability criterion is of methodological kind and it aims for 
more robust theories, although, in the long run, if the hypotheses cannot be falsified, 
they become more plausible. The Maximum Likelihood Estimator [Case and Smith 
1983] is a plausibility criterion, provided the prior is conveniently supplied, in this 
case compared with cross-validation [Kearns et al. 1999] and Bayesian Learning [Gull 
1988]. Finally, the MDL principle is both a plausibility criterion and a methodological 
one, because shorter theories are more manageable. 

Information Gain is a purely methodological criterion, because there is no reason 
to think that ‘harder’ theories are more probable (more on the contrary, very intricate 
processes in nature are only present in biological systems). However, 
methodologically, information gain can be used to obtain a good “oblivion 
criterion”. Let us explain this idea. It is well known that the plausibility of a 
hypothesis depends on the data, the hypothesis itself and the context. But it is also 
well known that the ‘confidence’ or ‘reliability’ of a hypothesis depends mostly on 
the ability of the agent or learner to find alternative hypotheses. In this case, the 
classical notion of a learner as a black box that outputs the best hypothesis according 
to some plausibility criterion is misleading, because if the best hypothesis fails with 
new evidence, the process must start again. On the contrary, it is more natural to 
consider the learner separately from the selection criteria. In this case, a set of 
possible hypotheses is generated by the learner: some of them are more plausible 
than others and some of them are more informative than others. In this case, it is 
interesting to maintain those hypotheses that have not been selected by the 
plausibility criteria but are alternative explanations that could be selected later, if the 
evidence discards other momentarily better hypotheses. The learner has invested 
some effort to obtain these hypotheses and they must be preserved to recoup more 
effort than it would be profited if only one hypothesis is remembered. Let us 
formalise this idea: 
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Definition 4.21 Oblivion Criterion. Given a plausibility criteria PC(h | d), and a 
learner with alternative hypotheses and limited memory resources, its memory 
politics can be ruled by the following oblivion criterion: 

OC(h | d) = G(h | d) � PC(h | d)  

The hypotheses with lower OC should be forgotten. For instance, if the plausibility 
criterion is the MDL principle we have OC(h | d) = G(h | d) · 2

−l(h). By the use of the 
G factor, for instance, a hypothesis “print d” for a random data d, would have OC(h | 
d) = 0. This criterion turns out to be a quite reasonable compromise between 
informativeness and simplicity. For compressible data, a short hypothesis is usually 
informative and the final value of OC is not too much affected by G. On the 
contrary, for random data, hypotheses generated by the MDL principle are discarded 
because G is low21. 

This engages with the classical dilemma between informative and probable 
hypotheses. It is clear that an explanation must have some degree of plausibility to 
avoid fantastic hypotheses, but in many applications, such as scientific discovery or 
abduction, we must regard an explanation as an investment, even a “risky bet” that 
could be soon falsified. This is merely Popper’s criterion of falsifiability [Popper 
1962]: one does not always want the most likely explanation, because sometimes it is 
the less falsifiable / informative too. More precisely, falsifiability is related with the 
number of restricted worlds that can be testable whereas informativeness is not 
directly related with testability. 

The issue is clear when the data is random (and this usually happens with short 
data because it makes no worthy any compression). The MDL principle (or the 
simplicity criterion) just gives the data themselves, which does not correspond to the 
idea of ‘model’. By using OC, different informative hypotheses can be induced. This 
gives clues to the enigma of “hyper-learning” or “poverty of stimulus” [Reuland and 
Abraham 1993] in those cases where the data suggests some obvious (but useless) 
hypotheses instead of more creative ones. 

4.3 Creativity, Learning and Discovery 

The view of learning as compression [Solomonoff 1964] is also supported on the fact 
that compression22 and informativeness are positively related in general. Let us show 
that this is true, at least for ‘thorough’ learners: 

                                                           
21 There are, obviously, other traits that have influence over an oblivion criterion. In particular, 
frequency of use and interest are, in many cases, more important than plausibility or gain. However, 
frequency of use, plausibility and interest (what might be useful in the future) are included in the 
measure of reinforcement which will be presented in the next chapter.  
22 Note that the MDL principle does not ensure any compression at all in the general case. 
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Theorem 4.11 Consider a thorough learner Λ, which examines all the data or 
nothing of it. If the hypothesis is very short with respect to the data (the 
compression ratio R(d:h) > l(d) / log l(d)) then G(h | d) = 1. 

PROOF. If the data is n = l(d) bits long, this takes at least n steps to read it, so KtΛ(h 
| d) > log n if the learner examines the data and KtΛ(h | d) = KtΛ(h) if it ignores it. 
Since the compression ratio R(d:h) > n / log n and R(d:h) = l(d) / l(h), we have that 
l(h) < log n. Consequently, KtΛ(h) < log n. So it is preferable to ignore the data and 
obtain KtΛ(h | d) = KtΛ(h) directly. This gives G(h | d) = 1. � 

The condition of thorough learners may seem arbitrary. First of all, for the two 
formulations which were considered in the previous chapter (two interfaces and 
unique interface formulation), a given data “111...n...111” can be induced by reading 
only m bits and not the n 1’s of the data, because the hypothesis “1 forever” is 
obvious when sufficiently bits (m) are read. However, this can only be made 
judiciously when there is enough redundancy (m is large). 

This can prompt the reader to think that usual learners are not thorough, but 
reality tells us otherwise. The overwhelming majority of machine learners always 
examine all the evidence, so G could be even greater than 1. Note that in the 
previous chapter we showed that G ≤ 1 because all the evidence needed not to be 
read. 

The aim of Theorem 4.11 jointly with Theorem 3.9 of the previous chapter is only 
to show that efficient learners cannot obtain informative hypotheses. More 
concretely, when using a polynomial learning algorithm for learning an evidence of 
length n, a compression ratio much greater than n / (p log n) is required, which, for n 
great and p low (as it is usually the case) is a very strict and difficult requirement. This 
supports the thesis that efficient algorithms that work exclusively from the data cannot learn 
valuable hypothesis or, seen the other way, efficient algorithms always quote 
‘shallowly’ part of the data. This highlights the relevance of context, that thing which 
is given and not learned, which serves to generate the hypothesis by trial and error 
(using reality as an oracle), or by less drastic approaches, such as genetic algorithms. 

In this sense, under the most intuitive notion of creativity, it is considered that a 
creative concept cannot be easily obtained from anything else that was known 
before, because in this case it would not be novel. Consequently, the clue to 
creativity, if there is any, is to avoid repetition of old structures and patterns, in order 
to make Kt(x | b) = Kt(x) where x represents the ‘novel’ concept and b is the 
background knowledge. In Aesthetics, this novelty should not be extreme in order to 
make the concept minimally comprehensible and hence interesting, as we discussed 
in the previous chapter. 

In the context of induction and learning, creativity is usually known as ‘discovery’, 
or in Kirsh’s terminology, to make explicit something that was deeply implicit. 
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According to this, not every inductive theory is a discovering; there are some 
conditions that must be observed: 

1. the theory must be ‘implicitly’ in the evidence e and the background knowledge 
b. 

2. the theory must not be ‘explicitly’ in the evidence e and the background 
knowledge b. 

3. the theory must cover/explain the data jointly with the background knowledge. 
4. the theory should be confirmed (otherwise it is just a creative theory or 

hypothesis but not a discovering). 

We saw in the previous chapter how to formalise the first two conditions, taking 
d=<e,b> namely V(h | d) is close to 0 for the first condition and G(h | d) is close to 1 
for the second one. The third one is semantic and can be formalised in any of the 
non-deterministic deductive systems of the introduction. The fourth condition 
depends on further experimentation with more evidence or additional context 
knowledge (it even could be deductively confirmed). However, the stricter the first 
condition is followed, the less possibility that there are alternative plausible theories 
for the evidence, because if not, V(h | e) should contain information about which one 
to select, and it would be high. 

Note that the theory can be implicit mainly due to the background knowledge. 
The thing is completely different if the selection criterion is fixed a priori. In this 
case, V(h | e) can be very low. For instance, in the case of the MDL principle, the 
shortest description of a given data can be easily described as “the shortest 
description for the evidence”, and the information conveyed by the shortest 
description given the evidence (K(x* | x)) is very reduced, as we saw in Theorem 3.3. 
This can be extended for V, as the following theorem shows: 

Theorem 4.12 Given a thorough learner Λ, there exists a constant c which only 
depends on Λ such that for every piece of data x longer than c such that K(x) > k 
� log l(x), where k > 1, i.e. it is not excessively compressible, the first shortest 
theory x* for it follows condition 1, more precisely, V(x* | x) < 2 / k. 

PROOF. By Theorem 3.3, and since V(x | x*) = 0, we have that the first shortest 
theory for a given piece of data x has V(x* | x) < (log l(x) + 2 log log l(x) + c1) / 
K(x*). Since K(x*) = K(x) + c2 and K(x) > k � log l(x), then V(x* | x) < (log l(x) + 
2 log log l(x) + c1) / (k � log l(x) + c2). Just choose c = 22c1, and V(x* | x) < (log 
l(x) + 2 log log l(x) + log log c) / (k � log l(x)) < (log l(x) + 3 log log l(x)) / (k � 
log l(x)). It is natural to expect that c is great enough to force 3 log log l(x)/ (k � 
log l(x)) ≤ (1 / k). Otherwise, just choose c = max (22c1, 216), because 3 � log log 
216 = 12 ≤ 16. Consequently, there is a constant c, such that V(x* | x) < (log l(x) / 
(k � log l(x)) + (1 / k) = 2 / k, which for k great means that the theory is 
implicitly in the evidence. � 
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But it is condition 2 which is questioned by the MDL principle, because it is not 
ensured that the simplest theory is deeply present in the evidence. On the contrary, 
many times it is explicitly found, as the following rationale shows: note that the 
condition K(x) >> log l(x) of Theorem 4.12 is precisely the limit of the condition of 
Theorem 4.11: (l(x) / l(h) = R(x:h) > l(x) / log l(x) implies l(h) = l(x*) = K(x) < log 
l(x)), thus it seems difficult to find an interval where the MDL principle ensures 
discovering in general. 

A further insight on the previous results for the field of machine learning suggests 
that if the hypothesis is evident from the data, no much learning should have taken 
place. The issue is clear when the data is random (and this usually happens with short 
data because it is no worth compressing it). For instance, the MDL principle just 
gives the data itself, which does not correspond to the idea of ‘model’ or 
‘explanation’. However, the most important learning paradigms are based on the idea 
of identification: identification in the limit [Gold 1967], PAC model [Valiant 1984], 
Query-Learning [Angluin 1988]. These paradigms are designed for infinite data, but a 
learning algorithm that always gives a completely extensional (and not valuable) 
description “print x” for any finite data x would formally learn, something that is 
quite counterintuitive. 

From here, and very far from the classical notion of ‘identification’ [Gold 1967], 
we propose a different notion of learning (or discovering): the more a system learns 
the more valuable the description is with respect to the data. 

Definition 4.22 Authentic Learning or Discovering. We say that a concept or 
theory x is an authentic learning or discovering with respect to y in a context β  iff x is 
a theory or description for y and Gβ(x | y) is close to 1. 

This engages with the intuitive notion of learning as “knowing something that was 
not known” and it is also applicable for other non-omniscient inference processes, 
even deduction. In a proper way, discovering, as a special case, should be 
accompanied by a confirmation (condition 4), whereas learning must not necessarily 
be confirmed, because x is valuable per se. Condition 1 is not required for authentic 
learning, either. 

Finally, the idea of surprise is more related with anomaly, a failure of prediction, 
and not only with the idea of novelty or new information. This issue will be 
addressed later.  

4.4 Quinlan’s Information Gain and Gain Ratio 

In the previous chapter we studied the relation between computational information 
gain and other related measures, such as Kirsh’s theory of explicitness and 
Schmidhuber’s interestingness. In this section we will study the relation with 
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Quinlan’s Information Gain, which will turn out to be the closest measure to G, 
apart from their common name. 

The algorithm ID3 for inducing decision trees [Quinlan 1986] and its 
implementation and last version C4.5 [Quinlan 1993] is the most popular and widely 
used program of the machine learning community. Its success relies on two facts: 
firstly, many inductive problems can be reformulated as the problem of inducing a 
decision tree, and, secondly, its evaluation measure, a modification of classical 
information gain, allows a compromise between the optimal solution and efficiency. 

For instance, let us consider the same observations from Quinlan’s classical 
example, which contains four attributes and two classes: 

 

Outlook Temp (ºF) Humidity (%) Windy? Class 

sunny 75 70 true Play 

sunny 80 90 true Don’t Play 

sunny 85 85 false Don’t Play 

sunny 72 95 false Don’t Play 

sunny 69 70 false Play 

overcast 72 90 true Play 

overcast 83 78 false Play 

overcast 64 65 true Play 

overcast 81 75 false Play 

rain 71 80 true Don’t Play 

rain 65 70 true Don’t Play 

rain 75 80 false Play 

rain 68 80 false Play 

rain 70 96 false Play 

Figure 4.1. A small training set 

If C is the set of class labels, we can compute the entropy of C in the classical 
probabilistic way (Shannon’s entropy): 

info(C) = H(C) = −∑c∈C P(c) log2P(c) 

In this case H(C) = −9 / 14 × log2(9/14) − 5/14 × log2(5/14) = 0.940 bits. 

If we choose the attribute ‘windy’ to split the evidence into two different 
problems we can compute the entropy of each of them as H(C|windy = true) and 
H(C | windy = false). A weighed sum of these two entropies gives the entropy after 
the split. Generalising this we have: 

infoX(C) = ∑v∈X P(v) · H(C | v) 

where each H(C | v) is the entropy of each subtree which has been generated, 
knowing v. For the previous case, if Xw = { windy = true, windy = false } then 
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infoXw(C) = 6/14 × (−3/6 × log2(3/6) − 3/6 × log2(3/6) + 8/14 × (−6/8 × log2(6/8) − 
2/8 × log2(2/8) = 0.892 bits. 

Then, it is natural to think that what we have gained after the split is the 
difference in information between the whole evidence and the split evidence. This is 
precisely what classical information gain formalises; the gain of considering feature X 
is measured by computing the difference in uncertainty (i.e. entropy) between the 
situations without and with knowledge of the value of that feature. 

Definition 4.23  Classical (or Probabilistic) Information Gain [Quinlan 
1986] 

gain(X,C) = info(C) − infoX(C) = H(C) − ∑v∈X P(v) · H(C | v) 

We have used the term ‘classical’ because this is just a generalisation of the traditional 
equation of information given by x about C when X has only one element x: 

I(X : C) = H(C) − H(C | x) 

where H(C | x) is the conditional entropy, defined as H(C|x) = −∑c∈C P(c|x) log2P(c|x). 

The previous example gives gain(Xw,C) = 0.940 − 0.892 = 0.048. If we choose Xo 
= { outlook = sunny, outlook = overcast, outlook = rain } we have that gain(Xo , C) 
= 0.940 − 0.694 = 0.246. 

Information Gain, however, tends to overestimate the relevance of features with 
large numbers of values. Imagine a data set of hospital patients, where one of the 
available features is a unique “patient ID number”. This feature will have very high 
Information Gain, because it exactly determines the class, but it does not give any 
generalisation to new instances. To normalise Information Gain for features with 
different numbers of values, Quinlan [Quinlan 1993] introduced a normalised 
version, called Gain Ratio, which is Information Gain divided by split info(X), the 
entropy of the feature-values. 

Definition 4.24 Split Info [Quinlan 1993] 

split info(X) = − ∑v∈X P(v) · log2P(v) 

This last definition is a measure of the “complexity” of X. In the case X has two 
values and each half of the evidence corresponds to each value we have a split info 
equal to 1. For the previous example, split info(Xw) = − 6/14 × log2(6/14) − 8/14 × 
log2(8/14) = 0,985, and split info(Xo) = − 5/14 × log2(5/14) − 4/14 × log2(4/14) − 
5/14 × log2(5/14) = 1.577 bits. 

Definition 4.25 Gain Ratio [Quinlan 1993] 

gain ratio(X,C) = gain (X,C) / split info(X) 

In the previous case gain ratio(Xw ,C) = 0.048 / 0.985 = 0.049 and gain ratio(Xo ,C) = 
0.246 / 1.577 = 0.156. 
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This formula is justified experimentally but not theoretically. In fact, both gain and 
gain ratio are currently used in practical applications (many times in the same 
application), although the latter is more robust to large number of values. 

By the theorem of (asymptotic) equality between Shannon’s Stochastic Entropy 
and expected Algorithmic Complexity (first proved by Kolmogorov, see e.g. [Li and 
Vitányi 1997]) we can make the translation to descriptional complexity of the 
previous definitions: 

Definition 4.26 Descriptional Gain and Descriptional Gain Ratio 

desc gain (X,C) = desc info(C) − desc infoX(C) = K(C) − K(C |X) 

desc gain ratio(X,C) = desc gain (X,C) / desc info(X) = { K(C) − K(C |X) } / K(X) 

These last definitions resemble those of information gain of the previous chapter. In 
particular, the following relation can be established: 

Theorem 4.13  For every X and C, desc gain ratio(X,C) = 1 −−−− V(X | C) up to an 
independent additive value c ≤ c’ / K(X), with c’ being another independent 
constant. 

PROOF. From Definition 4.26 we have that desc gain (X,C) = ( K(C) − K(C | X) ) / 
K(X). A well-known property of K is that K(y|x) =

+

 K(<x,y>) − K(x) so desc gain 

(X,C) =
+

  K(C) − K(<X,C>) + K(X) =
+

  K(C) − K(<C, X>) + K(X). By the same 
property, K(C) − K(<C,X>) =

+

  −K(X | C), we have that desc gain (X,C) =
+

  −K(X | C) 
+ K(X). In other words, there exists a c’ such that desc gain(X,C) = K(X) − K(X | C) 
± c’. 

By Definition 4.26 we also have that desc gain ratio (X,C) = desc gain(X,C) / K(X). 
From the previous result desc gain ratio (X,C) = (K(X) − K(X | C) ± c’) / K(X) = 1 − 
K(X | C)/K(X) ± c’ / K(X) = 1 − V(X | C) ± c’ / K(X). By taking c = c’ / K(X), the 
theorem is proven. � 

 

Since V is always between 0 and 1, for large values of X, desc gain ratio and V are just 
complementary. If V(X | C) ≅ 1, X is completely new or independent to C, so it is 
useless for making a split in C, and desc gain ratio(X,C) ≅ 0. On the contrary if V(X | 
C) ≅ 0, X is fully imbedded in C, so it is extremely useful for making a split in C, and, 
naturally, desc gain ratio(X,C) ≅ 1. 

The reason for dividing by K(X) both in G and desc gain is quite the same: we are 
not interested in an absolute value or a ratio, for if not, large X would give always the 
best gains. Note that both ignore time, in contrast to G(X |Y). It would be interesting 
to include time in the induction of decision trees by a measure of computational gain 
ratio. Obviously, this falls out the scope of this thesis. 
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4.5 Information Gain and Deduction 

As it is discussed in chapters 1 and 2, Carnap’s Probabilistic Interpretation of First-
Order Predicate Calculus [Bar-Hillel and Carnap 1953] spread the view of deduction 
as an inference processes where the result had always less information than the 
premises, as the property p(P) ≤ p(Q) if P |= Q clearly stated. 

In fact, inductive criteria such as the generality degree criterion or the MDL 
principle also corroborate this view. A deduction is always more specific than the 
premises, and a theory always grows in size if its consequences are obtained and 
adjoined. 

The strongest response to the view of deduction as a non-informative process was 
endeavoured by Hintikka [Hintikka 70b]: “there is, in addition to the scandal of induction, a 
closely related and equally disquieting scandal of deduction (...) How does deductive reasoning add to 
our knowledge (information)?”.  

Once again, the answer must be associated to the notion of effort and the reality 
of non-omniscient systems; deductions are frequently costly and their results are 
therefore valuable, informative, novel and, in some cases, surprising. 

In this way, G(x | y) also provides a uniform measure of the relative value of the 
conclusions with respect to the premises, the gain of the computational effort which 
has been invested in the process from the premises to the conclusions. More 
precisely, if x is the conclusion and y is the premise, the two extreme cases are 
illustrative: 

• Minimum: G(x | y) = log l(x) / (l(x) + log(l(x)) ≈ 0. The conclusion is evident 
from the premises. It is very easy to describe the conclusion from the premises. 
Some examples which can produce this minimum are: a conclusion that adds 
an easy tautology to the premises, a conclusion that just changes the order of 
some logical components, a conclusion as a direct instance of a premise, or a 
conclusion composed mostly of the premises and a few derived things.  

• Maximum: G(x | y) = 1. The conclusion is surprising or even creative with 
respect to the premises. The premises are finally useless (in time-space terms) 
to describe the conclusion (Kt(x | y) = Kt(x)). It is necessary a great 
computational work on the premises y to obtain the conclusion x or there is a 
need for external information. In other words, the computational effort 
invested justifies x to be retained. An example of this is a very difficult 
theorem. For instance, Fermat’s theorem is much easier to describe per se that 
by deriving it from many premises by using Wiles’ proof. 

Most of deductions fall in between these two extreme cases. However, these extreme 
instances give a hint of what G measures for deduction. It is interesting to compare 
with the same analysis we made about the use of G for induction. 
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The first case (G(x | y) ≈ 0) is somehow much clearer than the second case (G(x | 
y) ≈ 1) as it is clearly illustrated by the following example from [Holland et al. 1989]: 
“The fact that an inference is a valid deduction, however, is no guarantee that it is of the slightest 
interest. For example, if we know that snow is white, we are free to apply a standard rule of 
deductive inference to conclude that “either snow is white or lions wear argyle socks.” In most realistic 
contexts such deductions will be as worthless as they are valid”. In fact, if we consider y = a 
and x = a ∨ b, and b is much greater than a, the result of applying G is that G(x | y) ≅ 
1, which is quite counter-intuitive. There are, fortunately, at least two solutions for 
this. 

The first one is the use of the measure true information gain, seen in the previous 
chapter, defined as TG(x | y) = (Kt(x | y) − K(x | y)) / Kt(x). Using G we would have 
that there would be almost no difference between Kt(x | y) and K(x | y), and we would 
have TG(x | y) ≅ 0. The second solution is the use of utility criteria like the one that 
will be introduced in the next chapter. For this reason, in the following we will 
consider G and not TG because we will suppose there are external restrictions (or 
utility criteria) that avoid the inclusion of dummy information like “lions wear argyle 
socks”.  

It is also important to note that this phenomenon also happens in induction. For 
instance, given the data “1,2,3,4,5,...”, a hypothesis “the natural numbers + 
1342521515 − 1342521515” would be informative.  

Exception made from the cases where dummy information is added, G recovers 
the intuitive meaning of the word information for deduction, as when it is said that 
logical and mathematical inference is valuable. In particular, we would like to clarify 
different cases: given a theory and a proof sketch, how much valuable is the 
theorem?. Or, given a theory and a theorem, how much valuable is the proof?. 

Let us see how this measure particularises for these situations by using the 
different deductive systems seen in the introduction. For instance, let us first 
consider a computational deterministic deductive system φ as it was given by 
Definition 4.15 as an oracle from theory x (and proof w) to theorem d (i.e. φ(<x,w>)= 

d). The time used by the oracle is considered, we have the following results. 

First, if we only have the theory x, the gains of obtaining a theorem d that is 
effectively derivable from it are: 

 Vφ(d | x) ≤ minw : φ(<x,w>= d) K(w) / K(d) 

 Gφ(d | x) ≤ minw : φ(<x,w> = d) { Kt(w) + log Cost(φ(<x,w>)) } / Kt(d) 

The gains are limited by the cost of obtaining the proof (K(w) and Kt(w) respectively) 
and then using it to obtain d in the system φ, which in the last case, takes some time. 
In both cases, it is selected the proof which minimises the whole cost. Since proofs 
are always longer than the final result, these measures will usually be still high if the 
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derivation (i.e. the proof) is not given. In other words, these are upper limits, 
sometimes w is not used because d is short. 

In the case w is also given, we have that Vφ(d | <x,w>) = 0 as expected but Gφ(d | 
<x,w>) = min (log Cost(φ(<x,w>)) / Kt(d), Gφ(d, x)) which can be still high if the 
proof w takes a lot of time and there is no another much shorter proof. A high value 
of G will then only happen for very intricate proofs and when the conclusion d is 
very simple and it is more comfortable to quote d directly. 

In contrast, a computational theorem prover φ, as we saw in Definition 4.16, 
which outputs a proof w given a theory x and a effective theorem t, gives a Vφ(w | 
<x,t>) = 0 and Gφ(w | <x, t>) is usually low if w is precisely the proof which is 
generated by φ and it is efficiently obtained by φ. But if w is a different proof of the 
canonical one generated by φ, and there are too many alternative proofs, Gφ(w | <x, 
t>) can take practically any value between 0 and 1, because it is easier to quote the 
proof. We will see later that, in a Horn logic program, the first SLD proof for a given 
atom does not need any extra information. It is implicitly coded if given the program, 
the deductive method and the selection criteria. 

Finally, a computational accepter, given by Definition 4.17, which just outputs a 
value a ∈ {0, 1} to say if t is a derivable theorem from x, then Vφ(a | <x, t>) = 0 if a 
program for querying the oracle is shorter than quoting extensionally the answer and 
Gφ(a | <x, t>) = 1 because to quote a single bit would be usually much more efficient 
than to wait for the oracle. Although the use of gain for a computational accepter 
does not make too much sense for a single atom, we can consider a classifier system, 
where a ∈ { c1, c2, ... , cn }. In this case, Vφ(a | <x, t>) = 0 if n is great and Gφ(a | <x, 
t>) would depend on the time cost of the oracle if n is great. In addition, the use of 
information gain would be useful for computational accepters for checking whether a 
set of atoms are true or false. The result is that a set of Boolean answers (a1, a2, ..., an), 
which would usually larger to quote alone than if one has the theory and the 
evidence. 

 

Type of Deductive System V G 

Ded. Inference System   

• Without proof: Fφ(d | x) ≤ minw : 

φ(<x,w>)=d K(w) / 
K(d) 

≤ minw : φ(<x,w>)= d { Kt(w) + 
log Cost(φ(<x,w>)) } / Kt(d) 

• With proof: Fφ(d | <x,w>) = 0 ≤ min (log Cost(φ(<x,w>)) / 
Kt(d), Gφ(d, x)) 

Theorem prover: Fφ(w | <x,t>)  = 0 quite variable 

A Boolean Accepter: Fφ(a|<x, t>) = 0 1 
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Classifier System: Fφ(a | <x, t>) = 0 for large n quite variable. 

Figure 4.2. Different approximations for V and G for several deductive systems. 

The difference between a theorem prover and an accepter highlights the two 
components, descriptional and confirmative, of the idea of proof, and it also shows 
that G only measures the former. There is an informative or descriptional 
component, represented by G, which therefore is only present by obtaining the proof 
trace w and not by obtaining only true and false. In this sense, it seems that accepters 
are useless, because they do not provide information in G terms. But there is also the 
confirmative component of a proof, at least so important as the informative 
component, ignored by G, that is contemplated by theorem provers and accepters. 
By regarding the informative component alone, which has been less studied than the 
semantic or confirmative component, we are able to distinguish more definitely what 
is a proof. More precisely, it is not the detailed relation of all the steps from the 
axioms to the consequence, but only the information that is exclusively required 
from the axioms to the consequence, under certain constraints (the description must 
show how to perform valid and necessary combinations). 

Regarding all the particularisations: derivational system (DS), theorem prover (TP) 
and accepter (AC), we have tried to show that the information value of a result is 
extremely dependent of the particular deductive process that is considered. In other 
words, there is no descriptional information gain in some deductive processes where 
the result is easily obtainable from the premises, although this provides a 
confirmation. 

4.5.1 Example: Information Gain for Logical Theories 

Figure 4.2 summarises the results that can be obtained in general for several 
deductive systems. These are rough approximations and, moreover, they are difficult 
to compute. If we restrict the descriptional language we can be more precise and 
obtain effective approximations for the preceding measures of gain. In particular, 
logical theories allow the use of several metrics which have been introduced in the 
literature for different purposes, and that can be adapted for much more concrete 
and illustrative measurements of gain.  

First order logic is undecidable in general, so the former limits only apply when 
we know a priori that some theorem or derivation is effectively obtainable from the 
theory. In this case, V is equal to 0 (except in the case where the proof is required), 
and G depends on the computational cost of the derivations. 

Herbrand theories are a subset of first order logic theories that are semidecidable, 
resolution is a complete and correct method for them, all this automatisable in any 
Prolog interpreter. By default, a Prolog interpreter acts as an Accepter, but it can 
easily be adapted to work as a Deductive System or a Theorem Prover. 
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In order to apply G to logic theories we must find an approximation for K(T), 
with T being a logical theory or logic program. The most common and easy solution 
is to code a logic program as if it were to be transmitted, and K(T) is computed as 
H(T), the entropy of T. Moreover, in order to express how much information is 
required to describe a concrete proof of a given evidence with respect to a theory, we 
will require as well the space complexity of a proof. Finally, it will also be necessary 
to define the computational cost of a given derivation. 

Let us define several approximations for these measures before using them in 
particular definitions of V and G for logic programs. 

4.5.1.1 The Space Complexity of a Theory: L(T) 

Imagine the problem of transmitting a logic program. If we assume that the peer 
does not know the Herbrand Universe and this is finite, we should also transmit it. 
Since the names of the predicates, constants and variables are not relevant for the 
theory, it is only necessary to transmit their number. In this way, the length of a logic 
program is defined as in [Conklin and Witten 1994]: 

Definition 4.27 Space Complexity of a Herbrand Theory  

[Conklin and Witten 1994] 

L(P) = log(v+1) + 1+  l (log p + 1) + ∑l∈P  size(l) 

v being the number of different variables used in the program, p the number of 
different predicates and l the number of literals. The size of a literal is defined as: 

size(l) = a log (v + c) 

a being the arity of the predicate and c the number of constants in the Herbrand 
Universe of the program. 

 

The term log(v+1) serves for determining how many variables are in order to 
differentiate constants from variables, because they are codified together in size(l). 
The term l(log p + 1) specifies which predicate is used in each literal plus an extra bit 
to say whether it is the last literal of a rule. 

This measure does not cover the case of logic programs with function symbols, 
but this could be solved by using flattening techniques before calculating L(P) 23. 

For instance, the following program P1: 

{ p(X,a,c). 

   g(Z,b) :- h(a), p(W,Z,c). 

   h(Y). 
                                                           
23 Another option L’(P) could be size(l) = ∑i=1..a size(argi) and size(arg) = log (v+c) + 1 if it is a variable 
or a constant) or size(arg) = log (f) + 1 + ∑i=1..a size(argi) if it is a function. 
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   h(Z,a). } 

has 2 variables (after renaming, the second rule is the only one with 2 variables), 3 
constants (a,b,c), 4 predicates (p/3, g/2, h/1, h/2), 4 rules and 6 literals. 
Consequently, 

L(P1) = log(2+1) + 1 + 6 (log 4 + 1) + 3 log (5) + 2 log (5) + log (5) + 3 log (5) + log (5) 
+ 2 log (5) = log(3) + 19 + 12 log (5) = 48.4 bits. 

The expression of L(P) can be simplified into L(P) = log(v+1) + 1 + l (log p + 1) + 
at log (v + c) with at being the total number of arguments in all the literals. 

4.5.1.2 The Space Complexity of a Proof of a given evidence: 
PC(W<T,E>)  

It is easy to describe a proof for a given theory and evidence in logic programs. The 
measure is called the proof complexity for logic programs and it was introduced by 
[Muggleton et al. 1988], for a very different purpose: defining an inductive evaluation 
criterion. Although we will get back later on this original use, let us describe this 
measure right now. 

The proof complexity measure was originally denoted PC(E|T) [Muggleton et al. 
1988] [Muggleton et al. 1992] and is also known as derivational complexity [Feldman 
1972] for context-free grammars. It is defined in the following way:  

Definition 4.28 Proof Complexity 

[Muggleton et al. 1988, Muggleton et al. 1992] 

Given a theory T, let :- G1, …, Gn be the current goal and the root of a success 
branch in the SLD-tree. In this moment k rules can be selected where G1 
(assuming leftmost computation rules) unifies with the rule head. So, it will 
require log k bits to select the rule and the proper substitution, and requiring log 
(c+v) for the substitutions supposing function-free programs ([Conklin and Witten 
1994] do not take into account the substitution between variables, either) for 
every variable in a non-generative rule, that is, a rule where the head contains one 
or more variables not occurring in the rule body. Let us call PC(w|<T,a>) the 
information which is required in this way to code the proof w of an atom. So: 

PC(w|<T,E>) = ∑a∈E PC(w|<T,a>) 

 

However, if the evidence is given, then to code the proof does not require to quote 
the substitutions, because SLD finds them by mgu, and the information depends 
only to select the leaves that give to different proofs. This means that the 
information required is equal to 0 if there is only one possible proof. We will denote 
with PC(w|<T, a>) the information to select a concrete proof w. 
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For instance, we want to describe p(a,b,b), p(a,c,d), p(b,d,e) and we have the 
program 

     P = { r1 ≡   p(a,Y,X) :- r(Y), q(Y). 

 r2 ≡   p(Y,b, X) :- q(X).  

 r3 ≡   p(b,X,Y). 

 r4 ≡   r(b). 

 r5 ≡   r(X). 

 r6 ≡   r(e). 

 r7 ≡   r(g). 

 r8 ≡   q(b). 

 r9 ≡   q(d). } 

In this case we have: 

PC( (r1, r4, r8) | <P, p(a,b,b)>) = log 2 + log 2 = 2. 

PC( (r1, r4, r8) | <P, p(a,b,d)>) = log 2 + log 2 = 2. 

PC( (r1, r4, r8) | <P, p(a,b,c)>) = log 2 + log 2 = 2. 

PC( (r2, r9) | <P, p(a,b,d)>) = log 2 = 1. 

PC( (r3) | <P, p(b,d,e)>) = 0. 

PC( (r2, r9) | <P, p(c,b,d)>) = 0. 

In fact, if we determine the search strategy (top-down), we must only say which of all 
the possible proofs is, and in this case: 

PC’( (r1, r4, r8) | <P, p(a,b,b)>) = log 3 = 1.58. 

PC’( (r1, r4, r8) | <P, p(a,b,d)>) = log 3 = 1.58. 

PC( (r1, r4, r8) | <P, p(a,b,c)>) = log 2  = 1. 

PC’( (r2, r9) | <P, p(a,b,d)>) = log 3 = 1.58. 

PC’( (r3) | <P, p(b,d,e)>) = 0. 

PC’( (r2, r9) | <P, p(c,b,d)>) = 0. 

This usually gives lower values for PC’ than PC, in general. On the contrary, if we do 
not determine a priori the selection rule, nor the search strategy, the information 
would be greater, in general. 

4.5.1.3 The Proof-Relative Space Complexity of an Evidence: LPC(ET)  

Imagine that we want to reckon the information which is required to select a subset 
of the consequences of a logic program, for instance, we want to describe p(a,b,b), 
p(a,c,d), p(b,d,e) and we have the program 
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     P = { r1 ≡   p(a,Y,X) :- r(Y), q(Y). 

 r2 ≡   r(b).  

 r3 ≡   p(b,X,Y). 

 r4 ≡   r(c). 

 r5 ≡   r(d). 

 r6 ≡   r(e). 

 r7 ≡   r(g). 

 r8 ≡   q(b). 

 r9 ≡   q(d). } 

Before, we have modified Definition 4.28 because the substitutions were not 
necessary. Now they are necessary, but in this case we also require to modify 
Definition 4.28 slightly because we must select which predicate opens the search tree. 

Definition 4.29 Proof-Relative Space Complexity of an Evidence: LPC(ET) 

Given a theory T, and a fact or atom a, we select the predicate from all the 
possible predicates (only the predicates appearing in the heads are reckoned), which 
takes log p bits. Then we construct a term G with new fresh variables for each 
argument of the predicate and we generate a goal :- G. 

Now let :- G1, …, Gn be the current goal and the root of a success branch in the 
SLD-tree. In this moment we can select k rules where G1 (assuming leftmost 
computation rules) unifies with the rule head. Thus, log k bits will be required to 
select the rule and the proper substitution, and log (c+v) bits for the substitutions 
(supposing function-free programs) for every variable in a non-generative rule, that 
is, a rule where the head contains one or more variable not occurring in the rule 
body. There is no extra bit to code which of these non-generative variables, because 
they all will be given a substitution and they will be coded in the same order as they 
appear in the head of the rule. However, log (c+v) bits are required because there can 
be facts which contain variables and substitutions such as W/X (as coding p(X, X, a) 
from p(W,Y,Z)). However this v varies from rule to rule being exactly equal to the 
number of non-generative variables of the rule.  

 Let us call LPC(a|T) the information which is required in this way to code an atom 
from a given program T. Hence, 

LPC(E|T) = ∑a∈E (LPC(a|T) + 1) 

In the previous example we had 6 constants and a non-generative variable in the first 
rule and two non-generative variables in the third rule, then:  

If only non-generative (in order) are generated and there are no function symbols we 
have: 



106 José Hernández Orallo - Doctoral Dissertation 

 106 

LPC(p(a, b, b) | P) = log 3 + log 2 + log 7 + log 5 = 7.72 bits. 

If we consider functions we would need log c + 1 if the substitution is for a constant 
and log f + sum(argi) +1 if it is a function term. 

LPC(p(a, b, b) | P) = log 3 + log 2 + log 7 + 1 + log 5  = 8.72. 

In this case, compare with L(p(a, b, b)) = log 3 + 3� (log 6 + 1) = 12.35, i.e. quoting 
p(a, b, b) without the program. 

4.5.1.4 The Model Complexity of an Evidence: LMC(ET)  

The preceding measure is convenient for single atoms or when the size of the 
evidence is small. However, when E is large, it is usual that LPC(E|T) will be even 
higher that L(E). Consider for instance: 

the theory P1 = { p(a), p(b), q(X):-p(X), p(f) } and 

the evidence E1 = { p(a), p(b), q(a), q(b) }. 

It would be more appropriate to code K(E1| P1) as “M(P1) except p(f), q(f)” being M 
the Herbrand Model of P1. Now imagine that E2 = { p(a), p(b) }. It would be better 
in this case to code K(E2| P2) as “{ p(a), p(b) }”. This leads to the Model Complexity 
measure [Conklin and Witten 1994]: 

LMC(E|T) = 1 + min (L(M(T) − L(E)), L(E)) 

which measures the best of the two ways. The first bit is to distinguish which option 
has been selected. With another additional bit, this could also be combined with LPC 
into a new measure LMC,PC. 

4.5.1.5 The Time-Complexity Measure: Cost(ET) 

The complexity of logic programs was first studied by [Shapiro 1984]. One of the 
measures that we introduced is the time-complexity measure Cost(E | T) 

The cost of checking a single goal Cost(G | T) against a logic program can be 
measured as the number of rules that have been essayed by SLD-refutation, using the 
standard Prolog leftmost computation rule (i.e., the number of successful or failed 
unifications) without counting backtracking. This is equivalent to the number of 
leaves that are traversed by SLD. 

Let us consider the following example to illustrate this measure: 

P = { member(X, [X|Y]). 

         member(X, [Y|Z]) :- member(X, Z). } 

From here we have: 

cost(member(a, [c,d,e,a,b,c]) | P) = 7 
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This cost is a rough approximation, since it is computed independently to the cost of 
the mgu, which depends on the size of the goal. Moreover, the use of proper 
compilations or implementations (see [Clark 1991]) can make this measure very 
variable because some comparisons can be avoided in some cases, even more if 
partial evaluation techniques are employed. For other important topics about the 
computational complexity of logic programs see [Shapiro 1984]. 

Without forgetting these limitations, we can give a measure of the computational 
cost of a finite set of facts: 

Cost(ET) = ∑G ∈ E Cost (GT). 

For the preceding example, being E = { member(a, [c,d,c]), member(a, []), 
member(a, [c,d,e,a,b,c]) } 

Cost(ET) = 6 + 2 + 7 = 15 

Note that this can be computed with mixed facts (positive or negative evidence). 

A slight problem of this approach is that if we are given an infinite evidence (i.e. 
E is given intensionally and not extensionally) we will not be able to compute 
Cost(ET). The solution can be found by using an arbitrary distribution to extract a 
finite set from it, and then compute an average cost. 

However, in the following, we will also be interested in the computational cost if 
the proof is also given. In this case, let us denote with Cost(G | <T, w>)  the 
computational cost of following the proof w of G, and it is measured in the same way 
as Cost(G | P) but not reckoning the failed branches, just the successful way. This 
gives the following result for the previous example: 

Cost(member(a, [c,d,e,a,b,c]) | <P, (r2, r2, r2, r1)>) = 4 

The measure can be generalised for a set of goals as Cost(E | <T, W>), where W is a 
set of proofs. In this case, only positive evidence is possible, because negative ones 
do not have a proof. 

4.5.1.6 Derived Information Measures for First-Order Logical Theories 

We have just introduced L(E), LPC(W | <T,E>), LPC(E | T), LMC(E | T), Cost(E | T), 
Cost(E|<T,W>) and, finally, it would be easy to see that L(E|<T,W>)=0. By using all 
these measures we are able to approximate V(�|�) in different ways for different kinds 
of first-order logical systems. The G(� | �) version, however, requires a weighing 
between space and time, and a proper selection of a L measure with a Cost measure. 

For instance, in the case of LPC(a | P), it gives the minimal information for 
selecting a concrete proof of a in P. But this measure does not obtain the whole 
proof. This does not include the information for selecting from different predicates 
when only one of them is valid, and extra computation is required to show that one 
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of the others fails. For instance, the program P = { p(X,Y) :- t(X,Y). p(a,b) :- q(a,X). 
q(a,X) :- r(a,X). r(X,Y) :- s(X,Y). s(X,Y). }, makes that LPC(p(a,b)|P) = log 4 = 2. The 
first rule does not affect the measure although there is the computational cost for the 
negative branches. So, log Cost(E|T) will be used instead of Cost(E | <T, W>), giving 
a proper LT(E|T) ≤ L(E|T) + log Cost(E|T). 

With these considerations, let us give first the measures of gain for deductive first-
order systems: 

 V(E|T) ≤ L(E|T)  / L(E) 

 G(E|T) ≤ { L(E|T) + log Cost(E|T) } / (L(E) + log CostPrint(E)) 

Note that for L(E|T), both LPC and LMC can be used. 

If the proof w is also given, we have: 

 V(E|<T, W>) = 0 

 G (E|<T, W>) ≤ log Cost(E | <T, W>) / (L(E) + log CostPrint(E)) 

In the case of a first-order theorem prover the results are slightly different. If W is 
composed exclusively of the first or canonical proofs (Wc) that the theorem prover 
generates for each fact we have that: 

 V(Wc|<T, E>) = 0 

 G (Wc|<T, E>) ≤ log Cost(E|T) / (L(Wc) + log CostPrint(Wc)) 

and for any other proof: 

 V(W|<T, E>) ≤  LPC(W|<T,E>) / (L(W) 

 G(W|<T, E>) ≤ { LPC(W|<T,E>) + log Cost(E | <T, W>) } / (L(W) + log 
CostPrint(W)) 

And, finally if we have an accepter, then to know if a set of evidences E are true or 
false, we have: 

 V(<a1, a2, ..., an) |<T, E>) = 0 

 G(<a1, a2, ..., an) |<T, E>) ≤  log Cost(E|T) / (n + log n) 

The following table summarises these results: 
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Type of First-Order Deductive System V G 

Ded. Inference System   

• Without proof: Fφ(E | T) ≤ L(E|T)/L(E) ≤ {L(E|T)+log Cost(E|T)} 
/ (L(E)+log CostPrint(E)) 

• With proof: Fφ(E | <T, W>) = 0 ≤ log Cost(E | <T, W>) / 
(L(E) + log CostPrint(E)) 

Theorem Prover   

• Canonical proof: Fφ(Wc| <T, E>)  = 0 ≤ log Cost(E|T) / (L(Wc) + 
log CostPrint(Wc)) 

• Other Proof: Fφ(W | <T, E>) ≤ LPC(W|<T,E>) 
/ L(W) 

≤ { LPC(W|<T,E>) + log 
Cost(E | <T, W>) } / 
(L(W) + log CostPrint(W)) 

A Boolean Accepter: Fφ(a | <T, E>) = 0 ≤ log Cost(E|T) /(n+log n) 

Figure 4.3. Different approximations for V and G for several first-order systems. 

4.5.1.7 Example 

Let us see all these measures in an example: 

P = { r1 ≡ father(john, michael) 

  r2 ≡ father(john, henry) 

  r3 ≡ father(john, steve). 

  r4 ≡ father(steve, susan). 

   r5 ≡ male(john). 

  r6 ≡ mother(ann, susan). 

  r7 ≡ parent(X,Y) :- father(X,Y). 

  r8 ≡ parent(X,Y) :- mother(X,Y). 

  r9 ≡ grandfather(X,Y) :- father(X,Z), parent(Z,Y). 

  r10 ≡ sibling(X,Y) :- parent(Z,X), parent(Z,Y). } 

P has 3 variables , 6 predicates, 16 literals, 7 constants, which gives L(P) = log(3 + 1) 
+ 1 +  16 (log 6 + 1) + 31 � log 10 = 163.3 bits.  

Given the following evidences: 

E1 = { father(steve,susan) } with L(E1) = log(4)+1+1 (log 6 + 1) + 2�log 10 = 
13.2 bits 

E2 = { granfather(john,susan) } with L(E2) = 13.2 bits 

E3 = { sibling(steve,michael) } with L(E3) = 13.2 bits 
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E4 = { granfather(john,susan). sibling(steve,michael) } with L(E4) = log(4) +1+  
2 (log 6 + 1) + 4�log 10 = 23.5 bits 

E5 = { father(steve,susan). granfather(john,susan). sibling(steve,michael).  } with 
L(E5) = log(4) +1+  3 (log 6 + 1) + 6�log 10 = 33.7 bits 

E6 = M(P) = { father(john, steve). father(steve, susan). male(john). father(john, 
michael). father(john, henry). mother(ann, susan). parent(john, steve). 
parent(steve, susan). parent(john, michael). parent(ann, susan). 
granfather(john,susan). sibling(steve,michael). sibling(steve,henry). 
sibling(michael,steve). sibling(henry,steve). sibling(michael,henry). 
sibling(henry,michael). sibling(steve,steve). sibling(michael,michael). 
sibling(henry,henry). . sibling(susan,susan).} with L(E6) = log(4) + 1 +  22 
(log 6 + 1) + 40�log 10 + 1�log 10 = 214.5 bits 

And ignoring the cost of printing, we have for the first measures (without proof), 

V(E1|P) ≤ LPC(E1|P)  / L(E1) = (log 6 + log 4 ) / 13.2 =4.6 / 13.2 = 0.35 

G (E1|P) ≤ { LPC(E1|P) + log Cost(E1|P) } / L(E1) = (4.6 + log 1) / 13.2 = 0.35 

V(E5|P) ≤ LPC(E5|P)  / L(E5) = (log 6 + log 4 + 1 + log 6 + log 1 + 1 + log 6 + 
log 1 + log 2 + log 2 + log 4 + log 4 + 1) / 33.7 = 18.8 / 33.7 = 0.56 

G (E5|P) ≤ { LPC(E5|P) + log Cost(E5|P) } / L(E5) = (18.8 + log (1 + 19 + 5)) / 
33.7 = 0.70 

In the last case, the effect of the 16 failed unifications of “granfather(john,susan)”, 
supposing top-down search strategy, affect more sensitively to the difference 
between V and G. 

When the evidence increases in number of facts, we see that the gain tends 
towards a significant value of gain (usually > 0.5), which depends highly on the 
number of rules with the same predicate in the head. 

V(E6|P) ≤ LPC(E6|P)  / L(E6) = (4 � (log 6 + log 4 + 1) + 2 � (log 6 + 1) + (log 6 
+ log 1 + 1) + 4 � (log 6 + log 2 + log 4 + 1) + 10 � (log 6 + log 1 + log 2 
+ log 2 + log 4 + log 4 + 1)) / 214.5 =  155.3 / 214.5 = 0.72 

G (E6|P) ≤ { LPC(E6|P) + log Cost(E6|P) } / L(E6) = (155.3 + log (6 � 1 + 4 � 2 + 
19 + 10 � 5)) / 214.5 = 161.7 / 214.5 =0.75 

For large evidences, though, it could be more efficient to code using LMC. 

V(E6|P) ≤ LMC(E6|P)  / L(E6) = 1 / 214.5 = 0.01 

G (E6|P) ≤ { LMC(E6|P) + log Cost(E6|P) } / L(E5) = (1 + log (6 � 1 + 4 � 2 + 19 + 10 
� 5)) /  214.5 = 7.4 / 214.5 = 0.03 

This suggests the use of a combined LMC,PC which will give low gains with evidences 
which have most of the facts from M(T) (almost all the theory) or with few facts 
which are derivable from a very instanced rules in the theory (exceptions).  
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If the proofs are provided, the gains get down significantly, V(E|<T, W>) is 
always 0 as we have seen, and G is only slightly greater than 0 when the proof is 
difficult: 

G(E1|<P,W>) = 0 

G(E5|<P,W>) ≤ log Cost(E5|<P,W>) / L(E5) = log (1 + 4 + 5) / 33.7 = 0.10 

G(E6|<P,W>) ≤ log Cost(E6|<P,W>) / L(E6) = log (6 � 1 + 4 � 2 + 4 + 10 � 5) / 
214.5 = 6.1 / 214.5 = 0.03 

Once seen the gains of obtaining consequences of a logic theory we can see that the 
gain of obtaining a proof (the first proof) is equal to 0 for V(Wc|<T, E>) and 

G (W1|<P, E1>) ≤ log Cost(E1|P) / L(W1) = log 1 / (log 6 + log 4 ) = 0 

G (W5|<P, E5>) ≤ log Cost(E5|P) / L(W5) = log (1 + 19 + 5) / (log 6 + log 4 + 
1 + log 6 + log 1 + 1 + log 6 + log 1 + log 2 + log 2 + log 4 + log 4 + 1) 
= 4.6 / 13.8 = 0.33 

G (W6|<P, E6>) ≤ log Cost(E6|P) / L(W6) = log (6 � 1 + 4 � 2 + 19 + 10 � 5) / (4 
� (log 6 + log 4 + 1) + 2 � (log 6 + 1) + (log 6 + log 1 + 1) + 4 � (log 6 + 
log 2 + log 4 + 1) + 10 � (log 6 + log 1 + log 2 + log 2 + log 4 + log 4 + 
1)) = 6.4 / 155.3 = 0.04 

The only result with a high value is G (W5|<P, E5>) which is again due to failed 
unifications. 

Finally if we have an accepter then to know if a set of evidences E are true or 
false, we have that V(<a1, a2, ..., an) |<T, E>) = 0 but  

G (W1|<P, E1>) ≤ log Cost(E1|P) / card(W1) = log 1 / (1 + log 1) = 0 

G (W5|<P, E5>) ≤ log Cost(E5|P) / card(W5) = log (1 + 19 + 5) / (3 + log 3) = 
4.6 / 4.6 = 1 

G (W6|<P, E6>) ≤ log Cost(E6|P) / card(W6) = log (6 � 1 + 4 � 2 + 19 + 10 � 5) / 
(21 + log 21) = 6.4 / 25.4 = 0.25 

It is in these accepter systems when G is more useful. For instance, it is not worthy 
to memorise the result of the truth value of E1 and E6 because they can more easily 
be recovered than quoted. However, W5 is useful to recall for E5, i.e., it is better to 
memorise that “granfather(john,susan)” is true than to obtain it from the rules each 
time is required. 

4.6 Hintikka’s Surface and Depth Information 

As we said before, the first response to the view of deduction as a non-informative 
process was endeavoured by Hintikka. While depth information is constant in a 
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deductive system, surface information can change.  [Hintikka 70b] intended to 
discern some properties that are found in deductive systems and to explain the 
intuitive idea that logical truths do provide information. 

To distinguish ‘cash’ information from ‘accessible’ or ‘potential’ information, he 
developed a new theory of semantic information based on the probability of constituents 
in First Order Logic. Therein he formalised the notions of depth and surface 
information. The theory is difficult to use and has an important drawback, the 
probabilities depend on the number of individuals taken into account. 

Descriptional (or Kolmogorov) complexity allows the formalisation of Hintikka's 
claims independently of the world of individuals and independently of the 
descriptional language used (Hintikka’s approach was restricted to first-order 
theories). Moreover, G(·|·) is based on the computable variant of Kolmogorov 
Complexity, hence it is computable, and it takes into account time, clearly 
differentiating what is currently or easily available from intricate information that 
requires a lot of computational effort. 

Nonetheless, the idea which is represented by G(·|·), that any effort of 
transformation must be converted in an information gain, was already formulated by 
him: “There cannot be any objective obstacles to seeing the conclusions right there in the premises, for 
if there were, their removal would constitute an objective gain in information. In fact, the bluntest 
and frankest of the philosophers taking this line, Ernst Mach, explicitly assented to this conclusion” 
[Hintikka 1970b]. 

G(·|·) can be used in a similar way as Hintikka’s notion of surface information, to 
recover the intuitive meaning of the word information, as when it is said that logical 
and mathematical inference is valuable, mathematicians can be creative, original and 
their results are worthy, as Hintikka also asserted24. 

In the examples of logic programs, we have seen the difference between having 
the theory in an intensional way and having the evidence expressed in atoms. In 
many cases there is a gain between the intensional form and the extensional form, 
because there is an effort. The same rationale was used by Hintikka from 
constituents to atomic statements. 

In our case, depth information is the result of considering the omniscience and 
infinite resources of the deductive system, i.e. using V(x|y) instead of G(x|y). This 
matches with the undecidability of depth information [Hintikka 1970b] since V is 
not effective. In fact, Hintikka shows that depth information is the limit of surface 
information, and we can easily establish a corresponding theorem between V and G. 

                                                           
24 Moreover, there is nothing subjective or psychological in this notion of surface information, nor 
therefore in the measures of the additional information which a logical argument gives us.  
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Consider the notation speedup(φa, φb) = n to denote that φa is n times faster than φb, 
i.e., for each step that φb performs, φa performs at least n in the same time, or, 
alternatively, that φa makes in 1 step more than n operations of φb. 

Theorem 4.14 Select any universal machine φ, and define Gn in a machine φn such 
that speedup(φn, φ) = n and that for any effective program p we have that φn(p)=φ(p). 
Then for any pair of finite concepts x,y then lim n→∞Gn(x | y) = Vφ(x | y). 
PROOF. The proof is direct from the definitions of G and V. For any pair of finite 
concepts x and y we have that lim n→∞ Gφn(x | y) = lim n→∞ (Ktφn(x | y) / Ktφn(x)) = 
lim n→∞Ktφn(x | y) / lim n→∞ Ktn(x) = lim n→∞ (min (LTφn(p): φn(<p, y>)= x)) / limn→∞ 

(min (LTφn(p): φn(<p, y>)= x)). Since for any effective program p, LTφn(p) = l(p) + 
log Costφn(p) and φn(p)=φ(p), we have that for all p limn→∞ LTφn(p) = l(p) + log lim 

n→∞ (max(Costφ(p) / n, 1)) since φn must perform at least one operation. This gives 
lim n→∞ LTφn(p) = l(p) which leads to lim n→∞ (min (LTφn(p) : φn(<p, y>)= x)) / lim 

n→∞ (min (LTφn(p) : φn(<p, y>)= x)) = min (l(p) : φ(<p, y>)= x) / min (l(p) : φ(<p, 
y>)= x) = Kφ(x | y) / Kφ(x) = Vφ(x | y). � 

The distinction between depth and surface information was motivated by the 
resolute thought that deductive systems are resource-limited and not omniscient (or 
in Hintikka’s words, logical inference is not tautological [Hintikka 1970b]). In this 
sense, deduction is a much valuable (and informative) process. 

Although the approach is qualitative different from Hintikka’s, his motivations 
and results have a strong parallelism with the theory that is presented in this work, 
especially in this chapter. In addition, Hintikka (and some of his colleagues) also 
addressed his theory to account for different phenomena in inductive probability, the 
problem of meaning, mathematical arguments, Frege’s distinction between trivial and 
non-trivial definitions and many other topics directly or indirectly related with the 
distinction between implicitness and explicitness. Many of these topics are also 
addressed in this thesis. 

4.7 Axiomatic Systems Optimisation 

In the case of deterministic systems, where φ(T) = E, and E is finite, we can consider 
the optimal T as the shortest one (i.e. l(T) = K(E)), the best one according to LT (i.e. 
LT(T) = Kt(E)) or, as usual in computer science, the fastest one (in this case T = 
“print E”). If E is infinite, we have that the shortest theory is still represented by 
K(E) but in this case the best one according to LT and the fastest one match, and 
must be obtained in the following way: if E is infinite we have that Kt(E) = min { 
LT(T) : φ(E) = T } = min { l(T) + Cost(T) : φ(T) = E } = ∞. 
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In other words, it seems that time cannot be used for infinite evidences. There is a 
way out for this. We could still obtain the best program according to LT: opt LT(E) = 
{ x : ∃c ∀n ≥ c, Kt(E1..n)= x(n) } where E1..n represents the first n bits of E and x(n) 
represents the same program x but limiting its output to size n. Note that this is not 
possible to do for any program x, so the result of opt LT(E) is a program that outputs 
one by one, without going back or modifying what has been output so far. Since E is 
infinite, it is straightforward to see that the size of T can be ignored, since there exists 
an n such that Cost(T(n)) would be greater, and we have that optT(E) = optLT(E). 

However, for finite evidence (or due to practicality), it is necessary to find a 
compromise between the size of the theory and its computational complexity. As we 
commented in chapter 2, this was profoundly studied by Chaitin, who established the 
correspondence of Gödel incompleteness results in terms of descriptional complexity 
[Chaitin 1982]. The more powerful a system is the more blatant the dilemma is: “any 
formal system in which it is possible to determine each string of complexity less than n has either (...) 
few bits of axioms and needs incredibly long proofs, or it has short proofs but an incredibly great 
number of bits of axioms. (...)This is analogous to the dilemma of a scientist who must choose 
between directly publishing his observations, or publishing a theory that explains them, but requires 
very extended calculations in order to do this.” [Chaitin 1974] 

Nonetheless, the parallel is more figurative with mathematical practice: “One does 
not really want the most compact axiom for deducing a given set of assertions. Just as there is a 
trade-off between the number of bits of axioms one assumes and the size of proofs. Of course, random 
or irreducible truths cannot be compressed into axioms shorter than themselves. If, however, a set of 
assertions is not algorithmically independent, then it takes fewer bits of axioms to deduce them all 
than the sum of the number of bits of axioms it takes to deduce them separately, and this is desirable 
as long as the proofs do not get too long. This suggests a pragmatic attitude toward mathematical 
truth, somewhat more like that of physicists.” [Chaitin 1982]. 

In general, though, we are not presented against deterministic deduction, such as 
φ(x) = y, where there is only a consequence for a given description, but an axiomatic 
theory, where we have to select the best theory with respect to a set, maybe infinite, 
of consequences. This generates a more complex problem. Let us see it first with 
single evidence and then with multiple evidence. 

4.7.1 Single Evidence Representational Optimality 

We can use the notions of representation simplification and representation 
optimisation introduced in the previous chapter to show that this trade-off can be 
made in practice. 

Consider the following equational theory T for addition. Its shortest 
representation is: 

 X + s(Y) = s(X + Y) 

 X + 0 = X 
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where the rules are oriented left to right. We could derive similar measures for 
equational programs than the ones that we had for logical programs. However, in 
this case, the information gain should be measured from any term to its normal form, 
acting as a theorem prover or deductive inference system but not as an accepter. For 
instance, if we have that s0 + s(s0 + ss0) = sssss0 then G(sssss0 | <T, s0 + s(s0 + 
ss0)>) is low, showing that the program and the left hand side of the equation is 
useful for obtaining the right hand side. 

By using the definition of derivational simplification, we have that, e.g.,  s(sss0 + 
s0) and s0 + s(s0 + ss0) are alternative representations for sssss0, because both can 
be derived into sssss0 and both are more complex than sssss0 (since G(sssss0 | <T, 
s(sss0 + s0)>) < G(s(sss0 + s0) | <T, sssss0>) and G(sssss0 | <T, s0 + s(s0 + ss0)>) 
< G(s0 + s(s0 + ss0) | <T, sssss0>). 

Note that for the previous theory it is not strange to consider x3 = ssss...45 
times...sss0 the best representation for 45d, because addition (alone) does not 
provide any representational advantage. 

Let us extend the previous theory with the equations of product: 

 0 × X = 0 

 sX × Y = X × Y + Y 

This new theory (let us denote it by T’) has now 4 function symbols (0, s, +, ×). 
Consider these three terms: 

x1 = ((((s0 × ss0 + 0) × ss0 + s0) × ss0 + s0) × ss0 + 0) × ss0 + (s0), 

x2 = s0 + ss0 × (0 + ss0 × (s0 + ss0 × (s0 + ss0 × (0 + ss0 + s0)))), and  

x3 = ssss...45 times...sss0 both equal to 45d with respect to to T’. 

We can obtain their optimalities:  

 LT(x1 | T’) = 35 � (log 4) + log Cost(x1 | T’) = 70 + log 1340 = 80.4 

 LT(x2 | T’) = 35 � (log 4) + log Cost(x1 | T’) = 70 + log 324 = 78.3 

 LT(x3 | T’) = 46 � (log 4) = 92 

The best representation is x2, and x3 turns out to be the worst, which agrees with the 
usual representation of numbers in most developed cultures [Ifrah 1994]. And this 
holds as T’ is not only better than T for representing the natural number 45 but the 
complete set of natural numbers and other arithmetical evidence. 

Finally, as we saw in the preceding chapter, we can compute the representation 
enhancements between these representations. For this, we must only find Kt(y), 
where y is the absolutely best representation, which in this case can be a 
simplification of x2, more concretely y= s0 + ss0 × (ss0 × (s0 + ss0 × (s0 + ss0 × 
(sss0)))) with LT(x’2) = 29 � (log 4) + log 240= 65.9. 
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Then, the representation enhancements with respect to y are RE(x2,x1) = (LT(x1) 
− LT(x2)) / Kt(y) = 0.03, RE(x2,x3) = (LT(x3) − LT(x2)) / Kt(y) = 0.20 and RE(x1,x3) 
= (LT(x3) − LT(x1)) / Kt(y) = 0.18, and RE(y,x1) = (LT(x1) − LT(y)) / Kt(y) = (80.4  − 
65.9) / 65.9 = 0.22. 

4.7.2 Theory Optimisation for Multiple Evidence 

We have seen the optimality of a single representation. Let us begin to explore if this 
notion can be extended to a set of consequences or evidence E.  

Given an evidence E, we are concerned with finding a theory T, such that E is 
covered optimally by T. Since E is a set, we can weigh each element of E in some 
other way than uniformly (we will get on this problem in chapter 6). Moreover, we 
must select once again the criterion of optimality. Finally, we must distinguish 
between a deductive system (DS), a theorem prover (TP) and an accepter (AC), or, in 
other words, the theory should behave reasonably well for obtaining deductive 
inferences, obtaining proofs or obtaining the truth value of formulae, respectively. 

If we parameterise the optimality criteria (or the effort criteria), and we want a 
uniform measure for all the evidence, we can measure the optimality of T with 
respect to E as:  

optDS(T| E) = argminT(Σe∈E Effort(e|T)). 

optTP(T| E) = argminT(Σe∈E Effort(w|<T,e>)). 

optAC(T| E) = argminT(Σe∈E Effort(a|<T,e>)). 

for deductive systems, theorem provers and accepters, respectively. Or maybe we 
want to measure the best theory for these three purposes: 

opt(T| E) = argminT(Σe∈E α�Effort(e|T) + β�Effort(w|<T,e>) + γ�Effort(a|<T,e>)). 

As we said before, if the evidence is infinite, a finite sample should be randomly 
extracted from it in order to be able to compute the previous measures. 

The question is now centred in selecting the criterion. As we saw, G and V are 
measures of effort, and, in the cases of LT and L, the goal would be to minimise G 
and V respectively. However, LT and L are not the only measurements of effort. 
For instance, if the criterion is efficiency of inference, the best theory for deductive 
inference is given by optDS(T| E) = argminT(Σe∈E Cost(e|T)). It is important to note that 
even in this case of unlimited memory, the best system for E usually is not E itself 
(apart from the case where E is infinite because an extensional description does not 
exist). For instance, given the evidence “p(2), p(4), p(6),...., p(100000),” it is better to 
have “p(X) : - even(X), X < 100000” than to search among the 100000 elements, 
having a cost of about 100000/2 = 50000 mean time access. 
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On the contrary, if the criterion is the size of describing the evidence we have that 
optDS(T| E) = argminT(Σe∈E L(e|T)). For a logical program we could use optDS(T| E) = 
argminT(LPC(E|T)) or argminT(LMC(E|T)) instead. 

Most of these variants have a direct utility for different situations: 
• The first measure, optDS(T| E) = argminT(Σe∈E Cost(e|T)) is applicable to solvers 

and programs, because the necessary w can be seen as the input and e as the 
output, and it is required that his process would be efficient. However, the 
length of the theory should also be reduced, thus a reasonable L(T) must be 
maintained. This dilemma is habitual when using partial evaluation [Alpuente 
et al. 1998] and transformation techniques [Pettorossi and Proietti 1996b], 
where specialised theories, which exhibit low computational cost to some part 
of their consequences, may be quite large. 

• If we measure the descriptional complexity, i.e., optDS(T| E) = argminT(Σe∈E 

L(e|T)) , it is applicable to Conceptual Theories or Scientific Models, where the 
evidence should be described with the help of the theory. In order to avoid 
very complex theories, it would be better to use optDS(T| E) = argminT(Σe∈E 

LT(e|T)) instead. This extends the previous notion of representation 
simplification to that of theory simplification from T to T’, if Σe∈E LT(e|T’) is 
less than Σe∈E LT(e|T). 

• If we measure the cost of obtaining proofs, i.e., optPS(T| E) = argminT(Σe∈E 

Cost(w|<T,e>)) we can apply it especially to Automated Theorem Provers 
(ATP) where different benchmarks for set of characteristic proofs are applied 
in order to discern which system is better than others [Suttner and Sutcliffe 
1996]. 

• In mathematics, though, we are not interested in the time a proof takes to be 
discovered (except some famous theorems, such as Fermat’s). Here optPS(T| E) 
= argminT(Σe∈E L(w|<T,e>))  favours shorter proofs, which are something very 
valued in mathematical systems. Even in ATP, as Wos pointed out (Wos 1996), 
the ‘elegance’ of a proof is important, according to three criteria (length, 
structure and compactness). In many cases, we introduce lemmata or 
intermediate information in order to shorten the proofs although the system 
size increases. 

• Specialised to accepter systems, optAC(T| E) = argminT(Σe∈E Cost(a|<T,e>)) is 
applicable for time optimisation of digital circuits and, if a is not Boolean, to 
classifier systems. 

• Finally, optAC(T| E) = argminT(Σe∈E L(a|<T,e>)) is not sensible, and it must be 
replaced by argminT(LT(A|<T, E>)) being A an array giving the answers to 
each e in E. This, finally, turns out to be very similar to the previous measure. 
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4.7.3 Pietarinen’s Systematic Power 

In the previous subsection we have seen that many of the theory optimality measures 
were made in order to minimise G and V of the evidence with respect to the theory. 
Let us see how a similar outcome was obtained from a different departure, based on 
Popper’s idea of explanatory power. 

Juhani Pietarinen, in his paper “Quantitative Tools for Evaluating Scientific 
Systematizations” [Pietarinen 1970] introduces a measure (and four different variants 
of it) to account for the explanatory capacity, namely systematic power, of 
hypotheses with respect to certain determinate data. 

The idea is inspired in Popper’s measure of explanatory power [Popper 1959], 
namely 

 E(h, d) = { p(d | h) − p(d) } / { p(d | h) + p(d) } 

where h represents the hypothesis and d the data. Popper’s measure is modified and 
generalised by Pietarinen: 

syst(h, d) = { unc(d) − unc(d | h) }/ unc(d) 

By using four different measures of relative uncertainty (unc(d | h)) and absolute 
uncertainty (unc(d)), all of them based on probability, Pietarinen gives four different 
measures of systematic power, studying their specific properties. 

Since the four measures had the advantages and drawbacks of being based in 
probabilities, it would be interesting to introduce a fifth and a sixth variant, by using 
the descriptional version of uncertainty, namely, relative complexity K(d | h) and 
absolute complexity K(d) and their corresponding Kt versions. 

Definition 4.30 Time-Ignoring Descriptional Systematic Power 

syst5(h, d) = { K(d) − K(d | h) }/ K(d) 

Correspondingly, we define 

Definition 4.31 Space-Time Descriptional Systematic Power 

syst6(h, d) = { Kt(d) − Kt(d | h) }/ Kt(d) 

However, both definitions highly resemble previous notions seen in this chapter, as 
the following theorem shows.  

Theorem 4.15  syst5(h, d) = 1  −−−− V(d |||| h) and syst6(h, d) = 1  −−−− G(d |||| h) 

In other words, under this view of uncertainty, the more powerful a system is, the 
less the gain of the evidence with respect to the theory. This is equal to descriptional 
Gain Ratio as it was derived from Quinlan’s Gain Ratio in Section 4.4, if H and D 
are swapped, i.e. 1 − V(X|C) where H corresponds to the attribute X and D 
correspond to the class C. Although the interpretation is quite different in both cases, 
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a measure 1 − G indicates that a theory or a tree split must be invested in order to 
minimise subsequent effort (value of G). 

The measure syst6 is intuitive and applicable to the different kinds of deductive 
systems we have just seen previous subsections. For instance, a system where its 
deductions are hard to obtain, i.e., V(E|T) and/or G(E|T) are high, is difficult to test, 
because it is hard to extract new evidences. This matches with Popper’s relative 
potential satisfactoriness, or potential progressiveness, of scientific theories. This 
criterion “characterizes as preferable the theory which tells us more: that is to say, the theory which 
contains the greater amount of empirical information or content: which is logically stronger: which has 
the greater explanatory and predictive power; which can therefore be more severely tested by comparing 
predicted facts with observations” [Popper 1962]. 

On the contrary, V(W|<T, E>) and G(W|<T, E>) can be used to define the 
systematic power of a mathematical systems, where proofs are required to be short, 
given the theory and the theorems to prove. 

4.8 A Characterisation of Lazy and Eager Inference 
Methods 

In chapter 2 we discussed two kinds of inductive inference methods: lazy methods 
such as Explanation-Based Learning (EBL) and Case-Based Reasoning (CBR) and 
eager (or inductive) methods, such as Model Based Reasoning (MBR) or Inductive 
Logic Programming (ILP). The difference lays in the time where the inference effort 
is made. For the case of lazy methods, reasoning is triggered whenever a new 
problem or evidence appears, and all the history of previous cases is reviewed. This is 
the reason why they are also called memory-based methods. On the contrary, eager 
methods construct a model of the problem as this is fed, and when a new problem 
case appears, the solution comes quickly by the application of the model. Since back 
cases are no longer necessary if the model is reliable, they can be forgotten. This is 
the reason why these methods are also called forgetful methods. See [López de 
Mántaras and Armengol 1998] for an up-to-date state of the art of both methods.   

Nonetheless, the difference between lazy and eager methods has always been 
discussed in an informal way. A theoretical account of this distinction would help to 
establish for which kind of problems each type of method would be more 
appropriate. Moreover, their integration could be studied in a much more general 
way than some fruitful but particular approaches [Armengol and Plaza 1994]. 

This formalisation can be made by the use of concepts related with information 
gain. Consider the evidence as an ordered (indexed) set of examples: En = { e1, e2, ..., 
en }. Each example is a pair (xi,  yi) where x is the input and y is the output. A Boolean 
evidence can always be transformed by restricting y ∈ { False, True }. Consider a 
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method or algorithm A that, for all m < n, if given the first m examples and the input 
xm+1 predicts (correctly or not) the example m+1, i.e., y m+1. 

Let us define Time(A, i) = the time from the moment that the algorithm is given 
the next input xi till the moment it gives the value yi, i.e., the reaction time. This time 
includes any process that the algorithm performs, including theory revision. In other 
words, in the case that yi is wrongly predicted, the algorithm may perform some 
operations to remake its model (if it has it) and this must be included in the measure 
(which would be in this case a reaction and reflection time). From here the following 
definition is straightforward: 

Definition 4.32 Time Laziness 

Lazinesst(A) = lim i→∞ { [∑j ≤ i Time (A, j)]/ i } 

Obviously, in the case of good eager methods, their laziness would usually be low (it 
would be always low if we do not incorporate the revision time but this would not be 
fair). In the best case, when the algorithm identifies in a certain i the correct model M 
of the evidence, then the time would be very reduced for the rest of the evidence, 
since it would only be required to apply the model M, and Lazinesst(A) ∈ 
O(Cost(M)). On the contrary a lazy algorithm is constantly comparing with past 
examples and the time cost will be more and more expensive because there will be 
more and more past examples to compare, up to the limitation of memory resources. 

Accordingly, it is not only time but space which mostly distinguishes lazy and 
eager methods. As we have seen, an eager algorithm forgets the evidence whereas a 
lazy method must store a great portion of it in order to make the comparisons. 

Let us define Space(A, i) = the space in bits that is required to store the necessary 
evidence and model for the algorithm to operate. 

Definition 4.33 Space Laziness 

Lazinesss(A) = limi�∞ { [∑j ≤ i Space(A, j)]/ i } 

The space laziness of an eager method will depend on a model but it is again trivial 
that this would always be l(M), i.e. a constant. On the contrary, the space laziness of a 
lazy method will, in general, be equal to its memory capacity.25  

We can combine in a single measure both time laziness and space laziness. 

Definition 4.34 Time-Space Laziness 

Laziness(A) = logτ(Lazinesst(A)) + σ �Lazinesss(A) 

In general, if idle times can be used, inductive methods would be better (in the large) 
for real-time applications. However, in most cases, a combination of lazy and eager 
methods could be the best solution (such as [Armengol and Plaza 1994]). The 
                                                           
25 Note that the question for approximate algorithms is different, because the model is always an 
approximation and more and more space will be needed to obtain better precision. 
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previous measure allows that a joint value of laziness can be computed from the 
separated algorithms, provided their separated resources and the frequencies of use 
of each of them are known.  

It is important to highlight that these measures are valid for induction, abduction, 
analogy, and deduction (consider input-output pairs as evidence).  

For abduction (EBL) and analogy (CBR) the result would be a high value of 
laziness. For constructive induction (MBR and ILP), a low value of laziness is 
expected. Finally, for deduction the result can be lazy (such as knowledge-based 
systems) or eager (mathematics and software). Specialisation and transformation 
techniques are used for software programs [Pettorossi and Proietti 1990, 1996a, 
1996b] [Dershowitz and Reddy 1992], in order to make them more eager, in the 
sense of Lazinesst(A). 

The notion of eagerness and the oblivion criterion seen in section 4.2. can be used 
together in order to optimise resources. Obviously, accuracy should not be 
significantly affected by this. 

4.9 Induction, Deduction and Information 

In the scientific method, there is a traditional view that inductive processes are 
primarily responsible of providing information to our knowledge, whereas deductive 
processes reorganise them. We have seen that deductive processes also provide 
information by this reorganisation, comparison and collation of previously induced 
information. Knowledge acquisition and revision are thus continuous and highly 
inter-related processes. 

The classical view of mathematics, on the contrary, does not change its truths 
frequently, but gives more relevance to some theorems, systems and methods, 
depending to their applicability to other sciences or other parts of mathematics itself. 
Axiomatic changes are motivated by these changes of interest, the addition of new 
axioms or the discovering of new relationships or theorems. Recently, there is a an 
increasing trend towards the view of mathematics as an experimental science 
[Tymoczko 1986], which sees itself not so different to other experimental sciences. 

Induction, deduction and information have been difficult to conciliate in the 
literature. In the first chapter we commented on many paradoxes of the view of 
induction as an inverse process of deduction. In this chapter, we have seen that both 
deduction and induction are either informative or non-informative processes 
depending on G(x | y), y being the data and x being the inferred result (an inductive 
hypothesis or a deductive derivation). This contrasts, as we saw in the initial part of 
this dissertation, with the traditional idea of induction as always information 
increasing inference process and deduction as always information decreasing 
inference process [Bar-Hillel and Carnap 1953]. 
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Before, we have talked about the best theory for a given evidence (system 
optimisation), but without considering prediction purposes (i.e. plausibility). If we 
want to join both things we are forced to study first the relation of induction and 
deduction under information gain and transformation. This implies the comparison 
between G(T | E), which represents the inductive gain, and G(E | T), which 
represents the effort of obtaining the evidence from the theory and, thus, its 
testability and practicality. Following the asymptotic relationship Kt (T | E) + Kt(T) = 
Kt (E | T) + Kt(E), a compromise between high inductive gain, plausibility and low 
deductive gain should be found. In order to obtain this, we have that Kt(T) should be 
low and Kt(E) should be high, which suggests that the theory should be much 
simpler (in LT terms26) than the evidence. This may suggest the use of a LT-modified 
MDL principle, for obtaining highly compressed and efficient theories. 

However, we can recall one of the main problems of combining the MDL 
principle with deduction. Probabilities do not behave well under deduction 
transformations. Usually, if we have p = x ∨ y, the deduction x ∨ y ∨ ¬y should have 
more probability, according to Carnap, but the MDL principle assigns it less 
probability because it is longer. A probabilistic account based on an information-
theoretic framework is not possible since x ∧ y is as easy to construct as x ∨ y but 
their semantics are completely different. 

4.9.1 Intermediate Information 

Contrarily, information gain measures the internal increase of information and allows 
the distinction of which concepts are valuable and usable from an internal point of 
view. However, this is not sufficient as Holland et al. points out: “One of the most 
impressive research efforts on induction, that of Lenat (1983), has yielded programs for generating 
concepts and heuristics for mathematics and other domains. However, the programs all encounter the 
problem of “mud”, which is Lenat’s informal designation for uninteresting definitions and tasks. 
Mud sooner or later accumulates to the point that a system becomes totally involved in a round of 
tasks that contribute nothing to the expansion of concepts and heuristics.” [Holland et al. 1989]. 

In section 4.7 we have talked about partial evaluation techniques, lemmata, and 
other forms of intermediate information that make a system better with respect to 
some evidence. For instance, that addition is commutative (X + Y = Y + X) is a 
property that allows to shorten many derivations in arithmetic. However, the 
property (X + X + 3 = (X + 1) � 2 + 1) is not so useful in arithmetic. Nonetheless, 
both are true from Peano’s axioms, i.e., both are theorems. Moreover, both have a high 
value for G, but only one of them is worthy to maintain explicitly. In other words, it 
has been shown that for the common evidences arithmetic deals with, commutativity 
is extraordinary useful to memorise as an incarnate theorem whereas the other should 
be deduced if ever is needed. Similarly, lemmata are a special kind of theorems (also 
                                                           
26 Note that this would be impossible for K, since K(T) ≥ K(E). 
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with high G) which has no practical use for E, but it is useful for the proof of a 
theorem.  

Consider the same equational theory T for addition and product as before: 

 X + s(Y) = s(X + Y) 

 X + 0 = X 

 0 × X = 0 

 sX × Y = X × Y + Y 

It can be proven from here that X + Y = Y + X and Y × X = X × Y. Since the 
proofs are not short, their G is high. The question is whether these theorems should 
be maintained in T or they should be removed because they are redundant 
(omnisciently non-informative). Moreover, they can give problems of endless loops. 

Recalling x1 = ((((s0 × ss0 + 0) × ss0 + s0) × ss0 + s0) × ss0 + 0) × ss0 + (s0), and 
x2 = s0 + ss0 × (0 + ss0 × (s0 + ss0 × (s0 + ss0 × (0 + ss0 + s0)))), we have that 
using both properties properly we have that LT(x1) ≈ LT(x2) because now the proof 
of x1 is much shorter. This is expectable for many other evidences and, consequently, 
optDS(T| E) = argminT(Σe∈E Cost(e|T)) should increase for an arithmetic solver 
constructed with commutativity of addition and product. One may not preserve any 
property, though, because this takes space, or may also take time because there are 
more possibilities to essay, and not every property is equally useful. The oblivion 
criterion can be adapted to select which set of deductive inferences are maintainable 
and which are not, depending on the effort of obtaining them and their utility (aside 
from their plausibility). 

In the next chapter, we will centre on distinguish and effectively measuring why 
(X + Y = Y + X) is a property reinforced by the evidence and the property (X + X + 3 
= (X + 1) � 2 + 1) is not reinforced. We will see that reinforcement is what is lacking, 
both a measure of plausibility and utility. 

4.9.2 Resource-Bounded and Fallible Inference 

Classical and Mathematical logic are omniscient. A logic formula is a theorem in a 
system or not, independently of how many steps are necessary or how difficult is to 
obtain them. The possible worlds semantics and Kripke’s semantics [Kripke 1963] 
triggered the research over different logics of believe and modal logics. However, an 
agent which is modelled by this semantics is logically omniscient, because they must 
believe any classic tautology, and perfect reasoners, because they must believe every 
classical logical consequence of its believes. This is not a realistic model of actual 
agents (either human or computational) because these always suffer a resource 
limitation, which makes impossible to become ideal reasoners. Maybe the major 
problem of Artificial Intelligence has been to neglect this difference during too time. 
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The axioms of modal logics were essayed for each of their combinations, these 
axioms being the following [Konolige 1992], as were introduced in chapter 2: 

 

(K):L(φ ⊃ ψ )⊃ (Lφ ⊃ Lψ )

(D):Lφ ⊃ ¬L¬φ
(T ):Lφ ⊃ φ
(4):Lφ ⊃ LLφ
(5):¬Lφ ⊃ L¬Lφ
(P):φ ⊃ Lφ   

Their names depend on the authors but generally (K) is known as the axiom of 
deduction, (D) is the non-contradiction axiom, (T) is the axiom of infallibility, (4) is 
the axiom of the conscience of own knowledge, (5) is the axiom of the conscience of 
ignorance and (P) is the axiom of complete wisdom. 

Some of these axioms are related (for instance T and K imply D) and some 
combinations have intuitive interpretations (see e.g. the discussion about the 
different uses of S5, KD45, K45 in [Halpern 1997]). 

For the use of inference processes such as induction and deduction, we are 
precisely interested in K, D and T: 

• Ontological Fallibility (¬T): An agent whose knowledge cannot be false is not 
realistic, even more when we consider learning agents, whose knowledge is 
empirical and, consequently, refutable. More clearly, induction would be 
nonsensical if the axiom T holds, because inductive inference is necessarily 
associated with error. 

• Knowledge Extensibility (¬K): if this axiom is assumed, all the logical 
consequences of a belief are also believed, i.e., every deep knowledge is made 
shallow automatically (omniscience). Apart from the fact that this in only 
possible for reduced representations, this would make that there would be no 
difference between depth information and surface information in the sense of 
[Hintikka 1970b]. On the contrary, if K is not assumed, deduction is more 
related with ontology and deductive reasoning is useful to make explicit what 
was implicit. Axioms 4 and 5 could also give raise to different degrees of 
extensibility. 

• Reasoning Fallibility (¬D): Since agents are based in languages with well-
defined semantics, it is not usually considered that the system could have 
internal inconsistencies. But as well as T and K imply D, it is reasonable to 
accept that if the system has ontological fallibility and its reasoning abilities are 
not immediately omniscient., it is quite possible that an inconsistency of two 
separate inductive theories could persist during a time until it is detected by 
deductive reasoning. It is important to highlight that this makes deduction 
even more useful. Finally, this is not equal to the possibility of wrong 
deductions, which, for small applications, need not to be considered, but a 
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complex cognitive system should take that possibility into account for the sake 
of robustness, because any internal failure, could make the system collapse. 

A fourth property, which only appears from a dynamical point of view, is the 
possibility of oblivion, which has been discussed previously. However, oblivion is 
much easier to model in the case of knowledge extensibility, because if K is assumed, 
forgetting something implies forgetting everything that was implied by it. 

Let us summarise in a table, the six reasonable combinations of these axioms and 
the influence of these combinations for inductive and deductive inference: 

 

Type of Knowledge Omniscient (K) Extensible (¬K) 

Infallible 

(T and D) 

 Induction Nonsensical, 
Deduction Useless 

Induction Nonsensical 

Fallible without 
Contradiction  

(¬T and D) 

Deduction Useless Induction and Deduction 
useful and compatible 

(Horn theories, ILP) 

Fallible with 
Contradiction 

(¬T and ¬D) 

Contradictions are 
immediately detected 

Both Induction and 
Deduction affect 

positively to ontology 

Figure 4.4. Combinations of modal axioms T, K, and D and influence to inference processes. 

For expressible languages, only the combinations (¬K, ¬T and D) and (¬K, ¬T and 
¬D) are possible. The last combination, (concretely ¬T and ¬D), allows two kinds 
of refutations: inductive and deductive. The first one is the most classical one in the 
literature: a new fact is inconsistent with the theory and it must be revised. The 
second one is only possible if D is not assumed, which means that inconsistencies are 
not detected immediately. Two inconsistent inductive theories can coexist a time in a 
system until a deductive inference makes their contradiction explicit. In this case, 
deduction also affects plausibility, because the better deductive inference works, the 
surer the system that internal contradictions do not exist, and its predictions would 
have more plausibility. Both kinds of refutation do not mean that the theories must 
be necessary withdrawn, but they still can be used if they are practical to cover the 
evidence. This is usual for scientific theories, which can coexist even when are 
formally inconsistent (e.g. Relativity Theory and Quantum Theory). 

The mechanism to resolve or work with inconsistent knowledge is open to 
different applications. The most usual approaches are based on priorities, 
confidences or credits, as we will use in the next chapter. Other approaches are more 
semantical such as Nute’s defeasible logic [Nute 1988][Nute 1994], which opts for the 
strongest inference step whenever a contradiction takes place, weighing the 
deductive derivations performed. 
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Some authors think that weakening the standard epistemic systems results in 
many intuitions about the concepts of knowledge and belief being lost [Duc 1997]. 
The reason of this unintuitive results may be due to the possible world semantics 
[Moore 1984]. Duc’s solution is based in a logical ‘dynamisation’ of epistemic logic 
inspired in dynamic logic [Harel 1984]: “if we say that the epistemic agent knows the laws of 
logic, we do not mean that she knows some facts of the world, but rather that she is able to use these 
laws to draw conclusions from what she already knows. The laws of logic are what the agent knows 
implicitly; she does not need to possess them permanently. It suffices if she can recall them when she 
needs them in order to infer new information from her explicit data base” [Duc 1997]. This 
forces a re-understanding of modal epistemic logic: “Modal epistemic logics should 
be interpreted as logics of possible, or implicit knowledge, and not as logics of actual, 
or explicit knowledge”. Then, the clarification of the words implicit and explicit, as it 
has been done in these two chapters, is also of the greatest relevance for modal 
epistemic logic. 

Another non-omniscient proposal is the idea of “conceivable worlds” [Moreno 
and Sales 1997]. Instead of considering all the possible worlds, the agent can only 
consider ‘conceivable worlds’: “A conceivable situation is any state that the agent can consider, 
independently from its possible partiality or inconsistency” [Moreno and Sales 1997]. 
Moreover, this kind of agents “are continually analysing their beliefs, in order to 
make them more resembling with real world”. The processes for this analysis to 
remove inaccurate beliefs and refine true ones, dubbed “rational investigation”, is 
characterised by these components [Moreno and Sales 1997]: 

• Logical Analysis: the agent could make (limited) deductive inferences. 
• Exploratory Analysis: the agent could raise questions and pose doubts such as 

whether it implicitly believes or not some fact. 
• Experimental Analysis: the agent could ask for data from the environment to 

confirm or refute some of its beliefs. 
• Knowledge Acquisition: the agent could incorporate to its beliefs the 

information that is received from the environment. 

According to this view of bounded rationality, it is necessary a measure of plausibility 
would not always negatively affected by the addition of new intermediate 
information to the theory. 

On the contrary, we look for a measure where positive deductive results should 
increase the reliability of the theory, and hence its plausibility, and negative deductive 
results should decrease the reliability of the theory. This kind of measure is 
endeavoured in the following chapter.  



4. Information Gain and Inference Processes 

 

127

127

4.10 Summary and Contributions of This Chapter 

This chapter has taken advantage of the definitions introduced in the previous 
chapter for inference processes, mainly induction and deduction. Both processes 
have been expressed in terms of computation and not in terms of truth, and we have 
also neglected any probabilistic account. Different kinds of deductive systems are 
particularised: Derivers (DS), Theorem Provers (TP) and Accepters (AC). Without 
truth or probability considerations it has been still possible to account for many 
phenomena that inference processes deal with. Information Gain, namely G, is both 
useful to explain the informativeness of a hypothesis with respect to some evidence 
and to explain the gain or reduction of effort that takes place when a conclusion or 
theorem is deductively established from an axiomatic system. 

Section 4.2 concretises this idea for induction and recognises that if G(h | e) ≅ 0, 
the theory is evident for the data. On the contrary, G(h | e) ≅ 1, an informative 
induction has taken place, according to Popper’s informativeness. Induction is then 
seen as an investment. However, this must be somehow restricted, and an oblivion 
criterion is introduced to weigh valuable and plausible hypotheses. 

In Section 4.3, G is compared with the idea of learning as compression and the 
MDL principle. In the previous chapter we saw that efficient learners are shown to 
be non-informative and in this section it is shown that compression favours gain. 
However, the MDL principle does not ensure compression for most evidence, the 
vast majority of them being incompressible. Gain is a much more robust measure 
and with its help, notions such as creativity and scientific discovery are clarified, and 
the classical view of learning as identification [Gold 1967] is neglected. 

Section 4.4 revises Quinlan’s Gain Ratio, which is part of C4.5, the most famous 
machine learning algorithm. Gain Ratio Measures the value that a split on an 
attribute X has, when learning a decision tree for class C. The definition is adapted to 
descriptional complexity and it is shown that descriptional gain ratio = 1 − V(X | C). 

Deduction is addressed in Section 4.5. G(c | p) ≅ 0 if the conclusion c is evident 
from the premises p. On the contrary, G(c | p) ≅ 1 when the conclusion is difficult 
and surprising from the premises p. This idea is particularised for the different 
deductive paradigms presented in the introduction. They are approximated for logic 
programs, sometimes adapting classical measures in the LP or ILP literature. Finally, 
an example illustrates these measures. 

Section 4.6 compares our approach with Hintikka’s Surface and Depth 
Information. Surface Information is identified with G and Depth Information with 
V. We prove that V is the limit of G in the sense of Hintikka. 

The notions of representational optimisation from the previous chapter are taken 
up again and generalised in Section 4.7, by finding a compromise of size and time 
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that it takes to obtain the evidence from a theory. This is particularised for different 
deductive paradigms, showing the role of Intermediate Information in ATP and 
mathematical practice. In the end, Pietarinen’s Systematic Power suggests two 
different descriptional variants of systematic power as 1 − V(d | h) and 1 − G(d | h), 
corresponding with Popper’s relative potential satisfactoriness.  

Section 4.8 formalises the distinction between eager and lazy inference methods, 
by considering the time when the computational effort is made and / or how space 
resources are used. 

Section 4.9 finally undertakes the relation among Induction, Deduction and 
Information, without forgetting plausibility. Classical induction criteria are 
incompatible with intermediate deductive information. It is discussed that it is only 
possible to conciliate them under resource-bounded rationality, avoiding omniscience 
and allowing inconsistencies in knowledge. The first steps towards the theory of 
reinforcement of the following chapter are taken. 

The main contributions of this chapter are: 
• It has been shown that a single measure of information gain can be applied to 

both deduction and induction in a uniform way. 
• Popper’s idea of informativeness is gathered by the use of G for induction. 
• A new notion of authentic learning is introduced, ensuring that learning has 

taken place, independently of how compressible the evidence is. 
• Quinlan’s Gain Ratio is closely connected with V. 
• Deduction can be informative and different measures are introduced for 

several deductive paradigms. 
• Appropriate approximations for logical programs are derived and illustrated, 

which make possible to measure in practice these gains. 
• Comparison with Hintikka’s ideas, establishing the relationship between G and 

Surface Information, and between V and Depth Information. 
• General measures of System Optimisation and Systematic Power, where 

Intermediate Information is recognised useful in ATP and mathematical 
practice. 

• A formal account of the notion of lazy and eager methods, according to 
response time and necessary memory resources. 

• The conciliation among induction, deduction and information is made possible 
if omniscience is neglected. However, when omniscience and infallibility are 
neglected, the semantic tools are weakened. Consequently, other mechanisms 
are needed to guide a system’s ontology. 

The next chapter introduces a theory that makes possible and practical this 
conciliation. 
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Custom then, is the great guide of human life 

David Hume, 1711-1775, An Enquiry Concerning Human Understanding 1748  

 
 

 

 

 

 

 

Abstract: this chapter presents an operative measure of reinforcement for general constructive 
theories as a quantitative theory of confirmation, studying the growth of knowledge, theory revision, 
abduction and deduction in this framework. This approach performs an apportionment of credit with 
respect to the ‘course’ that the evidence or set of derivables makes through the learnt/axiomatic 
theory. For the case of induction it is shown to be both a utility and plausibility criterion, and it is 
connected with other classical evaluation criteria, such as cross-validation and the MDL principle. 
For the case of deduction it behaves like a utility criterion that establishes how useful a property, 
lemma or theorem is for the rest of the theory. It is also applied to other inference mechanisms, such 
as analogy, abduction and explanatory induction, the latter represented by a balanced distribution of 
reinforcement, thus formalising the notion of consilience. The theory is also extended with negative 
reinforcement, thus connecting this approach with more classical notions of reinforcement, based on 
rewards and penalties. In the end, reinforcement and information gain are compared. 

 

Keywords: Reinforcement Learning, Incremental Learning, Useful Theorems, 
Inference Processes, Apportion of Credit, Knowledge Acquisition and Revision, 
Consilience, Analogy, Theory Evaluation. 
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5.1 Introduction 

In the previous chapter we finally arrived to the necessity and possibility of finding a 
measure for conciliating induction, deduction, information and plausibility. Under 
this measure, a positive deductive operation that connects two unrelated things 
should also increase the reliability of the theory. On the contrary, negative 
connections originated from internal or external inconsistencies should decrease its 
reliability. Moreover, this measure should comply with plausibility, not differing too 
much with some of the usual selection criteria in machine learning or inductive 
inference, and should favour informative theories without compromising tractability 
and applicability. At first sight this seems rather pretentious. However, this chapter 
introduces an effective way to evaluate a system with respect to a given evidence, 
where induction and deduction behave properly and not contradictorily. 

In the case of deduction, the quality, robustness or reliability of a system is given 
by how many connections can be established among their theorems and their final 
evidence. In Kneale’s words: a “system is interesting mathematically if it is rich in theorems 
and has many connections with other parts of mathematics” (from [Lakatos 1979]). In other 
words, concepts and theorems with high connectivity are useful, ordinarily known as 
properties. 

In the case of induction, it has been shown that high connectivity is also positive 
with induced theories. In fact, many inductive algorithms are based on the idea of 
propagating reinforcement, as in RL (Reinforcement Learning) or ANN (Artificial 
Neural Networks). However, the representational language that is used in these 
inductive paradigms is poor and deduction is an ignored matter (i.e. deterministic and 
supposedly efficient). 

The question is whether we can extend the notion of reinforcement to more 
expressive languages, where deduction is not so easy and may be informative. 

The problem of propagating reinforcement from the evidence into the theory has 
been shown especially troublesome in high-level languages, such as ILP, but the 
same problem pervades other representations that allow redescription (e.g. neural 
networks). 

In this chapter, we present an operative measure of reinforcement for general 
constructive theories, studying the growth of knowledge, theory revision, abduction 
and deduction in this framework. Our approach performs an apportionment of 
credit with respect to the ‘course’ that the evidence makes through the learnt theory. 
The result is compared with other evaluation criteria, in the case of induction, such 
as the MDL principle, and other utility criteria, in the case of deduction. 
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Finally, we will study a more common view of reinforcement, where the actions 
of an intelligent system can be rewarded or penalised, and we discuss whether this 
should affect the distribution of reinforcement. 

In the end, we will relate the theory of reinforcement with deduction and 
axiomatic systems optimisation, and we will establish the connection with the 
notions and results of chapter 3 and 4: information gain, representation gain, 
maximisation of reinforcement of resource-bounded systems, etc.  

5.1.1 Reinforcement as Selection Criterion 

As we said in the second chapter, the aim of Machine Learning is the computational 
construction of hypothetical inferences from facts. 

However, we saw that given some evidence E, infinite many hypotheses H can be 
induced ensuring H = E. Obviously, some selection criteria are needed. Depending 
on different applications, some criteria have been used (e.g. the most specific 
hypothesis, the most general one, the shortest one, the most informative one, ...). In 
general, this choice implies the assumption of a prior distribution, which can be used 
to derive the likeliness of the hypotheses. The MDL principle is the most famous and 
used criterion. We also saw in chapter 2 many of its problems. 

In this chapter, we intend to handle these difficulties with a dynamical 
reinforcement. However, our approach has additional advantages: (1) no prior 
assumption has to be made (apart from how to distribute this reinforcement, which 
is the topic of this chapter), and (2) reinforcement can be more flexibly managed 
than probabilities, and allows further insight on the relation between the evidence 
and the theory. 

5.2 Reinforcement Learning 

As we have seen, whatever the approach to knowledge construction, the revision of 
knowledge must come either from an inconsistency or from a lack of support. In the 
latter case, a partial or total weakness of the theory can be detected by a loss of 
reinforcement (or apportionment of credit [Holland et al. 1986]. There have been 
several empirical and theoretical justifications for reinforcement in different fields, 
from many empirical observations from on learning processes in animals or humans 
to theoretical and practical verifications by cross-validation. 

The study of reinforcement learning in restricted representations has been 
especially fruitful in this decade (see [Kaelbling et al. 1996]  for a survey) and it has 
been recently related with EBL (see [Dieterich and Flann 1997]). One of the main 
problems of reinforcement learning is that it is increasingly more difficult to assign 
and ‘propagate’ the reinforcement (or apportionment of credit [Holland et al. 1986]) 
depending on two factors (which are as well related): (1) how eager the inductive 
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strategy is (vs. lazy methods such as instance-based and case-based reasoning [López 
de Mántaras and Armengol 1998]) and (2) how expressible the language where 
induction must take place is. Explanation Based Learning (EBL) and Inductive Logic 
Programming (ILP) are two areas where the propagation of reinforcement faces 
these issues in a more arduous way. 

In this chapter we shall address the problem of reinforcement with eager learning 
methods. As we saw in the previous chapters, eager learning methods extract all the 
regularity from the data in order to work with intensional knowledge (instead of the 
extensional knowledge of lazy methods [Aha 1997]). 

Additionally, we will consider the problem with constructive languages. A 
constructive language is a language that allows dynamical change of its 
representational bias (what is sometimes known as the possibility of ‘redescription’), 
i.e., new constructed terms can be created to express the evidence more compactly in 
a more compact way. This is usually known in ILP as predicate invention. 

In decision trees or attribute languages, no invented terms are induced and 
reinforcement is distributed among the initial attributes.  The main drawback of these 
approaches is the lack of flexibility: when arrived to a ‘saturation’ point, the data is 
not abstracted further and the mean reinforcement arrives to a limit. Consequently, 
the ontology must be given and not constructed (a model of the ‘world’ is embedded 
in the system) and the possible extensions of this world are very restricted. 

In the case of learning in highly expressible frameworks, a main problem is 
presented (apart from efficiency): the ontology of the new constructed concepts is 
indirect. The usual solution to this problem is the assumption of a prior probability. 
Once the probabilities are assigned, a Bayesian framework can be used to ‘propagate’ 
the distribution. In general, there is not justification at all of which prior distribution 
to choose. In the absence of any knowledge, as we saw in chapter 2, the most usual 
one is the MDL (Minimum Description Length) principle [Rissanen 1978, 1996]. The 
MDL principle is just a formalisation of Occam’s razor. Theoretically, its close 
relation with PAC-learning [Valiant 1984] has been established by (Blumer et al. 
1987). Some high-level representation inductive methods have adapted these ideas 
(e.g. U-learnability in ILP [Muggleton and Page 1995]). All of them are based on the 
assumption of a prior. However, there are many riddles with the management of 
probabilities and, in particular, the best choice, the MDL principle, has additional 
ones. 

As we will see, most of these difficulties would disappear if no prior distribution is 
assumed and the knowledge is constructed by reinforcement, as the data suggest. 
However, the translation of these ideas to general representational frameworks seems 
difficult. First, the length of the structures which supposedly are to be reinforced is 
variable. Second, and more importantly, it seems we can always invent ‘fantastic’ 
concepts that can be used in the rest of knowledge. Consequently, these ‘fantastic’ 
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concepts are highly reinforced, increasing the reinforcement ratio of knowledge in an 
unfair way. 

An immediate way out is the combination of reinforcement learning with some 
prior, mainly the MDL principle, essayed under the name of ‘incremental self-
improvement’ [Schmidhuber et al. 1997] using syntactic minimality to restrict the 
appearance of these inventions. 

Notwithstanding, our approach also avoids ‘fantastic’ concepts but it is based 
exclusively on reinforcement. Consequently, compression turns out to be an ‘a 
posteriori’ consequence of a well-established reinforcement, instead of an ‘arbitrary’ 
assumption. 

5.3 Reinforcement with respect to the Theory Use 

For the study of reinforcement we need to introduce some basics for the kind of 
representation languages to which it can be applied. A ‘pattern’ of languages is 
defined as a set of chunks or rules r which are composed of a head (or consequence) 
and a body (or set of conditions). Each rule is denoted in the following way r  ≡ { h :- 

t1, t2, ... ts }. A theory is simply a set of rules: T = {r1, r2, …, rm}. 

Since no restriction of how h and ti can be (there may be variables, equations, 
Boolean operators...), this definition can be specialised to propositional languages, 
Horn theories, full logical theories, functional languages, some kind of grammars, 
and even higher-order languages. In the following, the semantics of the 
representations will be left unspecified and we will just say that e is a consequence of 
P, denoted P = e (in other words, there is a proof for e in P, or, simply, P covers e). 

Given the slight semantical and syntactical restriction of the previous paragraphs, 
we introduce some useful and simple constructions which will shape our framework 
with more determination. 

Definition 5.35 A rule ri is said to be necessary with respect to T for an example e 
iff 

T = e and  T − {ri} ≠ e 

From here, 

Definition 5.36 A theory T is reduced for an example e iff 

T = e and ¬∃ ri ∈ T   such that ri is not necessary for e 

For the rest of the chapter, we consider a proof as a set of rules, independently of 
their order of combination, the applied substitutions or number of times that each 
rule is used. This unusual (and incomplete) conception of proof allows us to work 
without considering the concrete semantics while maintaining an appropriate degree 
of detail. This makes the following definition possible: 
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Definition 5.37 We say that S1 and S2 are alternative proofs for an example e in 
the theory T iff 

S1 ⊂ T,  S2 ⊂ T,  S1 ≠ S2 and S1 and S2 are reduced for e 

We denote with Proof(e,T) the set of alternative proofs for an example e with respect 
to a theory T. Finally, we can define Proofr(e,T) as the set of alternative proofs which 
contain r . More formally, 

Definition 5.38 

Proofr(e,T) = { S : S ⊂ Proof(e,T) and r ∈ S } 

With these naive constructions, we are able to introduce our first measurement of 
reinforcement. 

We present the first intuitive way to compute the reinforcement map for a given 
theory, depending on past observations. 

Definition 5.39 The pure reinforcement ρρ(r) of a rule r from a theory T with 
respect to a given evidence E = {e1, e2, …, en} is defined as: 

ρρ(r) = Σi=1..n card(Proofr(ei,T)) 

In other words, ρρ(r) is computed as the number of proofs of ei where r is used. If 
there are more than one proof for a given ei, all of them are reckoned, but in the 
same proof, a rule is computed only once. 

Definition 5.40 The (normalised) reinforcement is defined as: 

ρ(r) = 1 − 2−ρρ(r). 

Definition 5.40 is motivated by the convenience of maintaining reinforcement 
between 0 and 1. However, its computation is easy, as the following elementary 
lemma shows: 

Lemma 5.16 Suppose a new example is added to the evidence and it is covered 
by the theory. For each rule r that is used for it, the new ρ’(r) can be easily 
obtained from the old ρ(r) by: 

ρ’(r) = [ ρ(r) + 1 ] / 2 

PROOF. The new ρρ’(r) is incremented by one, i.e. ρρ’(r) = ρρ(r) + 1. From here, 
ρ’(r) = 1 − 2−ρρ’(r) = 1 − 2−ρρ(r) − 1 = 1 − 2−ρρ(r)

/2 = ½  · [2 − 2−ρρ(r) 
] = ½ · [ 1 + 1 − 2−ρρ(r) 

] = ½ · [ 1 + ρ(r)]. � 

Corollary 5.17 If an example is removed from the evidence, for each rule r that 
was used for it, the new ρ’(r) can be easily obtained from the old ρ(r) by: 

ρ’(r) = 2 · ρ(r) − 1 

Hence, if a rule r covers a single example we have ρ(r) = 0.5 and if the rule becomes 
not necessary, then ρ’(r) = 0.  
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Definition 5.41 The mean reinforcement ratio mρ(T) is defined as 

mρ(T) = Σr∈T ρ(r)/m,  

with m being the number of rules. 

From these definitions one can verify that, in general, the most (mean) reinforced 
theory is not the shortest one as the following example shows: 

Example 5.1 

Given the evidence e1, e2, e3, consider a theory Ta = {r1, r2, r3} where {r1} covers {e1}, 
{r2} covers {e2} and {r3} covers {e3} and a theory Tb = {r1, r2, r3, r4} where {r1, r4} 
cover {e1}, { r2, r4 } cover {e2} and {r3, r4 } cover {e3}. 

From here, Ta is less reinforced than Tb. 

In the first case we have ρρa,1= ρρa,2= ρρa,3= 1 and mρ(Ta) = 0.5. For Tb we have ρρb,1= 

ρρb,2= ρρb,3= 1, ρρb,4= 3 and mρ(Tb) = 0.5938. 

In addition, redundancy does not imply a loss of mean reinforcement ratio (e.g. just 
add twice the same rule). 

However, measuring reinforcement of the theory presents problems of fantastic 
(unreal) concepts: 

Theorem 5.18 Consider a program P composed of rules ri of the form { h :- t1, t2, 

.. ts }, which covers n examples E = { e1, e2, ...  en }. If the mean reinforcement 
ratio mρ < 1 − 2−n then it can always be increased. 

PROOF. A fantastic rule rf  can be added to the program by modifying all the rules 
of the program in the following way ri  = { h :- t1, t2, .. ts , rf }. Obviously, all the 
other rules maintain the same reinforcement but rf is now reinforced with ρρ(rf) = 

n. Since ρ(rf)> mρ  then the new mρ’ must be greater than mρ. � 

One can argue that these fantastic rules could be checked out and eliminated. 
However, there are many ways to ‘hide’ a fantastic rule; in fact, cryptography relies 
on this fact. 

5.4 Reinforcement with respect to the Evidence 

It can be derived from this problem that reinforcement must be combined with a 
simplicity criterion in order to work (maybe neural networks theory is the field where 
this avoidance of overfitting, ensured by simplicity, has been more thoroughly 
studied in combination with reinforcement). 

However, there is solution without explicitly making use of simplicity. The idea is 
to measure the validation with respect to the evidence. 

Definition 5.42 The course χT( f ) of a given fact f with respect to a theory T is 
defined as: 
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χT( f ) = max S⊂Proof(f, T) { Πr∈S ρ(r) } 

More constructively, χT( f ) is computed as the product of all the reinforcements ρ(r) 
of all the rules r of T that are used in the proof of f. If a rule is used more than once, 
it is computed once. If f has more than one proof, we select the greatest course. 

Whereas Definition 5.39 eased theory use, this must be restricted somehow, in 
order to find a compromise between interconnectivity and complexity. Due the 
multiplicative character of Definition 5.42, long proofs are also penalised, and this 
compromise is attained. 

The way reinforcements are calculated makes very complex programs to be 
avoided, but redundancy is possible. However now there is no risk of fantastic 
concepts. As said before, for any program P composed of rules ri of the form { h :- t1, 

t2, .. ts }, which covers m examples E = { e1, e2, ...  en } and their reinforcements ρi, a 
fantastic rule rf  could be added to the program and all the rules could be modified in 
the following way ri = { h :- t1, t2, .. ts , rf }. The following theorem shows that now it 
is not reinforced over the original one: 

Theorem 5.19 The course of any example cannot be increased by the use of 
fantastic concepts. 

PROOF. Since the fantastic concept rf now appears in all the proofs of the n 
examples, the reinforcement of rf is exactly 1 − 2−n and the reinforcements of all 
the ri remain the same. Hence, the course of all the n examples is modified to 
χ’(ej) = χ(ej) · rf = χ(ej) − χ(ej) · 2

−n. Since n is finite, for all ej ∈ E, χ’(ej) can never 
be greater than χ(ej). � 

5.5 Evaluation of Inductive Theories 

Now it is time to start to use the previous measure to evaluate inductive theories. 
The first idea is to use the greatest mean of the courses of all the data presented so 
far, defined as: 

Definition 5.43 The mean course mχ(T, E) of a theory T with respect to an 
evidence E is defined as: 

mχ(T, E) = Σe∈E χT(e)/n 

with n = card(E) . 

In order to obtain a more compensated theory, a geometric mean can be used 
instead, which we will denote by µχ. 

For every theory T, we will say that it is worthy for E iff mχ(T, E) ≥ 0.5. If the 
representation language is expressible enough, it is easy to show that for every 
evidence E there is at least a theory worthy for it (just choose a theory with an 
extensional rule for covering each example). The same holds for µχ. 
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5.5.1 Knowledge Construction, Revision and Abduction  

The use of these simple values can be seen in the following long example, in order to 
show the use of this new criterion for knowledge construction: 

Example 5.2 

Using Horn theories as representation (Prolog), suppose we have an incremental learning 
session as follows: 

 Given the background theory B = { s(a,b), s(b,c), s(c,d) } we observe the evidence 

E = { e+1: r(a,b,c), e+2: r(b,c,d), e+3: r(a,c,d), e--1: ¬r(b,a,c), e--2: ¬r(c,a,c) }: 

The following programs could be induced, with their corresponding reinforcements and 
courses: 

P1 = {r(X,Y,Z) :- s(Y,Z) : ρ = 0.875} 

 χ(e+1)= χ(e+2)= χ(e+3)= 0.875 

P2 = {r(X,c,Z) : ρ = 0.75  

          r(a,Y,Z) : ρ = 0.75} 

χ(e+1)= χ(e+2)= χ(e+3)= 0.75 

P3 = {r(X,Y,Z) :- s(X,Y) : ρ = 0.75  

          r(X,Y,Z) :- s(Y,Z) : ρ = 0.875} 

 χ(e+1)= χ(e+2)= χ(e+3)= 0.875 

P4 = {r(X,Y,Z) :- t(X,Y), t(Y,Z) : ρ = 0.875 

          t(X,Y) :- s(X,Y) : ρ = 0.875 

          t(X,Y) :- s(X,Z), t(Z,Y) : ρ = 0.5} 

 χ(e+1)= χ(e+2)= 0.7656, χ(e+3)= 0.3828 

P5 = {r(X,Y,Z) :- t(X,Y) : ρ = 0.875  

          t(X,Y) :- s(X,Y) : ρ = 0.875 

          t(X,Y) :- s(X,Z), t(Z,Y) : ρ =  0.5} 

 χ(e+1)= χ(e+2)= 0.7656, χ(e+3)= 0.3828 

At this moment, P1 and P3 are the best options and P4 and P5 seem ‘risky’ theories 
according to the evidence. 

 e+4 = r(a,b,d) is observed. 

P1 does not cover e4+ and it is patched:  

P1a’ = {r(X,Y,Z) :- s(Y,Z) : ρ = 0.875 

             r(a,b,d) : ρ = 0.5} 

χ(e+1)= χ(e+2)= χ(e+3) = 0.875, χ(e+4) = 0.5 
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 mχ = 0.78, µχ = 0.76 

P1b’ = {r(X,Y,Z) :- s(Y,Z) : ρ = 0.875 

             r(X,Y,d) : ρ = 0.875 } 

χ(e+1)= χ(e+2)= χ(e+3)= χ(e+4) = 0.875   

P2’ is reinforced = {r(X,c,Z) : ρ = 0.75.  

                  r(a,Y,Z) : ρ = 0.875} 

χ(e+1)= 0.875, χ(e+2)= 0.75, χ(e+3)=χ(e+4)= 0.875   

P3’ is reinforced  = {r(X,Y,Z) :- s(X,Y) : ρ = 0.875.  

                     r(X,Y,Z) :- s(Y,Z) : ρ = 0.875} 

χ(e+1)= χ(e+2)= χ(e+3)= χ(e+4) = 0.875   

P4’ is reinforced = { r(X,Y,Z):-t(X,Y), t(Y,Z): ρ = 0.9375 

                 t(X,Y) :- s(X,Y) : ρ = 0.9375 

                 t(X,Y) :- s(X,Z), t(Z,Y) : ρ = 0.75} 

χ(e+1)= χ(e+2)= 0.8789, χ(e+3)= χ(e+4) = 0.6592 

mχ = 0.77, µχ= 0.76 

P5’ is slightly reinforced 

   P5’ = { r(X,Y,Z) :- t(X,Y) : ρ = 0.9375.  

               t(X,Y) :- s(X,Y) : ρ = 0.9375 

               t(X,Y) :- s(X,Z), t(Z,Y) : ρ =  0.5}  

χ(e+1)=χ(e+2)=0.8789,χ(e+3)=0.4395,χ(e+4)=0.8789 

mχ = 0.77, µχ= 0.74 

At this moment, P1b’ and P3’ are the best options. Now P4’ and P5’ seem more 
grounded. 

 We add e--3 = ¬r(a,d,d) 

P1a’ remains the same and P1b’ and P2’ are inconsistent, motivating the following 
'patches' for them: 

P2a’ = {r(X,c,Z) : ρ = 0.75.  

           r(X,b,Z) : ρ = 0.75} 

χ(e+1)= χ(e+2)= χ(e+3)= χ(e+4) = 0.75 

P2b’ = {r(X,Y,Z) :- e(Y) : ρ = 0.9375.  

           e(b) : ρ = 0.75 

         e(c) : ρ = 0.75} 

χ(e+1)= χ(e+2)= χ(e+3)= χ(e+4) = 0.7031 
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P3’ and P4’ remain the same. P5’ becomes inconsistent.  

 We add e+5 = r(a,d,e) 

P1a’, P2a’, P2b’ can only be patched with e+5 as an exception because abduction is not 
possible. 

P3’ has abduction as a better option. 

       P3’’ = {s(d,e) : ρ = 0.5 

                  r(X,Y,Z) :- s(X,Y) : ρ = 0.875  

                r(X,Y,Z) :- s(Y,Z) : ρ = 0.9375} 

χ(e+1)=χ(e+2)=χ(e+3)=0.9375,χ(e+4)=0.875,χ(e+5)=0.4688 

mχ = 0.831, µχ= 0.805 

P4’ makes the same abduction 

    P4’’ = { s(d,e) : ρ = 0.5 

                r(X,Y,Z):-t(X,Y),t(Y,Z): ρ=0.96875 

                t(X,Y) :- s(X,Y) : ρ = 0.96875 

                t(X,Y) :- s(X,Z), t(Z,Y): ρ = 0.875} 

χ(e+1)=χ(e+2)=0.939,χ(e+3)=χ(e+4)=0.82,χ(e+5)=0.41 

      mχ = 0.786, µχ= 0.754 

At this moment, P3’’ and P4’’ are the best options. 

Further examples of the theory would be required to distinguish with more reliability 
which is the ‘intended’ one. 
 

The example illustrates that, in general, and by using this new reckoning of 
reinforcement, the shortest theories are not the best ones. More importantly, the 
weak parts are detected by a low value of reinforcement, and revision, if necessary, 
should be done to these parts of the theory. On the other hand, as soon as a theory 
gains some solidity, in terms of increase of reinforcement, abduction can be applied. 
Another advantage of this approach is that a ‘rated’ ontology can be derived directly 
from the theory. 

5.5.2 Consilience can be precisely defined 

The idea of ‘consilience’, introduced by Whewell in the XIXth century [Whewell 
1847], and other related concepts, such as Reichenbach’s principle of common cause, 
Thagard’s coherence [Thagard 1978], all share the common idea of giving a 
conciliating theory for all the data, i.e., all the evidence must be accounted by the 
same explanation or by very closely related explanations. 

In the context of reinforcement, it is easy to define consilience: 
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Definition 5.44 A theory T is partitionable with respect to an evidence E iff ∃T1, 

T2 : T1 ⊂ T, T2 ⊂ T and T1 ≠ T2 such that ∀e ∈ E : T1 = e ∨ T2 = e . We define E1 = 
{ e ∈ E : T1 = e } and E2 = { e ∈ E : T2 = e } and E12 = E1 ∩ E2. Finally, we will use 
the term Sχ(T1 ⊕ T2, E) to denote the expression mχ(T1, E1) · [ card(E1) − 
card(E12)/2 ] + mχ(T2, E2) · [ card(E2) − card(E12)/2 ]. 

Definition 5.45 A theory T is consilient with respect to an evidence E iff there 
does not exist a partition T1, T2 such that Sχ(T1 ⊕ T2, E) ≥ mχ(T, E) · card(E). 

In other words, a theory T is consilient with respect to an evidence E iff there 
does not exist a bi-partition P ∈ ℘(T), such that every example of the evidence E is 
still covered separately and there is no loss of reinforcement. 

Example 5.3 

Given the following evidence (in Prolog): 

E = { p(a), p(b), p(e), q(a), q(b), q(e), q(f) } 

The following program could be induced, with its corresponding reinforcements and 
courses: 

P = { p(X) : ρ = 0.875 

          q(X) : ρ = 0.9375} 

 mχ(E, P)= 0.9107 

The following partition: 

P1 = { p(X) : ρ = 0.875 } 

 mχ(E1, P1)= 0.875 

P2 = { q(X) : ρ = 0.9375} 

 mχ(E2, P2)= 0.9375 

In this case it is obvious that mχ(E1, P1) · 3 + mχ(E2, P2) · 4 = 0.9107 · 7, so, as 
expected, P is not consilient. 

The next example shows that consilience is a delicate notion:  

Example 5.4 (using Horn theories) 

Consider the following extensional theory T= { p. q. } for the following simple theory 
E= { p, q }. As expected, mχ(T, E) = (0.5 + 0.5) / 2 = 0.5 and by using the partition T1= 

{ p. }, T2= { q. } is easy to show that it is not consilient. 

The trick is again the addition of a new fantastic rule f in the following way: T’=  { p:- f. 
q:- f. f }. As we have said, the mean course is robust to this kind of tricks, and it is clearly 
lower: mχ(T’, E) = (0.5 · 0.75 + 0.5 · 0.75) / 2 = 0.375. However, the only partition 
which is now possible, T’1= { p:- f. f }, T’2= { q:-f. f. } gives that Sχ(T’1 ⊕ T’2, E)= 
0.25 · [1 − ½ · 0] + 0.25 · [1 − ½ · 0] = 0.5 < mχ(T’, E) · 2. The result is that T’ is 
consilient! 
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This example can be interpreted in two ways. If one has T and tries to make it 
consilient by using a fantastic concept, she would get an important decrease in mχ(T’, 
E) enough for discarding T’. On the other hand, if one considers T’ from scratch 
(without knowing T), she could be cheated by the illusion that T’ is a good consilient 
theory if these invented concepts were difficult to detect. 

It is important to realise that Definition 5.45 is reliable; independently from 
whether the unifying concept would be fantastic or not, the theory is properly 
consilient. 

The aftermath harmonises with the classical rationale of the plausibility of a 
theory: it depends on the intuition, intelligence or whatever other ability to unveil 
fantasies by comparing the current theory with other competing theories. The 
advantage of these measures of mean course and consilience based on reinforcement 
is that the first one avoids fantastic concepts, so giving an approximation to 
plausibility, which must be weighed up with consilience. 

The following example shows the use of mχ and consilience in the context of 
abduction and background knowledge. In this case, invented concepts are more 
difficult to introduce if the background knowledge cannot be modified by adding a 
fantastic rule. 

Example 5.5 (using extended logic theories) 

Let us suppose that in the nineteenth century a biologist has the following incomplete 
but fully validated background knowledge B, (∀r∈B ρ(r) = 1). 

 B= { rb1: Vertebrate(X) :- Fish(X) 

  rb2: Vertebrate(X) :- Reptile(X) 

  rb3: Vertebrate(X) :- Bird(X) 

  rb4: Vertebrate(X) :- Mammal(X) 

  rb5: Has-wings(X) ∨ Has-fins(X) :- Bird(X) 

  rb6: Has-wings(X) ∨ Has-fins(X) :- Echo-locates(X),Mammal(X) 

  rb7: Hasn’t-mandibule(X) :- Agnate(X) 

  rb8: Creeps(X) :- Reptile(X) 

  rb9: Marine(X) :- Fish(X) 

  rb10: Marine(X) :- Cephalopod(X)  } 

After performing some observations and dissections to a sample of animals from the 
Pacific Ocean, some hypotheses can be abduced: 

 E1 = { e1: Vertebrate(a), e2: Creeps(a) } 

 h1 =  E1   mχ(B+h1, E1) = 0.5 

 h2 = { Reptile(a). }   mχ(B+h2, E1) = 0.75 

Moreover h2 is consilient with respect to E1. 
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 E2 = { e3: Vertebrate(b), e4: Marine(b) } 

 h3 =  E2   mχ(B+h3, E2) = 0.5 

 h4 = { Fish(b). }    mχ(B+h4, E2) = 0.75 

 h5 = { Cephalopode(b). Vertebrate(b). }   mχ(B+h5, E2) = 0.5 

Only h4 is consilient. Note that, according to B, h5 is consistent. 

 E3 = { e5: Vertebrate(c), e6: Has-wings(c) } 

 h6 =  E4   mχ(B+h6, E3) = 0.5 

 h7 = { Bird(c). }    mχ(B+h7, E3) = 0.75 

 h8 = { Echo-locates(c). Mammal(c). }   mχ(B+h8, E3) = 0.625 

Both h7 and h8 are consilient. 

 E4 = { e7: Vertebrate (d), e8: Hasn’t-mandibule(d) } 

 h9 =  E4   mχ(B+h9, E4) = 0.5 

 h10 = { Agnate(d). Vertebrate(d). }   mχ(B+h10, E4) = 0.5 

 h11 = { Agnate(d). Vertebrate(X):-Agnate(X). } mχ(B+h11,E4) = 0.625 

In this last case, only h11 is consilient, and it shows that an extension can be made to B 
with new rules in order to cover the evidence in a consilient way. 

However, the example shows that in many cases mχ is positively related to 
consilience, so it is a good criterion to guide knowledge creation and revision. 
Abduction has been naturally incorporated as a special case of explanatory induction, 
where, in general, the hypotheses are factual (although in the examples h11 includes 
non-factual ones and it can also be considered an abduction). It is remarkable to see 
that the hypotheses would be more accurate if B would be not completely validated 
∃r∈B ρ(r) < 1 or, even better, if a separate measure of frequency were added to B, so 
reflecting the frequency of previous animal samples. Moreover, rb5 and rb6 should split 
their heads in order to compute independently their reinforcement. This all is more 
related with probabilistic abduction, which falls out of the topic of this chapter. 

Finally, Definition 5.45 can be parameterised by introducing a consilience factor: 

Definition 5.46 

The degree of consilience of a theory T with respect to an evidence E is defined 
as the minimum real number k such that there exists a partition T1, T2 such that: k 
� Sχ(T1 ⊕ T2, E) ≥ mχ(T, E) · card(E). 

From the computational point of view, both mχ and consilience degree should be 
computed jointly, in order to reduce the number of partitions which are to be 
examined. 
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5.5.3 Intrinsic Exceptions, Consilience and Noise  

Using reinforcement, an intrinsic exception or extensional patch can be easily defined 
as a rule r with ρ = 0.5, i.e. it just covers one example e, or, in other words, it is 
necessary for only one example. However we must distinguish between completely 
extensional exceptions, when r does not use any rule from the theory to cover e, and 
partially extensional exceptions when r uses other rules to describe e . 

The following theorem shows that completely extensional exceptions should be 
avoided to obtain consilient programs. 

Theorem 5.20 If a worthy theory T for an evidence E has a rule r with ρ = 0.5, 
and completely extensional, then T is not consilient. 

PROOF. Just choose the partition T1 = T − r and T2 = T. Since ρ = 0.5 then r is 
only used by one example er. Since it is a completely extensional exception, we 
have that r does not use any rule from T1 to cover er, so ρ’(ri) = ρ(ri) for all ri ∈ T1. 
Let n be the number of the examples of the evidence E. Hence, mχ(T1, E1) = 

[mχ(T, E) · n − χ(er,T) ] / (n−1) = [mχ(T, E) · n − ½ ] / (n−1) = [mχ(T, E) · n + mχ(T, 

E) − mχ(T, E) − ½ ] / (n−1) = mχ(T, E) + [mχ(T, E) − ½] / (n−1). 
From Definition 5.44, the disequality simplifies as follows: 

Sχ(T1 ⊕ T2, E) = 

mχ(T1, E1) · [card(E1) − card(E12)/2]+ mχ(T2, E2) · [card(E2) − card(E12)/2] = 

[mχ(T, E) + [mχ(T, E) − ½] / (n−1) ] · [(n−1) − (n−1)/2]+ mχ(T, E) · [n − (n−1)/2] = 
mχ(T, E)·[(n−1) − (n−1)/2 + n − (n−1)/2]+[mχ(T, E) − ½] · [(n−1) − (n−1)/2] / (n−1) = 

mχ(T, E) · [ n ] + [mχ(T, E) − ½] / 2 
Since T is worthy, then mχ(T, E) ≥ 0.5., the left hand side 

 Sχ(T1 ⊕ T2, E) ≥ mχ(T, E) · n = mχ(T, E) · card(E). � 

In the same way, partially extensional exceptions are not convenient for consilience, 
but a limit would depend on how many rules are been used by the exception, because 
the separation would make the reinforcement of these rules decrease as follows ρ’(ri) 

= 2·ρ(ri) − 1, by the corollary of Lemma 5.16. 

In any case, not only intensionality (avoidance of exceptions) but consilience are 
both very strict requirements in the presence of noise, because any piece of data 
which is left as noise would be tried to be ‘conciliated’ with the rest of the theory, 
sometimes in an artificial way. 

However, if used correctly, reinforcement is a very powerful tool to control the 
level of noise in a theory. This means that if we have any information or hint about 
the expected noise ratio, we can adjust the percentage of examples covered by 
extensional rules.  
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5.5.4 Reinforcement, Intensionality and Cross-Validation 

Although the next chapter is devoted to the notion of intensionality, seen as 
avoidance of exceptions, we advance some results for reinforcement. The idea of 
intensionality is useful to distinguish between explanatory views of induction (and 
abduction as a particular case) and non-explanatory induction. In the latter case the 
goal is to describe compactly the evidence, but not to explain it. Moreover, there is a 
strong relation between intensionality (or avoidance of exceptions) and hypothesis 
stability. 

In this section we will make the connection between intensionality (i.e. avoidance 
of exceptions, as they were defined in the previous section) and cross-validation. 
There are many variants of cross-validation (training-test split, leave-one-out or 
deleted estimate or k-fold). The relation between leave-one-out cross-validation and 
hypothesis stability was established by Devroye and Wagner [Devroye and Wagner 
1979]. 

We will work with many-fold split, that is to say, we will take into account all the 
possible splits in all the possible orders, to see the influence of intrinsic exceptions in 
the theory. Let us denote with ne the number of rules r that just cover one example e. 
In other words, if the example e had not appeared, the rule r would be useless. We 
will make the following reasonable assumption: a natural learning algorithm is a 
learning algorithm that does not add useless rules to the theory. 

Let us define P(A,T,E,k) as the probability that the algorithm A gives the theory T 
with the first k examples of the evidence E, considering all possible orderings of E. 

Theorem 5.21 For any natural learning algorithm A, 

P(A,T,E,k) ≤ 1 − [(n−ne)
n−k

  / n
n−k
]  

with n = card(E). 

PROOF. Let us denote with Ew the examples from E that are covered by a rule with 
ρ = 0.5. Let w = card(E

w
), E

b = E− E
w and b = n−w. Obviously, w ≤ ne since there 

can be examples covered by more than one exception rule. We denote with E1..k 
and Ek+1..n the set of the first k examples and the rest of the n examples of a given 
ordering of E, in other words, a split at position k. We define P

w
(E,k) as the 

probability of E
w ∩ E

k+1..n ≠ ∅, i.e., the probability of having one exception 
example in the second part of the split. By a simple combinatorial analysis, by 
removing from the whole probability the probability of having all Ek+1..n from Eb, 
this probability is: 

P
w
(E,k) = [(w + b)

n−k
 − bn−k 

] / n
n−k
 = 1 − [bn−k 

 / n
n−k
] 

Since b = n−w, we have 

P
w
(E,k) = 1− [(n−w)

n−k 
 / n

n−k
] 

and w ≤ ne, then 
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P
w
(E,k) ≤ 1− [(n− ne)

n−k 
 / n

n−k
] 

but P(A,T,E,k) ≤ Pe
(E,k) because A is natural. � 

The result can be understood that one should avoid exceptions, in order to have 
P

w
(E,k) = 1. For instance, given a theory with 3 exception rules for an evidence of 

100 examples, we have that the probability that the theory could be found with 
eighty examples is Pw

(E, 80) ≤ 1−9720/10020 = 0.46. 
The ideas of intensionality have been used in an incremental learning system 

[Hernández-Orallo and Ramírez-Quintana 1998] using Curry as a representation 
language (a logic functional programming language based on narrowing with some 
higher-order constructs). The results demonstrate that the intended hypothesis is 
found sooner than when using the MDL principle, because the latter allows the 
introduction of patches (exceptions) in an incremental session. 

A deeper reflection on Theorem 5.21 shows that stability of the whole theory is a 
very strict requirement. If it is substituted by partial stability, i.e., how many rules of 
the theory can be obtained in early learning steps, the result may be quite different. 
Moreover, the connection between mean course and cross-validation would be more 
enlightening, although more difficult to obtain. 

In the end, Theorem 5.21 is just an example of the connections that could be 
established between model selection methods for constructive languages, using 
reinforcement as a measure in a very differently way that other comparisons based 
on error estimation and attribute complexities [Kearns et al 1999]. In this section it 
has been done with a particular variant of cross-validation. In section 5.7 we will 
address the relation with the MDL principle. 

5.6 Analogy, Consilience and Reinforcement 

Although induction and abduction are recognised as the basic processes in scientific 
discovery, there is an inference process that is the fundamental mechanism for 
obtaining consilient theories, analogy. The reason is simple: as we commented in 
chapter 2, analogy extracts a common superstructure between two situations, and 
this ‘shared’ superstructure is reinforced by both situations. 

If we restrict analogy under the following scheme: 

 Analogy: 

 Background Knowledge: b entails E1 and c entails E2. 

 Evidence: E1 and E2. 

 Process: Extract similarities between b and c into a new superstructure a 
in order to obtain a consilient theory composed of a, b’ and c’. 

We can state that analogy favours consilience. 
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Theorem 5.22 If b entails E1, c entails E2, b does not entail E1 and c does not 
entail E2, the new theory T ={ b’, c’, a } such that T1= { b’,a }= E1 and T2={c’,a } 
= E2, and no other proper subset of T covers any example, is consilient. 

PROOF. Since no other proper subset of T covers any example but T1 and T2, 
then there is only one possible partition to study consilience {T1, T2}. Since E1 
and E2 are non-empty, then mχ(a, E1) < mχ(a, E1 ∪ E2) > mχ(a, E2), and then Sχ(T1 

⊕ T2, E) < mχ(T, E1 ∪ E2) · card(E1 ∪ E2). From Definition 5.45, T  is consilient. � 

Once again, analogy, as it has defined, allows the introduction of fantastic concepts. 
In order to talk about a ‘real’ analogy, some information must be shared between b 
and c and moved into a. In other words, b’ and c’ should be simplified with respect to 
b and c. This can be related with reinforcement and extended from simple 
components such as b and c to sub-theories composed of many rules or components. 

Definition 5.47 Non-fictitious Analogy: 

Consider a theory T covering E, i.e., ∀e∈E, T = e, which contains two sub-
theories T1 and T2, which cover E1 ⊂ E and E2 ⊂ E, respectively. A non-fictitious 
analogy is the addition to T of a new super-theory A, and the modification of T1 

and T2 into T’1 and T’2 such that T’ = ((T / T1) / T2) ∪ A ∪ T’1 ∪ T’2 covers E, i.e. 
∀e∈E, T’= e, with the additional conditions that mχ(T’, E) ≥ mχ(T, E) and T’ must 
be consilient with respect to E1 and E2. 

Note that if T’1 = T1 and T’2 = T2 there cannot be analogy. This definition is more 
accordant with classical computational approaches to analogy [Kling 1971] [Winston 
1992]. 

5.7  Extended and Balanced Reinforcement 

With the final measure introduced in section 5.4 there is still a tricky way of 
increasing reinforcement: joining rules. If a high-level representation language allows 
very expressive rules, larger rules can be made in order to stand for the same that was 
expressed with separated rules, with the advantage of increasing reinforcement and 
mean course:  

Example 5.6 

For instance, the following extended functional programs are equivalent: 

Ta =  { r1 = { f(X,a)    → g(b) }, 

  r2 = { f(X,c)    → i(d) } } 

Tb =  {  r  = { f(X,Y)   → if (Y=a) then g(b) 

     if (Y=c) else i(d) } } 

but Tb would be more reinforced than Ta. 
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In order to maintain the granularity of the theory there are two options: (1) the 
introduction of a factor directly related with the number of rules, and (2) the 
introduction of a factor inversely related with the syntactical length of each rule. We 
will choose this second option to clarify that this modification still makes our 
measure very different from a prior distribution such as the MDL principle. 

With length(r) we will denote the length of a rule r for the concrete language 
which would be used. The only restriction for length is that for all r, length(r) ≥ 1. 
Thus we extend the definitions of section 5.4: 

Definition 5.48 The extended pure reinforcement is defined as: 

ρρ*
(r) = ρρ(r) / length(r). 

The extended normalised reinforcement ρ*
(r) and the extended course χ*

(e) are 
defined in the obvious way by using ρρ*

(r) and ρ*
(r), respectively. 

With this extension, it is easy to show that —in the limit— that compression is an 
excellent principle for increasing reinforcement: 

Theorem 5.23 If the data E are infinite and a theory T is finite, the mean course 
mχ*

(T, E) = 1. 

PROOF. Given some infinite data as evidence E = { e1, ..., en }, without loss of 
generality, consider that T can be exclusively composed of two rules: r1, which 
covers all E except ei and, independently, r2, which covers ei. The reinforcements are 
ρ*
(r1) = (1−2(1−n)/length(r1)) and ρ*

(r2) = (1−2−1/length(r2)) and the mean course mχ*
(T, E) =  

[(n−1) � (1−2(1−n)/length(r1)) + (1−2−1/length(r2))] / n. For infinite data, we have that limn→∞ 

mχ*
(T, E)= 1. � 

The result is independent of the last extension given by Definition 5.48. In general, 
the theorem shows that maximum reinforcement matches with maximum 
compression in the limit (simply because both are saturated). However, when the 
data are finite we have many cases where they differ (significantly when the evidence 
is incompressible). The most blatant case occurs when some exception is covered 
extensionally (as r2, which covers di in the proof of Theorem 5.23) and there is an 
important loss of reinforcement vs. a slight loss of compression. The following 
example illustrates this point: 

Example 5.7 
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Consider the following evidence e1–e10: 

 E = { e1: e(4) → true, e2: e(12) → true, 

  e3: e(3) → false, e4: e(2) → true, 

  e5: e(7) → false, e6: e(7) → false, 

  e7: e(20) → true,e8: e(0) → true, 

  e9: o(3) → true, e10: o(2) → false } 

where natural numbers are represented by using the functor s as the symbol for 
successor, e.g. s(s(s(0)))  means 3. The length (denoted l) of a rule is computed as 
1+nf+nv, where nf means the number of functors (including constants as functors with 
arity 0) and nv being the number of variables. 

 From here, the following theories are evaluated: 

 

   : l ρρ ρρ* ρ* 

 Ta= {e(s(s(X)) → e(X) : 7 7 1 0.5 

  e(0) → true : 4 5 1.2 0.5647 

  e(s(0)) → false : 5 3 0.6 0.3402 

  o(s(s(s(0)))) → true : 7 1 0.1429 0.0943 

  o(s(s(0))) → false  : 6 1 0.1667 0.1091} 

 

The extended courses are χ*(e1, e2, e4, e7, e8) = 0.5 � 0.5647 = 0.28235, χ*(e3, e5, e6) = 
0.5 � 0.3402 = 0.1701, χ*(e9) = 0.0943 and χ*(e10) = 0.1091. 

The mean extended course mχ*’ is 0.2125. 

 

   : l ρρ ρρ* ρ* 

 Tb= {e(s(s(X)) → e(X) : 7 7 1 0.5 

  e(0) → true : 4 5 1.2 0.5647 

  e(s(0)) → false : 5 3 0.6 0.3402 

  o(s(s(X)) → o(X) : 7 2 0.2857 0.1797 

  o(0) → false : 4 1 0.25 0.1591 

  o(s(0)) → true  : 5 1 0.2 0.1294} 

 

The extended courses are χ*(e1, e2, e4, e7, e8) = 0.5 � 0.5647 = 0.28235, χ*(e3, e5, e6) = 
0.5 � 0.3402 = 0.1701, χ*(e9) = 0.1797 � 0.1294 = 0.02325 and χ*(e10) = 0.1797 � 0.1591 
= 0.02859. 
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The mean extended course mχ*’ is 0.1974.  

 

   : l ρρ ρρ* ρ* 

 Tc= {e(s(s(X)) → e(X) : 7 9 1.2857 0.5898 

  e(0) → true : 4 6 1.5 0.6464 

  e(s(0)) → false : 5 4 0.8 0.4257 

  o(X) → not(e(X)) : 6 2 0.3333 0.2063 

  not(true) → false : 4 1 0.25 0.1591 

  not(false) → true  : 4 1 0.25 0.1591} 

 

The extended courses are χ*(e1, e2, e4, e7, e8) = 0.5898 � 0.6464 = 0.3813, χ*(e3, e5, e6) = 
0.5898 � 0.4257 = 0.2511, χ*(e9) = 0.2063 � 0.5898 � 0.4257 � 0.1591 =  0.00824 and 
χ*(e10) = 0.2063 � 0.5898 � 0.6464 � 0.1591 = 0.0125.  

The mean extended course mχ*’ is 0.2681. 

 

Note that the lengths (l(Ta)=29, l(Tb)=32, l(Tc) = 30) would not give many hints about 
which theory to select. 

The example also shows the advantages of this approach for explanation-based 
learning. Since all the data must be explained, if a part is left in an extensional way (or 
unrelated with the rest), it is penalised. On the other hand, we have seen in the 
preceding sections that fantastic concepts are also avoided, so it results to be a balanced 
criterion for a more reasonable degree of intensionality of theories, without falling 
into fantasy.  

Regarding Tc of Example 5.7, this measure can be adapted to situations where a 
more compensated theory is required, by using a geometric mean instead of an arithmetic 
mean. In addition, and concerning Ta, if exceptions (extensional parts) are not 
admitted at all, any theory where a fact has a course value less than the mean divided 
by a constant can be discarded. More formally, 

Definition 5.49 A theory T is k-balanced with respect to an evidence E if: 

¬∃ e ∈ E : χ*
(T, e) < k · mχ*

(T, E) 

where k is a value between 0 a 1. If k=1 all the evidence must have exactly the same 
course, and if k=0 every theory is balanced. 

The use of a intermediate value (e.g. 0.5) suggests the triggering of theory revision 
in an incremental framework in order to integrate (or reconcile) the example that has 
low course with the theory. 



150 José Hernández Orallo - Doctoral Dissertation 

 150 

5.8 Rewarded Reinforcement 

Up to this moment we have only dealt with positive (and absolute) reinforcement. 
An example is covered or not by the theory. In reinforcement learning, though, it is 
usually assumed that the learner receives different reward and penalty values for its 
actions. In other words, prediction hits can receive different degrees of reward and 
prediction errors (including novelties and anomalies) can receive different degrees of 
penalty (or negative reward). 

Usually, this broader view of reinforcement is suitable for frameworks where 
reasoning about action is necessary. The rewards are assigned depending on the 
actions that the agent performs for each situation. Apart from Markov decision 
processes [Kearns and Singh 1999], other more expressible temporal languages are 
used for representation, such as event calculus or situation calculus [Kowalski and 
Sachi 1997]. The important issue here is that our model selection measures can be 
used for these high-level representations. The value of reinforcement can be 
understood as the prediction reliability of the following situation sn+1 after every 
possible action that can be performed in a certain situation sn. The task of the system 
seems to be to select the one with the greatest reward. With this first approach, in the 
case the result of the action matches with the evidence, a positive hit happens with 
the predicted reward. However, in the case a prediction error occurs, the action 
might have no awful consequences (no penalty), but, in some cases, it may be fatal. 
The question is how ontology and ‘hedonism’ must be combined. It is commonly 
accepted in psychology the claim that hedonism motivates ontology, and this is 
stronger the earlier the stage of development of a cognitive system. In my opinion, 
this motivation does not imply that they must be mixed. Moreover, rewards should 
also be learned because they may change. 

Hence, the choice of the best action must take into account both the reliability of 
the prediction (i.e. the reinforcement) weighed with the reward, not the action with 
the best reward alone (because it may be a very weak guess). 

Summing up, the decision of which action should be taken would depend on: 
• the reliability of recognising the situation where the agent is actually embedded. 
• the reliability of predicting the consequence of a given action in that situation. 
• the reward (or penalty) of the consequence. 

This implies degrees of reliability in the evidence. This degree may come from 
different reliabilities of the sensors of the system or from intermediate recognition or 
sensor pre-processing subsystems. We will take this into account in the following 
way: every fact of the evidence is assigned a real number as a reliability degree, −1 ≤ 
df ≤ 1. In this framework, the completely reliable positive examples are assigned a 
value of df = 1 and the completely reliable negative examples are assigned a value of 
df = −1. 
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Definition 5.50 The 'grounded' course χ'( f ) of a given fact f with respect to a theory 
is computed as the normal course χ( f ) multiplied by the reliability degree of f. 
More formally, χ'( f ) = χ( f ) · df. 

In the previous section we considered the length of rules. Another straightforward 
extension to our approach is to consider the length of the examples, too. This can 
also be incorporated in the same way as the reliability degree. 

Finally, Definition 5.50 introduces negative values for df. Nonetheless, they are 
still considered in a positive way for computing ρ. The next section discusses how to 
incorporate this negative evidence into the theory. 

5.9 External Inconsistencies. Negative Reinforcement 

Hitherto we have only considered theories which are completely consistent with the 
evidence. Whenever an uncovered or inconsistent example was found, the theory 
was remade (patched) in order to cover the new positive example (novelty) or 
uncover the new negative example (anomaly).  

In some contexts, an anomaly, if not patched, should make the theory be rejected, 
as it has been commented in the previous sections, where structural patches should 
also be avoided. But in other contexts (approximate learning, noisy data, etc.) a single 
anomaly should not force the revision of the whole theory. 

A first idea to handle anomalies is to compute the course of positive examples and 
compute the course of negative examples that are covered. An optimality criterion 
for the theory could be given by the positive mχ minus the negative mχ. This could be 
made by using Definition 5.50. Concretely, 

Definition 5.51 The (+/−−−−) course χ( f ) of a given fact f with respect to to a theory 
is computed as the normal course χ( f ) multiplied by 1 if f ∈ E+ and −−−−1 if f ∈ E−. 

However, this measurement would not allow to know which rules are being affected. 
Morever, it is somehow paradoxical because anomalies that occur through few very 
reinforced rules are much more taken into account than anomalies that occur 
through many reinforced rules or non-reinforced rules. In some way, Definition 5.51 
measures the hardness for conciliating the anomaly, i.e., the difficulty to revise the 
theory to account for the new evidence without reorganising the rest of the theory. 
Or, seen in other way, how plausible is it to expect that f is noise, or, in other words, 
a measure of surprise, from values close to 0 (no surprise) to values close to −1 (very 
surprising). 

If the theory is not to be remade or we want to detect which rules are affected, we 
must propagate negative reinforcement into the rules, too. A much more insightful 
extension is to re-consider the reinforcement of each rule in the following way. 
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Definition 5.52 The positive pure reinforcement ρρ+
(r) of a rule r from a theory 

T with respect to some given positive evidence E+
 = {e

+
1, e

+
2, …, e

+
n} is defined 

as: 

ρρ+
(r) = Σi=1..n card(Proofr(e

+
i,T)) 

Definition 5.53 The negative pure reinforcement ρρ+
(r) of a rule r from a theory 

T with respect to some given negative evidence E−
 = {e

−
1, e

−
2, …, e

−
n} is defined as: 

ρρ−−−−(r) = Σi=1..n card(Proofr(e
−−−−
i,T)) 

Both measures are identical to Definition 5.39. The question is how to weigh positive 
and negative pure reinforcement in a single value. One option is to normalise and 
then to weigh them, formalised in the following way: 

Definition 5.54 The (normalised) positive reinforcement is defined as: 

ρ+(r) = 1 − 2−ρρ+(r) 

Definition 5.55 The (normalised) negative reinforcement is defined as: 

ρ−−−−(r) = 1 − 2−ρρ−−−−(r). 

And finally, 

Definition 5.56 The (normalised) reinforcement is defined as: 

ρ1(r) = ρ+(r) − ρ−−−−(r). 

It is obvious that this measure matches with Definition 5.40 if no negative evidence 
is given. This is a very strict way of considering negative evidence because if a rule 
has a single negative example covered by it, its reinforcement is necessary less than 
0.5, so every positive evidence which is covered by it should be more optimally 
covered by an extensional patch.  

Moreover, there can be ‘independent’ properties such as “X + Y = Y + X” that 
can be used for negative evidences, and they would be highly penalised by that kind 
of measurement unless a smoothing factor is considered. In some cases, an ‘auxiliary’ 
rule could be distinguished for the ‘guilty’ rule because auxiliary rules often do not 
cover any evidence alone. However, this heuristic is not valid in general.  

Another option is to subtract them and then normalise them. More formally, 

Definition 5.57 The pure reinforcement is defined as: 

ρρ2(r) = ρρ+(r) − ρρ−−−−(r). 

And normalised reinforcement ρ2(r) is obtained, by normalising, in the initial way. 
This minimises the problem but, in the end, it is just a question of how to weigh 
positive and negative reinforcement. 

In fact, the best solution is to consider separately each (+/−) course χ( f ), and both 
variants of ρ+(r) and ρ−−−−(r), in order to know whether and where the theory should be 
revised. Another derived measure of course could be given as: 
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Definition 5.58 The course χ0
( f ) of a given fact f with respect to a theory T is 

defined as: 

χ0
(f) = max S⊂Proof(f,T) { Πr∈S ρ+

(r) } if f ∈ E+ 

  −max S⊂Proof(f,T) { Πr∈S ρ−−−−(r) } if f ∈ E−−−− 

And the mean mχ0
(f) is computed as ∑f ∈ Eχ0

(f) / card(E
−−−−) 

Let us show the use of these new measures for the same positive and negative 
evidence than Example 5.2:  

Example 5.8 

Consider the the background theory B = { s(a,b), s(b,c), s(c,d) } and the evidence 

E = { e+1: r(a,b,c), e+2: r(b,c,d), e+3: r(a,c,d), e+4: r(a,b,d), e+5: r(a,d,c),  e--1: ¬r(b,a,c), 
e
--
2: ¬r(c,a,c) , e--2: ¬r(a,d,d) }: 

T1 = { r1 = r(X,Y,Z) }:  ρ+(r1) = 1 − 2−−−−5 = 0.96875 

   ρ−−−−(r1) = 1 − 2−−−−3 = 0.875 

   ρ1(r1) = ρ+(r1) − ρ−−−−(r1)
 
= 0.09375 

   ρ2(r1) = 1 − 2−−−−(5−−−−3) = 0.75 

   mχ0
(T1, E) = ( 0.96875 · 5  −  0.875 · 3 ) / 5 = 0.44 

   mχ1
(T1, E) = (0.09375 · 5) / 5 = 0.09375 

   mχ2
(T1, E) = (0.75 · 5) / 5 = 0.75 

 

T2 = { r2 = r(X,c,Z)   ρ+(r2) = 1 − 2−−−−2 = 0.75 

           r3 = r(a, Y,Z)  ρ−−−−(r2) = 0 

   ρ1(r2) = ρ+(r2) − ρ−−−−(r2)
 
= 0.75 

   ρ2(r2) = 1 − 2−−−−(2−−−−0) = 0.75 

   ρ+(r3) = 1 − 2−−−−4 = 0.9375 

   ρ−−−−(r3) = 1 − 2−−−−1 = 0.5 

   ρ1(r3) = ρ+(r3) − ρ−−−−(r3)
 
= 0.4375 

   ρ2(r3) = 1 − 2−−−−(4−−−−1) = 0.875 

   mχ0
(T2, E) = (0.9375 · 4  + 0.75 · 1 −  0.5 · 1 ) / 5 = 0.8 

   mχ1
(T2, E) = (0.4375 · 3 + 0.75 · 2) / 5 = 0.5625 

   mχ2
(T2, E) = (0.875 · 4 + 0.75 · 1) / 5 = 0.85 

The first theory is more positively reinforced but has 3 anomalies whereas the second 
one is more extensional but it has only 1 anomaly. The three different measures give 
better results for T2 than for T1. mχ1 is very strict with anomalies, mχ2 very lax and 
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mχ0 finds a compromise between the other two. For revision purposes, though, the 
measure ρ1 is more illustrative to see which rule should be addressed first. 

5.10 Reinforcement and Deduction 

Reinforcement has almost always been related with induction in the literature, at least 
always with learning algorithms. However, a deductive inference can establish new 
connections and, consequently, the theory’s ontology and robustness, are also 
increased. There are two different cases to consider here, omniscient and non-
omniscient systems. The existence of new deductive connections in non-omniscient 
systems is intuitive and necessary, as we saw in the previous chapter. However, for 
omniscient systems, are there any new connections to establish? The answer is no, 
but this does not mean that the ‘explicitation’ of deductive consequences could not 
increase the whole reinforcement in both omniscient and non-omniscient systems. 
Let us first see this case:  

5.10.1 Derived Rules Explicitation  

There is an important trait of reinforcement propagation that has been latent in the 
character of the theories we are dealing with. Theories are usually convenient and 
reduced representations of the evidence they cover, and reinforcement is distributed 
among these explicit rules and not all their derivable consequences. 

This situation is especially appropriate for understanding jointly the function of 
both induction and deduction in the construction of an ontology. As well as 
induction adds new rules to a theory, deduction must be used to derive new 
theorems from a theory, which can act as properties or rules that are adjoined 
explicitly to it. 

Consequently, new derivations can increase the reinforcement of the theory with 
respect to the same evidence. For instance, if a rule a entails E1 and b entails E2. A 
new rule c may be derived from a and b such that c entails most of E1 and E2. 

Note that it is independent to whether the rule is derivable from a and b under the 
same or different semantics where the theory operates. The relevance is that c is left 
explicit, i.e., it composes the theory.  

Consider the following example: 

Example 5.9 

Given the evidence 

E = { e+1: p(a, c), e+2: p(a,b), e+3: p(c,a), e+4: r(c,c) } 

and the following Horn theory 

T1 = {  r1 = p(X,Y) :- r(X,X).  ρ(r1) = 1 − 2−−−−3 = 0.875 
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 r2 = r(a,a).   ρ(r2) = 1 − 2−−−−2 = 0.75 

 r3 = r(a,b).   ρ(r3) = 0 

 r4 = r(b,c).   ρ(r4) = 0 

 r5 = r(c,c). }   ρ(r5) = 1 − 2−−−−2 = 0.75 

the theory is specialised by the following derivations (resolution) 

  p(X,Y) :- r(X,X) 

  r(a,a) 
 

  p(a,Y) 

and 

  p(X,Y) :- r(X,X) 

  r(c,c)  
   

  p(c,Y) 

and added to the theory: 

T’1 = {  r1 = p(X,Y) :- r(X,X).  ρ(r1) = 1 − 2−−−−3 = 0.875 

 r2 = r(a,a).   ρ(r2) = 1 − 2−−−−2 = 0.75 

 r3 = r(a,b).   ρ(r3) = 0 

 r4 = r(b,c).   ρ(r4) = 0 

 r5 = r(c,c).    ρ(r5) = 1 − 2−−−−2 = 0.75 

  r6 = p(a,Y).    ρ(r6) = 1 − 2−−−−2 = 0.75 

 r7 = p(c,Y). }   ρ(r7) = 1 − 2−−−−1 = 0.5 

Note that the reinforcement of the original rules are not modified by these derivations. 
However, the courses of some examples are increased due to the use of r6 alone for e+1 
and e+2. This happens because r1 is somehow fantastic for the evidence, an artificial way 
to conciliate apparently sparse examples. 

A question that is suggested by the preceding example, especially the case of r7, is 
whether it is intuitive to assign to r7 a value of reinforcement less than the rules where 
it derives from. In other words, if r1 has ρ(r1) = 0.875 and r2 has ρ(r2) = 0.75 we have 
that r1,r2  = r7  but ρ(r7) = 0.7. This is contrary to what is given by Carnap calculus. 

This apparent paradox is dissipated if one only understand the whole mean course 
as a measure of plausibility and nothing more. In other words, the reinforcement of a 
rule is only a measure of its use and it cannot be seen as a measure of independent 
plausibility and even less of its probability. 

There are some ways to give a measure of plausibility, different from 
reinforcement. A first idea is to conceive course as plausibility, given the following 
equation: 
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Definition 5.59 For every rule s such that T = s  we define its plausibility as: 

P1(s) = max S⊂Proof(s,T) { Πr∈S ρ (r) }  
which is like Definition 5.42 but applied to rules as well as evidence. Or alternatively, 

Definition 5.60 For every rule s such that T = s we define its plausibility as: 

P2(s) = max S⊂Proof(s,T) { minr∈S ρ (r) }  
Definition 5.60 matches with many works about logics with uncertainty values. For 
instance, if C represents the certainty of a given fact, C(p ∧ q) = min (C(p), C(q)) and  
C(p ∨ q) = max (C(p), C(q)). On the contrary, Definition 5.59 resembles some other 
popular theories of uncertainty when C is measured between 0 and 1, C(p ∧ q) = 
C(p) � C(q) and  C(p ∨ q) = 1 − (1 − C(p)) � (1 − C(q)) 

These annotated plausibility can have a partial use to guide revisions of the theory, 
and it is more important as long as the theory is getting larger, and parts of the theory 
are instances or specialisations of more general theories that must be explicitly stated 
for the sake of efficiency and shortening of proofs. We will get back on its use in the 
following subsection. 

However, for the whole theory, there is no need for a new whole plausibility 
criterion, because mχ is robust to deduction. This is even more justified because 
deduction cannot decrease the whole course of the theory, as the following theorem 
shows: 

Theorem 5.24 Given any theory T and any evidence E, if any rule r is added such 
that T = r, then mχ(T, E) ≤ mχ(T ∪ { r }, E). 

PROOF. By the definition of χ(T, e) = max S⊂Proof(e,T) { Πr∈S ρ (r) }it is obvious that 
χ(T, e) ≤≤≤≤ χ(T ∪ { r }, e). � 

The things are different if we consider negative reinforcement, at least for mχ0
(T, E), 

which can be reduced by a derivation which jointly covers more negative examples 
than its premises. For, mχ1

(T2, E) and mχ2
(T2, E) the previous theorem also holds. In 

fact, in these latter two cases, it is usual than a specialisation (such as Example 5.8) 
highly increases reinforcement, something that it is more accordant with Carnap’s 
Calculus. 

However, the question of which representation is the best for a given evidence, 
discussed in the previous chapter, can be complemented by the use of these new 
measures. 

In the previous chapter we discussed about minimising LT(e) for any example e of 
the evidence (i.e. shortening proofs), giving a measure of optimality as optDS(T| E) = 
argminT(Σe∈E Cost(e|T)). In the context of reinforcement, we have seen that the best 
theory was argmaxT(mχ(T, E)). Given a non-optimal theory constructed by induction, 
we can still consider deduction for improving it, because we can express the same 
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theory with more derived rules or a specialised version of it. Since induction is 
usually a harder problem than deduction, it seems logical to profit any increase that 
could be obtained by deduction before revising the theory by inductive methods.  

According to reinforcement, we can define different variants of optimal 
specialisations of a theory and representations by using exclusively deductive 
inference: 

Definition 5.61 Optimal Specialisation of a Theory: 

A theory T is an optimal specialisation for E if there does not exist another T’ such 
that T = T’ such that mχ(T, E) < mχ(T’, E). 

Definition 5.62 Optimal Strict Specialisation of a Theory: 

A theory T is an optimal strict specialisation for E if there does not exist another T’ 
such that ∀r ∈ T’, T = r and T ⊂ T’ such that mχ(T, E) < mχ(T’, E).  

Definition 5.63 Optimal Representation of a Theory: 

A theory T is an optimal representation for E if T = E and there does not exist 
another T’ such that ∀e T = e ↔ T’ = e and mχ(T, E) < mχ(T’, E).  

Definition 5.64 Optimal Strict Representation of a Theory: 

A theory T is an optimal strict specialisation for E if T = E and there does not exist 
another T’ such that ∀e T = e ↔ T’ = e and ∀r ∈ T’, T = r and T ⊂ T’ such that 
mχ(T, E) < mχ(T’, E).  

The difference between non-strict and strict variants is important. For instance, T 
= { p(X,a,b). p(c,Y,c). r(b). r(c). } implies (under the close-world assumption) T’ = { 
p(X,a,b). p(c,Y,c). p(c,a,Z) :- r(Z). r(b). r(c). } but T ≠ { p(c,a,Z) :- r(Z). }. 

In many cases, these optimisations could be automatised. In fact, some inductive 
algorithms work in the previous way (top-down). They construct the most general 
theory and specialise it by deduction in order to arrive to the optimal (or an 
acceptable) one.  

5.10.2 Non-Omniscient Deduction  

Inside non-omniscient systems, the relevance of deduction and the possibilities of 
increasing reinforcement are much more important than in the case of omniscient 
theories. 

Imagine the situation of an axiomatic theory T composed of one part (or set of 
rules) T1 such that entails E1, and a second part T2 that entails E2. No relation is still 
established between T1 and T2. Imagine that a new theorem is found that establishes 
that T1 entails T2, or, in other words, T2 is a special case of T1. 
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Many rules of T1 can be reinforced now by E2 too by, according to the formula 
ρρ(r) = Σi=1..n card(Proofr(ei,T)), and, consequently, the plausibility of the whole theory 
increases, according to χT( f ) = max S⊂Proof(e,T) { Πr∈S ρ(r) }. This situation is usual in 
physics, whenever two unrelated explained phenomena are connected by a theory.  

The interpretation of new connections is different depending on the course of 
each separate theory. For instance, if T1 is much more reinforced than T2, the 
connection can be interpreted as an explanation for T2, which originally lacked the 
support that T1 provides. In this case, the measures of plausibility which were 
presented in the previous subsection (P1 and P2) may be useful to propagate 
reinforcement downwards, to recognise the reinforcement that T2 deserves. 

On the contrary, if T2 is much more reinforced than T1, the connection is then 
understood as further support for T1.  

Both cases are independent to the use of T2 in an explicit way after the 
connection. This would depend on the time complexity of both T1 and T2. In many 
cases, T2 could be much more efficient than T1 or even can give better value for χ 
than T1, as in Example 5.9. 

Additionally, a new established connection can 'consiliate' a theory that was 
initially not consilient, because the evidence was explained by separate theories which 
are now related, as we saw in section 5.6 and 5.7. 

Finally, a new connection can be made with previously independent evidence. For 
instance, consider the case where T1 entails E1, and T2 entails E2 and E3. A new 
deductive connection establishes that T1 also entails E2. This must force the revision 
of the theory, because there may be a better theory than T2 for covering E3. More 
extremely, consider than it is also found that T2 also entails E3. Then T2 should only 
be maintained if it covers better (according to some optimality criterion) the evidence 
E2 and E3. In many other cases, it should be removed because it is no longer 
necessary. It is necessary to detect the cases when, following the example, mχ(T1, E1 
∪ E2 ∪ E3) ≥ mχ(T1 ∪ T2, E1 ∪ E2 ∪ E3) and consider whether T2 should be 
preserved. This process would be similar to garbage collection, and finally removes 
from explicit memory the properties and rules that are no longer used. 

5.10.3 Reinforcement, Consilience and Interestingness in Mathematics 

Finally, there are some questions about mathematical utility and interest that can be 
enlightened by the use of reinforcement, more specifically, by the use of consilience. 
Although consilience was introduced by Whewell for scientific theories, we can see 
that this notion applies as well for mathematical theories. 

For instance, Bundy et al. propose a system for inventing mathematical definitions 
and conjectures [Bundy et al. 1998]. They use a weighed measure of parsimony and 
clarity, but it is not sufficient to distinguish those concepts that the authors consider 
interesting. For example, they find attractive the concept of ‘re-factorable numbers’, 
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found by the system, which is defined as “those integers for which the number of factors is 
itself a factor of the integer”. This can be easily understood as a very reinforced and 
consilient concept, since the same rules are repeatedly used in the same definition. 

The idea is not far from any theory that is originally constructed from an evidence 
but, after a time, it finally becomes a very theoretical system, where deduction is also 
as important as experimentation and induction. The question Hintikka raised open in 
the seventies [Hintikka 1970a] is still relevant today:  

[...] But even within deductive systematization there are many 
other important properties of theories which we will not directly 
deal with here. For example, it is claimed that theoretical concepts 
may in some pragmatic sense give us deeper understanding and 
better explanation of the phenomenon under investigation that do 
statements in the vocabulary of λ only. We certainly agree with 
this. Moreover, it may (or may not) be the case that theories using 
auxiliary concepts are heuristically more fruitful, more manageable 
and suggestive, and also simpler (in some sense) than purely 
observational statements. Again, there may be strong ontological 
concepts like fields or unconscious wishes, for example, because 
we believe that there are such entities and that why can be studied 
for their own sake. 

Despite the restricted scope of our discussion, we believe that we 
have already brought out something interesting. There are two 
main aims which auxiliary terms are typically supposed to serve. 
They are (observational) richness and economy. However, in the 
literature of philosophy of science we find next to no insights as 
to how they serve these purposes, and not even much indication 
that they in fact succeed in doing so. 

I think that both the information gain measure of the previous chapters and the 
reinforcement theory of this one, give many results about how auxiliary concepts 
serve these purposes, and a support that they in fact succeed in doing so. 

5.11 Reinforcement as a Theory of Confirmation 

In chapter 2, the two different approaches from two philosophers and logicians from 
the Wiener Kreis were discussed. A quantitative concept of degree of confirmation, 
as a value between 0 and 1 for a hypothesis given an evidence, was developed by 
Carnap, who associated it, as seen, with a notion of probability. On the contrary, 
Hempel introduced a qualitative concept of confirmation, i.e., a Boolean relation 
between hypothesis and evidence, in the way that E confirms H or E does not 
confirm H. 
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In the previous section we have included two different functions P1 and P2 which, 
along with ρ and χ, could be used as a quantitative measure of confirmation, 
somehow in between Carnap and Hempel.  

In particular, they are compliant with some of Hempel’s adequacy conditions, but 
in a quantitative way: 

(H1) Entailment condition: any sentence which is entailed by an observation report 
is confirmed by it.  
(H1.1) Any observation report is confirmed by itself. 

In other words, evidence is not questioned by the theory of reinforcement. The 
plausibility of e is maximum if e ∈ E+. 

(H2) Consequence condition: if an observation report confirms every one of a class 
K of sentences, then it also confirms any sentence which is a logical 
consequence of K. 
(H2.1) Special consequence condition: if an observation report confirms a hypothesis H, then it 

also confirms every consequence of H. 

(H2.2) Equivalence condition: if an observation report confirms a hypothesis H, then it also 
confirms every hypothesis which is logically equivalent with H. 

(H2.3) Conjunction condition: if an observation report confirms each of two hypotheses, 
then it also confirms their conjunction. 

Reinforcement is partially accordant with H2 and H2.1, although this depends of how 
many elements there are in K and their particular reinforcement values. Obviously it also 
depends of which of the two functions (P1 or P2) is chosen. On the contrary, H2.2 is 
not compatible with the theory developed in this chapter because the form (explicit 
representation) is important for reinforcement. Finally H2.3 is partially followed, 
provided both are consistent, although in any case the value is somehow minimised 
by the conjunction, depending on P1 (product) or P2 (min). 

(H3) Consistency condition: every logically consistent observation report is logically 
compatible with the class of all the hypotheses which it confirms. 
(H3.1) Unless an observation report is self-contradictory, it does not confirm any 

hypothesis with which it is not logically compatible. 

(H3.2) Unless an observation report is self-contradictory, it does not confirm any 
hypotheses which contradict each other. 

This adequacy condition has been included (in a quantitative way) by the fact that 
only positive evidence distributes positive reinforcement and the view that negative 
evidence distributes negative reinforcement. 

(H4) Equivalent condition for observations: if an observation report B confirms a 
hypothesis H, then any observation report logically equivalent with B also 
confirms H. 

This adequacy condition is completely fulfilled by the theory of reinforcement. 



5. Constructive Reinforcement 

 

161

161

(H5) Converse consequence condition: if an observation report confirms a hypothesis 
H, then it also confirms every formula logically entailing H. 

This is the base for reinforcement propagation, although this confirmation is 
quantitative and greater as long as more evidence confirms each part of the theory. 

The following classical paradoxes (from [Holland et al. 1986]) are also avoided by 
the theory of reinforcement. The first one can be stated by the fact that the 
proposition “All ravens are black” is confirmed by observations of ravens that are 
black. But the statement “All ravens are black” is formally equivalent to the 
statement “All nonblack things are nonravens” (Adequacy condition H2.2). The 
latter proposition would be confirmed by a white shoe. Nonetheless, this does not 
happen for reinforcement, since the form of the theory is important and more rules 
are necessary for expressing “all nonblack things are nonravens”, apart from being of 
little use for covering the evidence. 

The other paradox is the famous “grue paradox” [Goodman 1965]. Define “grue” 
as “green before time t and blue otherwise”. Then observing a green emerald seems 
to confirm equally well both “All emeralds are green” and “All emeralds are grue” 
(assuming t is still in the future). According to Goodman, from a syntactic 
perspective it is hard to see why “All emeralds are green” is the most attractive 
conclusion. However, there are syntactic criteria that solve this problem. A simplicity 
criterion gives more plausibility to “All emeralds are green” than to “All emeralds are 
grue” because the first one is shorter to describe (the second one must include the 
definiton of grue). In the same way, the theory of reinforcement (although is partially 
a semantic criterion) is also free from this paradox. 

In my opinion, a quantitative (but not probabilistic) way is the only way to include 
both H2 (top-down) and H5 (bottom-up). As a result, reinforcement is a theory 
between the MDL principle and Popper’s informativeness, which is also useful for 
deduction, induction, analogy and abduction. 

5.12 Reinforcement and Information Gain 

As we have seen, different measures based on reinforcement (especially mean 
course) can act as plausibility criteria. On the contrary, Information Gain was a 
measure of effort, of resource investment, that was only partially related to 
plausibility. It is precisely the combination of a plausibility criterion and a gain 
criterion which fully exploits the possibilities of both theories.  

Let us first study the relationship between reinforcement and information gain 
and then their combination. 
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5.12.1 Reinforcement vs. Gain 

For the case of induction, when we analyse the information gain of a theory with 
respect to an evidence, there are two special cases where both measurements are 
positively related. The first case is given when the theory which has been induced is 
completely extensional, namely, T = E. In this case, G(T | E) = 0 and mχ(T, E) = 0.5, 

both being the minimum value of both measures. 

A quite different case is when T highly compresses the evidence. As we saw in the 
previous chapter, G(T | E) is usually high. In the same way, as we have seen in this 
chapter, mχ(T, E) tends to 1 as the compression ratio increases. 

In the rest of cases, there is no clear relation about the effort or gain for obtaining 
the theory and its mean course, because, as we have said, both concepts represent 
different dimensions.  

For the case of deduction, we studied how to optimise (in this case, minimise) the 
value of G(E | T), because a good theory should ease the extraction of its 
consequences (maybe by the use of intermediate, valuable properties, which will be 
discussed in the following subsections). By the way χ is computed, complex proofs 
are avoided, because the reinforcement of each rule is multiplied, and, hence, quickly 
lowered. However, this does not mean that the time complexity of obtaining a single 
evidence cannot be high, because a rule can be used many times. Hence, the idea for 
conciliating efficiency and reinforcement is to use a lot of rules few times, without 
loops. 

For both G(E|T) and V(E|T), it is also relative descriptional space which should be 
minimised. In this case, a conciliation is much more difficult, according to the 
formula ρρ(r) = Σi=1..n card(Proofr(ei,T)). A good way to increase the reinforcement of 
a rule is that it participates in many proofs, so finally we have that each example 
could have many different proofs. This makes that, given an example or a set of 
example, more information is required to select which proof has been used and, 
consequently, K(E| T) augments. 

5.12.2 Combination of Gain and Reinforcement 

In the previous chapter we talked about how intermediate information makes a 
system better with respect to some evidence, by using G(E| T) as a measure of 
optimality. 

Consider again the same equational theory T for addition and product as before: 

 X + s(Y) = s(X + Y) 

 X + 0 = X 

 0 × X = 0 



5. Constructive Reinforcement 

 

163

163

 sX × Y = X × Y + Y 

For instance, a rule of commutativity r1 = (X + Y = Y + X) is a property which can 
be derived from the previous theory that allows to shorten many derivations in 
arithmetic. However, the property r2 = (X + X + 3 = (X + 1) � 2 + 1) is also 
derivable from it but not so useful in arithmetic. However, both have a high value for 
G, but only one of them would be worth maintaining explicitly, to lower G(E| T), as 
it has been discussed in Section 5.10.1.  

By using reinforcement, this is even more clear. It is sufficient to select a set of 
examples of arithmetic practice to ascertain the utility of both rules. 

Information gain jointly with reinforcement can also be used to know whether an 
inductive or deductive effort has been useful. For instance, a new rule can be 
obtained by induction from the evidence such that G(r | T) ≈ 1, i.e. with high effort. 
Despite all the effort, if r does not help to increase the χ of the whole evidence, it has 
been a vain effort. In the same way, a new rule can be obtained by deduction from 
the theory such that G(r | E) ≈ 1, i.e., it has been a hard derivation. Despite all this 
effort, if r does not help to increase the χ of the whole evidence, it has been again a 
vain effort. 

From here, once we have information about the effort of obtaining r and its 
utility, we have the possibility to ascertain if r should be maintained or withdrawn, 
according to the memory limitations of the system. 

5.12.3 Forgetting Highly Reinforced Parts  

Let us recall the oblivion criterion that was presented in the previous chapter. 
Given a plausibility criteria PC(h | d), and a learner with  alternative hypotheses 
and limited memory resources, its memory politics can be ruled by the following 
oblivion criterion: 

OC(h | d) = G(h | d) � PC(h | d)  

The hypotheses with lower OC should be forgotten. 

By selecting PC(h | d) = mχ(T, E), and we have an oblivion criterion. This 
criterion can be used for rules, since not all the rules which are derived by induction 
or deduction can be maintained explicitly, and they must be erased from time to 
time. 

Moreover, as long as a theory is constructed from an upcoming evidence E1..n, this 
evidence must be memorised, because if further evidence En+1 refutes the hypothesis, 
E1..n, could be useful to revise and remake a new theory. However, this evidence 
needs memory, and real systems do not have infinite capacities, so sooner or later 
some evidence should be forgotten. A first naive idea is to forget the oldest data. 
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In another way, negative refuting evidence should also be maintained, something 
suggested by Levi [Levi 1980]. He ascribed epistemic utilities to competing hypotheses. 
The information value of a datum was defined to be the sum of the epistemic utilities 
of hypotheses disproved by the datum. 

A better solution is to realise that as long as more evidence is perceived, some 
hypotheses are being validated. The examples that have a greater course have less 
probability that the theory that covers them would be revised. Note also that Levi’s 
ideas are also included, because negative evidence decreases reinforcement in any of 
the ways seen in section 5.9. 

In this way, we can define an oblivion criterion for the evidence: 

Definition 5.65 Oblivion Criterion for an Evidence: 

Given a theory T and an evidence E, the elements of E should be removed 
according to: 

OC(e | <T,E>) = mχ(T, e) 

The original reinforcement of the rules should not be affected by this elimination. 
This establishes a new situation, because the reinforcement should be incrementally 
computed and they cannot be recomputed. This introduces an additional complexity 
in how to treat the cases when two rules r1 and r2 cover an example that it is 
removed. Both r1 and r2 should annotate the number of forgotten examples that have 
been removed. The problem appears if a new evidence makes r1 inconsistent and it is 
removed. In this case, r2 does not deserve the additional reinforcement of the 
forgotten examples, because they were proven with the help of r1, which has been 
removed. An easy solution may be to annotate the rules that are used to prove the 
examples that are forgotten. This is somehow similar to MOBAL’s inference engine 
IM2 [Emde 1992] [Morik et al. 1993], which maintains derivation information for 
each statement (fact) in the theory. However, this solution requires a great amount of 
memory, which is precisely the problem that is to be solved. 

This more complex propagation of reinforcement will be left as future work, 
although some ideas are outlined in an application for software maintenance, which 
is presented in chapter 9. 

5.13 Reinforcement and Theory Understandability 

According to many aspects, theories with high and balanced course are reinforced 
theories, which also explain all the data. Consequently, in terms of plausibility, 
reinforcement turns out to be a good criterion. Methodologically, it usually provides 
short theories and, due to the way reinforcement is computed, the derivations cannot 
be much too complicated or involve too many rules. However, there are other 
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methodological criteria whose behaviour with respect to reinforcement deserve to be 
studied. The most important one is understandability. 

[Sommer 1995b] precisely addresses this problem. His intuitions about 
understandability of theories are the following ones: 

1. Intermediate concepts, sparingly introduced, are a Good Thing. 

2. Similarly, a deep inferential [hierarchical] structure is more understandable and easier to 
maintain and modify, than a flat one, because it is more modular. 

3. The more rules define a concept, the harder it is to grasp. 

4. Long rules are harder to understand than short rules. 

5. It is probably not a Good Thing if the encoding of a theory costs more (in some information-
theoretic sense) than like encoding of the instances it covers/derives/explains. 

6. The more variables made reference to in a rule, the harder it is to understand. 

7. The more non-head variables in a rule, the harder it is to understand. 

8. The more constants appear in a rule, the less general value it has. 

9. Non-generative rules are not a Good Thing. 

10. The less instances a rule covers/derives/explains, the less inclined we will be to accept it 
(and invest effort in understanding it). 

11. The more instances are multiply (redundantly) covered/derived/explained, the less inclined 
we will be to accept the theory (and invest effort in understanding it). 

Intuition 1 is fully recognised by the theory of reinforcement and is also discussed in 
section 5.10. Intuition 3 is also fulfilled by the character of reinforcement. Intuition 4 
is observed due to the extended reinforcement modification made in section 5.7. 
Intuition 5 has been shown by the connection between reinforcement and 
compression. Intuitions 6, 7, 8, 9 are concerned with the arguments of clause literals 
(rule premises) of first-order definite clauses and their correspondence is not 
applicable here. Intuition 10 is almost exactly the same as the motivation of 
reinforcement learning. 

On the contrary, intuitions 2 and 11 seem to be incompatible with theories with 
high mean course. At first sight, intuition 2 contradicts the property of reinforcement 
in which derivations cannot be much too complicated or involve too many rules. In 
the subsequent reading of [Sommer 1995b], it is realised that Sommer means 
hierarchical and the word ‘deep’ is used in order to make a difference with respect to 
flat theories, which, as we know, are usually little reinforced. Thus, this initial 
contradiction vanishes. However, there is certainly a problem with highly reinforced 
theories but it is found in their modularity, because flat theories are usually avoided 
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by reinforcement. Note that Sommer asserts that flat theories are not modular, 
which, in a strict sense, is false. I am inclined then to understand he means they are 
not reusable but, in the end, I think that intuition 2 is rather ambiguous. In the end, 
the problem, in my opinion, must be studied with respect to the topology structure 
of knowledge, because a hierarchical structure can be either a tree, an inverse tree or 
any kind of lattice, and these topologies can give very different results of 
maintainability and modifiability. An approach for studying this topologies is essayed 
in chapter 9, especially in section 9.2, where reinforcement is applied for different 
topologies, and the issues about modularity, modification and maintainability are 
clarified. 

Finally, intuition 11, although Sommer recognises that lacks backward reference in 
the literature (i.e., it is just Sommer’s intuition), is indeed contrary to the way 
reinforcement is computed, because all the alternative proofs are reckoned in the 
measurement of reinforcement. 

If we would like to modify reinforcement to comply with Sommer’s latter 
intuition, we should modify it to penalise the alternative proofs for each example. 
However, we can do it in several ways. A first idea is to penalise this in the definition 
of ρρ(r) in the following way: 

Definition 5.66 The exclusive pure reinforcement ρρe
(r) of a rule r from a theory T 

with respect to some given evidence E = {e1, e2, …, en} is defined as: 

ρρe
(r) = Σi=1..n card(Proofr(ei,T)) / card(Proof(ei,T)) 

In other words, ρρ(r) is computed as the number of proofs of ei where r is used 
divided by the number of proofs of ei. 

However, I think it would be better to include the penalisation in the definition of 
course, because a rule cannot be punished for being useful. For instance, it would be 
like penalising the commutativity property because it is used for covering many 
different evidences. 

Another option is to include the penalisation in a redefinition of the course: 

Definition 5.67 The exclusive course χe
T( f ) of a given fact f with respect to a 

theory T is defined as: 

χe
T( f ) = max S⊂Proof(f, T) { Πr∈S ρ(r) } / card(Proof(f,T)) = χT(f) / card(Proof(f,T)) 

Finally, another solution may be the use of a measure called “redundancy index” 
[Sommer 1995b], which is defined in the following way: 

 

Definition 5.68 The redundancy index of a theory T with respect to an evidence 
E is defined as: [Sommer 1995b] 

Red(E,T) = 1 − card(E) / Σr=1..m Σi=1..n nonempty(Proofr(ei,T)) 
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where for any set S, nonempty(S) = 0 iff S = ∅ and nonempty(S) =1 otherwise. 

In Sommer’s words, this measure gives a value of the redundancy of the theory in 
the following sense: “ideally, each instance should be covered by only one rule in the theory; if this 
is the case, [...], Red = 0. The more instances are multiply covered, the [more] Red → 1”. By 
using this measure as a factor for the course, one could also penalise χT( f ). 

Although both Definition 5.67 and the use of the redundancy index would 
comply with Sommer’s intuitions, they cannot be used in a careless way. In my 
opinion, this is a question that is usually addressed heedlessly. One cannot penalise 
alternative explanations for a given example in a blind way, because this would ban 
the generation of alternative explanations. In other words, one is surer of a theory 
when there are not alternative theories for explaining the evidence, but not when she 
has been unable to (or has penalised) finding alternative plausible theories. 
Obviously, the certainty of a theory is only increased when the intelligence of the 
agent is high and he has sought hard for alternative theories. Only in this case, the 
agent can approximate the certainty of knowing that there are not alternative 
explanations. This notion of unquestionability (and note that it is not only a 
methodological but a plausibility issue) will be discussed in following chapter. 

5.14 Computing Reinforcement 

We have not dealt anywhere about how the theory could be constructed from the 
evidence (this will be briefly discussed in chapter 7). On the contrary, this chapter has 
presented a setting for constructive reinforcement learning based on a measurement 
that allows a detailed study of the relation between the theory and the evidence, for 
assisting the evaluation, the selection, and the revision of theories. 

However, the measurement needs to be computed. A general method of computing 
positive reinforcement is just as it has been used in all the examples which have 
appeared throughout the chapter: 

General Method: 

Consider the theory T, with m rules r1..rm, and the evidence E, with n examples 
e1..en, such that T=E. First we must prove all the examples and compute ρρ* and ρ* 
for each rule. In a second stage, we prove again the n examples, computing χ* from 
the ρ* obtained in the first stage. 

The complexity of the previous method seems to be, in the worst case, in O(m·n). 
However it is not so, because we have not stated any restriction about the 
computational cost of the theory, and each proof has its own cost, and there may be 
more than one proof for each example. 

Nonetheless, it would be more realistic to consider the reckoning of 
reinforcement in an incremental setting: 



168 José Hernández Orallo - Doctoral Dissertation 

 168 

Incremental Method: 

We will use four arrays: l1..m, ρρ*
1..m, ρ*

1..m, χ*
1..n for the lengths, the pure and 

normalised reinforcements and the courses, respectively. An additional Boolean 
bidimensional array U1..m,1.. n assigns true to Uj,i iff ei uses rm in its proof and false 
otherwise. 

For each new example en+1 that is received we have different possibilities: 

1. If it is a hit, we remake ρρ*
1..m, ρ*

1..m, according to the proof of en+1, U is 
extended to U·,n+1 and χ*

1..n+1 is updated using U. 

2. If it is a novelty and no revision is made to T, only an extension T'= T  ∪ {rm+1, 

..., rm+k}, the steps are very similar to the previous case, except that the arrays 
must be extended to m+k. 

3. Finally, if it is a novelty or an anomaly and the theory is revised in some rules {r1, 

..., rp} and extended in others {rm+1, ..., rm+k}, only the U·,j which does not use 
any rule from {r1, ..., rp} can be preserved. The rest must be remade. 

The previous method ignores two exceptional cases: that a hit would trigger a 
revision of the theory to readjust reinforcements, and that case 2 may produce 
alternative proofs for previous examples. 

Further optimisation could come from a deeper study of the static dependences 
(i.e.  some rule always depends on others) and the topology of dependences that the 
theory generates. On the other hand, an appropriate approximation could also be 
used. Even more, as we have seen before, part of the past evidence can be ‘forgotten’ 
if it is covered by very reinforced rules, so avoiding part of the future computations. 

However, in the case that an inductive learning method uses reinforcement for 
evaluating the theories it is constructing, the complexity of these methods would 
surely be very modest compared to the usual huge costs of machine learning 
algorithms. 

Moreover, reinforcement measures are a very adequate tool to guide a learning 
algorithm. For instance, in a learning algorithm for logic functional languages based 
on genetic programming [Hernández-Orallo and Ramírez-Quintana 1998], the 
examples and rules with low reinforcement are mixed first in order to ‘conciliate’ 
them and to obtain more compact and reinforced theories. 

5.15 Summary and Contributions of This Chapter 

We have presented a framework to distribute or propagate reinforcement into a 
theory depending on the observation (or evidence). The advantage of this approach 
is that it makes no assumptions about the prior distribution. Also in this framework, 
knowledge can have alternative descriptions, without reducing the evidence’s 
courses. Moreover, “deduction in the knowledge” can affect positively to 
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reinforcement, something that the MDL principle or other syntactic priors avoid 
because the theory cannot change its syntax or representation without changing its a 
posteriori probability. 

These characteristics are related to reinforcement learning and some reinforcement or 
credit propagation systems, such as ANN. Section 2 discusses why the idea of 
reinforcement has not been applied for constructive languages, i.e., languages with 
the ability of redescription. Conscious about these difficulties, in Section 3 a first 
adaptation of reinforcement is presented to realise the problems of ‘fantastic’ 
concepts. Section 4 remakes the approach and introduces the idea of ‘course’ to 
measure reinforcement, which is shown to be robust to these problems. 

Section 5 applies the use of course for the evaluation of inductive theories, and 
the role of induction, abduction are illustrated. Some other relevant criteria of the 
inductive literature, such as cross-validation and the MDL principle are shown and 
related to reinforcement in this section. Consilience, informally referred since 
Whewell introduced it, is also defined in the context of reinforcement. 

Analogy is another inference process that can be studied with the help of 
reinforcement. Its connection with consilience is established in section 6. Section 7 
discusses a more balanced reinforcement criterion which is suitable for explanation, 
and tries to exclude those parts of the theories which are exceptions, i.e., poorly 
reinforced. This section serves as an introduction and motivation for the following 
chapter. 

Section 8 discusses the extension of these ideas to wider notions of reinforcement 
with the presence of reward and penalties, more accordingly to the traditional use of 
reinforcement learning. 

The case of negative evidence is analysed and the framework is conveniently 
extended in section 9, establishing which properties still hold and which do not. 
Deduction is addressed in section 10, showing that a deductive inference cannot 
decrease the course of a theory, quite differently from Carnap’s probabilistic calculus. 
Furthermore, deduction can increase information. The role of intermediate 
information is highlighted and some questions about plausibility must be 
reconsidered. Section 11 distinguishes reinforcement as a quantitative (but non-
probabilistic) theory of confirmation, somehow between Hempel’s and Carnap’s. 
Section 12 relates and combines information gain with reinforcement. The oblivion 
criterion is adapted to be used with mean course as a plausibility criterion and 
extended for forgetting the evidence which has been explained, in order to optimise 
memory resources. Section 13 discusses the relationship between a methodological 
criterion like understandability and reinforcement. 

Finally, some issues about how to compute reinforcement in practice and its 
complexity are examined in section 14, with the conviction that although it entails an 
additional cost for any inductive algorithm, it is then counteracted by the advantage 
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of its use as a guide for theory revision, hypotheses rating, evidence management, 
etc. 

One of the most important results of this chapter is that the way we distribute 
reinforcement into knowledge results in a rated ontology, which allows the evaluation 
of the whole theory or any part of it. In this way, one of the most difficult dilemmas 
of inductive learning, the choice of a prior distribution, disappears. In other words, it 
is not necessary to work with probabilities to know the whole and the detailed 
plausibility of each rule of the theory and each fact that is derived from it. 

After this summary, among the relevant contributions of this chapter, we 
highlight the following: 

• Reinforcement allows a more detailed treatment of exceptions and provides 
different ratings for different parts of a theory, not the single probability value 
given by priors which is assigned to the whole theory. 

• Different predictions or assumptions are provided with different reliability 
values. 

• Reinforcement behaves appropriately for different inference processes such as 
induction, abduction, analogy and deduction, which are involved in theory 
construction. 

• Some vague notions such as consilience and explanatory induction are easily 
formalised under this framework. 

• Intermediate information is shown to be valuable for increasing the course of 
the theory. 

• In the case of non-omniscient systems, new deductively established 
connections can increase significantly the reinforcement of the whole theory. 

• Gain and Reinforcement act as a perfect team to discern which rules should be 
left explicitly in the representation of a theory. 

• An oblivion criterion is derived and extended to manage past and explained 
evidence. 

• By the use of reinforcement as a quantitative measure of confirmation, top-
down (deductive) and bottom-up (inductive and abductive) propagation is 
possible. 

Definitely, it is obvious the relation of this framework with the distribution of 
reinforcement in neural networks, and the problems of overfitting and underfitting in 
the learning of linear functions (it even resembles some popular algorithms, such as 
back-propagation). In my opinion, this use of reinforcement for different processes 
such as induction, abduction and deduction for knowledge acquisition, revision and 
construction is portable even from expert systems and diagnostic systems to neural 
networks (training = induction, recognition = abduction). Some applications will be 
outlined in chapter 9. 
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However, although the approach which has been presented in this chapter is 
applicable to constructive theories (for the first time for reinforcement), it would be 
interesting to extend the results of this chapter to any representational language, not 
only rule-based languages. The following chapter addresses this problem. 
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The great tragedy of Science 

 —the slaying of a beautiful hypothesis by an ugly fact 

T.H. Huxley, 1825-1895 
 

 

 

 

 

 

 

Abstract: this chapter addresses the problem of formally distinguishing between an extensional 
definition (or by extension) and an intensional one (or by comprehension). After some approaches of 
formalisations for logical theories as avoidance of exceptions and in the context of reinforcement, the 
solution to grasp intensionality for finite concepts is based once again on different concepts based on 
descriptional complexity. The notions of projectible descriptions and stable descriptions are introduced 
to account more easily for the notion of intensionality in general. The final approach allows the 
definition of an explanatory variant of Kolmogorov Complexity, which corresponds to an explanatory 
counterpart to the MDL principle. Some connections are also established. First, intensionality is 
closely related to information gain, since extensional descriptions are never informative. Secondly, 
explanation is also related to the notion of unquestionability, which is given when there are not 
alternative explanations, a notion that will be necessary for chapter 8. 

 

 

Keywords: Extension, Intension, Exceptions, Explanation, Kolmogorov 
Complexity, Meaning, Information Gain and Intension, Subprogram, General 
Reinforcement, Plato’s Problem. 
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6.1 Introduction 

Classically, logic and philosophy of language have distinguished between definitions 
by comprehension and extension. Comprehension means the connotation of a term 
(opposed to its denotation or extension), i.e. the intension, the set of its characteristic 
properties. The correspondence between the words comprehension and intension is 
not casual. An extensional description (by enumeration) has no connotation and 
consequently entails no comprehension at all. On the contrary, an intensional 
description (by comprehension), obtained for a given concept, may have not 
discovered the right meaning or real mechanism of the evidence, but still has a 
chance of it. 

In a similar way, methodology establishes [Bochenski 1965], in general, four laws 
of definition: 

1. The definition must be clearer than the thing defined. 

2. The definition must refer to the defined thing and only to the defined thing. 

3. The defined thing cannot appear in the definition. 

4. If possible, it must be affirmative, and not negative. 

If we denote by x the definition and by y the defined thing, the first property is 
accounted by the notion of representational optimality seen in chapters 4 and 5, or, 
alternatively, by the measure of explicitness which is represented by G(y|x). The 
second and fourth properties are easily fulfilled by the use of minimality and by the 
nature of the descriptions that are made by computational systems.  

Property 3 has been partially addressed by the theory of reinforcement of the 
previous chapter, which avoided rules that are extensional patches of the evidence. 
This was specifically accounted by a balanced evaluation criterion, which strongly 
penalised extensional rules. However, this measure has only been defined for rule-
based languages and cannot be used for this property in general. 

It would then be very appropriate to distinguish formally and generically those 
descriptions that follow this comprehension requirement: “the defined thing cannot 
appear in the definition”. This slogan is firmly observed in dictionaries and used by 
teachers when asking to their pupils, in order to know whether they have 
comprehended a concept. 

Additionally, traditional use in mathematics distinguishes an extensional definition 
from an intensional definition (or by comprehension). However, this distinction is 
completely intuitive and a scarce interest has been shown for formalising it, because 
for infinite sets, frequent in mathematics, every definition must be intensional (or by 
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comprehension). Nonetheless, for finite sets, there is still no formal difference 
between an intensional description and an extensional one. For instance, the set S= { 
3, 12, 21, 30, 102, 111, 120, 201, 210, 300 } has infinite many descriptions, e.g. D1 = 
S, i.e., the extensional description of S, D2 =  “Start with number 3. The following 
three numbers are obtained by adding 9 to the preceding one. Continue with number 
102. The following two numbers are obtained by adding 9 to the preceding one. 
Continue with number 201 and add 9 to the next number. Finally, include number 
300” and D3 = “natural numbers of 3 digits or less whose digits in decimal 
representation amounts to 3”. Intuitively, D3 seems more intensional than D2 and D2 
more intensional than D1. 

At first sight, Kolmogorov or Descriptional Complexity seems sufficient to 
distinguish extensional descriptions from intensional ones. However, if we consider 
the compression ratio, there can be cases where CRφ(px) < 1, i.e., no compression has 
taken place, and the description px can still be intensional (in the previous case D3 
would usually be larger than D1 if addition has to be coded as well in the definition). 
More severely, for cases where CRφ(px) > 1, i.e., compression has taken place, it is 
impossible that the description px would be completely extensional (some pattern 
must have been discovered in order to compress) but it is still possible that the 
description would be partially extensional (such as D2). 

As a result, the MDL principle, which chooses the shortest description for a given 
concept x, does not ensure that the description is intensional. In the vast majority of 
cases, the data is not compressible, and the MDL principle will give the data itself, 
which is the most extensional description, providing no hint about the 
comprehension of that data. Even in the rare cases where the data is compressible, a 
short description does not ensure that all the data is described intensionally; there 
could be a part that could be highly compressed and another part that could be 
quoted as an exception. 

The question is then more conspicuous: is there any way to distinguish pattern 
from exceptions, program from data? An answer to this question is necessary for a 
theory of intensionality, which then brings light to many related questions, from the 
distinction between explanatory induction and descriptional induction to the 
problem of meaning. 

The solution to this question is closely related to some of the notions presented in 
the previous chapters, as we will show. Chapters 3 and 4 dealt with information gain. 
In some way, this gain increased when extensionality decreased. It was shown that 
compression is a good heuristic to attain reduction of extensionality, but, as we have 
just commented, it can leave several parts in an extensional way. In a different way, 
chapter 5 introduced a measure of detailed reinforcement or apportionment of credit 
for representational languages that are composed of rules. The question is whether 
this idea can be extended to any descriptional mechanism (e.g. Turing machines) 
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where rules, components, parts or subprograms are difficult to distinguish. As we will 
see, this will require the clarification of the notion of subprogram. 

For the rest of this chapter, I will forget the other aspect of intensionality more 
related with meaning until Section 6.6 (where some philosophical issues of meaning 
and sense will be discussed), and I will deal exclusively about the mathematical 
notion of intensional description, which I will try to formalise. Let us begin with the 
idea that gives the name to the term. 

6.2 Extensional and Intensional Definitions 

It is well known that sets can be described extensionally or intensionally. A finite set 
A can be described in these two classical ways: 

EXTENSIONAL DESCRIPTION: the elements of the set A are enumerated. 

 A = { a1, a2, …, an } 

INTENSIONAL DESCRIPTION: the elements of A are those elements which follow a 
given property (or predicate function) p. 

 A = { a  | p(a) } 

It is obvious that an infinite set can only be described in an intensional way27. 

In general mathematical practice the nature of p is left out of discussion, except in 
intuitionistic (or constructive) mathematics. 

A constructive way of seeing the property p is to assume that it has to be a 
computable (or effective) function, i.e., there exists an algorithm that outputs 
consecutively all the elements of A, halting after them if A is finite. The set is more 
commonly known as recursively enumerable. Also obviously, every finite set is recursively 
enumerable because we can construct the algorithm from an extensional description of 
all the elements in A. 

Once at this point, we pose the central question of this chapter. Is there any way 
of distinguishing whether we have a pure intensional description? 

First of all, we will have to clarify, at least informally, what we mean with pure 
intensional description, an idea that has only been sketched in the introduction. Let see it 
with an example. 

The set A1 = { 0, 1, 4, 9, 16, 25, 36, 49, 64, 81} can be easily described 
intensionally as: 

A1 = { a | p1(a) } being p1(a) = “ a ∈ Ν  ∧ ∃ x ∈ Ν : a = x2 ∧ a < 100 ”. 

                                                           
27 Note that dots (...) assure that the reader would make a mental intensional model of the series that is 
intended. 
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We intuitively say that p1 is intensional because we see no extensional enumeration in 
p1. 

However, the set A2 = { 0, 1, 3, 4, 5, 9, 16, 19, 25, 36, 49, 64, 81} poses serious 
problems for an easy description. A practical description for the preceding set could 
be: 

A2 = A1 ∪ { 3, 5, 19 } 

And now, we clearly see that A2 is not purely intensional, some of its elements are 
described extensionally. 

Intuitively, we say that some function is not purely intensional iff it has 
exceptions, i.e. if we have to “quote” part of the elements extensionally. But this idea 
is not sufficient. For instance, if we have the set A3 = { 0, 1, 2, 4, 8, 9, 16, 25, 32, 36, 
49, 64, 81} we have alternative descriptions: 

A3 = A1 ∪ { 2, 8, 32 } 

or: 

A3 = A1 ∪ { a | a ∈ Ν  ∧ ∃ x ∈ Ν : a = 2x ∧ a < 100 } 

In the following we will consider that both descriptions used for A3 are not pure 
intensional. However, the detection of the last definition as not intensional will pose 
more problems. The idea of separability will have to be taken into account, and it 
must be robust to other kinds of representation such as: 

A3 = { a | a ∈ Ν  ∧ (∃ x ∈ Ν : a = x2 ∨ ∃ y ∈ Ν : a = 2y) ∧ a < 100 } 

because it still can be split up without “effort”. 

Finally, there are many ways to ‘camouflage’ the extensionality of some function. 
Also, it is difficult in this context to take the step to the intensionality or 
extensionality degree or characterisation of a set (instead of the description), since there 
are many possible functions to describe a set. 

At this moment it is very reasonable for the reader to think that the 
characterisation that we pretend is so arbitrary, so slippery, that it is not formalisable, 
just because it is subjective. In the end, it is broadly believed that there is no objective 
way to select a description or mathematical concept over another, i.e. only experience 
and applications can judge their utility. We expect that previous chapters have helped 
to change that idea, and we will show that descriptional complexity can be used to 
make the notion of intensionality more objective. 

6.3 Exception-Free Descriptions 

If we regard intensionality as avoidance of exceptions, then the question is to 
distinguish what an exception is. Let us see how difficult it is. 
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Example 6.10 

Given the sequence: 

  x = 1,2,3,5,7 

we can guess some short hypotheses or descriptions for x, simply "the sequence 1,2,3,5,7", 
or "the first four odd numbers and the number two, ordered", or "the first three natural 
numbers and the number 5 and 7", or "begin with numbers 1,2. The following two are 
the sum of their preceding two, and the last is number 7" or "the first five numbers that 
are only dividable by 1 and itself". Almost everybody would select the last hypothesis as 
the more explanatory and would predict the number 11 as the next element. 

An immediate critique to this example is that the probability of 11 as being the 
‘correct answer’ is the same (or less according to the MDL principle) and it is only 
the assumption that the concept of prime is well known by most of human beings 
what increases the value of the answer 11. However there are objective reasons to 
prefer the intensional description. The shortest description “the first four odd 
numbers and the number 2” has an exception (the number 2) which “perverts” the 
hypothesis. In general, the MDL principle has been used successful because the 
strings are long enough or the bias does, intrinsically, not allow exceptions. 

Exceptions are useful to memorise, to describe, to learn something in noisy 
situations, but they are not suitable for a robust explanation. But how can we eliminate 
exceptions? Going back to our initial claim, how can we be sure that we have a pure 
intensional description? 

The first idea can be stated informally as, “an exception is something we can take apart 
from a description, so leaving it much simpler with respect to the magnitude of the evidence removed 
or not covered”. More concretely, a description is exception-free if it does not exist a 
subdescription that produces almost all the data, i.e., there is not a reduction in the 
description that could be greater that the corresponding reduction in the described 
data. Let us formalise this. 

Definition 6.69 A description px for the data x is c-exception-free (denoted ∆c(px) 
= 0) iff there does not exist a subprogram py of px, py being a program for y and y ⊂ 
x, such that K(px) − K(py) ≥ [K(x) − K(y)] / c. Note that in the case it exists, px − py is 
the exception (and py the main rule). 

The parameter c can be tuned depending on the deductive framework and the 
approximation for computing K, which can be Kt or simply the length function. In 
the following, c is assumed to be 1. 

Obviously, a formalisation of subprogram is necessary in the deductive 
framework that would be chosen. As we will see, in the case of logical theories, this 
question is trivial but, in other cases, it can be very arduous. I will introduce the 
notion of subprogram in section 6.4. 

For the moment, let us see how Definition 6.69 works: 
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Example 6.11 

Consider the facts F = { f1, f2, …, f10 } and a theory Ta = { t1, t2 } that covers these facts 
in the following way: t1 covers f1 to f9 and, separately, t2 covers f10. Since t1 and t2 are 
separable, we can check the condition simply as K(t2) ≥ K(f10). If it is the case, we say that 
f10 is an exception with respect to Ta. In contrast, we may find a theory Tb = {t1, t2, t3) 
longer than Ta that covers the facts in the following way t1 covers f1 to f4, t2 covers f5, f6, f7 
and t3 covers f8, f9, f10. For Definition 6.69, it would be exception-free. It is said that this 
theory is ‘balanced’ if K(t1) ≈ K(t2) ≈ K(t3). Finally, we can consider another theory Tc = { 
t1 } longer than Tb which is not only balanced, but t1 cannot be split up to cover 
separately subsets of F. That is to say, Tc conciliates F. In this case, it would also be 
exception-free. 

6.3.1 Exception-Free Logic Programs 

The preceding definition of exception-free description is general enough to be 
adapted to any descriptional language. Nevertheless, this generality renders the 
comparison with other related notions difficult and it cannot be made operative 
easily without a definition of subprogram.  

The advantage of logic programs (and any other rule-based language) is that the 
notion of subprogram is direct. We just require a proper notion of partition: 

Definition 6.70 

Consider a program P as a set of Horn clauses with its minimal Herbrand model 
M+(P) equal to the set of ground literals Li such that P = Li. 

P is n-separable into the partition of different programs Π = { P1, P2, ... , Pn } iff 

 M+(P) = ∪i=1..n M+(Pi) and 

∀i=1..n  (M+(Pi) ≠ ∅) 
Definition 6.71 

P is non-subset n-separable into the partition Π = { P1, P2, ... , Pn } iff it is n-
separable into Π and  

∀i, j=1..n (Pi ⊆ Pj implies i = j). 
The existence of a non-subset 2-separation can be regarded as a condition to detect 
exceptions. However, this exception-free condition would be so strict that it would 
ban any modularity in programs. Let us introduce three other variants: 
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Definition 6.72 

P is disjoint n-separable into the partition Π = { P1, P2, ... , Pn } iff it is n-separable 
into Π and  

∀i, j=1..n (Pi ∩ Pj = ∅) 
Definition 6.73 

P is non-subset model n-separable into the partition Π = { P1, P2, ... , Pn } iff it is n-
separable into Π and  

∀i, j=1..n (M+(Pi) ⊆ M+(Pj) implies i = j). 
Definition 6.74 

P is disjoint model n-separable into the partition Π = { P1, P2, ... , Pn } iff it is n-
separable into Π and  

∀i, j=1..n (M+(Pi) ∩ M+(Pj) = ∅) 
To show how they differ, we give some examples: 

Example 6.12 

Given the following program P1= { p(a). q(X) :- r(X). r(a). } it is separable for all  the 
definitions we have given into the partition  Π = {{p(a)} , {q(X) :- r(X). r(a)}}.  

The program P2= { q(X) :- r(X). r(a). } is not separable for any of the definitions we have 
given.  

The program P3= { q(X) :- r(X). p(X) :- r(X). r(a). } is non-subset (model) separable into 
Π = {{ q(X) :- r(X). r(a)}, {p(X) :- r(X). r(a). }} but it is not disjoint (model) separable. 

The program P4= { q(a). p(X) :- q(X). p(a) } is non-subset (model) and disjoint separable 
into Π = {{ q(a). p(X) :- q(X). }, {p(a)}} but it is not disjoint model separable. 

The program P5= { s(X):- p(X), q(b). p(X) :- q(X). t(X):-p(X),q(a) } is non-subset (model) 
and disjoint separable model into Π = {{ s(X) :- p(X), q(b). p(X) :- q(X) }, { p(X) :- q(X), 
t(X) :- p(X), q(a) } but it is not disjoint separable. 

Moreover, it is trivial to show the following theorems: 

Theorem 6.25  

If a program P is disjoint separable then it is non-subset separable. 

Theorem 6.26  

If a program P is disjoint model separable then it is non-subset  model separable. 

At this point, different notions of exception can be given by using Definition 6.70 
(single partition), Definition 6.71 (non-subset partition), Definition 6.72 (disjoint 
partition), Definition 6.73 (non-subset model partition), Definition 6.74 (disjoint 
model partition) that I will dub modes.  
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Now, the informal definition that was given in general: “an exception is 
something we can take apart from a program so leaving the program much simpler 
with respect to the magnitude of the length of the elements removed” can be 
specialised to Horn logic programs. 

Definition 6.75 

A program P has e = card(M+(PE)) c-exceptions, denoted ∆c(P) = e, generated 
from PE, iff there is a partition P = { PR, PE } such that:  

l(P) − l(PR) ≥ [l(M+(P)) − l(M+(PR)) ] / c 

Definition 6.75 means that what is reduced in the length (l) of the program is greater 
than what is reduced in the consequences, but it would be slightly different 
depending on which of Definition 6.70-Definition 6.74 is used. 

The greatest value of c that still makes a program exception-free (i.e., ∆c(P) = 0) is 
known as its consilience level. On the other hand, when not indicated it is assumed to 
be 1, and, therefore, a program will be exception-free if its consilience level = 1. 
Finally, there are many ways to estimate the length of logic programs l(P), but, 
customarily, a syntactical measure such as those given in chapter 4 can be used. 

Let us illustrate the difference between explanatory induction and descriptional 
induction in an example: 

Example 6.13 

Given the facts F = { even(0). even(s(s(0)). even(s(s(s(s(0)))), ¬even(s(0)) } the following 
programs can be induced: 

P1 = { even(0). even(s(s(X)) }, which is the shortest one but it is separable in all cases and 
even(0) is an exception. 

P2 = { even(0). even(s(s(X)) :- even(X) }, which is not separable in any case and logically 
it has no exceptions.  

P'1 = { even(0) :- fant. even(s(s(X)) :- fant. fant. }, which is non-subset (model) separable, 
but it is not disjoint (model) separable. Therefore it has exceptions for the two first 
modes.  

The last program from Example 6.13 shows that a ‘fantastic’ concept can make a 
program non-separable for some modes, hiding exceptions. It is easy to prove that 
any separable program in the disjoint modes can be extended to a non-separable 
program by using a fantastic concept. We say that the concept is not fantastic (it is 
really consilient) when it must reduce the size of the conciliated part, in a similar way 
as, in the previous chapter, it should increase reinforcement. This implies that it is 
impossible to make every program exception-free, i.e., intensional. 

Although the non-subset mode alone is too strict and the disjoint mode easy to 
cheat, the non-subset mode combined with the value of c=1 for exceptions are 
appropriate to distinguish a consilient program for most applications. Indeed, 



182 José Hernández Orallo - Doctoral Dissertation 

 182 

different modes and values for c can be combined for various degrees of desired 
explanatory induction. 

The main problem of the definition of exception-free is that it must be computed 
with respect to the given data (facts), because all the possible consequences can be 
infinite. Consequently, intensionality is defined relatively to the given evidence, and 
not in an absolute way. 

It is outside of this thesis to take into account the presence of noise, but a degree 
or ratio of exceptions could be fitted to the expected ratio ε making ∆c(p) = ε. 

6.4 Subprograms and General Reinforcement 

The previous approach illustrates the application of the idea of exception to logic 
programs. However, it would be interesting to be able to apply it to any descriptional 
mechanism. In the same way, the previous chapter gave a measure of reinforcement 
for languages where the notion of rule and subprogram was clear, because it was easy 
to recognise which parts were responsible for covering each example. 

Let us generalise the detailed utility criterion represented by reinforcement and the 
idea of partition for general descriptional languages (e.g. Turing machines). For this, 
as we will see, we require a notion of subprogram. 

6.4.1 Subpart and partitions 

Definition 6.76. Subpart 

The object y is a subpart of an object x in β, denoted by y ⊆β x,  iff: 

Kβ(y|x) < log Kβ(y) 

It is interesting to compare the definition of subpart with the notion of subset. For 
instance, it is easy to show that the empty string is never a subpart of any non-empty 
string and that most objects (but not all) are subparts of themselves. It is more 
intuitive to see the idea of subpart as a cognitive notion, such a subpicture.  

Definition 6.77. Proper Subpart 

The object y is a proper subpart of an object x in β, denoted by y ⊂β x,  iff y ⊆β x 
but x ⊆/ β y. 

 

Finally, we define also a partition from Definition 6.76: 
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Definition 6.78. Partition 

A set of objects Y = { y1, y2, ..., ym } is a partition of an object x in β iff 

∀yi: 1 ≤ i ≤ m: yi ⊆β x and there exists an ordering oj of Y such that 

 x ⊆β yo1 � yo2 � ... � yom, where � represents the composition of objects. 

Note that the second condition is that x can be reconstructed from the partition. 

Definition 6.79. Reduced Partition 

The set of objects Y is a reduced partition of an object x in β iff it is a partition of 
x in β and ¬∃Y’ ⊂ Y such that Y’ is a partition of x. 

Definition 6.80. Proper Partition 

A set of objects Y = {y1, y2, ..., ym} is a proper partition of an object x in β iff 

∀yi: 1 ≤ i ≤ m: yi ⊂β x and there exists an ordering oj of Y such that 

     x ⊆β yo1 � yo2 � ... � yom , where � represents the composition of objects. 

6.4.2 Subprogram 

The idea of subprogram is derived from Definition 6.76: 

Definition 6.81. Subprogram (or subtheory) 

The object y is a subprogram of an object x in β iff 

y ⊆β x and φ(y) ⊆β φ(x) 

Definition 6.82. Proper Subprogram (or subtheory) 

The object y is a proper subprogram of an object x in β iff 

y ⊂β x and φ(y) ⊆β φ(x) 

 

Definition 6.83. Proper Program Partition 

A set of objects Y = {y1, y2, ..., ym} is a program partition of an object x in β iff Y 
is a proper partition of x and Y’ = {φ(y1), φ(y2), ..., φ(ym)} is a proper partition of 
φ(x). 

From here we could redefine the notion of exception-free by using the notion of 
subprogram. In other words, Definition 6.69 is now fully formalised. 

6.4.3 General Reinforcement 

The theory of reinforcement, as it was presented in the previous chapter, was based 
on the notion of rule necessity for the evidence. A program was composed of rules 
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and the evidence was divided into atomic facts. In the general case, however, the 
only indivisible part is a bit. 

Given a program in any descriptional mechanism (a string p) and the evidence it 
covers (a string e), a first idea is to change a bit of p and see how many bits of e are 
changed. This may give an approximation of how useful is each bit of p for covering 
the evidence, but this solution is not valid for any descriptional mechanism. Apart 
from the problem that a bit change in the program may make the program not 
computable, the worst problem is that a bit change in the program may make the 
program incorrect with respect to the representational mechanism and this could assign 
reinforcement to bits that do not deserve it. For instance, a descriptional mechanism 
with CRC (Cyclic Redundancy Code) would not allow this kind of measure, because 
it would be impossible to assign detailed reinforcement values to the theory. 

The solution, once again, must be based on a descriptional notion of necessity. In 
a first approach, we could say that the bit i is necessary for E iff K(E|p) ≠ K(E|p¬i), 
where p¬i represent the complement of bit i. However, this would usually be the case 
for every bit of p if p has no redundant information. A refinement of this idea could 
be to compare K(E|p¬i) - K(E|p) with K(E¬j|p¬i) - K(E¬j|p) but this idea gives problem 
precisely when the program quotes extensionally the evidence. 

The final solution is finally based on the notion of subprogram: 

Definition 6.84. Bit Subprogram Independence 

Given a program p and a subprogram s of it, the bit i of p is independent to s iff 

K(s|p) ≥ K(s|p¬i) 

In a similar way, 

Definition 6.85. Bit Evidence Independence 

Given a program p, its evidence e, and a subprogram s of p, the bit j of e is 
independent to s iff 

K(e|s) ≥ K(e¬i|s) 
These two definitions define two dependence arrays, VPs(1..m) and VEs(1..n), defined 
in the following way: 

Definition 6.86. Independence Arrays 

 VPsi  = 0 iff the bit i of p is independent to s. 

  = 1 otherwise. 

 VEsj  = 0 iff the bit j of e is independent to s. 

  = 1 otherwise. 

From here, we can finally obtain a correspondence matrix between the bits of the 
evidence and the bits of the program in the following way: 
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Definition 6.87. Reinforcement Matrix  

MPEi,j = ∑s is a subprogram of p[VPsi � VEsj] / ∑s is a subprogram of p 1 

The major problem of the preceding definition is that the number of possible 
subprograms given by Definition 6.81 may be too high. However, the obtaining of 
this matrix allows directly the definition of general notions of reinforcement and 
course: 

Definition 6.88. General Reinforcement  

The reinforcement of each bit i of a program p is obtained as: 

ρ(i) = ∑j=1..n MPEi,j / n 

Definition 6.89. General Course 

The course of each bit j of an evidence e with respect to a program p is obtained 
as: 

χ(j) = ∑i=1.. m MPEi,j � ρ(i) 

For instance, consider an evidence composed of 5 bits and a program of 3 bits with 
the following matrix MPEi,j = { { 0.1, 0.4, 0.7 }, { 0.3, 0.2, 0.8 }, { 0.2, 0.3, 0.7 }, { 
0.7, 0.2, 0.4 }, { 0.8, 0.1, 0.7 } }. This gives, for instance  ρ(i) = { 0.42, 0.24, 0.66 } 
and χ(1) = { 0.42 � 0.1 + 0.24 � 0.4 + 0.66 � 0.7 = 0.6 }. 

The following definitions are direct adaptations of the notions that were seen in 
the previous chapter: 

Definition 6.90. Mean General Course 

The mean course of an evidence e with respect to a program p is obtained as: 

mχ(e) = ∑j=1..n χ(j) / n 

Definition 6.91. Intensionality based on General Reinforcement 

There cannot be a bit j of e such that χ(j) < c, this value depending on the 
descriptional mechanism.  

Definition 6.92. Balanced Description based on General Reinforcement 

There cannot be a bit j of e such that χ(j) < c � mχ(e), this value c being between 0 
and 1 and depending on the descriptional mechanism.  

If Kt is used instead of K, the definitions are effective, although, in general, these 
definitions are difficult to apply if the descriptional mechanism does not clearly 
recognise the notion of subprogram. For the problem of reinforcement for general 
descriptional languages not much can be done in an efficient way. 

Let us see, though, another more practical and still general approach. However, 
this approach is not valid for general reinforcement, only for the idea of 
intensionality. 
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6.5  Projectible Descriptions and ‘Pattern’ 

Fortunately, there is another approach for the notion of exception without requiring 
the definition of subprogram. It is based on the recognition of the structure or 
projectible part of a description. 

First of all, we must formalise what is a projectible description, i.e., a description 
that can predict future evidence. 

Definition 6.93. k-Projectible Description 

A k-projectible description for a string x is a program p on a descriptional 
mechanism φ such that:  

φ(p) = y, and ∃w l(w) = k : y = xw (i.e.  x = y0..l(x)) 

w is known as the prediction of p. 

The compression ratio of an infinite projectible description with respect to its 
prediction is always infinite. For this reason we must define the relative compression 
ratio of a projectible description p for a string x with respect to this string x as 
CRφ(p|x) = l(x) / l(p). 

According to the MDL principle, given any sequence x, the optimal model in φ 
for it is x*. If x* is projectible, i.e. it allows to predict the subsequent symbols of the 
sequence x, then φ(x*)n+1 will be the most plausible prediction according to Occam’s 
razor, “the best model of the world x”. However, if x* is not projectible, this 
prediction cannot be done. For this reason, we define an ideal MDL principle based 
on a projectible variant of Kolmogorov Complexity. 

Definition 6.94 k-Projectible Kolmogorov Complexity 

The k-Projectible Kolmogorov Complexity of an object x given y on a descriptional 
mechanism (or bias) β is defined as:  

K’β(x|y) = min { lβ(p) : ∃w l(w) = k such that φβ(<p, y>) = xw) } 

where p denotes any “prefix-free” β-program, and φβ(<p, y>) denotes the result of 
executing p using input y. 

The literature has used Kolmogorov Complexity and not its projectible variant for 
prediction due to the following theorem: 

Theorem 6.27 

For every string x, K’(x) <+ K(x). 

PROOF. Every non-projectible program p can be transformed into a 
projectible program p’ = “execute p and then print 1 forever. Let us denote by c 
the length of this extra coding of “and then print 1 forever”. Hence there exists a 
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constant k=c+1 such that l(p’) < l(p) + k, i.e. l(p’) <+ l(p). This can be extended to 
the definitions of K’ and K, thus the theorem is proven. � 

The contrary relationship (K(x) <+ K’(x)) does not hold. Consider the string x = 
“1,2,3, ..., n”. The projectible program p’ = “print the natural numbers, ordered” has 
constant size, say l(p’) = c. On the contrary, the non-projectible program p = “print 
the first n natural numbers, ordered” is, in the general case, not smaller than c’ + log 
n. 

Another question is the projectible extension of Kt complexity. To extend LT-
Complexity to projectible descriptions, we must measure Cost(p) in an asymptotical 
way. Consider a machine φ  such that the output tape cannot be rectified (or simply it 
cannot go back). Cost(p)[..n] is defined as the time or machine steps such that the 
first n symbols of the definite output are placed at the beginning of the output tape. 
We will also use the following notation: Cost(p)[n..m] = Cost(p)[..m] − Cost(p)[..n]. 
From here we define LTβ(px)[n..m] = l(px) + log Cost(px)[n..m] and LTβ(px)[..n] = l(px) 
+ log Cost(px)[..n]: 

Definition 6.95  k-Projectible Length-Time Complexity 

The k-Projectible Length-Time Complexity of an object x given y on a descriptional 
mechanism β is defined as:  

Kt’β(x|y) = min { LTβ(<p,y>)[..l(x)]−l(y) : ∃w l(w) = k such that φβ(<p, y>) = xw) } 

Since LT(<p, y>) considers the length of y (the background knowledge which is 
given), this must be corrected by the term −l(y). 

Before using this definition for formalising the idea of exception, we must first 
recall some approaches in the literature. The idea of projectible description was also 
addressed by Koppel for a very similar reason to the one of this chapter, the aim of 
distinguishing pattern from data. More precisely, Koppel introduced the notion of 
sophistication with the goal of distinguish the structural part of an object [Koppel 
1988] from its data or non-compressible part of it. Sophistication is measured by the 
use of a special kind of Turing Machines φ’, which separate program from data. 
Sophistication is then measured as Soph(x) = min{l(p) : ∃d s.t. φ’(p,d) = x} with the 
restriction that p must be total, i.e., defined for all d. This last restriction precludes 
that the whole description is passed to the part of data, by maintaining an interpreter 
i of the data d’ = <p,d>. According to Koppel [Koppel 1987], “the sophistication of an 
object is the size of that part of the most concise description of that object which describes its structure, 
i.e., the aggregate of its projectible properties. For example, the sophistication of a string which is 
random except that each bit is doubled (e.g. 00110000110011....) is the size of the part of the 
description which represents the doubling of the bits”. In our opinion, this interpretation is 
not exact. In general, for complex objects, sophistication represents the size of too 
much general programs. For instance, we could use a functional interpreter with 
syntactical verifications of termination, to interpret the data as functional programs. 
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This would make Soph(x) ≤ l(i) for a great majority of complex objects for which 
there is a program under this syntactical restrictions, and would leave most of the 
structure of these objects in the data. As a result, sophistication does not represent 
the idea of pattern or structure of an object. 

Similarly logical depth, as defined by Bennett [Bennett 1988] does not represent 
the idea of the structure or real complexity of an object. Motivated by the fact that 
Kolmogorov Complexity gives high values for random strings, which have no 
pattern and structurally are simple, Bennett introduced the notion of depth, which 
measures the amount of time required for a string to be generated from its minimal 
description. But precisely, Koppel showed [Koppel 1987] that “sophistication” and 
“depth” were equivalent up to a constant. Hence, the previous rationale can be 
applied to logical depth as well. 

Consequently, we need a different approach to distinguish whether any 
description has exceptions (partially or totally extensional) or it is composed 
exclusively of pattern (it is all structure or totally intensional). The idea is to compare 
the part that is used for all the data (to the limit), which is the structure, with the part 
that is only used in some portion of the data (the exception). 

Definition 6.96  Equivalence in the Limit 

A description p’ is (n,k)-equivalent in the limit to a description p iff  

∃n ∈ N, n > 0 and ∃k ∈ Z such that φ (p’)n+k.. =φ (p)n.. 

Informally, two descriptions are equivalent in the limit if there is a point from which 
their predictions always match. If both descriptions are k-projectible with k finite 
they are always equivalent in the limit, if only one of both is ∞-projectible then they 
cannot be equivalent in the limit. Hence, the definition applies when both 
descriptions are ∞-projectible descriptions. 

Definition 6.97 Fully Projectible Description 

A description p is a fully projectible description of x given y iff <p,y> is an ∞-
projectible description of x and ¬∃p’ such that 

1. <p’,y> is (n,k)-equivalent in the limit to <p,y>,  

2. <p’,y> not extensionally equivalent to <p,y> and, 

3. LT(<p’,y>)[n+k..n+k+l(x)] < LT(<p,y>)[n..n+l(x)]. 

The second condition that p’ is not extensionally equivalent to p is for avoiding that 
given two or more equivalent descriptions, only the shortest one would be fully 
projectible28. The third condition measures that this p’ is simpler than p. Note that 
LT (and only applied to the first chunk of length l(x) where p’ and p begin to be 

                                                           
28 This condition could be removed or bounded (as well as equivalence in the limit) if one wants to 
make the definition computable. 
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equivalent) is used instead of l. Let us recall our previous example with the evidence 
as “3, 12, 21, 30, 102, 111, 120”, we can consider several projectible descriptions. For 
instance, D’1 = “3, 12, 21, 30, 102, 111, 120 and 1 forever” is not fully projectible 
because there exists a shorter description “1 forever” which is equivalent in the limit. 
In the same way, D’2 = “Start with number 3. The following three numbers are 
obtained by adding 9 to the preceding one. Continue with number 102. The 
following numbers are obtained by adding 9 to the preceding one” is not fully 
projectible because there exists a shorter description “Start with number 3. The 
following numbers are obtained by adding 9 to the preceding one” which is 
equivalent in the limit. On the contrary, the description D’3 = “numbers whose digits 
in decimal representation amounts to 3 ordered” is fully projectible. Similarly, the 
description D’4 = “repeat 3, 12, 21, 30, 102, 111, 120 for ever” is fully projectible. 
Finally, the following description is also fully projectible D’5 = “the y values of a 
polynomial y = P(x) taking for x the natural numbers” where P is a polynomial such 
that P(1) = 3, P(2) = 12, ..., P(7) = 120. 

The last two descriptions seem counterintuitive but, in some way, this is 
something logical, since a fully projectible description formalises the idea of 
explanation (and not the comprehension requirement): it describes the evidence, it 
accounts for all of it (there are no exceptions because it is fully projectible) and it can 
be related to others (because of the use of LT). And D’4, whether we like it or not, is 
an explanation for the evidence.  

6.6 Intensionality, Informativeness and Explanatory 
Induction 

Kolmogorov Complexity has been used as “a perfect theory of induction” 
[Solomonoff 1968]. However, the problems of the MDL principle for explanation 
are notorious, as they were seen in chapter 2.  

We could now define variants of Kolmogorov Complexity based on the previous 
notion of exception-free description: 

Definition 6.98 The Intensional Complexity of a string x on a bias β, denoted Eβ(x), 
is defined as follows: 

 Eβ(x) = min { lβ(px) : ∆(px)= 0} 

i.e., the shortest program for x without intrinsic exceptions. lβ(px) denotes the 
length of px in β. 

There can be short intensional descriptions whose computational cost would be so 
high that they are of little use as theories. In addition, Definition 6.98 turns out to be 
non-computable (such as K(x)). An explanatory variant of intensional complexity can 
be defined in the following way: 
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Definition 6.99 The Explanatory Complexity of a string x on a bias β, denoted 
Etβ(x), is defined as follows: 

 Etβ(x) = min { LTβ(p) : ∆(p) = 0} 

There are good reasons to choose a time-weighted definition of the best explanation. 
The intuitive view of explanation entails that the hypothesis can be explained to 
others. At the moment a system has to tell or communicate the explanation to other 
system (or internally work with it), there are two important topics: the space of the 
discourse and the time the system will need to relate it. Moreover, people and 
Science expect that nature has underlying mechanisms that emerge ‘quickly’ in our 
observations, simply because nature is not a reliable computer for executing long 
programs. 

The previous definition has the problem of detecting subprograms (in order to 
obtain ∆(p)), a thing which has been shown to be extremely difficult and language 
dependent. Fortunately, according to the notion of projectibility we can give an 
alternative definition: 

Definition 6.100 Explanatory Complexity (Projectible Version) 

The Explanatory Complexity of an object x given y on a descriptional mechanism β 
is defined as:  

Etβ(x|y) = min { LTβ(<p,y>)[..l(x)] − l(y) s.t. <p,y> is fully projectible } 

The string y, which we have supposed empty in the previous example, represents the 
context or previous knowledge where the explanation must be applied. In the 
following, β will be omitted. In the same way it is done with K and the MDL 
principle, we can denote with SED(x|y) the Shortest Explanatory Description for x 
given y, i.e. the first shortest fully projectible (in lexicographic order) description for 
x given y. Logically, l(SED(x|y)) = Et(x|y). 

Note that due to the effect of this easy projectibility shown by description D’4 of 
the previous example we have that Et(x) <+ l(x) + log l(x), something that also held 
for Kt(x). However, in general Et(x) and Kt(x) may differ significantly, because 
although there are many ways to hide extensional data by using an intricately coding 
(in order to feign an intensional description), this must take some space and/or time. 

However, we still have that for most strings, SED(x) will be just the rote 
description “repeat x forever” which does not entails any comprehension. A first 
idea to avoid this phenomenon is to force the description to be shorter than the data 
and to say that the data has no explanation if this is not the case. However, most of 
everyday data is not compressible and it is still comprehended. 

Another approach is to exclude the descriptions that are generated by rote 
learning, i.e. the extensional repetition of part or all the data. This idea is not new and 
two evaluation criteria such as reinforcement and cross-validation are inspired in it. 
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For instance, if we remove the last element of the previous series, i.e. “3, 12, 21, 30, 
102, 111”, it is not much expectable that D’4 and D’5 would be produced but D’3 can 
still be generated. In general29, 

Definition 6.101 Stability on the Right 

A string x is m-stable on the right in the descriptional system β iff  

∀d, 1 ≤ d ≤ m : SEDβ(x-d) is extensionally equivalent to SEDβ(x) 

In other words, a string x is m-stable on the right if taking m elements from the right, it 
still has the same best explanation. These m elements, if given a posteriori, are 
considered reinforcement or confirmation of the explanation, and, if given a priori, 
are considered redundancy or hints to help to find the explanation.  

Consequently, although rote learning can be trickily used to make an extensional 
description fully projectible, reinforcement or cross-validation is shown to be a 
methodological criterion to avoid this phenomenon. 

There is still another reason to support the previous notion of 
comprehension/intensionality as an ontological principle. Why must we avoid rote 
learning? Why must we anticipate? Why do children find more complex patterns? 
[Marcus et al. 1999] Why are we genetically programmed to open any black box we 
are presented? This search for more informative hypotheses instead of the easiest 
ones may lead to fantasy, but this is not dangerous as the system can interact with the 
world in order to refute the hypotheses. 

This informativeness or investment in the hypotheses was advocated by Popper 
for the scientific method, and as we have seen, it is equally applicable for cognition. 
Even if we make the very strong assumption of Occam’s razor, i.e., things in nature 
are not complex unnecessarily, the previous rationale is justified by the fact that, as 
well as every incompressible string has compressible substrings, most compressible 
strings have incompressible substrings by their own, because the shorter the less 
worthy that is to compress. If the evidence is presented incrementally, it is better to 
invest in more informative or general hypotheses instead of finding the optimal one 
for each chunk that finally will turn out to be not part of the whole description of the 
whole evidence. This rationale is further justified by the following theorem: 

Theorem 6.28 Anticipation 

For every descriptional mechanism β, there exists a constant c which depends 
exclusively on β such that for every string x of length n with SED(x) = x* and 
l(x*)= m s.t. m < n, then any partition x = yz, l(y) < m − c such that SED(y) is not 
equivalent in the limit with x*. 

                                                           
29 This definition is particularised to sequences. Hence, the stability is measured with respect to the last 
symbols. In the general case of cross-validation, a subset of elements is removed for obtaining the 
hypotheses and then validated with the rest.  
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Proof 

Consider any string x and SED(x) = x* with l(x*)= m s.t. m < n. Take ANY prefix 
y such that l(y) < m − c. It has a projectible description py = “print y for ever” with 
l(py) = l(y) + c’ < m  −  c  +  c’, this constant c’ being the space which is required for 
coding “print .. for ever”. Since the computational cost of py is linear, say k’ � l(x), 
it is sufficient to choose c ≥ c’ + log k’ to ensure that the description py is shorter 
than x*, and LTβ(py)[..l(x)] < LTβ(x*)[..l(x)] because log k’ � l(x) = log k’ + log 
l(x). Moreover, py and x* cannot be equivalent in the limit because x* is fully 
projectible and, by definition, there does not exist a description with less LT 
equivalent in the limit. � 

It is clear that the idea of stability or cross-validation is supported by the previous 
theorem. In fact, it is an innate aesthetic preference in the explanations that human 
beings generate. Why is it more pleasant to give the answer 23 to the series 
“3,7,11,15,19,...” than to give the answer 3?  

The definition of stability and the previous theorem serve as a formalisation and 
justification of intensionality, respectively. However, the projective character of 
Definition 6.101 and its avoidance of rote learning, make it a first criterion to detect 
when comprehension has taken place. 

As a result of this section, stable objects give SED descriptions where 
comprehension has taken place, i.e., comprehensive descriptions. 

6.6.1 Descriptive vs. Explanatory Induction 

As it was seen in chapter 2, the principle of simplicity, represented by Occam’s razor, 
selects the shortest hypothesis as the most plausible one. 

It is remarkable (and often forgotten) than Kolmogorov Complexity just gives 
consistency to this theory of induction, but Occam's razor is assumed30 but not 
proven. Nonetheless, some justifications have been given in the context of physics, 
reliability and entropy, but, in my opinion, it is the notion of reinforcement (or cross 
validation) which justifies the MDL principle in a more natural way. As we saw, the 
higher the mean compression ratio the higher the mean reinforcement ratio. 

The problem of the MDL principle for explanation is that for the sake of 
maximum mean compression, some part of the hypothesis cannot be compressed at 
all, resulting in a very compressed part plus some additional extensional cases. This 
extensional part is not validated, making the whole theory weak.  

                                                           
30 Furthermore, in the case the universal distribution 2−K(x) is assumed, giving a priori predilection of 
short programs, the a posteriori optimality of the MDL principle is proven, supposing the randomness of 
the hypothesis to the data [Vitányi & Li 1997]. But precisely in explanatory prediction, if the hypothesis is 
random to the data, it cannot be the cause! 
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Summing up, the MDL principle says that, in absence of any other knowledge 
about the hypotheses distribution, we should select the prior P(h) = 2-K(h). For 
explanatory induction I propose to use P(h) = 2-Et(h) instead. This principle has been 
dubbed the shortest explanatory description (SED). In this way, priority is given to 
the avoidance of extensionality over simplicity. This complies with Chaitin’s view of 
the scientific method: “Scientists consider the simplest theory to be the best one, and that if a 
theory is too “ad hoc”, it is useless” [Chaitin 1974]. A compromise between both thing is 
represented by SED. 

There are other approaches to finding intensional theories. Wexler claimed that 
the subset principle was an intensional principle [Wexler 1992], for the case of 
positive data only. The subset principle (also known as Least General Generalisation 
(lgg) by Plotkin [Plotkin 1970]) means that if two theories explain some positive data, 
we should select the more specific one, because it is the more informative (and the 
more falsifiable). The problem of the subset principle is that it must be combined 
with some simplicity criterion, because, if not, the more specific hypothesis is the 
data themselves, which is completely extensional. 

6.6.2 Unquestionability 

It has been frequently argued in philosophy of Science and induction that the 
plausibility and unquestionability of a theory or explanation not only depends on the 
intrinsic characteristics of the explanation but also to the ability of finding alternative 
explanations. 

Let us make formal and objective this idea. At first sight it seems that stability 
avoids this but, if we restrict to stable descriptions, we can still modify any 
explanation p with the addendum “Execute p but print a ‘1’ every hundred symbols 
are printed” which would be comprehensive for the data but would differ from p in 
the limit, and would be only a little longer. 

For this reason, we must extend the previous notion of stability and apply it to 
descriptions: 

Definition 6.102 Plausibility on the Right 

A fully projectible description p for a string x is (c,m)-plausible on the right in the 
descriptional system β iff  

∀d, 0 ≤ d ≤ m : LTβ(SEDβ(x-d))[..l(x-d)] + c > LTβ(p)[..l(x-d)]. 

Intuitively, a description is plausible if it is one of the c-best explanations for x and 
this holds even if we remove up to m elements from the right of x. 

Once the notion of stability has been extended, we can face unquestionability in 
the following way: 

Definition 6.103 Unquestionability 



194 José Hernández Orallo - Doctoral Dissertation 

 194 

A fully projectible description p for x is (c,m)-unquestionable in the descriptional 
system β iff it is (c,m)-plausible and there does not exist another (c,m)-plausible 
description p’ for x. 

This is a more restrictive condition as c and m are greater. In order to augment these 
two parameters and still have some unquestionable descriptions we must make the 
strings larger. For instance, if the length of the portion “print a ‘1’ every hundred 
symbols are printed” is c’, then, in order to obtain a (c,m)-unquestionable description 
with c > c’ we would have to increase the length of x over 100 symbols. 

6.7 Information Gain and Intensionality 

One may think that informativeness, in the sense of Popper, and intensionality are 
quite the same thing because both avoid extensional descriptions. However, 
computational information gain is quite different from intensionality. G implies that 
the theory is creative or informative. On the contrary, intensionality avoids patches 
and extensional exceptions in the theory. As we have said, though, the construction 
of the n−1 order polynomial for n points of data is a systematic method, so there is 
always an ‘easy’ intensional description for any evidence. The major coincidence 
between intensionality and a high value of G(x|y) is that extensional quoting is 
avoided, as the next theorem shows: 

Theorem 6.29 

Given an efficient description x for a long data y, such that x contains a sequential 
quoting Q of a random sequence q from y of significant size, namely, l(q)=e > log2 
l(y), then x is not intensional and G(x|y) < 1−e/l(x). 

For instance, 1,000 bits of data with a description of length 200 bits that contains a 
sequential quoting of 120 bits is not intensional and G(x|y) < 0.4. 

PROOF. Since Q is a quoting such as “Print yk, yk+1, ..., yk+e−1” then CR(Q) = e / 
{mfq � e + afq} ≤ 1. The first assertion, x is not intensional, is obvious by choosing 
Q as the exception and the rest of T removing Q as the general rule G. 

Then, since n > 1, the compression of the whole theory CR(T) > 1, then 
CRφ(T)(G) ≥ CR(T) because CR(Q) ≤ 1, and l(φ(T) − φ(G)) / {mfq � (l(T) − l(G)) + 
afq } ≤ 1, because the first term is precisely CR(Q). 

For the second assertion, we begin from the definition of gain, Gβ(x | y) = Kt(x | y) 
/ Kt(x). Since there is a part of x which is exactly in y, it can be recognised from 
the input y by only selecting the beginning of the sequence in y and the length e. 
Coding this information Kt(q | y), in any case, cannot be greater in length than 
log(l(y)) + cl, because a position can be coded by a usual digital notation and it 
cannot be greater in time than l(y) + ct, to traverse the sequence y. Jointly, we have 
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that Kt(q | y) ≤ log(l(y)) + cl + log(l(y) + ct) = 2 � log(l(y)) + clt. Since y is long, clt can 
be ignored. 

Since q is random, Kt(q) ≥ l(q) + log l(q) = e + log e ≥ e. The term Kt(x) can be 
decomposed into the cost of describing q and the code of describing the rest, say 
g, namely, Kt(x) ≅ Kt(g) + Kt(q). However, Kt(x | y) is exactly Kt(g | y) + Kt(q | y). 
Since Kt(g | y) is always less or equal than Kt(g) and we have stated that Kt(q | y) ≤ 2 
� log(l(y)) then Kt(x | y) ≤ Kt(g) + 2 � log(l(y)). From here, G(x | y) = Kt(x | y) / Kt(x) 
≤ {Kt(g) + 2 � log(l(y))} / {Kt(g) + Kt(q) } ≤ {Kt(g) + 2 � log(l(y)) } / { Kt(g) + e } = 
{Kt(g) + 2 � log(l(y)) + e − e } / { Kt(g) + e } = 1 − { e − 2�log(l(y)) } / { Kt(g) + e }. 
Since e  > log2(l(y)) and l(y) is long enough we can ignore the term log(l(y)), giving 
G(x | y) ≤ 1 − e  / { Kt(g) + e } 

Since Kt(g) + Kt(q) = Kt(x), by using again the value of Kt(q), then we have that 
Kt(g) ≤ Kt(x) − e and we finally have that G(x | y) ≤  1 − e / { Kt(x) − e + e } = 1 −  
e / Kt(x) and since log l(x) ≤ Kt(x) ≤ l(x) + log l(x) ≈ l(x) then G(x | y) ≤  1 −  e / l 
(x). � 

Apart from these commonalties between gain and intensionality, they express quite 
different but compatible notions, which are worth combining. The idea is to obtain 
explanatory descriptions and to preserve those which are valuable in terms of 
computation gain. In other words, free computational resources (time and space) 
should be invested in informative hypotheses. 

As a result we are able to counter two assertions from the advocators of the MDL 
principle. Their first claim is: “a model that is much too complex is worthless, while a model 
that is much too simple can still be useful.” [Grünwald 1999]. My response is that a model 
that is evident or extensional is worthless, while a surprising model or intensional can 
still be useful. In the same line, Grünwald presents “another way of looking at Occam’s 
Razor” as “If your overfit, you think you know a lot but you do not. If you underfit, you do not 
know much but you know that you do not know much. In this sense, underfitting is relatively 
harmless while overfitting is dangerous”. However, since most of data sequences are 
incompressible, the MDL principle gives no knowledge at all, in general. Maybe not 
knowing, i.e., ignorance, is relative harmless, but it is also useless.  

In conclusion, the MDL principle works well in those environments where the 
bias does not allow extensional descriptions or where the data is huge and from 
statistical or imperfect sources. But, when faced to a concrete learning problem or in 
scientific discovery, we have to tune length, computational time, intensionality and 
informativeness of descriptions according to the expectation we have about the 
source of knowledge. In our view, Occam’s Razor should be understood in this non-
autistic way. 
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6.8 Intensionality, Learning, and Meaning 

Chomsky [Chomsky 1986a] states that grammatical principles are intensional, not 
extensional. He says they are part of the I-language, which includes a “universal 
grammar” and some other properties acquired by experience. He even argues that 
there may not even be a coherent notion of E-language. 

The question then was centred in discovering how children acquired these I-
language from an evidence that is mainly extensional. This is just the problem of 
learning human language, which it is just like any other learning problem with some 
particular traits. Concretely, it is especially troublesome the so-called “Plato’s 
problem” or what Chomsky called [Chomsky 1966], following Descartes, the 
problem of the “poverty of stimulus”. This is one of the main questions of linguistics 
and learning, because it has been long accepted that children receive little negative 
evidence [Brown and Hanlon 1970], [Wexler and Culicover 1980], and, it has been 
shown that learning from positive data only is much harder than learning from 
positive and negative evidence [Angluin 1980]. This led Chomsky to think that 
children had innate principles of grammars, a universal grammar, because, if not, it 
would be impossible for them to learn human language.  

There have been several proposals to address “Plato’s problem” or the case of 
learning from positive data only [Muggleton 1984], the MDL principle also being 
among them. Another approach has been the subset principle: “every structure that 
is grammatical under A is also grammatical under B, then choose option A if it is 
consistent with the input”, i.e., one would select the most specific theory in order to 
avoid overgeneralisation. In [Wexler 1993] it is even argued that “the subset principle 
is an intensional principle”. However, this approach has had many problems when 
formalised because the most specific theory is always the data itself. 

I propose a solution to this problem as a combination of the notions of 
intensionality in this chapter with Wexler’s notion of ‘intensionality’, understood as 
avoidance of generality. A good principle for positive evidence only would be to 
select the most specific theory that is intensional, i.e., does not have many 
exceptions. This solution will be essayed in the next chapter, although not for natural 
language problems. 

Fortunately, recent results [Marcus et al. 1999] have shown that children are able 
to learn virtually any pattern, which discredits the theory of innatism. Moreover, it 
shows that children usually overgeneralise, and find more intensional (without 
exceptions) descriptions, such as the over-regular formation of past tenses in English. 

Although in inductive inference is not fair to select a selection criterion as we 
have commented, this could be different for the problem of learning human 
language. Quite possibly there is not a universal grammar as Chomsky postulated, 
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but it may exist a concrete and innate selection criterion which is applied by children 
in order to learn human language. 

In our opinion, this criterion could be closely related to intensionality, to the idea 
of comprehending the whole evidence, the whole sentence. As Hofstadter pointed 
out [Hofstadter 1979]: “It would be nice if we could define intelligence in some other way than 
“that which gets the same meaning out of a sequence of symbols as we do”. [...] This in turn would 
support the idea of meaning being an inherent property.” 

This, indeed, is not only applicable for the first years of learning human language 
but it is necessary for understanding context, sense and intention for the rest of life. 
Chapter 8 will inquire on this idea of understanding and the relationship between 
intensionality and the notions of explicit and implicit, based on information gain. At 
the end of chapter 9 other issues about language and communication will be 
discussed. 

Finally, there is another use of the terms intension and extension which is more 
related with philosophy of language, following classical definitions of these terms 
[Cohen and Nagel 1993]: “A term [an element of a proposition] may be viewed in two ways, 
either as a class of objects (which may have only one member), or as a set of attributes or 
characteristics which determine the objects. The first phase or aspect is called the denotation or 
extension of the term, while the second is called the connotation or intension.” 

There have been many philosophical approaches (Kripke, Carnap, Montague and 
others) to formulate logics that could account for assertions and other expressions 
which abound in natural language whose meaning depends on an implicit context or 
index, such as time or spatial position. These logics are called intensional (or 
indexical logics). One of the most famous formalisms is the (Kripke-style) indexical 
semantics, in which context sensitive expressions are interpreted as denoting values 
that vary over a space of “possible worlds”. 

A concrete approach in this line is the so-called “intensional logic” [van Bentheme 
1988] which studies such ‘intensional’ phenomena in human reasoning as modality, 
knowledge, or flow of time. These all require richer semantics than standard truth 
values in one static environment, including modal logic, tense logic, and conditional 
logic, all of which illustrate motivations coming from philosophy and linguistics.  

This engages with the important connection between intension and intentionality, 
for many semantical systems, such as extensional model theory, which are limited to 
extensions, and cannot provide plausible accounts of the language of intentionality. 
However, an account of intention falls out the scope of this thesis. 

6.9 Summary and Contributions of This Chapter 

The notion of intensionality is closely related with that of information gain and 
reinforcement. A completely extensional theory has no information gain and it is not 
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reinforced. However, the question is more complicated when it is realised that there 
can be partial extensionalities in the theory, i.e., exceptions. How to detect and 
measure them has centred the interest of this chapter. The idea of compression is 
related to the notion of intensionality but it still allows partial extensionalities, so they 
differ significantly in general. Nonetheless, it has been shown that it is impossible to 
determine the notion of intensionality without the idea of simplicity or descriptional 
complexity. 

Section 2 presents in an informal way the distinction between intensional 
definitions and extensional ones. Section 3 formalises the notion of exception and 
consequently the idea of exception-free description. The notion is particularised for 
logical theories (or any model and rule based language). 

In section 4, the previous notion is generalised for any descriptional language. In 
order to do this, it is necessary to formalise previously some blurred notions such as 
subpart and subprogram. This generalisation allows to define a measure of general 
reinforcement, too. 

Section 5 introduces a different approach for distinguishing between pattern (or 
structure) and data, under several refinements over the idea of projectible 
descriptions. 

From the initial notion of exception-free description and that based on projectible 
description, several variants of descriptional complexity are introduced in section 6, 
such as intensional complexity and explanatory complexity. The distinction between 
descriptive induction and explanatory induction is illustrated and an anticipation 
theorem is proved, suggesting the seek for more informative theories instead of the 
shortest ones, something that was already advocated in chapter 5. 

Section 7 establishes the connection between the notion of information gain of 
chapters 4 and 5 with the notion of intensionality. 

Section 8 examines the relationship between the notion of intensionality 
presented in this chapter and the original sense of the word intension, more related 
with language and meaning. 

In the end, this chapter does not only contributes with a theory of intensionality 
but many other interesting concepts have been introduced along the way: 

• The idea of intensionality is formalised in terms of avoidance of exceptions, 
these seen as extensional or non-validated parts of a theory.  

• The idea is directly applied to logical theories. 
• The porting of intensionality and reinforcement to any descriptional language 

is essayed, based on a formal and general definition of subprogram. 
• Different concepts based on descriptional complexity are introduced, such as 

projectible descriptions and stable descriptions, which will be useful to grasp 
the implications of the term ‘comprehension’.  
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• The definition of an explanatory variant of Kolmogorov Complexity allows to 
define an explanatory counterpart to the MDL principle. 

• It is formally shown that intensionality is closely related to information gain, 
since extensional descriptions are not intensional nor informative. 

• Explanation is also related to the notion of unquestionability, given when there 
are not alternative explanations. 

This chapter closes the introduction of new measures and notions, as well as their 
theoretical comparison, which began in chapter 3. The following chapters apply these 
measures for very different purposes and compare them in a more practical way. 

Within the specific applications of intensionality, we will see in chapter 9 the 
application of intensional / extensional parts of a database. 
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Abstract: this chapter shows the application in practice of most of the measures that have been 
developed in the previous chapters. The most classical criteria for the evaluation of Logic Programs, 
especially two variants of the MDL principle, are compared with reinforcement, intensionality and 
gain. In terms of plausibility, reinforcement is shown to be manifestly better than the MDL 
principle, either for whole positive evidence, partial positive evidence and partial positive and negative 
evidence. Intensionality shows in which degree the data is ‘conciliated’ by the theory, and in some 
cases it could be seen as a prerequisite (abduction, explanatory reasoning, etc.). Finally, for the case 
of evaluation, gain is used to know when a real learning has taken place, i.e., the theory is original 
with respect to the data. Apart from evaluation, the question of how reinforcement and gain can be 
combined for guiding a machine learning algorithm is discussed. First, it is shown that both 
enumeration algorithms and randomised data-driven approaches are compatible with an increase of 
gain. Secondly, a data-driven approach can be constructed with the help of genetic programming, 
where the selection criterion (oblivion criterion) is a combination of the optimality of the program (the 
individual) and the gain (unusual or rich genotype). 

Keywords: Logic Programming, ILP, Machine Learning, Inductive Algorithms, 
MDL principle, Genetic Programming, Enumeration Algorithms, Space Limitations, 
Generality, Learning from Positive Evidence. 
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7.1 Introduction 

The previous chapters have been introducing different concepts and ideas about 
informativeness of theories, reinforcement, and intensionality. Many of the 
applications have already been presented when these concepts were developed. 
Among these applications, we saw the difference between explicit and implicit, the 
recognition of what is to discover, the notions of authentic learning and hints about 
the problem of creativity, the evaluation of deductive systems, especially logical 
theories, a measure of detailed reinforcement, for measurement or ontological 
purposes and, finally, a clarification of the notion of explanation and comprehension 
based on intensionality. Nonetheless, it would be strange that a work on fundamental 
issues of inference processes would not have even more applications, and, desirably, 
of more practical character. 

This chapter and the following two present a series of instrumentalisations and 
applications of the most relevant notions and constructions seen in this work. 
Concretely, this chapter centres on evaluation, which, logically, is the first direct 
application of every measure. We compare different measures for the evaluation of 
inductive theories, expressed in a logical framework. The classical notion of 
generality, size complexity, the MDL principle based on model complexity and the 
MDL principle based on proof complexity, which have been studied [Conklin and 
Witten 1994] [Sommer 1995b] and applied [Muggleton et al. 1992], [Muggleton and 
Page 1994]) for ILP, are compared with the measures which have been introduced in 
this work: information gain, reinforcement, and, intensionality. We will consider the 
case of learning from whole positive evidence, partial positive evidence and partial 
positive and negative evidence. The results are quite revealing; reinforcement 
(conveniently weighed with generality) is the best criterion by far, and information 
gain and intensionality are also interesting measures to evaluate hypotheses. 
Moreover, in the case of noisy evidences, where the MDL principle has behaved 
more successfully, it will be seen that this is precisely because of its blindness. 
Instead, a measure such as reinforcement that can give an error ratio should be used 
to obtain more accurate results. 

Evaluation criteria can be considered ontological/epistemological or 
methodological. Some epistemological criteria are useful as methodical criteria, just 
as some methodological criteria turn out to be epistemological as well. For instance, 
the MDL principle says that the shorter the more probable but simplicity is also 
convenient for methodological purposes. It is precisely the methodological part 
which still shows more advantages for our evaluation criteria. In section 3 we discuss 
how the search for hypothesis must be tackled by the use of the criteria shown in the 
previous section. Informativeness (the effort invested) is used when the theories are 
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to be pruned because of space necessity. Consilience can be used to join rules in a 
learning algorithm. Finally, reinforcement gives a detailed evaluation for each rule of 
the theory, and thus allows discerning which rules are to be revised, as we saw in 
chapter 5. As it was also seen, some evidence can be forgotten without problems, 
depending on how well covered it is. 

7.2 Evaluation of Inductive Logical Theories 

In chapter 4, when dealing with information gain and deduction, we introduced some 
measurements to evaluate a logical theory, such as the proof complexity and the 
model complexity. We used them to evaluate the best axiomatic theory. In this 
section we will use some of them and others to evaluate inductive logical theories.  

In the paper “Complexity-based Induction” [Conklin and Witten 1994], a slanted (in 
my opinion) comparison of evaluation criteria is presented, concretely, between the 
MDL principle based on model complexity and the MDL principle based on proof 
complexity.  We will counteract the results of that article with much more evaluation 
criteria and the same examples, although we will consider more theories for them, 
theories that were not considered by Conklin and Witten because their conclusions 
would have been less conspicuous. 

In the following, I will illustrate the application of the measures introduced by 
Conklin and Witten, some other measures not considered by them (but clearly better) 
and the different measures that have been presented in this work. 

The measures we are going to consider are: generality degree of the theory, the 
length of the theory (or Covering MDL), Descriptional MDL based on Model 
Complexity, Descriptional MDL based on Proof Complexity, Reinforcement, 
Intensionality and Information Gain. Our distinction between covering MDL and 
descriptional MDL is that of Conklin and Witten and it is necessary to clarify when 
the theory can cover more facts than those given by the evidence (i.e. the theory 
generalises the evidence). This is desirable up to an extent. By Covering MDL it is 
meant the shortest theory which covers the evidence. By Descriptional MDL it is 
meant the shortest way to code the evidence, i.e. to transmit it, and 
overgeneralisations are penalised. 

The comparison of all these criteria will be empirical. Although, in the following, 
we will consider only one example, the reachability relationship, in [Hernández-
Orallo and García-Varea 1999] a specific theoretical discussion about the non-
informativeness of the MDL principle can be found. 

Before making the comparison we must introduce some of the measurements that 
have not been presented yet: Generality, Descriptional MDL based on Model 
Complexity and Descriptional MDL based on Proof Complexity. 
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7.2.1 Generality Measures: GD(TE) and g(H) 

The first method that was used for induction of logic programs was the relative least 
general generalisation (rlgg) introduced in the late 1960s by Reynolds and Plotkin 
[Plotkin 1970]. The reason for using the most specific generalisation is to avoid 
overgeneralisation. As we saw in the previous chapter, the subset principle [Wexler 
1992] is simply this avoidance of overgeneralisation, i.e., if two hypotheses cover the 
data, we select the most specific one.  

The most general hypothesis is represented by ┬ and the most specific hypothesis 
is represented by ⊥. Note that the subset principle (without restrictions such as the 
rlgg, which only allows one clause per predicate) always give ⊥ + E. However, the 
generality measure is useful when combined with other criteria. Let us first introduce 
a measure of generality for logic programs: 

Definition 7.104. The Generalisation Degree of a logic program P with respect to 
a set of ground literals E, denoted GD(PE), is defined as follows:  

GD(PE) = card M+(P) / card(E+) 

M+(P) being the model of P. If GD(PE) < 1, we have that the program does not 
cover all the samples, so some exception should be added. If GD(PE) > 1, which is 
the general case, the idea is adjusting to GD(PE) = card(Total Positive Possible 
Examples) / card(Presented Positive Examples) but, obviously, the total of positive 
possible samples is not known a priori.  

The previous measure, however, is not applicable in many situations, since card 
M+(P) can be infinite. For this reason, there is better measure for the generality of a 
hypothesis: 

Definition 7.105. [Muggleton 1995] Let H be a wff (well-formed formula) and 
D be a probability distribution over a (possibly infinite) set of wffs X. The 
generality g of H is defined as:  

g(H) = ∑x∈X, H |= x D(x) 

g(H) is just the probability that an instance drawn randomly from D will be entailed 
by H. According to the Central Limit Theorem, this measure can be approximated 
given a sufficiently large random sample S from D, the proportion of S entailed by H 
being an arbitrarily good estimate of g(H): 

7.2.2 The MDL principle based on Model Complexity 

We saw in chapter 4 a way to compute the model complexity of an evidence with 
respect to a program MC(ET). This is based on the length of coding the rules of the 
program in the following way [Conklin and Witten 1994]. 

l(P) = 1 + log (v + 1) + 2 bits per literal + the size of each literal 
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computing the size of each literal as size(l) = a log (v + c), a being the arity of the 
predicate of literal, c the number of constants in the program and v being the number 
of variables of the rule with more variables. 

The MDL principle for logic programs can be defined in terms of Model 
Complexity (MC). If the theory T covers exactly the evidence E, i.e, GD(TE) = 1, 
we have that MC(TE) = L(T), and we talk indistinctly about descriptions and 
theories. 

But in the case that T does not cover all the examples, i.e, GD(TE) < 1, we have 
two options, we can augment it with the exceptions or quote them separately. In both 
cases the measure should be the same, so we remake the definition accordingly: 
MC(TE) = L(T) + L(E − M+(T)). 

Finally, in the case that GD(TE) > 1, more elements than the positive evidence 
can be deduced, so we need to remove the extra consequences which are not from 
the evidence, MC(TE) = L(T) + L(M+(T) − E). This makes the final definition of 
MC(TE):  

MC(TE) = L(T) + L(M+(T) − E) + L(E − M+(T)) 

In [Conklin and Witten 1994] the term L(M+(T) − E) is substituted by L(E) when 
L(E) < L(M+(T) − E), but, in my opinion, this is not fair, because in that case, T 
would be useless to describe the data. Moreover, this would require an extra bit to 
distinguish between both situations. 

The most efficient way of measuring this L(M+(T) − E) is given by the following 
formula: 
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And finally the MDL principle (a first version) is defined as (supposing that the 
theory is always augmented to cover all the evidence): 
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7.2.3 The MDL principle based on Proof Complexity 

The proof complexity measure PC(E|T) [Muggleton et al. 1988] [Muggleton et al. 
1992] was introduced in chapter 4 (Definition 4.29) as LPC(E|T). We just present the 
variant of the MDL principle based on this variant: 

 MDL2(TE) = L(T) + PC(E|T) 
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7.2.4 Information Gain revisited: G (TE) 

In chapter 4 we estimated G(E|T) for logical theories. The estimation of  G(T|E), the 
explicitness of a theory with respect to the evidence is more complex, because it 
depends on the inductive method which would be used. 

However, there are cases that are always the same for every inductive algorithm. 
The theory T = E, i.e. T =  ⊥ + E, is generally the easiest one to find, the most 
explicit one. In the case of logic programs, a rule p(X,Y) when there is a fact in the 
evidence p(a,b) is also easy to find and short to describe from the evidence (take 
example p(a,b) and generalise it, denoted by cgen(p(a,b))). On the contrary, invented 
predicates are difficult to find. According to these ideas, a rough approximation to 
the explicitness of a theory can be defined as follows: 

Let us consider the background knowledge B jointly with the evidence E and the 
theory T. Then we have to consider p= number of predicates of <E,B,T>, px = 
number of invented predicates (new predicates of T), n = number of facts of E, c = 
number of constants and different variables of <E,B,T>, cx = number of constants 
which appear as new in T with respect to <E,B>, and v = number of different 
variables of <E,B,T>. 

Definition 7.106. Approximation of Gain for Logical Theories:  

G(T | <E,B>) =  log (v + 1) + log px + log cx + 

   for each literal s of T: + 1 + 

      if s ∈ E then add:  1 + log n 

      if t ∈ E and s = cgen(t)  1 + 1 + log p 

      else    1 + 1 + log p  + a � log (c+v) 

A final bit is reckoned to indicate the case that the theory covers all the 
evidence (i.e. GD(TE) > 1), and in this case the extensional facts of 
the theory exactly equal to the evidence are not taken into account 
(cost = 0), and, therefore, need not be transmitted. 

7.2.5 Reinforcement Revisited 

For positive evidence, the mean course mχ(E|T) is a very convenient way of evaluate 
the theory. However, we must compensate the cases where the theory is much too 
general. 

On the other hand, we must also consider the negative evidence. We will select 
mχ0

 which was seen in chapter 5, because it weighed independently the values of ρ+
 

and ρ−
. 

Another measure that will be used is derived from the generality degree seen 
before and this measure of mean course. Namely, 
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mχ’ = mχ � (1 - 0.5f + f · 2−GD) 

where f = (n
+
 − n

−
) / (n

+
 + n

−
), with n+ being the number of positive examples 

and n− being the number of negative examples.  

It is important to note that this formula can give a value of mχ’ slightly greater than 
1. If f > 0 (more positive examples than negative ones) then generality is penalised 
because it is easier. Contrariwise, if f < 0 (more negative examples than positive ones) 
then generality is favoured because it is more difficult. Logically, if GD = 1 then mχ’ 
= mχ. 

 

Now, given these new measurements and those seen in the previous chapters we will 
compare them in different situations. 

7.2.6 Example 

First, we are going to use one of the most classical examples in ILP, also revisited by 
[Conklin and Witten 1994], which is originally discussed by [Quinlan 1990] and 
describes the connection or “reachability” relation in a network. The signature 
comprises two binary predicates reach and linked, along with c = 9 constants {0,…,8}. 
The background theory B is composed of 10 extensional facts: 

B = { linked(0,1), linked(0,3), linked(1,2), linked(3,2), linked(3,4), linked(4,5), 
linked(4,6), linked(6,8), linked(7,6), linked(7,8) } 

This background is represented in the following figure: 

 8 8 8 8

 5 5 5 5

 7 7 7 7

 4 4 4 4

 3 3 3 3

 6 6 6 6

 2 2 2 2

 1 1 1 1

 0 0 0 0

 
Figure 7.1. Graph of the Reachability Example 
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This background knowledge has the following length: 

l(B) = log(0+1) + 1 + 10 � (log 1 + 1)+ 20 log (9) = 11 + 20 log 9 = 74,4 

7.2.6.1 Inducing from Complete Evidence: All the Positive Samples 

This is the easiest case, because the closed world assumption is right here: we have all 
the positive samples and all the rest are negative. 

In this case, the evidence E is a complete specification of the predicate reach 
composed of 19 facts out of the possible 72 combinations: 

E = { reach(0,1). reach(0,2). reach(0,3). reach(0,4). reach(0,5). reach(0,6). reach(0,8). 
reach(1,2). reach(3,2). reach(3,4). reach(3,5). reach(3,6). reach(3,8). reach(4,5). reach(4,6). 
reach(4,8). reach(6,8). reach(7,6). reach(7,8) } 

with l(E) = log(0+1) + 1 + 19 � (log 1 + 2) + 38 log (9) = 39 + 38 log 9 = 159.5 

The theories shown in table 1 might be induced [Conklin and Witten 1994]: 

 

Theory Program Comment 

T1 reach(X,Y) T1 = ┬  

T2 reach(0,1). reach(0,2). reach(0,3). reach(0,4). reach(0,5). 
reach(0,6). reach(0,8). reach(1,2). reach(3,2). reach(3,4). 
reach(3,5). reach(3,6). reach(3,8). reach(4,5). reach(4,6). 
reach(4,8). reach(6,8). reach(7,6). reach(7,8) 

T2 = ⊥ + E  

T’2 reach(0,X). : ρ= 1 − 2−7 ≈ 0.992 

reach(3,X). : ρ= 1 − 2−5 ≈ 0.969 

reach(X,8). : ρ= 1 − 2−5 ≈ 0.969 

reach(1,2). reach(4,5). reach(4,6). reach(7,6). : ρ= 0.5 

T’2 = simple 
generalisation when 
there are more than 5 
facts. 

T3 reach(X,Y) :- linked(X,Y). 

reach(0,2). reach(0,4). reach(0,5). reach(0,6). reach(0,8). 
reach(3,5). reach(3,6). reach(3,8). reach(4,8). 

 

T4 reach(X,Y) :- linked(X,Y). 

reach(X,Y) :- linked(X,Z).     (T’4) 

The second clause 
subsumes the first one. 

T5 reach(X,Y) :- linked(X,Y). 

reach(X,Y) :- linked(X,Z), linked(Z,Y). 

reach(0,5). reach(0,6). reach(0,8). reach(3,8).  

 

T6 reach(X,Y) :- linked(X,Y). 

reach(X,Y) :- linked(X,Z), reach (Z,Y). 

The intended one 

Table 7.1. Theories for the “reachability” relation. 

With the following lengths: 
L(T1) = 1 + 1.58 + 1(0+2) + (2 � log 11)   = 11.5  (2 variables) 

L(T2) = 1 + 0  + 19(0+2) + 19 � (2 � (log 9) )   = 159.5 

L(T’2) = 1 + 1  + 7(0+2) + 7 � (2 � (log 9) )   = 60.3  (1 variables) 

L(T3) = 1 + 1.58 + 11 � (log 2 +2) + 11� (2 � log 11) = 111.7   (2 variables, 2 predicates) 
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L(T4) = 1 + 2 + 4(log 2 + 2) + 4 � 2 � log 12 = 43.7   (3 variables) 

L(T’4) = 1 + 2 + 2(log 2 + 2) + 2 � 2 � log 12 = 23.3   (3 variables) 

L(T5) = 1 + 2 + 9(log 2 +2) + 9 � (2 � log 12) = 94.5  (3 variables, 2 predicates) 

L(T6) = 1 + 2 + 5(log 2 +2) + 5 � (2 � log 12) = 53.8  (3 variables, 2 predicates) 

and the corresponding L(T  <E,P>): 

L(T1  <E,P>) = 1 + log 3 + 2 + log 2 + 1 = 6.58 

 L(T1) = 11.5  G(T1  <E,P>) = 0.57 

L(T2  <E,P>) = 1 + log 3 = 2.58 

 L(T2) = 159.5  G(T2  <E,P>) = 0.02 

L(T’2  <E,P>) = 1 + log 3 + 3 � (2 + log 2  + 2 � log (9 +2) + 1) =  35.3 

 L(T’2) = 60.3  G(T2  <E,P>) = 0.59 

L(T3  <E,P>) = 1 + log 3 + 2 � (2 + log 2 + 1) = 10.58 

 L(T3) = 111.7  G(T3  <E,P>) = 0.09 

L(T4  <E,P>) = 1 + log 3 + 3 � (2 + log 2 + 1) + 1 � (2 + log 2  + 2 � log (9 +2) + 1) = 25.5 

 L(T4) = 43.7  G(T4  <E,P>) =  0.58 

L(T’4  <E,P>) = 1 + log 3 + 1 � (2 + log 2 + 1) + 1 � (2 + log 2  + 2 � log (9 +2) + 1) =  17.5 

 L(T’4) = 23.3  G(T’4  <E,P>) = 0.75 

L(T5  <E,P>) = 1 + log 3  + 3 � (2 + log 2 + 1) + 2 � (2 + log 2  + 2 � log (9 +2) + 1) = 36.42 

 L(T5) = 94.5  G(T5  <E,P>) = 0.39 

L(T6  <E,P>) = 1 + log 3 + 3 � (2 + log 2 + 1) + 2 � (2 + log 2  + 2 � log (9 +2) + 1) =  36.42 

 L(T6) = 53.8   G(T6  <E,P>) = 0.68 
 

The reinforcements are computed as follows: 
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reinforcements Mean Course 

reach(X,Y)   : ρ= 1 − 2−19 ≈ 1 mχ ≈ 1 

reach(0,1). reach(0,2). reach(0,3). reach(0,4). reach(0,5). reach(0,6). 
reach(0,8). reach(1,2). reach(3,2). reach(3,4). reach(3,5). reach(3,6). 
reach(3,8). reach(4,5). reach(4,6). reach(4,8). reach(6,8). reach(7,6). 
reach(7,8) : ρ= 0.5 

mχ = 0.5 

reach(0,X). : ρ= 1 − 2−7 ≈ 0.992 

reach(3,X). : ρ= 1 − 2−5 ≈ 0.969 

reach(X,8). : ρ= 1 − 2−5 ≈ 0.969 

reach(1,2). reach(4,5). reach(4,6). reach(7,6). : ρ= 0.5 

mχ = 0.88 

reach(X,Y) :- linked(X,Y).   : ρ= 1 − 2−10 ≈ 0.999 

reach(0,2). reach(0,4). reach(0,5). reach(0,6). reach(0,8). reach(3,5). 
reach(3,6). reach(3,8). reach(4,8). : ρ= 0.5 

mχ ≈ 0.76 

reach(X,Y) :- linked(X,Y). : ρ= 1 − 2−10 ≈ 0.999 

reach(X,Y) :- linked(X,Z). : ρ= 1 − 2−19 ≈ 1 

mχ ≈ 1 

reach(X,Y) :- linked(X,Y). : ρ= 1 − 2−10 ≈ 0.999 

reach(X,Y) :- linked(X,Z), linked(Z,Y). : ρ= 1 − 2−5 ≈ 0.969 

reach(0,5). reach(0,6). reach(0,8). reach(3,8). : ρ= 0.5 

mχ ≈ 0.886 

reach(X,Y) :- linked(X,Y). : ρ= 1 − 2−19 ≈ 1 

reach(X,Y) :- linked(X,Z), reach (Z,Y). : ρ= 1 − 2−9 ≈ 0.998 

mχ ≈ (1 · 10 + 0.998 · 
1 · 5 + 0.998 · 0.998 · 
1 · 3 + 0.998 · 0.998 · 
0.998 · 1 · 1 ) / 19 = 
0.9985 

 

From here we can give the values shown in table 2:  
 

T L(T)31 GD Consilient 
(no 

excepts.) 

Gain 

 

Mean 
Reinf. 
(mχ) 

Spec. 

(m’χ) 

L(ET) 

  

MDL1 PC(ET)  MDL2  

T1 11.5 3.8 Yes 0.57 ≈ 1 0.57 56.7 68.2 120.5 132.0 

T2 159.5 1 No 0.02 = 0.5 0.5 0 159.5 80.7 240.2 

T’2 60.3 1.52 No 0.59 0.88 0.75 24.3 84.6 100.9 161.2 

T3 111.7 1 No 0.09 0.76 0.76 0 111.7 96.3 208.0 

T4 43.7 2,53 No 0.58 ≈ 1 0.67 43.4 87.1 110.6 154.3 

T’4 23.3 2,53 Yes 0.75 ≈ 1 0.67 43.4 66.7 123.3 133.9 

T5 94.5 1 No 0.39 0.886 0.89 0 94.5 101.9 196.5 

T6 53.8 1 Yes 0.68 0.999 0.999 0 53.8 106.1 160.0 

Table 7.2. Values for the different criteria studied in this section. 

                                                           
31 In [Conklin & Witten 1994] the complexities are reckoned in a different way, because the predicates 
from the background theory B not used in T are taken into account. The results are 12.5, 178.5, 111.7, 
43.7, 94.5, 53.8. The differences are not important (l bits, being l the number of literals), however, but 
we have preferred to apply the measure strictly as it is defined. Also, if the background knowledge is 
great, [Conklin & Witten 1994]’s measurement would differ considerably from ours. 
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According to the results of Table 2, [Conklin and Witten 1994] concludes that the 
MDL1 is the best way to select the right hypothesis (in this case MDL2 does not 
select T6). Without considering the new evaluation criteria, we think that this 
conclusion is somehow overstated. Note that, from the three theories which are 
closer to T6 (which are T’4, T1 and T’2), T’2 and T’4 are not considered by Conklin and 
Witten (the difference is reduced to only 13 bits.) and T1 is not computed properly by 
them (in their paper log(81 over 19) = 60.4 is computed instead of log(72 over 19) = 
56.7). 

According to specialised reinforcement (m’χ), however, the optimality of T6 is 
manifest (0.999), after taking into account generality and pure mean course (mχ). 

Moreover, in this case, it is just sufficient to combine generality (in this finite case 
we have used GD(PE) ) and exception-free (intensional or consilient) to also select 
T6 as the most specific intensional hypothesis. 

Gain also provides useful information about the theories. According to the 
Oblivion Criterion seen in chapter 4 as the product of gain and a plausibility 
criterion, if we are not sure of which hypothesis is the best, and we want to store 
some of the theories, but we only have space for 3, we would choose (by using m’χ 
as plausibility criterion): 

 

T Gain m’χ OC 

T1 0.57 0.57 0.32 

T2 0.02 0.5 0.01 

T’2 0.59 0.75 0.44 

T3 0.09 0.76 0.07 

T4 0.58 0.67 0.38 

T’4 0.75 0.67 0.50 

T5 0.39 0.89 0.35 

T6 0.68 0.999 0.68 

As we said in chapter 4 this would allow to preserve the effort which has been 
invested in the search of plausible and difficult hypotheses while still controlling the 
size of memory. 

Finally, let us consider the case of T4’ and T4 

T4’ and T4  ra: reach(X,Y) :- linked(X,Z). : ρ= 1 − 2−19
 ≈ 1 

T4   rb: reach(X,Y) :- linked(X,Y). : ρ= 1 − 2−10
 ≈ 1 

Note that rb is a specialisation of ra, i.e., it is a deductive consequence of ra. The 
measure of reinforcement is logically not affected by a deductive consequence that is 
added to the theory, which in this case does not improve the reinforcement of the 
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whole theory. However, both measurements of the MDL principles are affected, 
when T4’ and T4 are, semantically, exactly the same theory. This problem of the MDL 
principle to work consistently with deduction has been pointed out several times in 
work. 

7.2.6.2 Inducing from Partial Evidence: Partial Positive Sample 

In this case we are going to study the most usual case when learning from positive 
evidence: only a part of the evidence is shown. The example is modified to the same 
background knowledge B but a different evidence E, which has 12 examples, instead 
of 19:  

E = { reach(0,3). reach(0,4). reach(0,5). reach(0,8). reach(3,2). reach(3,4). 
reach(3,5). reach(3,8). reach(4,6). reach(4,8). reach(6,8). reach(7,8) } 

The theories we are going to consider and their reinforcements are shown in 
Table 3: 

 

reinforcements Mean Course 

reach(X,Y)   : ρ= 1 − 2−12 ≈ 1 mχ ≈ 1 

reach(0,3). reach(0,4). reach(0,5). reach(0,8). reach(3,2). reach(3,4). 
reach(3,5). reach(3,8). reach(4,6). reach(4,8). reach(6,8). reach(7,8): ρ= 0.5 

mχ = 0.5 

reach(0,X). : ρ= 1 − 2−4 ≈ 0.9375 

reach(3,X). : ρ= 1 − 2−4 ≈ 0.9375 

reach(X,8). : ρ= 1 − 2−5 ≈ 0.969 

reach(4,6). : ρ= 0.5 

mχ = 0.91 

reach(X,Y) :- linked(X,Y).   : ρ= 1 − 2−6 ≈ 0.984 

reach(0,4). reach(0,5). reach(0,8). reach(3,5). reach(3,8). reach(4,8).: ρ=0.5 

mχ ≈ 0.742 

reach(X,Y) :- linked(X,Y). : ρ= 1 − 2−6 ≈ 0.984 

reach(X,Y) :- linked(X,Z). : ρ= 1 − 2−12 ≈ 1 

mχ ≈ 1 

reach(X,Y) :- linked(X,Y). : ρ= 1 − 2−6 ≈ 0.984 

reach(X,Y) :- linked(X,Z), linked(Z,Y). : ρ= 1 − 2−3 ≈ 0.875 

reach(0,5). reach(0,8). reach(3,8). : ρ= 0.5 

mχ ≈ 0.836 

reach(X,Y) :- linked(X,Y). : ρ= 1 − 2−12 ≈ 0.9998 

reach(X,Y) :- linked(X,Z), reach (Z,Y). : ρ= 1 − 2−6 ≈ 0.984 

mχ ≈ (0.9998 · 6 + 
0.9998 · 0.984 · 3 
+ 0.9998 · 0.984 · 
0.984 · 2 + 0.9998 
· 0.984 · 0.984 · 
0.984 · 1 ) / 12 = 
0.987 

Table 7.3. New theories for the “reachability” relation and their corresponding mχ. 

The lengths and gains are computed again: 
L(T1  <E,P>) = 1 + log 3 + 2 + log 2 + 1 = 6.58 
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 L(T1) = 11.5  G(T1  <E,P>) = 0.57 

L(T2  <E,P>) = 1 + log 3 = 2.58 

 L(T2) = 101.1  G(T2  <E,P>) = 0.03 

L(T’2  <E,P>) = 1 + log 3 + 3 � (2 + log 2  + 2 � log (9 +2) + 1) =  35.3 

 L(T’2) = 35.4  G(T2  <E,P>) = 0.998 

L(T3  <E,P>) = 1 + log 3 + 2 � (2 + log 2 + 1) = 10.58 

 L(T3) = 81.9  G(T3  <E,P>) = 0.13 

L(T4  <E,P>) = 1 + log 3 + 3 � (2 + log 2 + 1) + 1 � (2 + log 2  + 2 � log (9 +2) + 1) = 25.5 

 L(T4) = 43.7  G(T4  <E,P>) =  0.58 

L(T’4  <E,P>) = 1 + log 3 + 1 � (2 + log 2 + 1) + 1 � (2 + log 2  + 2 � log (9 +2) + 1) =  17.5 

 L(T’4) = 23.3  G(T’4  <E,P>) = 0.75 

L(T5  <E,P>) = 1 + log 3  + 3 � (2 + log 2 + 1) + 2 � (2 + log 2  + 2 � log (9 +2) + 1) = 36.42 

 L(T5) = 84.5  G(T5  <E,P>) = 0.43 

L(T6  <E,P>) = 1 + log 3 + 3 � (2 + log 2 + 1) + 2 � (2 + log 2  + 2 � log (9 +2) + 1) =  36.42 

 L(T6) = 53.8   G(T6  <E,P>) = 0.68 

And finally, we construct again the table with all the measurements: 

 

T L(T) GD Consilient 
(no 

excepts.) 

Gain 

 

Mean 
Reinf. 
(mχ) 

Spec. 

(m’χ) 

L(ET) 

  

MDL1 PC(ET)  MDL2  

T1 11.5 6 Yes 0.57 ≈ 1 0.52 43.8 55.3 76.1 87.6 

T2 101.1 1 No 0.02 = 0.5 0.5 0 101.1 43.0 144.1 

T’2 35.4 2.17 No ≈ 1 0.91 0.66 23.2 58.6 58.9 94.3 

T3 81.9 1.33 No 0.13 0.74 0.66 10.8 92.7 94.1 176.0 

T4 43.7 4 No 0.58 ≈ 1 0.56 36.0 79.7 70.9 114.6 

T’4 23.3 4 Yes 0.75 ≈ 1 0.56 36.0 59.3 77.9 101.2 

T5 84.5 1.25 No 0.43 0.836 0.77 8.83 93.3 70.3 154.8 

T6 53.8 1.58 Yes 0.68 0.987 0.82 15.6 69.4 81.9 135.7 

Table 7.4. Values for the different criteria studied in this section. 

We can observe that when the evidence is reduced, both variants of the MDL 
principle leave behind the theory T6 and promote other theories. On the contrary, 
reinforcement still selects it as the best theory. 

7.2.6.3 Inducing from Partial Evidence: Positive and Negative 
Evidence 

Finally, let us introduce negative evidence. Since learning from positive and negative 
evidence is much easier than from positive evidence only, it is expected to obtain 
better results than the previous cases. 



214 José Hernández Orallo - Doctoral Dissertation 

 214 

We have the same positive evidence:  

E+ = { reach(0,3). reach(0,4). reach(0,5). reach(0,8). reach(3,2). reach(3,4). 
reach(3,5). reach(3,8). reach(4,6). reach(4,8). reach(6,8). reach(7,8) } 

and a negative evidence  

E− = { reach(8,3). reach(5,4). reach(0,7). } 

We are going to consider the same theories and, obviously, the lengths and gain will 
be the same.  

Positive reinforcement is maintained, and there is no negative reinforcement for 
T2, T3, T5 and T6. However, for the other theories, reinforcement (the mχ0 version) 
must be computed again: 

 

reinforcements Mean Course 

reach(X,Y)   : ρ+= 1 − 2−12 ≈ 1,   ρ−= 1 − 2−3 = 0.875 mχ ≈ 1, mχ0 = (12 · 1 - 3 
· 0.875) / 12 = 0.78 

reach(0,3). reach(0,4). reach(0,5). reach(0,8). reach(3,2). 
reach(3,4). reach(3,5). reach(3,8). reach(4,6). reach(4,8). 
reach(6,8). reach(7,8) : ρ= 0.5 

mχ = 0.5 = mχ0 

reach(0,X). : ρ= 1 − 2−4 ≈ 0.9375,   ρ−= 1 − 2−1 = 0.5 

reach(3,X). : ρ= 1 − 2−4 ≈ 0.9375 

reach(X,8). : ρ= 1 − 2−5 ≈ 0.969 

reach(4,6). : ρ= 0.5 

mχ = 0.91, mχ0 = (5 · 
0.969 + 6 · 0.9375 + 1 · 
0.5 − 1 · 0.5) / 12 = 0.87 

reach(X,Y) :- linked(X,Y).   : ρ= 1 − 2−6 ≈ 0.984 

reach(0,4). reach(0,5). reach(0,8). reach(3,5). reach(3,8). 
reach(4,8). : ρ= 0.5 

mχ ≈ 0.742 = mχ0 

reach(X,Y) :- linked(X,Y). : ρ= 1 − 2−6 ≈ 0.984 

reach(X,Y) :- linked(X,Z). : ρ+= 1 − 2−12 ≈ 1,   ρ−= 1 − 2−1 = 0.5 

mχ ≈ 1, mχ0 = (12 · 0.984 
- 1 · 0. 5) / 12 = 0.94 

reach(X,Y) :- linked(X,Y). : ρ= 1 − 2−6 ≈ 0.984 

reach(X,Y) :- linked(X,Z), linked(Z,Y). : ρ= 1 − 2−3 ≈ 0.875    

reach(0,5). reach(0,8). reach(3,8). : ρ= 0.5 

mχ ≈ 0.836 

reach(X,Y) :- linked(X,Y). : ρ= 1 − 2−12 ≈ 0.9998 

reach(X,Y) :- linked(X,Z), reach (Z,Y). : ρ= 1 − 2−6 ≈ 0.984 

mχ ≈ 0.987 = mχ0 

In this case m’χ is computed in the following way: 
f = (12 − 3)  / 12 = 0.75 

m’χ = mχ0 � ( 1 − 0.5 � 0.75 + 0.75 � 2−GD) = mχ0 � (0.625 + 0.75 � 2−GD) 

And from here, we have the new results in table 7.5: 
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T L(T) GD Consilient 
(no 

excepts.) 

Gain 

 

Mean 
Reinf. 

(mχ0) 

Spec. 

(m’χ0) 

L(ET) MDL1 PC(ET)  MDL2  

T1 11.5 6 Yes 0.57 0.78 0.50 43.8 55.3 76.1 87.6 

T2 101.1 1 No 0.02 = 0.5 0.5 0 101.1 43.0 144.1 

T’2 35.4 2.17 No ≈ 1 0.87 0.79 23.2 58.6 58.9 94.3 

T3 81.9 1.33 No 0.13 0.74 0.68 10.8 92.7 94.1 176.0 

T4 43.7 4 No 0.58 0.94 0.63 36.0 79.7 70.9 114.6 

T’4 23.3 4 Yes 0.75 0.94 0.63 36.0 59.3 77.9 101.2 

T5 84.5 1.25 No 0.43 0.836 0.79 8.83 93.3 70.3 154.8 

T6 53.8 1.58 Yes 0.68 0.987 0.86 15.6 69.4 81.9 135.7 

Table 7.5. Values for the different criteria for positive and negative evidence. 

 

Note that both MDL1 and MDL2 do not change because both ignore errors. This is 
because L(ET) must say which facts of M(T) are really in E+. Since the aim of MDL 
principle is descriptional, it is not relevant whether part of the information is required 
for telling that an evidence has not still appeared (e in M(T) but e not in E+ and not in 
E−) or whether the information is required for the cases where (e in M(T) and e in 
E−). 

A partisan of the MDL principle could say that T6 is the shortest one without 
errors. This is true in this case but this criterion would turn the MDL principle 
useless mainly for the cases which has been more successful, learning from noisy 
data. A better idea is to rectify the MDL principle by the proportion of errors: 

This gives a MDL1 as: 

 MDL
+,−

1 =  MDL1 · 2
α · e(T)

 

with e(T) being the error ratio (negative examples covered / positive examples 
covered). The positive and negative examples covered by each of them are: 
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T e(T) MDL1 MDL+,−
1 

(α = 1)
 

MDL+,−
1 

(α = 5)
 

T1 0.25 55.3 65.8 131.5 

T2 0 101.1 101.1 101.1 

T’2 0.083 58.6 62.1 104.4 

T3 0 92.7 92.7 92.7 

T4 0.083 79.7 84.4 106.4 

T’4 0.083 59.3 62,8 79.2 

T5 0 93.3 93.3 93.3 

T6 0 69.4 69.4 69.4 

Naturally, as greater the value of α, the less robust to errors that the measure would 
be. 

Finally, let us consider the contrary case, 3 positive examples and 12 negative ones 
(f = -0.75). In this case, the extensional theory T2 with mean reinforcement = 0.5 and 
GD = 1 and the same theory T6 which still gives: 
 reach(X,Y) :- linked(X,Y). : ρ= 1 − 2−3 = 0. 875 

 reach(X,Y) :- linked(X,Z), reach (Z,Y). : ρ= 1 − 2−2 = 0.75 

a mean reinforcement mχ = (0. 875 · 2 + 0.875 · 0.75 · 1) / 3 = 0.8. 
With a GD = 19 / 3 = 6.33 we have: 

m’χ(ET2) = mχ(ET2) � (1 + 0.5 � 0.75 − 0.75 � 2-GD) =  

= 0.5 � (1.375 − 0.75 � 0.5) = 0.5 

m’χ(ET6) = mχ(ET6) � (1 + 0.5 � 0.75 − 0.75 � 2-GD) =  

= 0.8 � (1.375 − 0.75 � 0.01) = 1.09 

Reasonably, m’χ(T6) is increased by the fact that it is deserving that a general theory 
‘survives’ to a mostly negative evidence. 

7.2.6.4 Inducing from Noisy Evidence 

The MDL principle, as it has been commented, has been successfully applied to 
noisy data. Since the goal is to compress, some extensional patches can still be added 
to the theory whereas the whole compression ratio keeps high. However, the MDL 
principle is blind to the degree of errors in the evidence. The usual solution in a 
universal description mechanism is to quote the exceptions separately, be they 
positive or negative, and, consequently, there are no extrinsic exceptions, and they 
are penalised by the increment of size of the theory. However, in Horn theories, we 
cannot remove a consequence to patch a theory, we cannot say M(T) − f. This 
represents a non-uniform way of considering excluded positive evidence (just patch 
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them) and included negative evidence. A solution can be a weighing such as 
MDL+,−1. 

However, the MDL principle is blind in another sense. It gives a single value, and 
one cannot finally know which percentage of the data is covered extensionally, thus it 
is difficult to know whether they may be a lot of errors in the theory or not. 

On the contrary, reinforcement or intensionality are useful to distinguish the error 
ratio of the theory, and compare it with the expected error ratio of the evidence. This 
is precisely the most practical result of explanatory complexity. Given an evidence x, if 
we have an expectancy of noise of about 3%, we must only search for descriptions 
whose extensional part is ∆(px) ≈ l(x) � 0.03. It is important to realise that the MDL 
principle gives an uncontrollable and unpredictable exception ratio, which only depends 
on the data and usually will underfit (for explanation) or overfit. 

7.2.6.5 Conclusions 

In the framework of incremental learning, an intensional criterion is less conservative 
than the MDL principle, and consequently it usually minimises the whole number of 
‘mind changes’ (although these changes are usually more radical) when the data is 
perfect. Loosely, we should say that the MDL principle complies with Kuhn’s 
philosophy of changing paradigms; when the number of exceptions is too great, the 
paradigm must be changed. In contrast, an intensional criterion anticipates this 
necessity since any exception forces the revision of the model.  It is more eager in the 
sense of chapter 4. 

Reinforcement is somehow between the two extremes. This compromise has 
been shown to be a much more reliable criterion that the MDL principle. Although 
the comparison made here should be applied to much more examples, the results 
shown here are expected to hold in general, due to the theoretical justifications given 
in chapter 6. 

7.3 Generation of Inductive Hypotheses 

The great advantage of reinforcement (or a detailed exception detection) over the 
MDL principle is not only that is a measure which is more adjustable to the 
expectations of the source. The great advantage of a detailed measure is that it allows 
to guide the inductive search, because it detects which parts of the theory are weak 
and must be revised in order to obtain better theories. 

First of all, however, we will show that it is possible to obtain informative 
hypothesis with efficient methods. This may seem paradoxical at first sight because 
the information gain of a hypothesis with respect to the data depends on the 
difficulty of a concrete inductive algorithm to find them. We will show that this is 
possible in two different ways: non-data driven approaches and randomised 
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approaches. Of the first kind, enumeration approaches can find informative 
hypotheses because they are not guided by the data.  

However, to avoid the computational cost, the common approach is to construct 
the theory from the examples (either top-down or bottom-up). In this case, creativity 
is more difficult to obtain, but a theory that covers the evidence is found in less time. 
In order to allow this informativeness, randomised techniques such as genetic 
programming can be used. We will use the measurement of reinforcement and the 
concepts of intensionality and consilience to outline algorithms for finding 
comprehensive hypotheses. 

7.3.1 Information Gain and the Enumeration Approach 

There is a well-known powerful and complete algorithm for the induction problem 
called the enumeration algorithm. The algorithm is the simplest one: Select an 
ordering P1, P2, ... of all possible programs in a given representation mechanism. 
Once settled this ordering (the most critical question), the algorithm is just: 

DOVETAIL ALGORITHM 

Input: the positive and negative evidence E+ and E−. A background theory B. These 
must ensure B ∧ E− ≠  � (prior satisfiability) and also, it is supposed that B ≠ E+ (prior 
necessity) 

Output: a program P, such that B ∧ P = E+  (posterior sufficiency) and B ∧ P ∧ E− ≠ � 
(posterior satisfiability). 

Let n = 1. 

while n + log exectime(p) < k 

Select program Pn and check E+ and E− on B ∧ Pn up to a time-bound 2(k - n). 

if B ∧ Pn = E+  (posterior sufficiency) and B ∧ Pn ∧ E− ≠  � (posterior satisfiability) 
and Eval(Pn) = true then stop. 

else let n:= n +1. 

endwhile 

If the evaluation criteria Eval(�) gives always true, it is clear that this algorithm 
founds the shortest program whose Levin's Kt(p) = min (l(p) + log cost(p)) < k if the 
enumeration n is selected according to the length (l(p)).  

Imagine an intended program has length 17. Just in this simple case, a dovetail 
style algorithm would require the evaluation of 217 (approximate 100,000) programs, 
which will require less than (log t) � 217 time. 

In the view of this example, it must seem fool to even consider this option, but it 
is important to recall that we are interested in short solutions (theories) even when 
large amounts of data are given. Suppose we are given np = 20 positive examples and 
nn = 30 negative ones, being the solution of 20 bits. An O(np

3 � nn
2) algorithm would 
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be much worse (24,300,000 against 220 = 1,048,576). In this line, we can include 
many works that claim polynomial-time learnability (with respect to the size of the 
evidence) for certain restrictions of regular logic programs. For instance, [Krishna-
Rao 1997] presents an algorithm that makes polynomial-time learnable some 
concepts by using regular background knowledge. In the case of deriving 
multiplication from addition as background knowledge and positive evidence, the 
polynomial is greater than 16n8. Obviously, no hints of being implemented or 
expected execution times are presented. Finally, and more curiously, these 
polynomial limits are obtained by using length bounds to enumeration algorithms. 

The ‘folly’ idea of enumeration is supported by some additional considerations: a 
dovetail style algorithm is complete if an effective and short program exists, it can be 
pruned syntactically and semantically (regarding the data), schemata or priors can be 
used to change the ordering of programs and, finally, there is no other algorithm 
more given to parallelisation. 

Another relevant feature of this algorithm is that it can find informative and 
creative hypotheses. Note that since G(T E) = Kt(T E)/Kt(T), it is important to 
keep Kt(T) small in order to have a chance of making G(T E) close to 1. This was 
formally shown in chapter 4. But note that a complexity-ordered algorithm does not 
mean that the selection principle should be the MDL principle, which in this case 
would be equal to Eval = true, which stops with the first hypothesis that would be 
found. On the contrary, the algorithm could be run up to a limited space and select a 
set of optimal hypotheses according to some criterion, e.g. the mean course or an 
intensional criterion. 

Although this complexity driven induction is computationally very hard, some 
learning systems are beginning to use it profitably, such as some ILP systems such as 
Progol [Muggleton 1995], other more direct approaches [Giordano 1994], [Minton 
1994], [Riddle et al. 1994], [Schmidhuber et al. 1997] or evolutionary variants [Olson 
1994] [Wyard 1994] [Conte et al. 1997]. 

7.3.2 Randomised example-driven Induction, Reinforcement and Gain 

As we have said in the introduction of this section, the common approach to 
induction is to begin from the evidence, and refine the hypothesis according to some 
evaluation criterion. In ILP it is possible to construct a search space based on 
subsumption or some other semantic relationship. The algorithms can then begin 
with the most general theory and refine it by negative evidence or by some 
specialisation criterion with respect to the positive evidence, or they can grow from 
the most specific hypothesis. Most ILP systems order their search space by semantic 
relations. Other approaches, however, are beginning to be explored in ILP, such as 
genetic programming [Olson 1994] [Charif 1994] [Varsek 1995] [Ichise 1998. 
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As we have discussed before, genetic programming is a randomised technique and 
therefore the informativeness of the results can be high since the inductive method is 
not deterministic. 

Another advantage of a genetic programming approach is that the evaluation 
criterion is flexible and can be changed without remaking the whole structure of the 
algorithm. In [Hernández-Orallo and Ramírez-Quintana 1998a, 1998b, 1999a] , this 
approach is considered, but applied to functional logic programs instead of logic 
programs, by using a narrowing operator instead of resolution. 

Roughly, the algorithm generates a population of generalisations of the instances 
given in the evidences. This constitutes a set EH, which is composed of equation. 
These equations are rated according to some specific criteria (accordingly to the 
positive and negative facts they cover), which is closely related to the measurement 
of reinforcement seen in chapter 5. A set PH, composed of programs, is initially 
constructed from all the unary sets that can be constructed from the set EH. 

The selection criterion of the algorithm is a variant of the intensional or consilient 
criterion seen in chapter 6, and this is responsible for promoting the combination of 
rules in order to make final programs not separable, i.e., to cover comprehensively 
the evidence. Moreover, this combination has the advantage that reinforcement does 
not need to be recomputed from scratch but the separate reinforcements of each 
part can be profited to compute the new reinforcement. 

One of the characteristics of this method is that every combination of rules that 
generates a new rule by inverse narrowing (an analogous process to inverse 
resolution for functional logic programs) adds this new rule to EH, so this set is 
enlarged by new rules which can compose the programs. To maintain all the rules 
which are being generated is not a real problem with the memory resources and 
power of current computers. However, the set PH is composed of combinations of 
elements of EH, which can be extremely large. The problem is well-known in genetic 
algorithms and genetic programming: many of the individuals must die to leave place 
for better individuals. However, must only the criterion of the best individual rule 
this selection? 

In practice, there are two better possibilities. The first one is to recall which 
programs have been essayed. This, however, has the problem that, in many cases, it 
also takes a great amount of space. The second option is to take into account the 
oblivion criterion: easy programs that can be easily generated from PH by 
combinations can be forgotten without hesitation, because they will soon appear 
again. 

The maintenance of this population of hypotheses is even more important for the 
case of incremental learning, because some earlier hypotheses could be revived by 
new evidences. In other words, an incremental algorithm cannot only keep the best 
hypothesis, because any future change would make that all the process starts again. 
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Moreover, in real situations, the past evidence can change, and this is something that 
is not usually contemplated by any inductive algorithm, because in this case, it should 
start again from scratch. 

On the contrary, with the use of a set of hypotheses, in case of a change of the 
evidence, only the reinforcements are to be computed again but not all the inductive 
process. Just if none of these hypotheses gives now a good optimality value, the 
inductive process is re-started. 

7.4 Summary and Contributions of This Chapter 

This chapter has shown the first practical applications of most of the measures seen 
in this work: evaluation of (logical) theories and guiding of learning algorithms. 

In Section 2 we have reviewed some of the most classical criteria for the 
evaluation of Logic Programs used in ILP, especially two variants of the MDL 
principle. We have compared them with reinforcement, intensionality and gain. In 
terms of plausibility, reinforcement is manifestly better than the MDL principle, 
either for whole positive evidence, partial positive evidence and partial positive and 
negative evidence. Intensionality can be computed to know in which degree the data 
is ‘conciliated’ by the theory, and in some cases it can be a prerequisite (abduction, 
explanatory reasoning, etc.). Finally, for the case of evaluation, gain has only some 
auxiliary use, mainly for ascertaining when a real learning has taken place, i.e., the 
theory is original with respect to the data. 

The section also shows the importance of combining the generality criterion with 
reinforcement and the relevance of considering the negative evidence in more detail. 

Section 3 shows how reinforcement and intensionality can be combined for 
guiding a machine learning algorithm. First, it is shown that the enumeration 
algorithm is compatible with a search for gain, because the data is only used to check 
the hypotheses. Secondly, a data-driven approach is constructed with the help of 
genetic programming, where the selection criterion (oblivion criterion) is a 
combination of the optimality of the program (the individual) and the gain (unusual 
or rich genotype). Moreover, the randomised character of genetic programming 
allows the generation of informative hypotheses. 

The contributions of this chapter are: 
• The comparison of the evaluation measures of this thesis and other classical 

criteria of logical theories with respect to whole or partial positive evidence, 
and positive and negative evidence. 

• The outstanding results of reinforcement are shown for all these cases. 
• A variant of reinforcement that is weighed with the generality degree measure 

is introduced. 
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• A variant of the MDL which measures the generality of the positive and 
negative evidence. 

• In the presence of noise, reinforcement and consilience measures allow to 
obtain the percentage of errors in the theory, which can be compared with the 
expected noise ratio. 

• Hints about hypotheses generation and how this generations should be done in 
order to obtain informative hypotheses. 

In our opinion, the evaluation and generation of hypotheses must be highly 
interlaced, although if the inductive system is wanted to be applicable to different 
situations, it must allow the change of the evaluation criterion, because there is not a 
best criterion for all the situations. Only some paradigms, such as genetic 
programming, allow the change of this criterion without also forcing the change of 
the algorithm. 
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Encara us dic que port una Art general 

que novament és dada per do espiritual, 

per qui hom pot saber tota re natural, 

segons que enteniment ateny lo sensual. 

A Dret e a Medicina e a tot saber val 

e a Teologia, la qual m’és mais coral, 

e a soure qüestions nul�la art tant no val, 

e a destruir errors per raó natural; 

tenc-la per perduda car quaix a hom no cal. 

Ramon Llull, Lo desconhort, VIII. 
 

Abstract: in this chapter, the ability to comprehend is identified with the main factor of intelligence, 
derived from the notion of comprehension introduced in chapter 6. However, some technical problems 
arise when this factor is to be measured, especially unquestionability, and to define an absolute scale 
of difficulty of comprehension. Both problems are solved in this chapter and the result is a 
comprehension test, or C-test, exclusively defined in terms of universal descriptional machines. 
Despite the absolute and non-anthropomorphic character of the test it is equally applicable to both 
humans and machines. Moreover, it correlates with classical psychometric tests, thus establishing the 
first firm connection between information theoretic notions and traditional IQ tests. From here, a 
factorisation is outlined, considering other inductive and deductive factors, thus allowing a theoretical 
study of their inter-dependence, something that has only been possible to do in an experimental way, 
as the statistical correlations which have been studied by psychometrics. 

 

 

Keywords: Measurement of Intelligence, Psychometrics, IQ tests, Turing Test, 
Unquestionability, Series Prediction, Comprehension Ability, Deductive Ability. 
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8.1 Introduction 

In the previous chapter, the measurements were applied to hypothesis evaluation and 
generation. However, a measure for inference processes can also be applied to 
systems. For instance, in the case of deduction, we measured in chapter 5 the 
complexity and gain of a given conclusion from its premises. If we devise a test to 
measure the time that a certain system takes to find the solution, we know that it is 
able to solve problems of a given complexity. In a more intricate way, we can find 
induction problems whose answer is unquestionable (we will see that this is possible 
to some extent) and devise a set of questions to evaluate the inductive ability of a 
given system. 

Although the measurement of inductive abilities is more difficult than the 
measurement of deductive abilities, we will centre mainly on the measurement of 
inductive abilities. The reason-why is that any process of induction needs deductive 
abilities to check the hypotheses with respect to the evidence. This explains why the 
measurement of induction abilities correlates with g, the main factor of intelligence. 

This will allow identifying the main factor of intelligence as the ability to 
comprehend, derived from the notion of comprehension introduced in chapter 6. 
The result is a comprehension test, or C-test, exclusively defined in terms of 
universal descriptional machines (e.g. universal Turing machines). Despite the 
absolute and non-anthropomorphic character of the test it is equally applicable to 
both humans and machines. Moreover, we will see that it correlates with classical 
psychometric tests, thus establishing the first firm connection between information 
theoretic notions and traditional IQ tests. 

8.2 Requirements and Technical Problems 

AI has striven to imitate human behaviour in many tasks, under the slogan “Artificial 
intelligence is that thing that if made by humans would require intelligence”, which has 
frequently promoted the view that “human intelligence subsumes machine 
intelligence” [Bradford and Wollowski 1995] instead of the open and more realistic 
view that “robots will be more intelligent than we humans are” [Moravec 1998]. 
Finally, the Turing Test (TT) has usually been understood also as an effective test 
(and not only as a philosophical exercise). This misinterpretation, jointly with his 
celebrity, has motivated that there has not been the necessary effort for designing 
new alternative intelligence tests. The TT has even eclipsed such well-reputed 
proposals as Simon’s early works on the relation between IQ tests and AI [Simon 
and Kotovsky 1963], on some heuristic approaches to solve analogy problems from 
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IQ tests [Evans 1963] and Chaitin’s suggestion “develop formal definitions of intelligence 
and measures of its various components” [Chaitin 1982]. Even Johnson’s call “Needed: A 
New Test of Intelligence” [Johnson 1992] has been responded by formalisations of the 
TT [Bradford and Wollowski 1995] instead of devising new proposals. 

As any other discipline, AI requires an effective measure of its major issue, a 
gradual and detailed measure of intelligence. A scientific measure of intelligence 
should follow these requirements: 

• Non-Boolean: intelligence is not an absolute attribute. From Darwin’s “mental 
continuity” to infant psychology, there is an unquestionable certainty that 
intelligence is a gradual aptitude. Any discretisation of the TT as a function of 
the time of the test or the score of the judges shows the inappropriateness of 
the TT to measure intelligence in a gradual way, i.e., to give a continuous value 
of intelligence. The reason is obvious: the TT is a test of humanity [Fostel 
1993], and the idea of being more or less human makes no sense.  

• Factorial: intelligence is multi-dimensional. It is quite unbelievable that there is 
a concrete ability that would be optimal for every context or world. 
Nonetheless, it is conceivable that a concrete ability would be almost optimal 
for most contexts, and intelligence has sometimes been defined as “second-
best in everything”. This may justify that a wide context as everyday life, which 
includes many other contexts, can distinguish a special kind of ability: “human 
beings rank animals [and people] using a distinctively human concept of intelligence, the 
primitive concept found in everyday life, and these rankings correlate with g” [Flynn 1987]. 

• Non-anthropomorphic: Maybe the major problem of AI is that the only 
reference of intelligent behaviour is human intelligence. Only recently, AI 
researchers have paid attention to other ‘intelligences’: ants, rats, etc. in order 
to scale up the problem towards human intelligence. However, the reference or 
the goal is always human intelligence. Nowadays the reason is not only pride 
and anthropocentrism but also necessity, because “there is not yet a solid definition 
of intelligence that doesn’t depend on relating it to human intelligence” [McCarthy 1998].  

• Computationally based: According to the Church-Turing thesis, there is no 
reason to think that intelligent systems cannot be implemented in current 
computers. The only question is whether they have the necessary speed and 
memory for it. I share the opinion that “computers of 30 years ago were fast enough if 
only we knew how to program them” [McCarthy 1998], and the AI problem is just to 
discover what makes a program intelligent, or, in other words “What kind of 
Information Processing is Intelligence?” [Chandrasekaran 1990]. Consequently, it is 
extremely significant to be able to state the problem computationally, in other 
words, to give the specification of the problem in computational terms, in 
order to solve the problem with AI means, which are exclusively machines and 
programs. 
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• Meaningful: intelligence is not an ethereal ability. It cannot be exclusively 
defined as “intelligence is what is measured by intelligence tests”. Intelligence must be 
expressed from its original meaning, the ability to comprehend, and this ability 
is what should be measured: “the only way to know if our machines, or people, are 
intelligent, is to make them explain how they did what they did... people can attempt to give 
rational explanations, and ultimately that is how we must measure intelligence" [Schank 
1986]. 

Psychometrics has developed measurements of intelligence according to the first two 
requirements. Since Spearman founded the field [Spearman 1904], psychometrics has 
been more and more characterised by the scientific method: systematic 
experimentation and statistical rigour. “Despite the many shortcomings of an IQ score, no 
other measure has been found to be related to so many other behaviors of theoretical or practical 
significance” [Zigler and Seitz 1982]. However, psychometrics has neglected, or failed, 
to incorporate the three last requirements, which, in fact, are highly related. 
Psychometrics is anthropomorphic by definition since it is the science of measuring 
human intelligence, although there have been adaptations and essays with 
chimpanzees, dolphins and other animals. Psychometrics is an experimental science 
that has used the Homo Sapiens Sapiens as both target and reference. The frequently 
demanded theoretical foundation of psychometrics depends on the change of the 
point of reference, closely connected to the last three requirements. 

On the contrary, Computational Learning Theory is non-anthropomorphic and 
computational. The question “What is to learn?” has been assimilated to the formal 
notion of identification in the limit [Gold 1967], which can be sketched as follows: 
given a pattern or concept C to learn, and an evidence e1, e2, ..., as a sample from C, a 
learner L identifies C if there exists a finite number k such that for every example en, 
n > k,  the learner predicts all of them correctly. 

After some discouraging results on the learnability of very simple languages, the 
complexity of learning has been studied for other paradigms, mainly PAC learning 
[Valiant 1984] and Query Learning [Angluin 1988]. 

However, these theoretical results have not been used to develop rigorous 
measurements of learning ability. Contrarily, some contests and comparisons have 
been held for practical systems, but as collections of arbitrary examples extracted 
from the literature, without many justifications of the theoretical complexity of each 
of them. 

The reason is that it is difficult to establish the complexity of an instance, when 
the results of computational learning theory apply to classes of concepts, and most 
results are asymptotical. Moreover, the paradigm of identification in the limit is not 
applicable for finite instances, because they can be identified by themselves. The 
philosophical problem of any measurement of learning ability is the same as the 
philosophical problem of series prediction: given any finite set of examples, there are 
infinite many concepts that are consistent with them and diverge in their predictions. 
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This is exactly the ‘subjectivity objection’ of IQ tests: there may be controversy about 
the correct answer. 

With these requirements in mind, let us start with Chaitin’s proposal “develop formal 
definitions of intelligence and measures of its various components” [Chaitin 1982] by using 
descriptional complexity and the ideas of learning as compression. At first sight it 
seems to be easily applicable. However, there are many technical reasons that explain 
that such an intriguing proposal (and made from such an eminent source) has not 
been addressed yet32. 

For instance, the following “compression test” can be recklessly defined: 

Definition 8.107 Compression Test. Give an arbitrary string x of size n to a 
subject and ask for the following symbol s according to the shortest projective 
description. Mark the subject’s answer as a hit if φ(x*)n+1 = s. 

This test, however, has many technical and fundamental riddles: 
• K(x) is not computable, so there is no effective way to know which is the 

‘correct’ answer and, consequently, to know whether the subject’s answer is a 
hit. 

• There are different equally alternative plausible descriptions: x* is just the first 
one in lexicographic order of all the shortest descriptions. 

• Despite the invariance theorem that states that x* depends on φ only up to a 
constant, this constant is relevant if n is small, and there is no reason to prefer 
one descriptional system over another. The test suffers the subjectivity 
objection. 

• The test intends to measure the ability of compression, but this does not match 
exactly33 with the ability of comprehension, i.e., intelligence.  

The first problem has a practical solution. K(�|�) does not reflect a cognitive view of 
information nor a cognitive view of simplicity, because for some strings the shortest 
description could be extremely time consuming and, consequently, not valid as an 
explanation because it cannot be related to others (“if you want to understand a concept, 
try explaining it to someone else” [Winston 1982]). 

In the previous chapter we defined a fully projectible version of Kolmogorov 
Complexity based on the Levin variant LT. We have defined explanatory complexity 
from it, and the shortest explanatory description (SED) has also been defined. 
Finally, stable (on the right) objects give SED descriptions where comprehension has 
taken place, i.e., comprehensive descriptions.  

                                                           
32 At least to the author’s knowledge and as Chaitin himself has recognised (Chaitin 1998, personal 
communication). 
33 “I just see how Kolmogorov Complexity and Intelligence could be well related but I don't think it would be 'exactly' 
so”. (Hofstadter 1997, personal communication) 
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Theoretically, there are two ways to know whether a system’s operation is 
compliant with some requirements: by inspecting its code (or program) or by testing 
its behaviour. In software engineering it has been finally accepted that the 
verification of a specification with respect to a program (formal verification) is only 
feasible for small systems. In general, for complex systems, verification is 
experimental, made by means of sets of tests. It is an open and extremely hard 
problem to devise a complete specification of intelligence, mainly because it depends 
on a consensus on the functionalities that an intelligent system must be able to 
perform. However, and this is precisely what I claim in this chapter, it is possible to 
distinguish some functionalities that are fundamental for intelligence. A verification 
of intelligence behaviour should begin with these fundamental traits, and gradually 
add more diverse test cases in order to make the test set more robust. 

Comprehending is the most important trait of intelligence, and we have 
formalised it in a computational framework. This would be the major difference 
between psychometrics and the intended measurement of this chapter. The test’s 
exercises are not selected experimentally but theoretically, so, finally, we will know 
what is to be measured. 

However, if we intend to measure comprehensibility there are still two questions 
to solve. First, we must design unquestionable exercises, in order to avoid the 
‘subjectivity objection’ of IQ tests. Secondly, we require an absolute referent of 
comprehension difficulty in order to give a non-Boolean score independent to the 
mean ability of the subjects or society who have made the test before.  

The following sections are devoted to ensure that the descriptions would give the 
same meaning out of a sequence of symbols as we do [Hofstadter 1985], and only 
other intelligent beings would do (because the sequence is unquestionable) and how 
to measure their complexity. 

8.3 Unquestionability 

Psychometrics has striven to show that it is not absurd to measure the ‘correct’ 
solution. Its answer is that if the great majority matches with some solution is because 
there are not alternative solutions of similar complexity, and, consequently, it is the most 
plausible. However, this assertion is made from a very subjective and informal point 
of view. 

As we saw in chapter 6, we introduced the notion of stability to avoid rote or 
repetitive descriptions. However, there was a need to avoid extra patterns that could 
be invented to make the prediction differ.  

For this reason, we extended the notion of stability and applied it to descriptions. 
Let us recall Definition 6.102: 
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Definition 8.108 Plausibility on the Right. A fully projectible description p for 
a string x is (c,m)-plausible on the right in the descriptional system β iff  

∀d, 0 ≤ d ≤ m : LTβ(SEDβ(x-d))[..l(x-d)] + c > LTβ(p)[..l(x-d)]. 

 

Intuitively, a description is plausible if it is one of the c-best explanations for x and 
this holds even if we remove up to m elements from the right of x. 

From here, in chapter 6, we also introduced unquestionability in the following 
way (Definition 6.103): 

Definition 8.109 Unquestionability. A fully projectible description p for x is 
(c,m)-unquestionable in the descriptional system β iff it is (c,m)-plausible and there 
does not exist another (c,m)-plausible description p’ for x.  

 

As we will see later, if c and m are tuned conveniently for a concrete descriptional 
mechanism, the tests can still be composed of short strings x as exercises such that 
its SEDβ(x) is (c,m)-unquestionable. 

This restriction to unquestionable descriptions not only preserves the goal of the 
test but even strengthens it, in ontological terms. As we saw the plausibility and 
unquestionability of a theory or explanation not only depends on the intrinsic 
characteristics of the explanation but also on the ability of finding alternative 
explanations. In this sense we can see intelligence as the most important means to 
augment the plausibility and confidence of explanations, and, consequently, the 
ontology of an ‘intelligent’ system. 

8.4 Establishing Absolute Difficulty 

Once we are able to obtain strings whose SEDβ(x) is (c,m)-unquestionable for the 
test, we should ascertain the complexity or difficulty of each problem, in order to be 
able to give a test set of exercises of different complexity. The first idea is to relate 
this complexity with explanatory complexity (Et): 

Definition 8.110 Comprehensibility (first approach). A string x is k-hard (or k-
incomprehensible) given y in a descriptional system β iff k is the least positive integer 
number such that:  

Etβ(x|y) ≤ k � log l(x) 

The use of the factor log l(x) is to compensate the fact that x must be printed and, 
therefore, for all x Et(x) ≥ log l(x). Consequently, for all x, k ≥ 1. As an example, 
consider a string x of length 256, with Et(x)= 50. The comprehensibility of x is k=7. 
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If Et is substituted by Kt we would have the definition of potential which 
measures “the time that needs to be pumped into a number by a computation that finds it” [Li 
and Vitányi 1997]. Accordingly, the preceding definition does not measure exactly 
the complexity of finding an explanation for a string x. Consider for instance the 
string x = “wwwwww...” where w is a string with l(w) = m, it has as SED the stable 
description r = “repeat w for ever” with Et = m + c +  log c’�l(x), which gives k = (m 
+ c) / log c’�l(x). Consider just m = 80 and l(x) = 256, and we have that the string can 
be more than 10-hard, which is quite high for a string whose SED is extremely 
simple! 

To correct this problem we must first realise the reason why we consider a string 
like r simple. The rationale is that it is easy to give the description if we have the data, 
i.e., it is obvious or explicit in it. Enquiring this line leads to the definition of 
information gain we gave in chapter 4. 

From here, we can give a definite and corrected version of comprehensibility in 
the following way: 

Definition 8.111 Comprehensibility (Corrected Version). A string x is k-hard 
(or k-incomprehensible) given y, denoted by incomp(x|y), in a descriptional system β 
iff k is the least positive integer number such that:  

Etβ(x|y) � G(SED(x|y) | <x,y>) ≤  k � log l(x) 

This weighing finally measures the real complexity of finding SED(x) from x, 
because descriptions of the form “repeat x for ever” which have Kt high (to quote x) 
are corrected by G, but the length of x is still important. 

8.5 The Test 

Now we are prepared to construct a generic test of ability of comprehension by 
generating a series of strings of gradual comprehensibility. However, as it has been 
said, it is important that the answer is unquestionable, because if not, the answer 
would be an arbitrary choice from the examiner. An easy way is to give redundant 
information to make the answer unquestionable. However, we cannot exceed this 
redundancy too much, because if not, the problems would be much too long. For 
instance, given the series “a, c, c, a, c, c, c, a, c, c, c, c, a, ...” it seems logical to expect 
that it would follow “c, c, c, c, c, a, c, ...”, so it looks redundant to present more than 
the necessary symbols. 

The measurement that is to be presented below requires the collaboration of the 
subject, which must employ all its resources to perform the test. It is not relevant 
whether the subject understands the aim of the test or whether it is programmed to 
do it. It is even more impartial if the subject does not know that it is an intelligence 
test. The subject must only know the language and questions the test is composed of. 
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With these clarifications about the nature of the test, we can define the 
intelligence of a given system S as the value that results from applying the following 
test to it: 

Definition 8.112 C-Test. Let us select a descriptional system β sufficiently 
expressive and impartial, composed of an alphabet of symbols Ωβ and a set of 
operations Θβ to manipulate these symbols, and their corresponding cost (or 
length). We provide (or programme) to S the alphabet, operations and cost.  

Depending on the expected intelligence of a system we select a sufficiently wide 
range 1..K of difficulty. For each k = 1..K we choose randomly p sequences xk,p, 
being k-incomprehensible, c-plausible, c-m-unquestionable and d-stable with d ≥ r, r being 
the number of redundant symbols (or hints) of each exercise. 

We measure the intelligence of a pretended intelligent system S in the following 
way: 

The questions are the K�p sequences without their d − r elements (xk,p
−(d+r)). We 

give them to S and we ask for the following element according to the best 
explanation that is able to construct with Ωβ and Θβ. We leave S a fixed time t 
and we record its answers: guess(S, xk

−d+r+1). 

The result of this test of comprehensibility (or C-test) is measured as:  

[ ]I S k hit x guess S xe

d r

k i

d r

k i

i pk K

( ) , ( , ), ,

....

= ⋅ − + + − + +
==
∑∑ 1 1

11

 

the function hit is usually measured as hit(a,b) = 1 if a = b and 0 otherwise 
(negative values can be used to penalise errors). The value e is simply for weighing 
the difficult questions (if we choose e = 0 all the questions have the same value). 

In an informal way, “the test measures the ability of finding the best explanation (a 
fully-projectible description with no alternative fully-projectible descriptions of 
comparable complexity) for sequences of increasing comprehensibility in a fixed 
time”. 

One relevant feature of the test is that, although the subject is supposed to be a 
particular universal descriptional system φs with a particular background knowledge 
(life experience) Bs, it is given a descriptional system β over it, which highly 
minimises the influence of the difference between the computations performed by φs 
and other subject φt, i.e. the difference between Ets(x|<Bs, β>) and Ett(x|<Bt, β>). 
This makes it possible for the notions of plausibility and unquestionability to be 
similar for both subjects. Nonetheless, we will see in section 7 how this test can be 
extended to measure this influence. 
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8.6 Measurement of Pretended Intelligent Systems 

The preceding test is applicable to any system whose degree of intelligence is 
questioned. Appropriately selecting the descriptional system and the rest of 
parameters of the test, it can be used for humans, animals, computer systems, 
extraterrestrial beings and any collection of the preceding working jointly. 

Although Definition 8.112 evaluates a single ability, there are still many ways to 
realise a specific test from the definition. In [Hernández-Orallo and Minaya-Collado 
1998] the test was implemented by using an abstract machine quite similar to a state 
machine, a simplified version of a Reduced Instruction Set Computer (RISC). From here, a 
variety of strings of different comprehensibility in that machine were generated. 
Although the set of k-potent numbers of length at most n can be computed in 
polynomial time in n (see a proof in [Li and Vitányi 1997]), the cost of O(nk) forces to 
use some heuristics for this. In the same way, G was approximated. Finally, a sieve 
was applied for obtaining only c-plausible, c-m-unquestionable and d-stable sequences. 
More details are shown in the appendix. 

The same work presents the results of applying the test to 65 subjects from 
species Homo Sapiens Sapiens aged between 14 and 32 years, jointly with a classic 
test of intelligence, the European IQ Test. The correlation between both tests was 0.77. 
This value only justifies a further more exhaustive study over greater groups and 
several variations derived from Definition 8.112. For the moment, this psychometric 
evidence is of vital relevance for a formal theory of measurement of intelligence, 
since, according to Brand [Brand 1996], the correlation with IQ tests is a necessary 
condition (but not sufficient) for a good measurement of intelligence. 

Another remarkable experimental result shown in the figure below is that the 
relation between hit ratio and k-incomprehensibility is straight, which suggests that 
comprehensibility really estimates the difficulty of each string:  

Hit
Ratio

Difficulty (k)
 

Logically, it is little interesting to know that the average Homo Sapiens is able to 
‘understand’ sequences of incomprehensibility = 10 in a reasonable time. Similarly, it 
is not expectable (for the moment) that contrasted and widely used IQ tests were 
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substituted by these C-tests. Nonetheless, this could entail a milestone in the 
theoretical foundation of psychometrics because it is the first measurement of an 
intelligence factor that is based theoretically and not using the Homo Sapiens as a 
reference.  

However, it is not human intelligence but non-human what is urgent to measure. 
A formal declaration of what is expected from an intelligent system should allow two 
important things: to derive more intelligent systems from a more concrete 
specification and, secondly, to evaluate them. Definition 8.112 provides a first step 
for both things, a detailed scale for measuring the progress (in one intelligence factor) 
of generic systems in AI. As any other field of science, a great advance in a discipline 
happens when one of its fundamental topics can be measured in an effective and 
justified way. Artificial Intelligence, as a science, requires measurements of 
intelligence, or at least, measurements of their different factors. 

Modern AI systems are much more functional than systems from the sixties or 
the seventies. They solve problems in an automated way that before required human 
intervention. However, these complex problems are solved because a methodical 
solution is found by the system’s designers, not because current systems are more 
intelligent than preceding ones. No one cares about measuring how functional these 
systems are for other kinds of problems, since “it’s easier to evaluate systems that do specific 
things than it is to evaluate systems whose tasks are more general” [Nilsson 1995]. The current 
oblivion of general problem solvers may be technologically correct with an 
applications demanding discipline but not fair with A.I. foundational name. “It is time 
to begin to distinguish between general, intelligent programs and the special performance systems” 
[Nilsson 1995]. 

This initial aim of being more general is nowadays still represented by two 
subfields of artificial intelligence: automated reasoning and machine learning. 
Automated theorem provers are able to solve complex problems from different 
fields of mathematics. The great advance of the last two decades is mainly caused by 
the existence of sets of problems to compare different systems. Even these sets have 
evolved and grown to huge and complete libraries of theorem proving problems, 
such as TPTP [Suttner and Sutcliffe 1996]. Machine learning is also taking a more 
experimental character and different systems (from different paradigms) are 
evaluated according to classical problems in the literature. 

However, as we discussed in the introduction, there is no theoretical (nor 
empirical) measurement about the complexity of the problems that compose the sets 
of problems. By selecting a proper representational language we could compute this 
complexity. For instance, if we select first-order logic as a universal descriptional 
mechanism, we can measure the complexity of the evidence, hypothesis (explanation) 
and background knowledge in the same way by using, for instance, a measure of the 
length of a logic program, like those seen in the previous chapter. This would allow, 
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for instance, to give the theoretical complexity of the problems that are usually 
passed to ILP systems and discover how intelligent they are. 

8.7 Factorisation 

The previous test measures one factor, which could empirically be identified with the 
g factor or liquid intelligence. During the XXth century, psychometrics and zoology 
have striven for differentiating between evolutionary-acquired knowledge, life-
acquired-knowledge and 'liquid intelligence' (or individual adaptability). While the first 
one is the most important one in the great majority of lower animals, the latter two 
characteristics distinguish the animals with the ability to learn from dull animals. 
However, the higher the animal scale the more difficult to distinguish life-acquired-
knowledge from ‘liquid intelligence’. The case is extreme for human intelligence. 
Accordingly, exercises from IQ tests are strictly selected to avoid the influence of 
background knowledge. As a result, the scores obtained in the tests of liquid 
intelligence (g) are almost constant from the age of 14 until 60, independently from 
the education and knowledge that can be acquired during all this time. 

A complete test of intelligence should only measure these knowledge-independent 
abilities to still reflect the possibility of “idiots savants”, i.e., systems with little 
intelligence but a lot of embedded knowledge. Even with liquid intelligence, there are 
many knowledge-independent abilities (or factors) to measure. For instance, memory 
or ‘memo-isation ability’ is a factor that is knowledge-independent that can be easily 
measured. However, this factor is not very interesting for AI nowadays, because it is 
not a technical problem to make systems with large memories (and it is not 
correlated much with g either). 

Let us review which inductive and deductive factors are feasible and interesting to 
measure: 

8.7.1 Inductive Factors 

There are partially independent factors that could be measured by using extensions 
of the framework presented in the previous section. For instance, knowledge 
applicability, contextualisation and knowledge construction ability can be measured 
in the following way: 

• Knowledge Applicability: we provide a background knowledge B and we give a 
set of sequences xi such that incomp(xi|B) = incomp(xi) − u but still SED(xi|B) = 
SED(xi) and are unquestionable with or without B. We can compare the 
difference of performance between cases with B and without B. This test 
would actually measure the application of the background knowledge 
depending on two parameters: the complexity of B (i.e. Kt(B)) and the necessity 
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or usefulness of B, measured by u. Cattell called this crystallized intelligence (gc) 
which correlated with fluid intelligence (gf). 

• Contextualisation: it is measured in a similar way as knowledge applicability but 
providing different contexts B1, B2, ..., BT with different sequences xi,t such that 
incomp(xi,t|Bt) = incomp(xi,t) − u. This multiplicity of background knowledge (a 
new parameter T) differentiates this factor from the previous one. Analogy 
tests generally resemble this type of exercises, as it was shown in [Hernández-
Orallo and Minaya-Collado 1998]. 

• Knowledge Construction: we provide a set of sequences xi such that exists a 
common knowledge or context B and a constant u such that for incomp(xi|B) ≤ 
incomp(xi) − u. A significant increase of performance must take place between 
the first sequence and the later sequences. The parameters are the same as the 
first case, the complexity of B and the constant u. This learning from 
precedents has also been studied in AI (see e.g. [Winston 1982]). 

Other factors are more related with intentionality than general intelligence (and 
intensionality). These are reactivity, pro-activity, interactivity and the recently elsewhere 
vindicated emotional abilities. Most of them can be measured adopting notions from 
Query Learning paradigms [Angluin and Smith 1983] [Angluin 1988] formalised 
using interactive Turing machines. Others are much more related with the idea of 
congruence or coherence and could be measured as constraint satisfaction [Thagard 
1989]. 

8.7.2 Deductive Abilities 

Deductive abilities are much easier to measure, because there is no question about 
selection criterion and, consequently, there is no possible subjectivity in the correct 
answer; given the premises and the way to operate with them, only one plausible 
answer is possible. We must adapt the measurement of gain introduced in chapter 4 
for different deductive systems to give a version of difficulty of deduction (similar to 
comprehensibility for inductive problems). 

To avoid the subjectivity objection, we must just give a set of premises x, and only 
a possible conclusion. This in fact, represents a deductive problem or calculation. 
Note that any deductive system can be converted in this form if we add to the 
premises the needed restrictions in order to allow just one possible conclusion. The 
exercise must evaluate the ability of the subject to find this unique conclusion c.  

Consequently, it is only needed to ascertain the difficulty of each instance in a 
similar way as we did with comprehensibility. 

With x |−p c we denote that p is a proof for c in x. First of all, we must evaluate the 
complexity of this p as:  
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Definition 8.113 Deductive Effort. The effort of the deductive inference of the 
proof p over the system x is given by:  

LTded(p) = l(p) + log Cost(apply p to x) 

Logically, we can define the best proof as the proof with less effort: 

Definition 8.114 Best Proof. The best proof of a conclusion c with respect to a 
set of premises x is:  

BestProof(c |x) = argminp { LT
ded(p) s.t. x |−p c } 

A first approximation of the deductive complexity can be given by: 

Definition 8.115 Deductive Complexity. The deductive complexity of a 
problem x whose only solution is c is given by:  

Etded(x) = LTded(BestProof(c|x)) 

Analogously as we did with comprehensibility we can define: 

Definition 8.116 Solvability (First Version). A deductive problem x is k-solvable 
iff k is the least positive integer number such that:  

Etded(x) � G(BestProof(c|x) | x) ≤  k � log l(x) 

Note that G is computed in the classical way: Kt (p|x) / Kt (p). 

However, in this case we have not eliminated the possibility of finding alternative 
proofs, and this can affect the difficulty to find the answer. For instance, consider a 
problem with just one proof (way) to the solution with solvability 10, and another 
problem with many proofs (ways) to the solution with solvability 11. Which one is 
easier? 

To correct this problem we must consider all the alternative proofs. 

Definition 8.117 Proof Distribution. The proof distribution of a deductive 
problem x with respect to a conclusion c is given by:  

δ(x,c) = log ∑x |−p c  2
−(LTded’(p) � G(p|x)) 

From here we can introduce a final version of solvability: 

Definition 8.118 Solvability (Corrected Version). A deductive problem x with 
solution c is k-solvable iff k is the least positive integer number such that: 

δ(x,c) ≤  k � log l(x) 

Once again, there are partially independent factors that can be measured from here. 
In this case, however, they turn to be closely related and they turn to be different 
presentations of the same problem: 

• Calculus Ability: Given an x, only one c is possible (a problem). The subject 
must obtain c. However, the rules can only be applied in a few ways, so it is 
only a mechanical application of them. That is to say, there are few ways to act, 
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and only it is required that the subject applies correctly the rules, but they are 
quite clearly determined. Obviously, the difference between δ(x,c) and Etded(x) � 
G(BestProof(c|x) | x) is small. 

• Problem Solving Ability: The problem is similar to the previous case but, in 
this cases, there are many possible ways to apply the rule which do not lead to 
any solution. 

• Accepter Ability: Given an x, some c’s are provided. Only some of them are 
consequences of x. The subject must discern which ones (this is a 
generalisation of the calculus ability). 

• Derivational Ability: Given an x, the subject must obtain the greater number of 
correct derivations as it can in a limited time. For this case we should extend 
the previous definition for multiple conclusions. 

It is not expected that these deductive abilities would be independent to the previous 
inductive abilities (as it has been shown by psychometrics for the Homo Sapiens). 
The reason, however, has theoretical roots. As we commented, any inductive process 
requires deduction to check the hypotheses, thus, obviously, inductive ability is 
influenced by deductive ability.  

Nonetheless, deductive ability is also influenced by inductive ability as long as the 
problems get harder. Some lemmata or rules can be generated by an intelligent 
subject in order to help to shorten an ease the proof from the premises to the 
conclusion. This may explain why artificial problem solvers without inductive 
abilities have not been able to solve complex problems, and this is especially clear in 
Automatic Theorem Proving. 

8.7.3 Other factors 

Other factors usually found in psychological tests are ‘verbal ability’, ‘visual ability’, 
‘calculation / deductive ability’, etc. Some of them depend on background 
knowledge and are difficult to measure if the system does not have a base or some 
important perception abilities. 

Many other factors could be measured justifiably by information-theoretic means 
to different kind of systems: animals, A.I. systems, machine learners, etc.  However, 
not every factor is meaningful for intelligence. Factors such as “playing chess well” 
are much too specific to be robust to background knowledge. Other factors will 
result in being highly correlated to other more distinct factors. This correlation 
cannot only be established experimentally like in psychometrics but theoretically, as 
deduction ability can be shown to be correlated with knowledge applicability, or 
some learners have been shown to be formally equivalent to interactive proof 
systems.  

The influence of the descriptional mechanism should also be studied for each 
factor. In the same way, some variants in the test could be made by using middle 
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gaps instead of sequence predictions. For the comprehensibility factor, this change of 
presentation (such as an abduction problem) was studied also in [Hernández-Orallo 
and Minaya-Collado 1998] and no significant difference was perceived with respect 
to to the (inductive) previous presentation.  

In the end, the question is to refine and extend all the previous ideas in order to 
make different and founded tests of intelligence, knowing exactly what is measured. I 
think that this is an urgent and fascinating task for artificial intelligence. 

8.8 The C-test and The Turing Test 

The imitation game was conceived by Turing to dissipate the doubts about possibly 
non-human intelligent beings. He left no place for human’s exclusivity: intelligence 
can be evaluated by an exclusively behavioural test; the rest of details (nature, 
introspection, ...) are irrelevant. Unfortunately, instead of recognising this his most 
important contribution, the test was and is still understood as ‘a goal’ in AI. 
Nonetheless, this view has been responded by many authors, which criticise that the 
TT does provide little information about what intelligence is; it is just a test of 
humanity [Fostel 1993], that, in fact, if applied to human beings, gives many 
paradoxes. The result of applying it to ourselves is a recursive trap (for self-
evaluation) which is unable to answer the question of whether we are intelligent or 
not, or more precisely, how intelligent the Homo Sapiens is. 

Some authors have tried unsuccessfully to correct the two main problems of the 
Turing Test for measuring intelligence: its informal character and its 
anthropocentrism. In some cases, this has led to disparate proposals, as the so-called 
formalisation of the Turing Test [Bradford and Wollowski 1995], sustained from the, 
in my opinion folly, assumption that we are non-deterministic machines able to solve 
NP-complete problems in polynomial time. As [McCarthy 1998] clarifies: “humans 
often solve problems in NP-complete domains in times much shorter than is guaranteed by the 
general algorithms, but can’t solve them quickly in general”. 

There is still a third problem, which is the necessity of several intelligent ‘judges’ 
and a ‘referent’ to make the test. The self-reference question arises again: Who is the 
first intelligent being to start the game? These and other problems are incarnated in 
the Loebner Prize, which usually awards the participant who has devised the system 
more able to cheat the judges, because “humans are surprisingly bad at distinguishing 
humans from computers” [Johnson 1992]. In the end, there is no way of knowing who is 
cheating, the system or its designer. 

However, if fairly played, the imitation game is a hard examination for any 
pretended intelligent system. It is extremely difficult to behave like an average human 
being of this epoch (it is even difficult for some human beings). For a non-human-
contextualised being, it would be required to comprehend the complex behaviour of 
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human beings of these times, their evolution-acquired traits, their language, their 
culture, their limitations, etc. It is much easier then to try to cheat the judges. In fact, 
the judges “are especially fooled into reading structure into chaos, reading meaning into nonsense. 
(...) Sensitivity to subtle patterns in our environment is extremely important to our ability to perceive, 
learn and communicate” [Shieber 1994].  

Curiously, it is precisely this ‘lack’ of the judges, reading structure everywhere, 
what the C-tests measure. In fact, the C-tests are difficult to cheat, they are not 
anthropomorphic, do not require any judge which must previously be determined as 
intelligent and give an independent and possibly multi-dimensional value (and not a 
Boolean answer). However, the C-tests, as they have been presented, are necessary 
(at least to obtain a minimum value of I(S)) but not sufficient (other important 
factors should be measured as well). It has been already suggested that both kind of 
tests (TT and factorial) could be combined in order to give a more accurate test of 
intelligence: “it is this posing of puzzles in arbitrary domains that is the hardest part of the 
Turing Test, and a part that no program has yet passed” [Shapiro 1992]. This idea, however, 
would ultimately turn the TT into a lightweight and less rigorous version of the C-
Test. 

In my opinion the TT should be celebrated as an extremely valuable philosophical 
exercise about the behavioural character of intelligence. However, in practice, it 
should be substituted by progressively more accurate computational and factorial 
tests of different cognitive abilities. 

8.9 Summary and Contributions of This Chapter 

We have taken an important step for the formal measurement of intellectual abilities. 
Different measures of cognitive abilities are presented, in special a measure of 
comprehension ability, which finally correlates with the classical g factor. 

Section 2 has presented the requirements that are needed for a proper 
measurement of intelligence, and, in general, of any intellectual ability: non-Boolean, 
factorial, non-anthropomorphic, computational and meaningful. Some technical 
difficulties are immediately found when this is tried to made directly from 
descriptional complexity. Once the notion of comprehensibility is recovered from 
chapter 6, section 3 is devoted to solve the ‘subjectivity objection’ under the notion 
of unquestionability, also presented in chapter 6. Another important question is to 
order reasonably the difficulty of instances, which is solved in section 4. 
Consequently, the construction of a comprehension test (C-test) is then presented in 
section 5. Section 6 presents the results of applying it to humans and compares it 
with psychometrical tests. The applicability to artificial intelligence is discussed. 
Section 7 studies the measurement of other factors, inductive (knowledge 
applicability, contextualisation, knowledge construction) or deductive (calculus 
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ability, problem solving ability, derivation ability) under the same conditions that the 
C-test has been devised with. 

After the previous results and auspices, the Turing Test is re-examined in section 
8 and reduced to its original philosophical and even metaphorical character. 
Compared with the C-Test, the significance of the TT is recognised, as well as the 
acute deficiencies of its misinterpretation and incarnations, such as the Loebner 
Prize.  

As a result, the main contributions of this chapter are: 
• A non-anthropomorphic test of intelligence, which is based on computational 

and information-theoretic notions, which can make an important advance in 
the evaluation of AI progress. 

• Different fields of AI can adapt these measures to evaluate automated 
induction / deduction / reasoning systems. For instance, the difficulty of 
problems that are classically used by the ML community can be classified by 
their comprehensibility in order to know which ML algorithms are better. In 
the same way, automated theorem provers can be evaluated in a less 
experimental and arbitrary way than by using large collections of test sets (such 
as the TPTP library [Suttner and Sutcliffe 1996]) whose intrinsical difficulty is 
not known. 

• Psychometrics finds its long-awaited theoretical foundation in information 
theory and computation, and opens the door for more experimental and 
theoretical research. 

• In special, factor independence can be studied theoretically and not only 
experimentally, as psychometrics has been doing during the last fifty years. If 
these inter-dependences are clarified, shorter and more precise tests could be 
devised in the future. 

The idea of the Turing Test as a practical test of intelligence should be left behind, 
and substituted by computational and factorial tests of different cognitive abilities, a 
much more useful approach for artificial intelligence progress and for many other 
intriguing questions that are presented and that now it is feasible to answer. 

8.10 Appendix. An Example of C-Test  

This appendix appeared just as it is in [Hernández-Orallo and Minaya-Collado 1998] 
and it is included here to show how a test can be implemented and some of its 
results: 

The problem of selecting a good bias for generating k-hard strings depends on 
many factors. The objective is to maintain expressiveness, to ease the problem of 
finding explanatory descriptions and to limit the combinatorial explosion. The final 
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choice we present is an oversimplified abstract machine that is easily extensible to 
work as a Turing machine.  

8.10.1 A Toy Memory-less Abstract Machine 

Due to the current technology of the computers we can use, we have chosen an 
extremely abridged emulation of the machine that will effectively run the programs, 
instead of more proper languages, such as λ-calculus (or LISP). We have adapted the 
“toy RISC” machine of [Hernández-Orallo and Hernández-Orallo 1993] with two 
remarkable features inherited from its object-oriented coding in C++: it is easily 
tunable for our needs, and it is efficient. We have made it even more reduced, 
removing any operand in the instruction set, even for the loop operations. We have 
only three registers, which are AX (the accumulator), BX and CX. The operations Θβ 
we have used for our experiment are in Table 1: 

 

LOOPTOP Decrements CX. If it is not equal to the first 
element jump to the program top. 

LOOPS Same as LOOPTOP but it jumps n (for the tests 
n=4) instructions backward. 

LOOPM Same as LOOPTOP but it jumps m (for the tests 
m=7) instructions backward. 

SUCC Increments the accumulator. 

PRED  Decrements the accumulator. 

WRITE Writes into the output and moves fwd. 

BREAD2 Moves back and reads from the output. 

FREAD2 Moves fwd and reads from the output. 

MOV A,B1 Copy register BX into AX 

MOV B,A1 Copy register AX into BX 

MOV A,C Copy register CX into AX 

MOV C,A Copy register AX into CX 

ROTR3 Rotates 45° to the right. 

ROTL3 Rotates 45° to the left. 

Table 1. Instruction Set 

The operations with no superscript are present in all the subsets. Operations marked 
with (1) are present in the ‘professional’ version of the machine, the operations with 
(2) are present in the Turing-like version and those with (3) are present in the Logo 
version where the output is bidimensional. This sparseness of only 10 operations will 
be clearly justified later. We have essayed with many different alphabets but for this 
test we will use the professional version and a circular alphabet Ωβ = {a,b,c,d,...,z}, 
i.e., incrementing ‘z’ yields ‘a’ and decrementing ‘a’ yields ‘z’. Since the first element is 
an inflexion point for the loops, it is presented to the subjects as “a critical element”. 
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This configuration still produces many programs that are not robust (intensional) 
because programs can be often split into subprograms. The solution for these cases 
comes from another restriction: the programs must be comprised wholly inside a 
loop. This leaves a good approximation to explanatory programs. The rest to do is to 
avoid repetitions of patterns such as “abcabcabcabc” (for sake of gain and 
plausibility) and take apart the strings where an important part is explained by a 
shorter program (for sake of intensionality). We think that the bias is not all the 
expressible we would like but it allows the generation of strings of certain 
complexity. Also we think it is fair because it does not relate on arithmetic (such as 
cryptarithmetic tests) or any other preceding knowledge, except the order of the 
alphabet. 

8.10.2 The Generation of k-Hard Strings 

The algorithm we have used to generate a set of different k-incomprehensible strings 
is very similar to the one we presented in section 5.4 (of [Hernández-Orallo and 
Minaya-Collado 1998]). Having 10 operations, we have that usually only about a 20% 
of the programs of any size are explanatory. This means that trying to know whether 
a randomly generated program of, say, size 15, is valid, will need the checking of 
more than 2,222,222,222,222 programs. And this is the case if the computational cost 
of x* is slow, contrariwise (if x* is a costly program) we will have to check longer 
programs. 

We have used some optimisations and heuristics in order to make the great 
amount of programs to check more tractable. Some examples of questions are: 

Prediction style: 
k9: a, d, g, j, …  Answer: ‘m’ 

k12 a, a, z, c, y, e, x, …  Answer: ‘g’ 

k14: c, a, b, d, b, c, c, e, c, d, … Answer: ‘d’ 

Abduction style: 
k8: a, _, a, z, a, y, a, …  Answer: ‘a’ 

k10: a, x, _, v, w, t, u, …  Answer: ‘y’ 

k13: a, y, w, _, w, u, w, u, s, … Answer: ‘y’ 

8.10.3 The Tests  

Four tests were devised to measure prediction, abduction, g-factor and similarity. The 
prediction test is composed of 19 exercises generated with the following k-hardness 
distribution (2 k7, 1 k8, 2 k9, 3 k10, 3 k11, 3 k12, 2 k13 and 1 k14), redundancy r = 
2 and the less ‘akin’ as possible. The abduction test is composed of 15 exercises using 
the same generator and redundancy. The distribution was (2 k7, 2 k8, 1 k9, 2 k10, 1 
k11, 3 k12 and 4 k13). In these two tests, the incorrect options were generated 
randomly but relative near to the solution and the letters appearing in the string. The 
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IQ test we used was the European IQ test simply because it is a culture-fair test, 
devised for 20 minutes, ensuring a reasonable range (75-174) of values and available 
on the Internet. The similarity test is composed of 8 exercises generated with binary 
strings of different length and different levels of edit errors (insertion, deletion or 
change). The strings were generated and checked by dynamic programming to ensure 
that they did not have a better correction path. The purpose of this test was to 
measure the ability of compression by trivial pattern matching. 

8.10.4 Subjects and Administration 

Subjects were selected from two different groups: the first group was composed by 
48 high-school students with ages comprised  between 14 and 18 years. The second 
group was composed by 17 subjects of a mixed sample of undergraduate and 
postgraduate university students with ages comprised between 22 and 32 years. 

All the tests were passed in the same session. The times were, without including 
instructions, 10 min. for the prediction test, 5 min. for the abduction test, 5 min. of 
break, 20 min. for the IQ test and 3 min. for the similarity test. 

8.10.5 Results 

We evaluated the test without penalising the errors, i.e., the function hit evaluated the 
same for blanks than for mistakes. We chose e=0, i.e. all questions with the same 
value. IQ-correlations are illustrated in Table 2. 

 

 Pred. Abd. Induct.  Simil. 

High-School  0.31 0.38 0.42 0.39 

University  0.51 0.42 0.56 0.35 

Both Groups  0.73 0.68 0.77 0.50 

Table 2. Correlations with EIQ test 

The correlation for induction (prediction + abduction) is of the same order as the 
usual correlation for induction tests made by psychologists. The correlation between 
the abduction and prediction tests was 0.61, less than expected, which suggests that 
even problems constructed by the same generator can be more or less difficult 
depending on its presentation (abductive or predictive). The correlation between 
induction and similarity was 0.51, which supports the thesis that “the ability of 
compression” is different from “the ability of comprehension”. Finally, we think that 
an analogy test based on our theory would surely round off the study. 

With these data and our amateur methods we are not in conditions to assert more 
things about the relation between C-tests and IQ-tests. There is only a thing that has 
no discussion in the light of the results, the k-hardness matches fairly well with the 
difficulty people found on them, as it is seen in Figure 1: 
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Figure 1. Hit Rate per Difficulty 
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I never waste memory on things that can easily be stored and 

retrieved from elsewhere 

Albert Einstein (1879-1955) 
 

 

 

 

 

 

Abstract: this chapter includes some proposals in different fields. The first application discusses the 
optimal representation for deductive databases, according to the optimal representation seen in 
chapters 3 and 4, in order to improve the performance of a database depending on which operations 
are more frequent and the degree of regularity of the data. Another application is the study of 
validation and maintenance characteristics of software systems under the analogy between software 
science and philosophy of science or, more precisely, between software construction and machine 
learning. Reinforcement measures from chapter 5 are adapted to define a measure of software 
‘predictiveness’, which is identified with software validation, to represent the stability of a system. An 
inversely related measure, the probability of modification, is also obtained for each component and for 
the whole system. Some models of maintenance are considered, and different software arrangement 
topologies are studied theoretically under them. Finally, some other applications are outlined, 
especially related with meaning and language, and their applications to agents communication. 
 

Keywords: Databases, Data Mining, Data Quality, Software Engineering and 
Maintenance, Software Topologies, Knowledge-Based Systems, Meaning and 
Language. 
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9.1 Introduction 

In this chapter some other prospective applications are presented. This includes new 
theoretical tools and adaptations of the concepts that have been presented in this 
work to quite different fields. Thus the term ‘prospective’ indicates that there is not a 
second stage of experimentation of the theoretical items and models which are 
advocated here, which will judge the goodness of these proposals in the end. 

In Section 2, we will study the applications of information gain for information 
systems. After a brief description of predictive data mining, which is an application of 
machine learning (ML) techniques for obtaining knowledge from databases, we study 
the possibility and usefulness of non-predictive data mining. More concretely, 
according to the optimal representation measure seen in chapters 3 and 4, we will 
discuss which would be the optimal representation for deductive databases, in order 
to improve the performance of database operations depending on which operations 
are more frequent and the degree of regularity of the data. Once the physical level is 
separated from the logical question, the intensional relationships which are found in 
a database on a higher level are much more important for the data quality of a 
system, in order to control consistency and redundancy of the data. Finally, both 
deductive and inductive processes (and their integration) will be increasingly more 
important in future databases, which will be better known as knowledge bases or 
knowledge systems. 

In Section 3, validation and maintenance characteristics of software systems are 
reconsidered under the analogy between software science and philosophy of science 
or, more precisely, between software construction and machine learning (ML). From 
this outset, many classical techniques from ML can be used. In particular, the 
reinforcement measures from chapter 5 are adapted to define a measure of software 
‘predictiveness’, which is identified with software validation, to represent the stability 
of a system. An inversely related measure, the probability of modification, is also 
obtained for each component and for the whole system. The application in practice 
of these measurements is discussed. From here, some models of maintenance cost 
are presented, based on a detailed combination of predictiveness and modifiability. 
Different software arrangement topologies are studied theoretically. Hierarchical 
topologies, especially downward confluent ones such as trees and lattices involve less 
maintenance costs. Moreover, some intuitive expectations are confirmed, namely that 
compressed systems and coherent models (without patches or exceptions) are 
manifestly more maintainable. 
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In Section 4 some other applications are outlined, especially related with 
interaction and mutual understanding, some questions related with meaning and 
language, and their applications to agents communication. 

9.2 Representational Data-Mining and Data Quality  

It is usually said that traditional databases are extensional. This assertion is 
increasingly less true as long as database technology has been advancing. In a 
relational database, constraints are intensional definitions, which can be expressed as 
first-order formulae. More importantly, views are derived relations expressed from 
the base relations and other derived relations. 

It is not strange that, from a theoretical point of view, databases have been seen as 
deductive systems where a great proportion of the data is in an extensional way. 
Concretely, the most widely used model, the relational model, understands a database 
as a first-order theory, where each relation is seen as a predicate. 

Recently, there is an interest for using other database models that allow expressing 
more intensional properties intrinsically. For instance, object-oriented databases can 
include any inclusion property of the world as a concrete inheritance relationship in 
the database. The result, however, is the same; an intensional definition is taking 
place in the database. A classical example of this is a relation such as “person(X) :- 
employee(X)”. 

Almost any modern data model allows intensional definitions (in the worst case, a 
model must allow the definition of views, which are intensional definitions). In the 
end, it is necessary an elicitation of which parts must be left in an intensional way and 
which parts must be left in an extensional way. In fact, this is one of the most 
problematic questions in database design. As [Blockeel and De Raedt 1995] point out 
“When designing databases, the designer has to determine the structure of the database by 
determining the extensional and intensional predicates, and by providing definitions for each of the 
intensional predicates. (...). The design ultimately determines the quality of the database”. 

I completely share this view, however, I do not share their criterion: “the better (sic) 
database is the more (sic) compact one, i.e., the one that requires less memory”. In my opinion, 
things are much more complex. The best database should be measured according to 
the representational optimality seen in chapter 4, namely: 

Definition 9.119 The representational optimality of a database is given by: 

Opt(db| E) = α � l(db) + β � Cost(E| db) 

with db being the database and E the evidence or the whole of data that the database 
must accumulate. 

However, a database is not a stored picture, which is static and has only a view. 
There are many operations and partial recovers (queries) that are to be performed 
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over it. Consequently, Cost(E| db) must measure the cost of the most typical queries, 
the cost of updates, the access to partial information, etc. 

It is clear that traditional compression techniques such as Lempel-Ziv algorithm 
[Lempel and Ziv 1977], require uncompressing a large portion of the file even if only 
a small part of that file is required. Consequently, there have been some proposals of 
compressing algorithms specifically design for databases [Moffat and Zobel 1992] 
[Goldstein et al. 1998]. 

A Database Management System (DBMS) tries to obtain the compromise that is 
represented by Definition 9.119. However, this depends on many factors which are 
independent from the data itself, well-known in database literature: secondary 
memory is slower than primary memory, the size of buffer blocks and buffer pool, 
the primary memory which is available [Elmasri and Navathe 1994]. In other words, 
Definition 9.119. is only of theoretical interest. In practice, well-studied structures 
have been implemented: indexes, B-trees, R-trees, snapshots... [Date 1995][Elmasri 
and Navathe 1994] 

The discussion about the degree of intensionality of a database is then more 
centred at a higher level, namely, at the conceptual level, as it has been studied by 
Hull’s paper on the information in a relational database schema [Hull 1984]. The 
main question is avoidance of redundancy, but it is important to realise that the 
degree of compression at the physical level is independent to the degree of 
redundancy at the logical and conceptual levels. A DBMS, which compresses the 
tables of a database, can still suffer from redundancy if functional dependences exist 
in the schema of the database or derived information is maintained explicitly in the 
database. 

Let us see first of all how this redundant information can be detected in databases 
and then let us study in which cases it is convenient to eliminate this redundancy. 

9.2.1 Knowledge Discovery in Databases (KDD) 

Theoretically, the design of a small schema can be done in order to minimise the 
redundancy of the data that it may hold. However, as long as more data is available 
and it is automatically added to existing databases, the control of this redundancy 
must also be partially automated. A new emerging field is tackling this problem: data 
mining, or, more generically, knowledge discovery in databases (KDD). 

More precisely, data mining is just a part of this complex process as it is shown in 
Figure 9.1; KDD includes Data Preparation, Data Mining itself, 
Interpretation/Evaluation and sophisticated Visualisation tools. The whole process 
transforms data into knowledge, because the input of the process is extensional 
information from databases and the output is intensional information in a 
comprehensible language.  
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Figure 9.1. KDD process 

Note that the formalisation of the transformation from “data into knowledge” must 
depend on an evaluation of the knowledge (or theory) with respect to the data (or 
evidence) in a similar way as it has been done throughout this work. Nonetheless, 
KDD can be informally defined as: “the nontrivial process of identifying valid, novel, 
potentially useful, and ultimately understandable patterns in data” [Fayyad et al. 1996b]. 

Let us examine the properties that these patterns which are discovered in the data 
must follow and let us relate them with important concepts that have been 
introduced in this work: 

• valid: it is the most important issue. A pattern or property holds when an 
important part of the data is compliant with it. This is directly related to the 
notions of plausibility. An ideal measurement for validity can be reinforcement, 
especially, as it has been applied in chapter 7 to logic programs.  

• novel: it is not a prerequisite but a desirable property. As we said in chapter 4, to 
talk about a real discovery, the pattern cannot be explicitly in the data. The 
more a KDD discovers, the more implicit the patterns and properties were in 
the data. 

• useful: this is logically measured a posteriori. If a valid and novel pattern has 
been discovered, it may or may not be used for other/future data to detect 
inconsistencies or predict new information. As we saw in chapter 5, 
reinforcement could be used as well to now the usefulness of a concept, by 
measuring to how many other cases it is applicable. 

• understandable: this is not a strict requirement, either. A difficult pattern can be 
discovered by a KDD system and used internally. However, if a human expert 
wants to apply the knowledge that has been obtained to make a decision, to 
explain some fact, etc., the concept cannot be a hard numerical formula but a 
comprehensive concept. In this case, a measure of comprehensibility, as 
introduced in chapter 6 and used in 8 can be used profitably. 

After these desirable properties for a discovered pattern, let us see which kinds of 
patterns can be identified from a database. Theoretically, any complex property can 
be discovered. However, there are specific patterns which are more useful (and 
common) to obtain from a database. Concretely, functional dependences [Mannila 
and Räihä 1994], are properties, relational in nature, which do not accept exceptions. 
An example of these could be the relation of surname between father and child. 
Other systems are based on association rules [Agrawal and Srikant 1994] [Mannila et 
al. 1994] that are probabilistic and hence allow exceptions. Associations are 
propositional, such as the relation between foggy weather and flight delays. Other 
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systems allow exceptions in relational dependences, under the name of partial 
determinations [Pfahringer and Kramer 1995] or probabilistic functional 
dependences [Akutsu and Takasu 1994]. 

More expressive approaches are represented by ILP application to data mining 
[Brockhausen and Morik 1997] [Dzeroski 1996] [Morik 1997] [De Raedt and 
Dehaspe 1997]. ILP allows the generation of richer concepts (more comprehensive). 
Theoretically, any first-order property or constraint can be expressed and hence 
obtained by ILP.  

The final question is whether these findings of relationships, properties or 
patterns should affect the schema of the database or they should only be used as 
knowledge to be interpreted by an expert. The following section claims that this 
decision must be taken according to ‘data quality’ criteria. 

9.2.2 Relationship between Intensionality and Data Quality 

Data Quality is defined as the accuracy to which an information system reflects the 
reality. All the features that are relevant are reflected by the database (completeness) 
and all the data of the database is true in reality (correctness). 

The first relation between data quality and data mining has been established in the 
cleansing phase of a KDD system. Namely, if the information system does not 
reflect accurately the reality, this verification would surely fail, independently of how 
good the KDD system could be. In [Cortés et al. 1995], it is formally shown how 
“random errors and insufficiencies in databases limit the performance of any classifier trained from 
and applied to the database”. 

Since it is impossible in general to validate completely an information system with 
reality, an effective and accurate measurement of the data quality of the database 
could be extremely profitable for KDD. However, this measurement is more useful 
all along the KDD process, before, during and after the data mining process. This 
approach is taken in [Hernandez-Orallo and Alamagnac 1999]. 

For the case of data quality, it is more important to see also the other way: data 
mining can improve data quality. The relation between the environment and the 
database is bidirectional, i.e., there is a lot of acquisition from the reality to the 
database system and there are many outputs (or answered queries) from the database 
which are returned to reality. This process can detect acquisition (or operation) 
errors, which provoke an important feedback from reality to the database, as it is 
shown in the left-hand side figure 2. 
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Figure 9.2. KDD and validation with reality 

However, if a KDD produces knowledge, this knowledge can be used to contrast 
with reality or to correct some other parts of the information system, in a similar way 
as cognitive or scientific experimentation, validation and refutation. 

In this way, information system should be increasingly smarter, in the way that 
both induction and deduction should be used to maintain the data consistent, 
internally and externally. 

Let us see an example where a data-mining algorithm can find new constraints 
that can be useful to correct errors in a database, i.e., to increase its quality. 

Example 9.14 

Consider a small hospital database with 20,000 case histories. A data-mining system 
discovers the following functional dependency: 

P1:   patient(X, _, ..., _, male) :- illness(X, _, ..., _, colour-blindness) 

With 150 cases of colour-blindness in the hospital, from which 144 were men, 1 women 
and the other 5 do not have any value for the ‘sex’ attribute. The generality degree, as it 
was introduced in chapter 7, would be GD= 149/144 = 1.03. 

Due to one error, this is considered a partial dependency. However, if a user or an expert 
is informed of this property, she may know that colour-blindness only affects men and 
she concludes that there is an error in a database, since colour-blindness cannot affect 
women. Moreover, the rule can help to complete the record of the other 5 people, which, 
necessarily, should be men. 

Another question that suggests the previous example is whether this property should 
affect the schema of the database. In this case, the most reasonable change is the 
addition of P1 as a restriction, but the frequencies of men, women and colour-
blindness do not suggest a change in the definition of the tables. 

Example 9.15 

In the same database as Example 9.14 consider the following table: 
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 Patient 

SSN ... ... Penicillin_Allergic 

52677328 ... ... false 

...   ... 

...   ... 

67616274 ... ... false 

where only 4 patients from 20,000 are allergic to penicillin. A data-mining system 
discovers this situations and suggests the following change to the database: 

Base_Patient 

SSN ... ... 

52677328 ... ... 

...   

...   

67616274 ... ... 

 

Penicillin_Allergic 

SSN 

24254151 

76327675 

5254151 
61616166 

and Patient is defined as a view, namely: 
CREATE VIEW patient’ AS 

SELECT base_patient.*, false FROM base_patient 

WHERE SSN not in (SELECT * FROM penicillin_allergic ) 

UNION 

SELECT base_patient.*, true FROM base_patient B, pe nicillin_allergic P 

WHERE B.SSN= P.SSN;  

This would save space in the database, (theoretically, 20,000 bits - 32 � 4 = 19,872 bits). 
However, the schema would be more complicated and there could appear some 
problems of updates or integrity with the view that could finally advise against the 
change. 

Only in some special cases, where classical design rules of relational databases are not 
observed (normal forms, many-to-many relationships, etc), the schema should be 
changed. 



9. Prospective Applications 

 

253

253

Many other factors even justify the existence of redundancy in a database. For 
instance, derived attributes (such as the number of surgical operations) may be useful 
for obtaining frequent information which must be looked up in other tables, mainly 
historical tables. Derived attributes do not affect information quality if they are 
congruently and automatically maintained. 

This is especially useful in modern data-warehouses [Chaudhuri and Dayal 1997], 
where there is a trend to de-normalise the relations in order to have a much quicker 
access to relevant information. This is possible in these systems because data-
warehouses have always derived and historical information which is used to obtain 
statistics, knowledge, trends that would be very difficult to see in the normalised 
databases. 

As a result, there are many important applications and open questions for non-
predictive uses of data mining in order to improve the data quality of an information 
system. There would be more tasks that an information system should do in the 
future. In Wagner’s words: 

“The evolution of information system concepts can be roughly described by the sequence of 
hierarchical and network databases, relational databases, object-oriented, deductive and active 
databases, their resp. Enhancements by special-purpose features, e.g. for temporal, spatial, or 
uncertain, resp. Fuzzy information, and their ‘globalization’ for distributed, mobile and cooperative 
information processing. This ongoing evolution will lead to knowledge systems capable of processing 
various kinds of higher-level information, such as uncertain, disjunctive, and negative information, 
and in addition various kinds of knowledge, such as (deductive and active) rule knowledge, and 
‘social’ knowledge on how to cooperate with global networks” [Wagner 1998]. 

In this context, the consistent conjunction of different reasoning systems and the 
evaluation of the inference they perform must be essential in order to maintain the 
quality and integrity of the information and knowledge which will be maintained by 
this knowledge systems.  

9.3 Software Topologies and Reinforcement 

The analogy between programs and scientific theories outlined in [Fetzer 1991], and 
the modern view of software as an experimental science [Basili et al. 1986] [Basili 
1993] has left behind the previous unsuccessful analogue between software entities 
such as specification, program and verification, and mathematical entities such as 
problem, theorem and proof. 

Philosophy of science provides a much more enlightening paradigm for software 
construction, by explicitly recognising that software engineering is an experimental 
science but also that the development of an actual software system requires more 
inductive techniques [Partridge 1997] than deductive ones. 
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More concretely, machine learning (ML) is a more precise and practical 
framework for this new paradigm for software engineering. A software system is 
then regarded as a learning system. More concretely, traditional software systems are 
viewed as eager learning systems, where the system is an intensional and operative 
expression of the requirements, which behaves correctly in a certain environment. By 
using the ML terminology, requirements can be identified with the training data, the 
software system is just a working hypothesis and correction is more properly viewed 
as predictive accuracy.  

The new wave of software paradigms, under very different banners such as 
intelligent software [Maes 1995], smart software and software agents [Genesereth and 
Katchpel 1994] [Nwana 1996], interactive software [Wegner 1996] or adaptive 
software [Lieberherr 1996] rounds off the analogy with ML, because they can be seen 
as more reactive or interactive learning systems, and many results and techniques, 
especially from lazy methods [Aha 1997], can be applied to them from the sub-fields 
of query learning, case-based reasoning, knowledge acquisition and revision, etc. 

In our opinion, it is somehow short-sighted to try to develop intelligent, smart, 
interactive or adaptive software from scratch, without regarding more than thirty 
years of theoretical and experimental results from ML. Even in the case of 
‘traditional’ software, it is worthy adapting some constructions, techniques, methods 
and theoretical results to better understand the development and nature of software 
systems. 

In this way, this section ‘reuses’ for software development the theory introduced 
in chapter 5. Thus, the use of reinforcement as a tool for the study of the validation 
and revision of an inductive theory is translated into its use for the validation and 
maintainability issues of software systems. 

9.3.1 Adapting the ML framework  

First, the sample data for constructing a software system is composed of experience 
from other software systems, software repositories and requirements information. 
The experience and software repositories can be well formalised under the usual 
“background knowledge” in ML, which can be expressed in an intensional way and is 
supposed to be validated. However, the information that is usually gathered up for 
requirement elicitation is not composed mostly of extensional data such as input-
output pairs or positive and negative examples. On the contrary, this information 
provided for the construction of a software system is composed of base cases, 
scenarios, interviews and a great amount of intensional knowledge. 

Secondly, once the system is in operation or in the implantation stage, the 
validation cannot come exclusively from its use, it necessarily must be combined with 
the user’s satisfaction about the product, by extending reinforcement with rewards 
and penalties. 
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Thirdly, to study maintainability, we must study two different things: the 
predictiveness of software, i.e., the expectancy of future modifications, which directly 
depends on the reinforcement which has been distributed upwards, and the 
consequences that each change may have in other components, which determines a 
downward flow. However, the first topology is dynamic while the second one is 
usually static. 

9.3.2 Sample data. Training set 

It is essential to discern what will constitute the examples or sample data from which 
reinforcement originates. In ML, these cases are usually facts, correspondences, pairs 
of input-outputs, etc. Classically, it is said that the behaviour of any system can be 
described in terms of input-output pairs, i.e. a function, expressed under a proper 
codification. However, theoretically, it has been proved that most complex systems 
cannot be identified by a finite data set of input-outputs [Gold 1967]. Part of the data 
must be given in an intensional way or there is a need of interaction. Finally, even if 
this important fact is ignored, in practice, the effort to convert a software system in 
terms of binary input-output is not sensible nowadays. 

Contrarily, it is more practical to extend the notion of example. Apart from input-
output pairs, we can identify many sorts of examples in the training phase (or 
requirements elicitation). They may be extensional, such as a use case, a scenario, a 
row in a correspondence table, a query and answer, etc., or an intensional concept. 
Even each sentence from the specification in natural language can be used as an 
example. 

As we will see, any of these sorts of examples can be used for reckoning 
reinforcement. The only requirement is the definition of a proper notion of 
‘accordance’, i.e., that a system is in accordance with some example. For instance, in 
the case of input-output pairs, the idea of accordance is extremely simple; if the 
system receives the input and returns the output as a result, the system is in 
accordance with the example. However, it may be more difficult to define 
‘accordance’ for other kind of examples. In any case, it is important not to measure 
the different kinds of examples with the same value, because some of them are 
incomparable. Hence, the idea is to study reinforcement in a separate way for each 
sort and then try to put all that information together. 

9.3.3 Granularity of propagation 

One of the objectives of this study is the detection of which parts are being more 
reinforced than others, in order to know which are more predictive to future 
situations, or in other words, are less expectable to be modified in the future. 

The first thing to do is to recognise the entities or components where we are 
going to centre the reinforcement measure. Although in the following the focus will 
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lay on software components, the idea of component that will be used in the 
following will always be broader than that “component software” [Szyperski 1998] 
and easily extensible to any other system component, either physical (hardware) or 
logical (software). 

The most minute choices, such as an instruction, show that reinforcement must 
not be distributed by the execution trace. For instance, some instruction can appear 
in a loop, being unfairly reinforced. On the other hand, the choice of large 
components provides wider views of how the software is being used. However, this 
higher level presents some other problems. For example, a module A can make use 
of another module B for just one functionality whereas it can use a module C for 
many functionalities. In some way, C should be more reinforced than B, but this 
granularity does not allow this appreciation. Although some of these problems are 
solved later on, once again, the idea is to measure reinforcement for the greater 
number of granularities as possible and then try to understand all the information 
jointly. 

9.3.4 Validation data. User’s accordance 

The idea of accordance for the training set is clear. All the examples are usually 
labelled with positive and negative tags such as “the system should behave as the 
following scenario describes” or “the following situation should not happen”. 

However, when the system is in use, most of the situations are not like the 
training set, so they must be accompanied by the tag “this behaviour has been 
correct” or “this has been a system error”. This feedback can be given by the 
environment, an external system or, more consciously, the user. In the case the 
behaviour is ‘correct’, the system is reinforced, as when a new example is predicted 
by a theory. On the other hand, when the behaviour is detected as ‘incorrect’, we 
have a prediction error of the system. A simpler assumption could be that things are 
going well until some feedback states the contrary. In this way, software is being 
reinforced as time passes by and no modification has been necessary. However, it has 
been shown in most ML paradigms that learning from positive data only is much 
harder, so the feedback from the user is also essential for software quality. 

For semantic-based representational languages, there is usually a notion of proof 
or positive covering, i.e., a theory covers an example iff the example can be derived 
from the theory. This results in a Boolean notion of accordance. Examples of these 
languages are propositional languages, Horn theories, full logical theories, functional 
languages, some kind of grammars, and even higher-order languages. However, with 
our generalisation of example and with general software systems, one cannot assign a 
true or false label to the behaviour of a system with respect to some case. It is more 
accurate to talk about a degree of correctness, from absolute correctness to full 
malfunctioning. 
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Definition 9.120 We denote the accordance of a given example e with respect to 
a system S by S ⊃α

 e: 

For convenience, −1 ≤ α ≤ 1. In the following, we will refer to e as a positive 
example of S when α is l and a negative example if α is −l. 

In the simplest case, when a system can be specified by a function F ⊂ I × O, a 
positive example is just any element of e ∈ F. If we define Fneg = { (i,o) ∈ I × O such 
that ∃e' = (i,o') ∈ F and e' ≠ e } then we have that a negative example is just any 
element from Fneg. If F is complete, there are only three situations: positive hits, not 
covered cases and errors. Hence, α ∈ {1, 0, −1}. Positive and negative samples are 
just subsets of F and Fneg. respectively. In concept learning or ILP, we have that O= { 

false, true } and it is said that the theory or system S covers the examples iff F⊂S. In 
more complex cases, the user or other client systems are responsible for providing 
the value of α for each example. 

9.3.5 Software and reinforcement 

In the case of software, reinforcement could be applied at almost any granularity. For 
instance, a component can be a rule, a procedure or a function, a class, a method, a 
variable, a module or any other higher division. A system will be just a set of 
components. 

For a correct apportionment of credit, we need to discern which parts are 
justifiably responsible for the system to behave correctly for a particular example. In 
other words, if a component can be removed without affecting the functionality of 
the system with respect to some example, it is clear that this example should not be 
reinforced. The following definitions try to formalise and extend this idea: 

Definition 9.121 A component ri is said to be β-necessary with respect to S for an 
example e iff: 

S ⊃α
 e    and  S − {ri} ⊃α' e    and   β = α−α' 

In general, if β = 0 we say that ri is not necessary. On the contrary, if β = 1 we 
simply say that ri is necessary. For instance, if we consider a system S composed of 
modules, we can have that the system covers an example e and without a module mi, 
the system does not cover the example, so S ⊃1

 e, S−{mi} ⊃0 e and β=1. 

Definition 9.122 A system S is reduced for an example e iff: 

S ⊃α
 e   and  ¬∃ ri ∈ S  such that ri is not necessary for e 

Definition 9.123 Reduced Set: RS(e, S) = { Si ⊂ S, Si is reduced for e } 

This excludes subsystems with components that are not useful for increasing the 
accordance of the system with respect to the example. 
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However, it is not clear how to assign a credit to each component, as the 
following example shows:  

Example 9.16 

Suppose a system S with four components { r1, r2, r3, r4 } with S = { r1, r2, r3, r4 } ⊃1
 e, 

S1= { r1, r2, r3 } ⊃1
 e, S2= { r1, r2 } ⊃0.5

 e, S3= { r2, r3 } ⊃0.9
 e and for any other subset of 

S we have α = 0. 

We have that RS(e, S) = { S1, S2, S3 }. 

We can particularise a different set for each component. 

Definition 9.124 RSr(e,S) = { Si : Si ⊂ RS(e,S) and r ∈ Si } 

And from here we compute the credit of each rule in the following way:  

Definition 9.125 credit (r, e) = { ΣS' ∈ RSr(e, S)
 α 
 | S' ⊃α

 e } / card(RS(e, S)) 

For the previous example, Definition 9.125 gives these reasonable values: credit(r1, e) 

= 0.5, credit(r2, e) = 0.8, credit(r3, e) = 0.63, and credit(r4, e) = 0. 

However, in the case of software, the influence of the different components is not 
additive. Very important modules, classes or functions do not perform anything 
valuable on their own, whereas interface components are much more visible to the 
user. Hence, we will only consider the ‘saturated’ subsystems: 

Definition 9.126 A subsystem S' of S is saturated for an example e iff ¬∃ ri ∈ S 

such that: 

S' ⊃α
 e  and  S' ∪ {ri} ⊃α' e    and   α'−α > 0 

Theorem 9.30 A subsystem S' of S is saturated for an example e iff ¬∃ ri ∈ S such 

that S'' = S' ∪ {ri} and ri is β-necessary with respect to S'' for e with β > 0. 

PROOF. If ri is β-necessary with respect to S'' for an example e, we have by 
Definition 9.121 that S'' ⊃α'' e and S'' − {ri} ⊃α''' e and β = α''−α'''.  Since S'' = S' ∪ 

{ri} then α''=α' and α=α'''. Since β > 0, we have that α''−α''' > 0 and α' − α > 0. � 

Definition 9.127 SS(e,S) = { Si ⊂ S, Si is both reduced and saturated with respect 
to S for e }. 

We will refer to the elements of SS as alternative subsystems. For the previous 
example we have that SS(e, S) = { S1 }. Finally, we can define the set of alternative 
subsystems that contain r as, 

Definition 9.128 SSr(e,S) = { Si : Si ⊂ SS(e,S) and r ∈ Si }. 

One of the first results of these definitions is that a subsystem is a set of 
components. That is to say, it is independent of the trace, of how many times a 
component is used for a given example. This ultimately allows the following 
definitions, more similar to those of chapter 5. 
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Definition 9.129 The pure reinforcement ρρ(r) of a component r from a system S 
with respect to some example e is defined as: ρρ(r, e) = ΣS' ∈ SSr(e, S)

 {α : S' ⊃α
 e }. 

In other words, ρρ(r) is computed as the sum of ‘accordances’ from the alternative 
subsystems for e where r is used. If there are more than one alternative subsystem 
for a given e, all of them are reckoned, but, as we have said, for the same subsystem, 
a component is computed only once. 

The proportion of examples from a given evidence E where r is used, can be 
computed as  

Definition 9.130 The probability of r being used for a given example from 
evidence E= {e1, e2, …, en} can be approximated by: Puse(r) =Σe ∈ E {if ρρ(r, e) > 0 
then 1 else 0 } / card(E). 

For a set of examples, i.e., an evidence E, we extend Definition 9.129 in the obvious 
way: 

Definition 9.131 The pure reinforcement ρρ(r, E) of a component r from a 
system S with respect to some given evidence E = {e1, e2, …, en} is defined as: 
ρρ(r, E) = Σi=1..n ρρ(r, ei). 

Definition 9.132 The (normalised) reinforcement is defined as: ρ(r, E) = 1 − 2−ρρ(r, 

E)
. 

In the following, we will omit E when there is no possible confusion. Definition 
9.132 is justified by the convenience of maintaining reinforcement between 0 and 1, 
as it was shown in chapter 5, while rendering easy the computation of reinforcement 
because each time a new example is covered by a system, the reinforcement of the 
components that have been used are incremented by ρ'(r) = (ρ(r) + 1) /2.  

Definition 9.133 The mean reinforced ratio mρ(S) of a system S with m 
components is defined as: 

mρ(S) = Σr∈S ρ(r)/m 

Finally, the validation with respect to the evidence is measured in the following way. 

Definition 9.134 The course χS(e) of a given example e with respect to a system S 
is defined as: 

χS(e) = max S'⊂SS(e, S) { Πr∈S' ρ(r) } 

More constructively, χS(e ) is computed as the product of all the reinforcements ρ(r) 
of all the components r of S used in an alternative subsystem of e. If a component is 
used more than once, it is computed once. If f has more than one alternative 
subsystem, the greatest course is selected. 
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9.3.6 Validation propagation by reinforcement 

As it was discussed in chapter 2, in the ML and philosophy of Science literature, 
there is a variety of evaluation criteria to select the most plausible hypothesis, i.e., the 
one with less prediction errors [Merhav and Feder 1998]. From this variety, the MDL 
(Minimum Description Length) principle [Rissanen 1978, 1996] [Barron et al. 1998] 
and the MLE (Maximum Likelihood Estimator) method have been thoroughly 
studied and inter-related [Kearns et al. 1999]. Associated with them are some popular 
validation methods such as cross-validation, which is also connected with different 
notions of hypothesis stability and reinforcement. 

Intuitively, a theory that has been reinforced by the past evidence is more likely to 
behave properly for the future evidence. Differently from other evaluation criteria, 
the previous subsections have presented measures of reinforcement for each 
component, and not a unique value for the whole system. In order to estimate the 
predictive accuracy (or predictiveness) of a system, a single value is used instead. The 
most natural idea is the mean of all the courses of all the examples in the evidence: 

Definition 9.135 The mean course mχ(S, E) of a system S with respect to an 
evidence E, with n = card(E), is defined as: mχ(S, E) = Σe∈E χS(e)/n. 

In chapter 5, the maximisation of mχ(S, E) and the MDL principle have been 
theoretically related. Logically, the shorter the theory the more probability that 
reinforcement would be more concentrated. In the same paper there are some 
examples that show that mχ(S, E) is a more compensated criterion than the MDL 
principle. Finally, it is possible to formalise the concept of intensionality by using 
reinforcement. A system is intensional if there are not examples covered by some 
component with low reinforcement value. Intensionality was shown to be closely 
related to cross-validation. In other words, systems with components added to the 
system to cover some exceptional examples, i.e. patches, have less stability. These 
extensional parts are not validated and it is highly unlikely that new examples will not 
be covered by these parts, so the system will probably be revised. 

In the same way, we can translate these rationales to software systems. Hypothesis 
stability in ML is converted into system stability, i.e., the system endurance to 
requirement changes. 

Predictiveness is thus distinguished as an actual software quality factor, inversely 
related to the number of modifications for evolving requirements in the same 
context. Reinforcement can be used as a very appropriate measure to estimate the 
probability of modification. More concretely, the probability of modification of a 
component can be directly specified from the reinforcement value. 

Definition 9.136 The isolated probability of modification is: Pmod(r) = 1 − ρ(r) = 
2

−ρρ(r). 
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It is obvious that this defines a probability, since 0 ≤ Pmod(r) ≤ 1. The term 'isolated' 
is motivated by the aim that Definition 9.136 should only measure the probability of 
modification that originates from each component r, not that other components 
could occasion the modification of r. 

From here, it is straightforward to obtain the probability of modification of the 
whole system: 

Theorem 9.31 If we consider independent the isolated modification of each rule 
of a system S, the isolated probability of modification of a system S is: Pmod(S) = 1 
− Πr ∈ S ρ(r). 

PROOF. Since the modification of each component is an independent fact, and S 
is defined as the set of rules, the probability of modification of one or more 

element of this set is obtained in the classical way: Pmod(S) = 1 − Πr ∈ S ( 
−Pmod(r) ) 

= 1 − Πr ∈ S (1 − Pmod(r)) = 1 − Πr ∈ S ρ(r). � 

The absolute stability of a system can be defined as σ(S) = 1 − Pmod(S) = Πr ∈ S ρ(r), 
i.e., the probability that a system is not to be modified at all. This stability of the whole 
theory is a very strict requirement, so we will define another notion of stability later. 

Up to here, we have been given probabilities of modification throughout the 
whole life cycle of the system. However, it would be interesting to measure the 
probability of modification just for the following k examples. Let us consider the 
probability of use of one component for one example Puse(r), given by Definition 
9.130. By a simple combinatorial analysis, the probability that one or more of the 

following k examples would use r is 1 − (−Puse(r))k. Then 

Definition 9.137 The isolated probability of modification of component r before 
example k is: 

Pmod(r, k) = Pmod(r) � { 1 − (−Puse(r))k } 

Theorem 9.32 Given a component r from system S and an evidence E= {e1, e2, 

…, en}, such that ∃e∈E ρρ(r, e) > 0 (i.e., it is a useful component), then, as k 
grows, we have that Pmod(r, k) approximates Pmod(r). 

PROOF. From Definition 9.137, we have that limk→∞ { Pmod(r, k) } = limk→∞ { 

Pmod(r) � { 1 − (−Puse(r))k }} = Pmod(r) � { 1 − limk→∞ (−Puse(r))k }. Since there exists an 
example e such that ρρ(r, e) > 0, then, by Definition 9.130, we have that Puse(r) > 

0, or consequently −Puse(r) < 1. Hence, limk→∞ (−Puse(r))k = 0, and this yields: limk→∞ 
{ Pmod(r, k) } = Pmod(r) � { 1 − 0 } = Pmod(r). � 

In the following, we will suppose there are no useless components, and we will use 
Definition 9.136 and Theorem 9.31 to work with long-term life cycles. However, 
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Definition 9.137 would be useful to compute short-term modification probabilities 
and maintenance costs. It even can be modified to consider the last n' examples 
instead of the whole evidence. For instance, if a module has not been used in the last 
4 months, it is not likely that a modification would affect this module. 

9.3.7 Measurement in practice 

Definition 9.136 and Theorem 9.31 provide a means to evaluate the predictiveness of 
a system or, in some way, how much validated it is. However, as we said, there are 
still some details to resolve in order to make these measurements applicable for 
software systems: (1) one cannot measure the different examples with the same 
value, and (2) reinforcement can be measured for different granularities of 
components. 

Weighing the evidence  

In ML, examples are usually regularised to the same significance. However, in 
software, it is difficult to balance some kinds of examples, such as an input-output 
pair with a scenario. In addition, some examples are used to describe exceptional 
behaviours, with low frequency of use whereas other examples are introduced to 
represent the main part of a system or frequent operation. The following extension is 
useful if one can assign a significance degree de. to the examples which conform the 
evidence E, and it is exactly the same as Definition 5.50. 

Definition 9.138 The ‘grounded’ course χ'(e) of a given example e with respect to a 
system is computed as the normal course χ(e) multiplied by the significance 
degree of e. More formally, χ'(e)=χ(e)·de. 

Another approach is the repetition of the examples that are more significant. This 
is exactly equivalent to the use of the previous definition, by repeating each example 
e in the evidence de. times.  

Weighing components 

The same approach is not valid with components. We cannot compare the 
reinforcement of a module with the reinforcement of a function. However, if one 
uses modules as components for obtaining a mean course mχ(S,E) and an absolute 
stability 1−Pmod(S), it is possible to make the same thing for another granularity, e.g. 
functions, to obtain a different mean course mχ'(S, E) and absolute stability 
1−P'mod(S). If one wants to combine both measurements, a major problem arises. In 
general, the grosser the granularity the greater the mean course and absolute stability. 
The reason is quite simple. For the same system, the finer the granularity the greater 
the number of components and reinforcement must be scattered. In the extreme 
case, if we consider only a component, the system itself, we have the maximum value 
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for mχ(S, E) = Σe∈E χS(e)/n = Σe∈E ρ(S)/n = Σe∈E (1 − 2−n
) /n, which converges quickly 

to 1 if n = card(E) increases. 

To equilibrate the matter there are two options: (1) the introduction of a factor 
directly related to the number of components, and (2) the introduction of a factor 
inversely related to the size of each component. The first one may propitiate the 
pseudo-repetition of components, i.e., components that are always needed in 
conjunction. Hence, we will choose this second option, which is also the same as 
Definition 5.48. 

With size(r) we will denote the size of a component r, with the only restriction for 
size that for all r, size(r) ≥ 1. We extend the definitions in the following way: 

Definition 9.139 The extended pure reinforcement is defined as: ρρ*
(r) = ρρ(r) / 

size(r). 

Likewise we could define the extended normalised reinforcement ρ*
(r) and the 

extended course χ*
(r). 

Finally, with this modification, reinforcement can be associated with the idea of 
reusability. Inside a single system, a module or component is reinforced if it is used 
for many cases or examples. Moreover, the last modification favours granularity, 
which also eases reusability. At the level of different applications, and by considering 
the evidence as the set of all the examples for these different applications, a highly 
reinforced module is reused to cover many groups of examples. 

9.3.8 Modification propagation 

We have dealt about predictiveness, as the ability of a system to behave correctly for 
evolving requirements. This gives an isolated probability of modification Pmod(S) 
whatever the part of the system. However, to estimate maintenance costs it is 
important to know the consequence of each change, i.e., how many components are 
to be modified and how difficult these modifications are. 

The following figure shows the two main factors that affect maintenance: the 
probability of modification which is inversely related to the validation or 
predictiveness characteristic, and the modifiability of the components which are 
more likely to be revised. 

However, in the literature of software modifiability, there is usually no detailed 
relationship between the probability of modification of each component and the 
modifiability of each component. In general, the relation is between the validation of 
the whole system and the modifiability of the whole system. Figure 9.3. shows the 
difference of accuracy between the classical approach and the detailed approach. 
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Fig 9.3. Two different ways to estimate the Maintenance Cost 

In what follows, different particularised models for approximating this maintenance 
cost are presented, that we denote by Costmaint(S). 

Model 0 

The easiest (but less realistic) model for modifiability is the assumption that every 
component modification is independent to the rest of components. In this case, it is 
only necessary to know that each component has a modification cost, a real number 
that we denote by Costmod(r):  

Definition 9.140 The isolated cost of maintenance is defined as: 

Cost0maint(S) = Σr ∈ S Pmod(r) � Costmod(r) 

Although more detailed than the classical Pmod(S) � Costmod(S), this last definition has 
been computed according to the isolated probability of modification. 

S
Pmod = 0.5
Costmod = 4

r2

r1

r4

r3

r5

Pmod = 0.7
Costmod = 5

Pmod = 0.4
Costmod = 2
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Pmod = 0.2
Costmod = 6

Pmod = 0.3
Costmod = 7

Model  0:

Cost0
maint(S) = 9.6

 

Fig 9.4. Example of estimation using Model 0 

For instance, given the system illustrated in figure 9.4, the classical approach takes 
Pmod(S) = 0.9496 to obtain Costmaint(S). For instance, if it is estimated that each 
modification would affect 1.5 components on the average, we can compute 
Costmod(S)=1.5�Σr∈S Costmod(r)/ card(S) =1.5�24/5= 7.2. Finally, Costmaint(S) 
=Pmod(S) � Costmod(S) =0.9496�7.2= 6.84, which is different from the one given by 
Definition 9.140. 
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In this example, both values, Costmaint(S) and Cost0maint(S) are not too despair, but, 
in general, they can differ a great deal. Despite the fact that model 0 is more detailed 
that the classical one, it is still very simple because it ignores the relationships 
between components where modification propagation flows. 

9.3.9 Modification dependences 

Given a representation language, there are different notions of dependence. There 
are functional dependences, where execution (and semantics) propagates (usually 
bottom-up) and static dependences, where modification propagates (usually top-
down). 

It is difficult to establish exactly which are the modification dependences of a 
given system. It depends on the degree of encapsulation of the components, their 
coupling and other semantic or syntactical considerations. Moreover, these factors 
are highly reliant on the granularity of components. For instance, if a module or class 
is modified in its declaration, then it is easier to detect the modules or classes that are 
expected to be modified than if a single line of a program is modified.  

Once these questions are solved for a particular system, the modification 
dependences can be formalised by the term “r depends on ti” that we write r ↵ ti. For 
all the dependences of a single component we will also use the following notation r ↵ 
t1, t2, .. tn. This dependence relation does not need to be reflexive or transitive. 

Definition 9.141 The direct ascendant set of a component r is defined as: 

DAsc(r)={r' : r ↵r'} 

Definition 9.142 The direct descendant set of a component r is: 

DDes(r) = { r' : r'↵r } 

We define the relation ↵* as the transitive and reflexive closure of the dependency relation ↵. 
Formally, 

Definition 9.143 For any two components ra , rb, we have that ra ↵* rb holds iff ra 
= rb or ra ↵ rb or there exists another rc such that ra ↵* rc and rc ↵* rb. 

Definition 9.144 The ascendant set of a component r is defined as: 

Asc(r) = { r' : r ↵* r' }. 

Definition 9.145 The descendant set of a component r is: 

Des(r) = { r': r' ↵* r }. 

These dependences are more or less difficult to establish depending on the 
granularity chosen for the examples. For instance, in a procedural language, suppose 
that a function f uses functions g and h in its definition, h uses function i in its 
definition, and function i uses g. The resulting components and dependences are: f ↵ 
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g, f ↵ h, h ↵ i, and i ↵ g. By the transitivity closure, ↵* extends ↵ to h ↵* g, f ↵* i , f 
↵* g and all the reflexive relations. 

In the same way, one can extend dependences to sets of functions, or modules. In 
this case, the ‘uses’ or ‘includes’ directives are a good overestimation to modification 
dependences. How much these dependences overestimate modification dependences 
relies on the kind of modification (in behaviour or declaration) and the encapsulation 
of each module.  

Finally, to give a much more present and realistic view, in some modelling stages 
or languages, dependences are very heterogeneous, as the following simple object 
model illustrates: 

Practice
Subject

Theory
Subject

Subject

Examination

Professor

prepares
teaches

tutors

attends

Course

Student

makes

 

Fig 9.5. Example of heterogeneous dependences 

If we identify classes with components, in many cases we could identify modelling 
relationships (associations, aggregations and inheritance) in one or both ways, 
according to external information to the model (or design model information). In any 
case, the dependences that can be extracted are barely representative of the 
modification dependences between classes. A better approximation can be made by 
studying the methods and other relationships between classes. 

In short, it is possible to define ↵ for any granularity and any representational 
language, but the accuracy to which ↵ represents modification dependences is heavily 
contingent on this granularity and any other experience or information which may be 
used to refine the estimate. 

Besides, not any relation ↵ can be used. There is an important property that this 
relation must hold, acyclicness, i.e., ↵* must be a partial order relation. This 
limitation is not very restrictive because, although static functional dependences are 
frequently cyclic and static modelling dependences are sometimes cyclic (like figure 
9.3), the instantiated dependences of an effective program are acyclic. 

This hierarchisation was advocated long ago by [Dijkstra 1968] and [Parnas 1972]: 
“We have a hierarchical structure if a certain relation may be defined between the 
modules or programs and that relation is a partial ordering. The relation we are 
concerned is “uses” or “depends upon””. 
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However, if the dependency relation is cyclic, with two components r1 and r2 such 
that r1↵*r2 and r2↵*r1, then a fictitious component rf must be inserted to make r1↵*rf 
and r2↵*rf and the cycle is removed. Obviously, the costs and probabilities of 
modification should be readjusted among r1, r2, rf and other components involved. 

Model 1 

Once relation ↵ is approximated, we can remake the effective probability of 
modification introduced in the previous section. We can define a new measure that 
weighs the isolated probability of modification and the scope of each modification 
(its propagation), assuming Pmod(r) independent. 

Definition 9.146 Given the acyclic relation ↵ for modification dependences, the 
related probability of modification P*mod of a single component is defined as: 

P*mod(r) = 1 − 
−
Pmod(r) · Π ai ∈ Dasc(r) ( −−

P*mod (ai) ) 

where Π is defined to be 1 if it has no factors. 

Finally, model 1 can be introduced accordingly: 

Definition 9.147 Cost1maint(S) = Σr ∈ S P*mod(r) � Costmod(r) 

Let us extend the example of figure 9.4 with some dependences. The new model 
applied in fig. 9.6 shows that the cost of maintenance increases, due to the 
consideration of these modification propagations that were not taken into account in 
model 0. 

S Pmod = 0.5
Costmod = 4

r1

r5

Pmod = 0.7
Costmod = 5

Pmod = 0.4
Costmod = 2

Pmod = 0.5
Costmod = 4

Pmod = 0.2
Costmod = 6

Pmod = 0.3
Costmod = 7

Model 1:

Cost1
maint(S) = 18.63

P*mod(r1)= 0.5

P*mod(r2)=
0.85
P*mod(r3)= 0.65

P*mod(r4)= 0.955

P*mod(r2)= 0.85

P*mod(r5)= 0.9874

× Costmod(ri)

r2

r4

r3

 

Fig 9.6. Example of Estimation using Model 1 

However, this model presents some problems. It over-propagates modification, 
because it modifies the probabilities through all the paths that dependences draw. 
For instance, in Fig. 9.6, we can observe that P*mod(r4) takes into account P*mod(r1) 
twice: from the path r1→ r2 → r4 and from the path r1→ r4 directly. The same 
happens with P*mod(r5). 
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Model 1b 

The correction must only consider each dependency once by using the set of 
ascendants instead of a recursive reckoning of the dependences. 

Definition 9.148 Given the acyclic relation ↵ for modification dependences, the 
corrected related probability of modification P*b

mod of a single component is 
defined: 

P*b
mod(r) = 1 − Π a ∈Asc(r) ( 

−Pmod(a)) 

and we redefine the cost of maintenance 

Definition 9.149 Cost1b
maint(S) = Σr ∈ S P*b

mod(r) � Costmod(r). 

The previous example is corrected to P*b(r1)=0.5, P*b(r2)=0.85, P*b(r3)=0.65, 
P*b(r4)=0.91, P*b(r5)=0.9496, which gives Cost1b

maint(S) = 18.32. 

Finally, we could use this model to define the detailed stability of a system. 

Definition 9.150 The stability of a system S is defined as σ(S) = 1 − Π r ∈ S 
P*b

mod(r). 

Model 2 

Although model 1b is useful to define stability, it does not proceed in an additive way 
with the modification costs. For instance, it is more intuitive to proceed bottom-up 
as follows: if we have a modification at component r, we have to add the cost of all 
the components that depend on it, as follows: 

Definition 9.151 The accumulate cost of a component r is defined as: 

AcCostmod(r) = Σ a ∈ Desc(r ) Costmod(a) 

And once again, the cost of maintenance of a system S could be defined as: 

Definition 9.152 Cost2maint(S) = Σr ∈ S Pmod(r) � AcCostmod(r) 

And the results are quite different in this case: AcCostmod(r1)=24, AcCostmod(r2)=13, 
AcCostmod(r3)=13, AcCostmod(r4)=8, AcCostmod(r5)=6, that gives Cost2maint(S) = 29.4. 

9.3.10 System topologies and maintenance cost 

A validation (or predictiveness) measure for a software system can be obtained by 
using reinforcement propagation. This is inversely related to the modification 
probability. We have also introduced a dependency relation where modification 
propagates. As it has been said, the major problem of this dependency relation is that 
it is difficult to obtain. In general, when a component r is modified, the set of 
components that are to be modified depends mostly on the utilisation rate from the 
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other components. This use rate is precisely what determines reinforcement. This 
insight motivates the following assignment:  

Assumption 9.1. The modification dependency graph, determined by relation ↵, 
usually top-down, matches reversely with the validation reinforcement graph, 
usually bottom-up. 

Although this assumption is controvertible, it has many advantages as a working 
approximation, 

• modification dependences can be determined by the course of reinforcement. 
• conversely, the course of reinforcement, which is extremely variable and 

uncertain for static models, can be approximated by the graph of modification 
dependences.  

On the other hand, this approximation has also some inconveniences. Not all 
granularities admit this matching. Moreover if one tries to mix up different 
granularity in both ways, for instance, using a procedural granularity to assign 
reinforcement and using an object-oriented granularity for modification 
dependences, the results may be useless. 

The final justification of this assignment is that it allows a theoretical study of the 
trade-off between validation (or predictiveness) and modifiability. More concretely, 
in order to obtain a validated (reinforced) system, a component should be used in the 
greater number of cases (and other modules) as possible. However, this would 
compromise modifiability, because any simple modification would propagate to an 
enormous number of other components. 

There is a long debate about the convenience of high fan-in and slow fan-out and 
vice-versa. The slogan of reusability is keep fan-out high and keep fan-in low. The 
slogan of modification in inheritance is to avoid a great number of children. This 
discussion is somehow paradoxical because for every dependency that goes out from 
a component, there is another component where it arrives to. In other words, mean 
fan-in is always equal to mean fan-out. So, it is more sensible to talk about high or 
low connectivity or, more meaningfully, to talk about topologies.  

Intuitively, a hierarchical arrangement of dependences eases the modification of 
the leaves situated at the bottom without the modification of the leaves at the top. 
This was recognised by [Parnas 1972] long ago: “The partial ordering gives us two 
additional benefits. First, parts of the system are benefited (simplified) because they 
use the service of [upper] levels. Second, we are able to cut off the [lower] levels and 
still have a usable and useful product. [...]. The existence of the hierarchical structure 
assures us that we can “prune” off the [lower] levels of the tree and start a new 
[reversed] tree on the old trunk. If we had designed a system in with the “[high] 
level” modules made some use of the “[low] level” modules, we would not have the 
hierarchy, we would find it much harder to remove portions of the systems.”. 
However, one can wonder if the shape of this graph should be tree-like or root-like, 
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the latter implicitly advocated by Parnas. This motivates a more detailed analysis of 
configurations of a given program P. 

Definition 9.153 The Bottom or Minimal Set of a program P, denoted BotP, is 
composed of every component b ∈ P such that ¬∃c ∈ P, c ≠ b, such that c ↵ b. In 
other words, BotP = { b : Des(b) = { b }}. 

Definition 9.154 The Top or Maximal Set of a program P, denoted TopP, is 
composed of every component t ∈ P such that ¬∃c ∈ P, c ≠ t, such that t ↵ c. In 
other words, TopP = { t :  Asc(t) = { t }}. 

According to the previous characteristics, we are going to study five different 
topologies: 

• Topology 1: “Horizontal”: No dependences at all. Obviously, P = BotP = TopP. 
We will consider the following extreme cases: 

 a) Compensated. ∀i ρρ(ci) = n / m. 

 b) With exceptions. ∃j ρρ(cj) = n−m+1 and the rest are exceptions (or 
patches) ρρ(ci) = 1, i ≠ j. 

• Topology 2: “Vertical”: The dependency relation ↵ obeys a full order relation <, 
∀ c1, c2 ∈ P, c1 ≠ c2, then ¬(c2 < c1) ↔ c1 < c2. There is a unique top component t ∈ 
TopP, i.e., card(TopP) = 1. There is a unique bottom component b ∈ BotP, i.e., 
card(BotP) = 1. From here, the following properties hold, ∀ c ∈ P, c ≠ t, then c < t 
and ∀ c ∈ P, c ≠ b, then b < c.  

• Topology 3: Lattice: The dependency relation ↵ obeys a partial order relation <. 
There is a unique top component t such that ∀ c ∈ P, c ≠ t, then c < t and a unique 
bottom component b such that ∀ c ∈ P, c ≠ b, then b < c. We will consider three 
extreme cases: 

 a) A unary lattice which corresponds to topology 2. 

 b) Wide lattice with depth = 3, where the middle level has m−2 components. 

 c) Binary lattice. We assume m = 2k − 1 + 2k−1 − 1 = 3 � (2k−1) − 2, being k a 
natural number. 

• Topology 4:  Tree: The dependency relation obeys a partial order relation < with 
no unique top element (card(TopP) ≥ 1) and ∀ a,b : a ∉ Des(b) ∧ b ∉ Des(a) → 
Asc(a) ∩ Asc(b) = ∅. There is a unique bottom component b such that ∀ c ∈ P, c 
≠ b, then b < c. We will consider three prototypical cases: 

 a) One vertical branch (i.e. card(TopP) = 1). Equivalent to topology 2. 

 b) Wide tree with depth = 2, where the top level has m−1 components. 

 c) Binary tree. We assume m = 2k − 1, being k a natural number. 
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• Topology 5:  Root (inverse tree): The dependency relation obeys a partial order 
relation < with no unique bottom component (card(BotP) ≥ 1) and ∀ a,b : a ∉ 
Asc(b) ∧ b ∉ Asc(a) → Des(a) ∩ Des(b) = ∅. There is a top component t such 
that ∀ c ∈ P, c ≠ t, then c < t. We will consider three prototypical cases: 

 a) One vertical branch (i.e. card(BotP) = 1). Equivalent to topology 2. 

b) Wide root with depth = 2, where the bottom level has m−1 components.. 

c) Inverse binary tree. We assume m = 2k − 1, being k a natural number. 

Cases b) and c) will be studied in two ways: compensated and with exceptions. 

We will assume that all components have the same size and that all examples have 
the same significance. From here, 

Theorem 9.33 Given n examples e1, e2, ..., en, a program of m components 
arranged under topologies 2, 3 or 4 has the following properties: 

• For every component c from P, the pure reinforcement ρρ(c) is n, and the 
normalised reinforcement ρ(c) = 1 − 2−n. 

• For every example ei the course χ(ei) = (1−2−n)m. Hence, the mean course is 
mχ(E) = (1−2−n)m

. 

• For every component c, the isolated probability of modification Pmod(c) is 2−n 
and Pmod(P) = 1 − (1−2−n)m = 1 − mχ(E). 

PROOF. Topologies 2, 3 and 4 have a unique bottom b, and obviously, all the 
examples are covered by this bottom component b. Hence, ρρ(b) = n, and ρ(b) = 
1. Since we consider static dependences, and all the components are required by b, 
because ∀c∈P, c ≠ b, then b ↵ c, they all have the same pure reinforcement ρρ(c) = 
n. The rest of properties follow from here by applying previous definitions. � 

Topologies 1 and 5 may have an overlap in the coverings of the bottom set, i.e., ∀ 
bi ∈ BotP, Σρρ(bi) > n. This kind of redundancy is usually eliminated in software 
systems (except when a voting method is used to increase reliability), so we will 
consider ∀ bi ∈ BotP,Σ ρρ(bi) = n. 

As a result, given n examples, it is shown in the appendix of this chapter that a 
program P of m components with n >> m such that ∀r∈P, Costmod(r)= Ucost, it brings 
forward the following maintenance costs (under model 2): 
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Topology Maintenance cost 

1a) Horizontal compensated O(2−−−−n/m · m) 

1b) Horizontal with Exceptions O(m) 

2) Vertical O(2−−−−n � m2) 

3b) Lattice with depth = 3 O(2−−−−n � m) 

3c) Binary Lattice O(2−−−−n � m � log2m) 

4b) Tree with depth = 2 O(2−−−−n � m) 

4c) Binary Tree O(2−−−−n � m � log2m) 

5b-i) Inverse Tree with depth = 2 and compensated O(2−−−−n/m � m) 

5c-i) Binary Inverse Tree  and compensated O(2−−−−n/m � m · log2m) 

5b-ii) Inverse Tree with depth = 2 with exceptions O(m) 

5c-ii) Binary Inverse Tree with exceptions O(m · log2m) 

Fig 9.7. Results of Maintenance Costs for Different Topologies 

Having in mind the assumptions and approximations that have led us to use 
Cost2maint(S) for approximating the maintainability of a software system, we can 
extract some conclusions: 

First of all, when the software system has exceptions or patches, which are used 
for few examples (topologies 1b, 5b-ii and 5c-ii), they have not been validated and 
the maintenance cost depends almost exclusively on them, in the way that the cost is 
asymptotically independent from n, the factor that reduces the cost.  

From all the rest of compensated topologies, where reinforcement is distributed 
uniformly, the results are not so despair. However there is a great asymptotic 
difference between a wide tree or a lattice and a binary inverse tree. This remarks that 
topologies should be confluent or ‘conciliated’ at the bottom, much more like a tree 
than like a root. In other words, components at the bottom should behave in a broad 
way and not in a specialised way, something that may be interpreted very differently 
depending on what one could think of a component. Finally, other more intuitive 
consequence is that wide topologies are better than thin ones, because of 
modification propagation. 

The strongest result derivable from figure 9.7 is that compression, i.e. increasing n 
over m, is an excellent way to reduce maintenance cost. In relation to the same 
sample, simple systems are more reinforced because the ratio of examples by piece of 
software is greater, so validation is higher. In the other way, modification is much 
easier. Although this is well known since long ago, recently, however, there have 
been claims about considering software engineering as compression [Wolff 1994], 
supported by the idea of learning as compression. However, a very compressed 
model can be spoilt by some patches, something that it is plainly seen in topologies 
1b, 5b-ii and 5c-ii. 
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Finally, as we have said, more things can be inferred from this study if the 
components are particularised to real objects: classes, functions, modules, etc. For 
instance, if the components are classes, one can identify these results with four OO 
software quality metrics such as “lack of cohesion of methods” (increase granularity 
when possible) , “coupling between objects” (decrease granularity when possible), 
“depth of inheritance tree” and “number of children”. Other interpretations are at 
first sight less intuitive or even contradictory. Inheritance, which is widely accepted, 
determines a topology of type 5c-i). However, the dependency relation is not only 
conditioned by inheritance relationship but also by associations, aggregations, etc. 
Moreover, multiple inheritance helps to change the topology to types 3c) or 4c). 
Ultimately, polymorphism represents the previous idea of confluence or avoidance of 
specialisation at the bottom. In some way, polymorphism tries to ‘pump up’ 
reinforcement. 

9.4 Other Applications 

Here I include some other areas where some other concepts of this work may be 
useful, although a deeper examinations would be necessary to know up to which 
degree and success.  

9.4.1 Meaning and Language Understanding 

In chapter 6 we dealt about some questions of the learnability of natural language 
that were related with the notion of intensionality. In the same way we pointed out 
the close relationship between intention and intension, although they are different 
terms. However, there are many other traits of the act of comprehending that are 
related to other notions seen in chapters 4 and 7.  

For instance, the distinction between explicit and implicit, as seen in chapters 3 
and 4, is essential for the communication between two or more individuals.  in the 
case of anaphora or ellipsis, natural language usually uses ellipsis of what is clearly 
implicit. An example of ellipsis is “Mary eats and savours an apple”, known as the 
“shallow structure” which is made explicit into its “deep structure”: “Mary eats an 
apple and Mary savours that apple”. An example of anaphora is “It is the kind of 
apples that she likes” which has as deep structure “The apple is the kind of apples 
that Mary likes”. It is impossible to devise rules to account for all cases, as some 
natural language processing systems have implemented with partial success. It is 
necessary that the systems would have explanatory reasoning and ability to 
understand to address these problems in general, to face ambiguity, etc. In all these 
cases, apart from the intention of the speaker, the explicitness and plausibility of the 
different interpretations should be evaluated. 
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Another question where the measures introduced in this work may be useful is the 
measurement of understandability. This problem has been usually addressed by 
linguistics and psychology [Hörmann 1981][Just and Carpenter 1987] [Rayner and 
Pollatsek 1989], but never formalised. Some representative results can be found in 
[Sommer 1995b]. 

These results have been translated into formal languages like logic theories but, 
since understandability (or comprehensibility) has never been defined in a formal 
way, the translation has never been made in the other way. The notion of 
comprehensibility introduced in chapter 6 has been applied to symbolic problems 
like those that appear in IQ tests. However, the same measures could be applied to 
logical programs and then generate equivalent (although maybe inelegant) sentences 
from them, in order to measure understandability in a verbal context.  

Nonetheless, the measures could also be used in Natural Language Processing 
(NLP). The combination of existing techniques in NLP, mainly based on an ad-hoc 
coding of grammars and rules through Lisp or Prolog programs should be 
accompanied by inductive methods, and, in this case, inductive logic programming 
seems the most appropriate one, in what has been called the triple L, namely, 
“language, learning and logic” (LLL), as it has been advocated by [Muggleton 1998]. 

Natural language learning based on statistical approaches (e.g. n-gram language 
modelling) has been successful, but it is well known that such linguistically 
impoverished approaches have severe limitations. In contrast, the flexibility and 
expressivity of logical representations make them highly suitable for natural language 
analysis. Consequently there is a growing interest in applying Inductive Logic 
Programming techniques to linguistic learning problems.  

From the NLP point of view the promise of ILP is that it will be able to steer a 
mid-course between the two alternatives of large scale, but shallow levels of analysis, 
and small scale, but deep and precise analyses, and produce a better ratio between 
breadth of coverage and depth of analysis. Many measures introduced by this thesis 
could be useful in this endeavour. 

However, the adaptation of the different measures seen in chapter 7 for logic 
programs (especially for ILP) to address different interpretations of a given sentence 
and other problems of NLP could surely be the topic of another thesis. 

9.4.2 Agents Communication 

There has been a recent interest in defining standard languages for the 
communication between agents in a virtual environment. This can be a solution (or a 
necessity) for compatible agents, but this finally turns to be a restriction. Any language 
extends, changes and particularises as long as one knows the knowledge and 
intelligence of the other peer, which progressively becomes more ambiguous and less 
understandable for other persons. 
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The communication between two intelligent beings that do not share a single 
word of their languages has always been a relevant question in philosophy of 
language. The evidence is that they finally find a compromise (a dominant, mixed or 
invented language) to communicate each other.  The question is harder in the case of 
virtual world or textual worlds, mainly because there are few external references and 
analogies, such as the person who can point a tree to another person and say “árbol” 
where the other sees an “arbre”. 

These contacts will be precisely given by communication between agents in 
different multiagent systems, like any computer network and, especially, the Internet. 
Imagine the following situation. An agent establishes communication with other 
agent, both being stranger to each other. In the case that each agent could essay with 
different languages to find one in common, this would be the best solution, but, in 
general, if both say that they speak English, there are still different levels up to they 
can speak English. Even one or two of them can be humans with few knowledge 
about English and the communication has to take this into account. This is a classical 
law of communication: both peers must synchronise their code in order to 
communicate effectively. As long as the agents are more intelligent and the languages 
richer, this is more difficult because exact protocols are difficult or impossible to 
implement. It is necessary that both peers use their common sense in order to adapt to 
the peer’s limitations. 

It is important to note that such a role has been assumed by humans and 
computers since the beginning of computer science and, nowadays, it is a crucial 
aspect of computer-human interaction. Currently, human beings degrade their 
language to be able to communicate with computers, because, nowadays, computers 
do not understand analogies, or jokes, and they do not solve most of the ambiguities 
of human communication and, consequently, the expressivity and flexibility of the 
language which is finally used must be reduced to a lower level. 

It is then necessary to evaluate these abilities in order to improve the 
communication between peers that do not share the same language and the same 
level of intelligence and knowledge. Different protocols and tests should be devised 
in the future for this task, more or less akin to that of chapter 8. 

9.5 Summary 

Very different applications have been presented, each of them more or less related to 
one or more of the previous chapters. As expected, prospective applications and 
combinations raise more questions than they settle, but this is precisely what is 
intended by a prospect, to open new fields. 

Section 2 discusses optimal representation of databases (understood as extremely 
lazy knowledge systems) for optimising accesses. Soon it is realised that this question 
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has been addressed at the physical level and it is independent from the degree of 
intensionality of the model or logical schema of the database. However, it is also 
recognised that intensional properties are useful in this level, due to different reasons. 
Apart from the fact that data quality and data cleansing can affect positively to a 
data-mining process, it is realised that the other way it is also very significant to 
detect redundancies, inconsistencies and other properties which can help to improve 
the data quality of an information system. This will be more important for future 
information systems that will adopt more reasoning power, both inductive and 
deductive, in what is beginning to be called knowledge systems. 

Section 3 applies reinforcement to study maintainability issues for programs (seen 
as eager knowledge systems). From the results, we can highlight that a great number 
of characteristics of software can be theoretically studied using ML analogies and 
techniques. In our case, reinforcement is used to obtain a probability of modification, 
where many other measures are derived from, such as system stability and 
maintainability measures for different topologies. 

Section 4 presents other applications, mainly related with language and 
communication. Fixed languages have limited expressiveness and it would be rather 
surprising that a standard language could be used by most of the systems that may 
interrelate in a real world or in a virtual world. Different languages and changing 
languages must be used to communicate with different agents with divergent 
intelligence and knowledge, and the communication must adapt to these situations. The 
difference between explicit and implicit, formalised and clarified in this work could 
have fruitful applications in the area of natural language processing. The formal 
notion of comprehensibility introduced in chapter 6 has also been highlighted as an 
important trait to be exploited for language understanding. 

This latter issue, comprehensibility, may also be applicable to knowledge systems, 
because understandability is one of the factors that affect the acceptance and 
popularisation of these systems, since many of them are completely cryptic for the 
user [Kodratoff 1994].  

Databases and software systems are both extremes of knowledge systems. The 
classical knowledge-based systems, the natural language processing systems and the 
new trend of information agents or software agents are tracing an increasingly more 
diverse spectrum of use of inductive, deductive, analogical and abductive reasoning 
methods. Moreover, eager and lazy techniques are also beginning to be combined. In 
this panorama, the applications of the measures and other different notions 
presented in this work seem even more promising in the near future. 
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9.6 Appendix  

This appendix includes the results of maintainability for the different topologies 
presented in section 3. 

Topology 1. card(BotP) = card(P). So Σi=1..m ρρ(ci) = n. 

• For the case a) we have that ρ(c) = 1 − 2−n/m
 and for every example ei the course 

χ(ei) = (1−2−n/m
). The isolated and related probabilities of modification are the 

same, exactly, Pmod(c) = P*
b
mod(c) = 2

−n/m
. From here, Pmod(P) = 1 − (1 − 2−n/m

)
m
. 

 ∀i AcCostmod(ci) = Σ a ∈ Des(r ) Costmod(a) = Costmod(a) = Umod and Cost
2
maint(P) = Σr ∈ 

S Pmod(r) · AcCostmod(r) = m · 2
−n/m

 · Umod ∈ O(m · 2−−−−n/m
). 

• For the case b) we have that ρ(cj) = 1 − 2−(n−m+1)
 and ρ(ci) = 0.5 iff i ≠ j. We have 

the course χ(ej) = (1−2−(n−m+1)
) and χ(ei) = 0.5 iff i ≠ j. The mean course is [(m − 

1)/2 + (n−m+1) · (1−2−(n−m+1)
) ] / n=  [(1−m)/2 + n + (m−n−1) · (2−(n−m+1)

) ] / n. If n 

>> m this is approximately  (1−2−n
). The isolated probability of modification is, 

Pmod(cj) = 2
−(n−m+1)

 and Pmod(ci) = 0.5 iff i ≠ j. From here, Pmod(P) = 1 − (1 − 
2

−(n−m+1)
)
 n−m+1

 · (1/2)
m−1

 = 1 − (1 − 2−(n−m+1)
)
 n−m+1

 · 2
 1−m

. Again, since n >> m and n 

is great then Pmod(P) ≅ 1 − 2 1−m
. 

∀i AcCostmod(ci) = Σ a ∈ Desc(r ) Costmod(a) = Costmod(a) = Umod and Cost
2
maint(P) = Σr ∈ 

S Pmod(r) · AcCostmod(r) = ((n−m+1) ·  2
−(n−m+1)

 +  (m−1) · 1/2 ) · Umod. Since the first 

term (n−m+1) ·  2
−(n−m+1) 

is always ≤ 1 if n > m, then Cost2maint(P) ∈ O(m) 
Topology 2. From Theorem 9.33, ρρ(c) = n, and ρ(c) = 1 − 2−n

 , the course χ( ei) = 

(1−2−n
)
m
 for all ei. For all ci, the isolated probability of modification Pmod(ci) is 2

−n 
and 

Pmod(P) = 1 − (1 − 2−n
)
m
. 

• Without loss of generality in this topology, c1 = b and cm = t, with ci < ci+1 ∀i 1 ≤ i 
< m.  

∀i AcCostmod(ci) = Σ a ∈ Des (ci )
 Costmod(a) = i · Umod and Cost

2
maint(P) = Σr ∈ S Pmod(r) · 

AcCostmod(r) = 2
−n
 · Σi = 1 .. m i · Umod = 2

−n
 · m · (m+1)/2 · Umod ∈ O(2−n

 · m
2
) 

Topology 3. From Theorem 9.33, ρρ(c) = n, and ρ(c) = 1 − 2−n
 , the course χ( ei) = 

(1−2−n
)
m
 for all ei. For all ci, the isolated probability of modification Pmod(ci) is 2

−n 
and 

Pmod(P) = 1 − (1 − 2−n
)
m
. 

• For the case b) AcCostmod(b) = Umod and AcCostmod(t) = m·Umod and AcCostmod(r) = 

2·Umod iff r ≠ t and r ≠ b. So, Cost2maint(P) = Σr ∈ S Pmod(r) · AcCostmod(r) = 2
−n
 · (1 + 

m + (m−2)·2 ) ·Umod ≅ 2−n
 · 3m · Umod ∈ O(2−−−−n 

· m) 

• For the case c) it is obvious that AcCostmod(t) = m·Umod. Since m = 2
k
 − 1 + 2

k−1
 − 

1, we have 2k−1 levels: k levels with increasing width and k−1 levels with 
decreasing width. For the first k levels, j-numbered top-down from 1 to k, we have 

2
j−1
 components on each level, and AcCostmod(r

 j
) = (2

k−j+1
 − 1 + 2

k−1−j+1
 − 1 + 

(j−1)) ·Umod  = (3 · 2
k−1−j+1

 − 3 + j) ·Umod 

For the next k−1 levels, i-numbered top-down from k−1 to 1, we have 2i−1
 

components on each level, and AcCostmod(r
i
) = i ·Umod 
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Finally, Cost
2
maint(P) = Σr ∈ S Pmod(r) · AcCostmod(r) = 2

−n 
· (Σj=1..k 2

j−1
·[3 · 2

k−1−j+1
 − 3 

+ j] + Σi=1..k−1 2
i−1 
· i ) ·Umod = 2

−n 
· (Σj=1..k [3·2

k−1
 − 3· 2j−1

 + j·2
j−1
)] + Σi=1..k−1 2

i−1 
· i ) 

·Umod = 2
−n 
· ([k·3·2

k−1
 − 3· 2k

 + 2 +  Σi=1..k−1 j·2
j−1
)] + Σi=1..k−1 2

i−1 
· i ) ·Umod   

By using the approximation Σl=1..p 2
l-1 
· l ≅ p · 2p

., we have: Cost
2
maint(P) ≅ 2−n 

· 

([k·3·2
k−1
 − 6· 2k−1

 + 2 + (k−1) ·2k−1
)] + (k−1) ·2k−1

 ) ·Umod = 2
−n 
· ((k·3 + 2k − 2 − 

6)·2
k−1
 + 2) ·Umod= 2

−n 
· ((5k − 8)·2k−1

 + 2) ·Umod 

Since m = 2
k
 − 1 + 2

k−1
 − 1, then 2k−1

=(m+2)/3 and k = log2 [(m+2)/3 + 1] then, 

Cost
2
maint(P) ≅ 2−n 

· ((5 log2 [(m+2)/3 + 1] − 8) · (m+2)/3 + 2) ·Umod ≅ 2−n 
· 5/3 · m · 

log2 (m/3) ·Umod ∈ O(2−−−−n 
· m · log2 m) 

Topology 4. From Theorem 9.33, ρρ(c) = n, and ρ(c) = 1 − 2−n
 , the course χ( ei) = 

(1−2−n
)
m
 for all ei. For all ci, the isolated probability of modification Pmod(ci) is 2

−n 
and 

Pmod(P) = 1 − (1 − 2−n
)
m
. 

• For the case b) AcCostmod(b) = Umod and AcCostmod(t) = 2·Umod for all t ∈ TopP. So, 

Cost
2
maint(P) = Σr ∈ S Pmod(r) · AcCostmod(r) = 2

−n
 · (1 + (m−1) · 2) ·Umod ≅ 2−n

 · 2m · 

Umod ∈ O(2−−−−n 
· m). 

• For the case c) we directly have that AcCostmod(t) = k·Umod. Since m=2
k −1, there 

are k levels with decreasing width, i-numbered top-down from k to 1, and 2
i−1
 

components on each level, so AcCostmod(r
i
) = i ·Umod 

Finally, Cost
2
maint(P) = Σr ∈ S Pmod(r) · AcCostmod(r) = 2

−n 
· (Σi=1..k 2

i−1 
· i ) ·Umod  

By using again the approximation Σl=1..p 2
l-1 
· l ≅ p · 2p

., we have: Cost
2
maint(P) ≅ 2−n 

· (k ·2
k
 ) ·Umod  

Since m = 2
k
 − 1, then 2

k
=m+1 and k= log2 [m+1] then, 

Cost
2
maint(P) ≅ 2−n 

· log2 [m+1] · (m+1) ·Umod ∈ O(2−−−−n 
· m · log2m)  

Topology 5. Cases b) and c) will be studied with these two extreme conditions: 

 i) Compensated:∀ci∈BotP then ρρ(ci) = n / Card(BotP). 

 ii) With exceptions: ∃j ∈BotP ρρ(cj) = n − Card(BotP) + 1 and the rest ci∈BotP 
have ρρ(ci) = 1, i ≠ j. 

• For the case b)-i) we have that Card(BotP) = m-1, so ρ(t) = 1 − 2−n
 for t and ρ(r) = 

1 − 2−n/(m−1)
 iff r ≠ t. For every example ei the course χ(ei) = (1−2−n/(m−1)

) · (1 − 2−n
). 

The isolated probabilities are Pmod(t) = 2
−n

 and Pmod(r) = 2
−n/(m−1) 

 iff r ≠ t. Pmod(P) = 

1 − (1 − 2−n
)
m−1

 · (1 − 2−n/(m−1)
). 

 On the other hand, AcCostmod(t) = 2·Umod and AcCostmod(b) = Umod iff r ≠ t 
 So, Cost

2
maint(P) = Σr ∈ S Pmod(r) · AcCostmod(r) = (2

−n
 · 2 + (m−2)· 2−n/(m−1) 

) ·Umod ∈ 
O(m· 2

−−−−n/m
)  

• For the case c)-i) we have that Card(BotP) = (m + 1) / 2. We have ρ(t) = 1 − 2−n
 for 

t and for the k levels of the inverse tree, numbered top-down from 1 to k, we have 

ρ(rj
) = 1 − 2−n/(2^(j−1))

. For every example ei the course χ(ei) = Πj=1..k (1 − 2−n/(2^(j−1))
) 

≤ 1 − 2−n/(2^(k−1)) 
= 1 − 2−2n/(m−1)

. 

 We have that the probabilities of modification are Pmod(t) = 2
−n
. Since m = 2

k
 − 1, 

we have k levels with increasing width, numbered top-down from 1 to k, we have 
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2
j−1
 components on each level, and Pmod(r

j
) = 2

−n/(2^(j−1))
. We have Pmod(P) = (1 − 

Πj=1..k · (1 − 2−n/(2^(j−1))
)
 2^(j−1)

 ). 

 It is obvious that AcCostmod(t) = m·Umod. Since m = 2
k
 − 1, we have 2k−1 levels: k 

levels with increasing width, j-numbered top-down from 1 to k, we have 2
j−1
 

components on each level, and AcCostmod(r
 j
) = (2

k−j+1
 − 1 + 2

k−1−j+1
 − 1 + (j−1)) 

·Umod  = (3 · 2
k−1−j+1

 − 3 + j) ·Umod 

 Finally, Cost
2
maint(P) = Σr ∈ S Pmod(r) · AcCostmod(r) = Σj=1..k 2

j−1 
· 2

−n/(2^(j−1)) 
·[3 · 

2
k−1−j+1

 − 3 + j] ·Umod = Σj=1..k 2
−n/(2^(j−1)) 

·[3·2
k−1
 − 3· 2j−1

 + j·2
j−1
] ·Umod  

 Since both factors increase very quickly with j, and using the approximation Σl=1..p 

2
l-1 
· l ≅ p · 2

p
, we have that we can roughly approximate to: Cost

2
maint(P) ≅ 2−n/(2^k) 

·k·2
k
 ·Umod 

 Since m=2
k−1, then 2k

=m+1 and k=log2(m+1), so Cost
2
maint(P) ≅ 2−n/m 

· m·log2m · 

Umod∈O(2−−−−n/m 
·m · log2m) 

• For the case b)-ii) we have that Card(BotP) = m−1, so ρ(t) = 1−2−n
 for t and 

∃j∈BotP ρρ(cj) = n−Card(BotP)+1 = n−m+2 and the rest m−2 components ci∈BotP 
have ρρ(ci)=1, i≠j. There are m−2 examples with course χ(e) = (1−2−1

)·(1 − 2−n
). 

The rest n−m+2 examples have χ(e) = (1−2−(n−m+2)
) · (1−2−n

). 

 The isolated probabilities are Pmod(t) = 2
−n

 and ∃j ∈BotP Pmod(r) = 2
−(n − m + 2)

 and the 

rest m − 2 components ci∈BotP have Pmod(r) = 0.5. We have Pmod(P) = (1 − (1−2−n
) 

· (1−2−(n − m + 2)
 ) · (1−0.5) (m−2)

). 

 On the other hand, AcCostmod(t) = 2·Umod and AcCostmod(b) = Umod iff r ≠ t 
 So, Cost

2
maint(P) = Σr ∈ S Pmod(r) · AcCostmod(r) = (2

−n
 · 2 + 2

−(n − m + 2)
+ (m−2)· 0.5 · 

2) ·Umod. Since the first two terms are always ≤ 1 if n > m and n great, then 

Cost
2
maint(P) ∈ O(m).  

• Case c)-ii) would be lengthy to study directly. However, the results are very 

similar to the case of considering a vertical propagation like topology 2 on one side 

and the biggest subtree of topology c)- i) on the other side. This latter part, 

composed of ((m+1) / 2) −1 nodes, will dominate the whole result because it is 
reinforced by (m+1)/4 examples only, one for each component of BotP. (The 

former part is O(2
−n
 · m

2
)). 

Using the results of topology c)- i) and changing n by (m+1)/4 we have: 

Cost
2
maint(P) ≅ 2− (m+1)/4m 

·m · log2m ·Umod∈ O(m · log2m). 
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10. Conclusions 
    

 
Learning without thinking is useless. 

Thinking without learning, dangerous. 

Confucius, 551-479 BC 

 

 

 

 

 

 
Abstract: this chapter discusses the results that have been fulfilled in relation to the expectations 
and possibilities that were initially aroused from the ideas and methodological tools that motivated 
the goals of this thesis. Their accomplishment is shown by the main contributions of this work, as 
well as the open questions and the future work. The chapter ends with a broader view of the overall 
results and an appraisal of the practical possibilities and philosophical implications of this work. 
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10.1 Introduction 

The determination of approaching inference processes from a non-strictly semantical 
point of view seemed risky at first sight. How much and how well could be addressed 
with measures constructed on descriptional, computational and numerical tools was a 
question at the beginning of this work. However, some semantic or logical 
approaches had unsuccessfully essayed to understand different inference processes in 
a joint and consistent way, under some kind of unified logical framework. 
Nonetheless, there were no valid attempts for ascertaining the result of the different 
inference processes. Hence, in my opinion, an approach based on evaluation (in this 
case syntactical approaches also deserved to be studied. 

The results have been, fortunately, quite satisfactory, according to the 
expectations at the beginning of this work. Such important traits of inference 
processes such as explicitness, implicitness, novelty, intermediate information, 
representational optimality, informativeness, extensionality, intensionality, plausibility 
and confirmation have been accounted by these measures. Moreover, the main tools 
have been basic definitions and properties of descriptional (Kolmogorov) complexity 
on one hand, and a quite simple theory of reinforcement on the other. In other 
words, the measures which have been presented (except from the difficult account of 
the concept of intensionality) have been kept without entering in intricate 
mathematics. The reason may be found in my conviction of keeping the things as 
simple as possible and, of course, my declared inability to use some powerful and 
sophisticated mathematical techniques that possibly could have been useful in some 
occasions. In particular, some results of descriptive set theory, topology, model 
theory, and complex probability distributions should also be applied for accounting, 
in a joint way, for different inference processes. The use of some of them would 
have given the thesis another scope and perhaps would have given some interesting 
results at a higher level. Be it a voluntary outcome or not, I think that the fact that 
most of the measures have been kept quite intuitive and comprehensible must be 
seen as a positive payoff rather than a negative feature. 

Furthermore, in my opinion, the methodology and tools must follow the needs 
that are generated by the goals of any work. Obviously, these goals can only remain if 
some ideas are found that supports in advance the subsequent research. In my case, 
these have been the following:  

• The idea of re-connecting the intuitive notion of information with resource 
consumption or computational/reasoning effort. In particular, the weighing of 
space and time as given by the function LT seemed to me an appropriate 
measure of effort. 
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• The idea of a non-probabilistic but quantitative account for confirmation 
under the following simple assumption: the value of confirmation that a 
deductive connection provides must be much greater than the one a 
hypothetical connection provides. 

• The idea that hypotheses and theories must not be accompanied by a single 
value of plausibility. Any useful account of confirmation must be detailed for 
any part of the theory. In particular, most of the differences between 
consilient/intensional theories and descriptional/(partially extensional) theories 
are originated by the degree of uniformity of the distribution of this 
confirmation, a question that has been neglected in the machine learning 
literature. 

• The idea that reasoning abilities can be evaluated by the use of formally and 
computationally derived measures. Moreover, the conviction that there is no 
need of an external and initially predetermined reference in order to scale the 
intelligence of an agent, a person, an animal or any cognitive system. 

Let us see in which extent the preceding methodology and ideas have been fruitful: 

10.2 Main Contributions 

The main contributions of this thesis are: 

1. A measure of time-ignoring information gain V(x|y) which represents the 
degree of information of x which is implicitly in y. A new effective measure 
of computational information gain G(x|y) which depends on the 
computational effort (time and space) and can be used to measure the 
proportion of x which can be easily obtained on the help of y. In other 
words, the degree of information of x that is explicitly in y is given exactly by 
1 − G(x|y). 

2. Representation Gain and Representational Optimality Measures are 
also defined from computational information gain. A general notion of 
simplification and the definition of a representational optimality criterion are 
introduced, as well as general measures of System Optimisation and 
Systematic Power. 

3. Uniform account for induction and deduction. In induction, Popper’s 
idea of informativeness is perfectly grasped by the use of G. Deduction can 
also be informative and different measures are introduced for several 
deductive paradigms, especially first-order theories. A new notion of 
authentic learning is introduced, ensuring that learning has taken place, 
independently of how compressible the evidence is. Moreover, this notion is 
applicable to deduction, showing that learning deals not only with induction 
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but also with deduction. A comparison with Hintikka’s ideas is performed, 
establishing the relationship between G and Surface Information, and 
between V and Depth Information. 

4. A new measure of reinforcement that quantifies confirmation 
propagation inside a theory. Reinforcement allows a more detailed 
treatment of exceptions and provides different ratings for different parts of a 
theory, not the single probability value for the whole theory usually given by 
prior distributions. 

5. Reinforcement behaves appropriately as a measure of confirmation for 
different inference processes such as induction, abduction, analogy and 
deduction, which are involved in theory construction. Some previously vague 
notions such as Whewell’s ‘consilience’ and explanatory induction are easily 
formalised under this framework. 

6. Gain and Reinforcement act as a perfect team to discern which rules should 
be left explicitly in the representation of a theory. From here, the need of 
intermediate information is formally realised and an oblivion criterion 
is derived and extended to manage past and explained evidence. In this 
context, the difference between eager and lazy methods is clarified and a 
degree of laziness is defined. 

7. The idea of intensionality is formalised in terms of avoidance of 
exceptions, these seen as extensional or non-validated parts of a theory. It is 
directly applied to logical theories and then extended to any descriptional 
language, based on a formal and general definition of subprogram. This idea 
is also connected with ‘consilience’. 

8. Motivated by the problems of the MDL principle, different concepts based 
on descriptional complexity are introduced, such as projectible descriptions 
and stable descriptions. The definition of an explanatory variant of 
Kolmogorov Complexity allows to define an explanatory counterpart to 
the MDL principle. 

9. A non-anthropomorphic test of intelligence, which is based on 
computational and information-theoretic notions, that can make an 
important advance in the evaluation of AI progress. Several particularisations 
for different inductive and deductive factors are also introduced. Moreover, 
psychometrics finds its long-awaited theoretical foundation in information 
theory and computation. 

10. Application of the measurements to different kinds of logical and 
knowledge-based systems, such as Horn theories, databases and software 
systems. Some issues of novel knowledge discovering in databases and the 
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need of intermediate information can be better understood in terms of 
information gain. In the case of software systems, maintainability can be 
studied under the theory of reinforcement, since the more reinforced (used) a 
software component is, the less probable it should be modified in the future. 

Although the main measurements, computational information gain, reinforcement 
and intensionality, are defined independently, they (alone or combined) are useful to 
formalise or better comprehend different concepts which have been traditionally 
rather ambiguous: novelty, explicitness/implicitness, informativeness, surprise, 
interestingness, aesthetics, comprehensibility, consilience, utility, unquestionability, ...  

Naturally, the relationships between these measures and other classical evaluation 
measures are analysed. Information gain is analogous to Quinlan’s gain ratio for 
induction and to Hintikka’s surface and depth information for deduction. 
Intensionality is closely related to information gain, since extensional descriptions are 
never informative. Comprehension is also related to the notion of unquestionability, 
given when there are not alternative explanations. Reinforcement and the MDL 
principle are also positively related but reinforcement is more robust to random 
evidences, giving more informative hypotheses. Some of these results are obtained in 
general and others are particularised for first-order logical theories. 

Part of these contributions have appeared in some journals and conferences, with 
the aim of disseminating this work. Concretely, contributions 1 and 3 appeared in 
Kurt Gödel Colloquium / Barcelona Logic Meeting (KGS’99), contribution 4 will 
appear in the International Journal of Intelligent Systems (IJIS), contributions 7 and 9 
were partially included (joint work with N. Minaya) in the International Symposium 
of Engineering of Intelligent Systems (EIS’98) and an article version of them is 
submitted for a special issue on “Alan Turing and Artificial Intelligence” of the 
Journal of Language, Logic and Information (JoLLI), contribution 7 appeared in 
Model-Based Reasoning in Scientific Discovery (MBR’98) and will be published in 
Philosophica, contribution 8 was presented in MBR’98 and is accepted for Foundations 
of Science (in collaboration with I. García); finally, part of the ideas of contribution 10 
on databases are used in a paper to be presented in European congress on Systems 
Science (ESS’99, joint work with F. Alamagnac). 

As we will see in the next section this research has also opened many other 
questions to investigate, and I hope that they will show in much more extent the 
usefulness of the preceding contributions. 

10.3 Open Questions and Future Work 

There are two kinds of questions raised by this thesis: technical ones, which in some 
sense highlight the limitations or unsolved problems left by this thesis, and new 
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theoretical ones, which are, in the end, expected and desired at the end of any 
scientific task which also looks for new fertile fields to explore. 

Among the technical open questions, one main source of uneasiness is found 
about the computational cost of the measures that have been introduced. As it has 
been shown, the gain function G is computable but intractable. We have argued, 
however, that it is not strange to be this way, because, if it were efficient, it could be 
used for guiding inductive and deductive processes, precisely impairing what is 
measured, the effort of a process of inference. 

Nonetheless, some lower approximations can be obtained from some other 
measures that have been shown to be partially and positive related with it, such as 
intensionality. I say lower approximations because they are useful to discard many 
non-informative hypotheses, but not all. For instance, the avoidance of 
extensionalities (or explicitness) can be a good heuristic to obtain informative results. 
Nonetheless, reinforcement must always be used in order to avoid informative but 
fantastic outcomes. 

Fortunately, reinforcement is computationally feasible, since the algorithm that 
has been presented can be adapted to re-calculate only the parts of the theory that 
change after a revision takes place. Moreover, the oblivion criterion can be used to 
optimise the use of space resources, since the evidence is usually so huge that part of 
it must be forgotten. The theory of reinforcement allows to know which are to be 
forgotten. Nonetheless, a study of other validation propagation algorithms that have 
been introduced in the last decades in the area of artificial neural networks (e.g. 
backpropagation) could inspire some improvements or new algorithms for 
computing reinforcement.  

There are still, of course, many old problems to solve (or to accept), such as the 
intractability of induction. This intractability (well-known since Gold’s results) is even 
backed by some results of this thesis, since it has been shown that polynomial 
algorithms that work exclusively from the data cannot find informative hypotheses in 
general. This justifies the avoidance of data-driven inductive methods and the use of 
more ‘randomised’ techniques, such as genetical algorithms, which may be good 
inducers on the average. The use of detailed evaluation measures such as reinforcement 
may be a perfect optimality criterion to guide the selection mechanism of this kind of 
algorithms. This is beginning to be essayed in [Hernández-Orallo and Ramírez-
Quintana, 1998a, 1998b, 1999a]. In the future, it is envisaged the combination of 
deduction and induction for incomplete and inefficient deductive systems, especially 
present in higher-order logic. A deductive strategy could be largely benefited from 
inductive techniques. 

Among the new open questions, I would expressly highlight the implications of 
the theoretically-based measurement of cognitive abilities which have been 
introduced in chapter 8. Many fascinating questions are open from the correlation of 
classical psychometrics tests (IQ tests) and a C-test which is exclusively generated 
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from the information theoretic notions of comprehensibility and unquestionability. I 
think the most transcendental question that could be solved in the future would be 
“How intelligent are we?” from a non-anthropomorphic point of view. Moreover, 
psychometrics could start a theoretical study (helped by theoretically computer 
science) in order to study formally (and not only experimentally) the independence or 
dependence of several cognitive factors. The fact that deductive abilities correlate 
with inductive ones supports the position that induction and deduction are not 
inverse processes in any way. 

In the mid term it seems to me that the idea of the Turing Test as a practical test 
of intelligence should be left behind, and substituted by computational and factorial 
tests of different cognitive abilities, a much more useful approach for artificial 
intelligence progress. 

Finally, an issue that has only partially been addressed in this thesis is the 
implications of the measures that have been introduced in philosophy of Science. 
Although some notions originally introduced in this context have been formalised, 
such as Whewell’s consilience, Popper’s informativeness, a notion of discovery, and 
the distinction between explanatory and descriptive induction, the results could be 
further exploited into a more comprehensive account of informativeness and 
confirmation in the context of philosophy of Science. The same applies, in more or 
less extent, to philosophy of mathematics, as has also been sketched in chapter 4. 

In the end, there is a lot of theoretical work to be done in the previous technical 
and theoretical questions. For instance, the connection of information gain with 
cryptography could unveil further insights about the behaviour of G. Its relationship 
with PAC-learning may suggest the definition of a probabilistic version of 
information gain, although KT partially accounts for this because it does weight 
space and time by taking all the possible combinations. Another line of future 
theoretical research would be the relationship and combination of the theory of 
reinforcement learning with fuzzy logic, or even with neuro-fuzzy approaches, 
which, in my opinion, may be the closest approach to the way reinforcement 
propagation has been defined.  

Moreover, there is even more experimental work to do for exploiting the possible 
applications of the measures that have been introduced in this thesis. The recent 
overwhelming popularity of field of rational agents has not been accompanied by 
successful and general combinations of different inference processes, partially due to 
the lack of measures that could be consistently applied for all of them. 

The most immediate applications can appear from the use of the measurements 
for first-order logic in chapter 7, which can be used directly for the ILP community. 
The previous chapter is also a suggestion of more or less prospective applications for 
databases, software systems and natural language, where the ideas of informativeness 
and intensionality can be crucial for communication and understanding. 
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As long as more fields dealing with information or knowledge systems, artificial 
intelligence, natural language processing and machine learning would be integrating 
more inference techniques, much more applications are envisaged of the 
measurements and other concepts which have been presented by this thesis. 

10.4 Concluding Remarks 

According to the results and open questions that have been discussed in the previous 
sections, it seems to me that the main goal of the thesis as discussed in chapter 1: “the 
formal study of concept synthesis usefulness and aftermath in terms of information gain and 
reinforcement inside inference systems, consistently and equally applicable for both deductive and 
inductive inference” has substantially been met. The set of measures which have been 
introduced allow a detailed analysis of the value of the output of any inference 
process with respect to the input and the context (background knowledge or 
axiomatic system), both in terms of informativeness and confirmation. 
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A.1 Introduction 
Descriptional Complexity or Intrinsic Information (also referred as Kolmogorov 
Complexity or Algorithmic Complexity) was independently introduced (with initial 
different reasons and directions too) by R.J. Solomonoff, A.N. Kolmogorov and G.J. 
Chaitin. The theory underlying Descriptional Complexity contains deep and 
sophisticated mathematics. Fortunately we only need some of its definitions and 
results. In this appendix we include definitions and properties that may be used or 
may be useful in some way for the rest of this dissertation. We refer to [Chaitin 1974] 
[Chaitin 1992] [Li and Vitányi 1997] (some extracts have been directly taken from 
them)  for a much formal and precise extended treatment of the matter. 

The departure of this fascinating theory is incredibly simple: 

The Minimal Length Encoding MLE(x) of a finite string x is simply the length of the shortest 
program, in a Turing machine without any output, which prints x. The choice of another 

programming language instead a Turing machine would result in another value with an irrelevant 
constant difference. Therefore the complexity is defined independently of the algorithmic language 

or machine that may be used. 

For instance, the MLE(s) of a string s= “11111....” with infinite length is a constant k 
because in any universal descriptional mechanism there is a program of the form 
“REPEAT FOREVER PRINT ‘1’”. The MLE(s’) of a string s'= “101010....10” of 
length n would be, in general, (log n/2 + k') because we have to express the length in 
the program in order to make it stop. Then the program would be something like 
“REPEAT n/2 TIMES PRINT '10'”. 

A.2 Mathematical Definition and Properties 
The term Algorithmic Complexity is generally associated with its ‘purest’ variant, 
based on the MLE or the Minimal Description Length (MDL), i.e., the shortest 
string that, taken as an algorithm, produces the original string. Formally, 

Definition A.155. Plain Complexity 

Cf(x) = min { l(p) : f(p) = x } 

In computer science terminology, p would be the program, f would be the computer. 
We will often refer to p as the compressed string and x to the original or plain string.   

The following invariance theorem is proved elsewhere [Li and Vitányi 1997]:  

Theorem A.34 Descriptional Complexity is an invariant, universal and objective property of each 
string (upto a constant value) independently of the computer, function or whatever descriptional 
method may be used. 
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Since any descriptional method can be simulated by a Universal Turing Machine, 
a machine M (or a universal partial recursive function) is selected arbitrarily as 
reference. For this reason, plain complexity will be referred simply as C(x). 

There is a conditional version of descriptional complexity which is defined as 
follows: 

Definition A.156. Conditional Plain Complexity 

Cf(x|y) = min { l(p) : f(p, y) = x } 

where f(p,y) means the execution of program p in f with input y. 

It is easy to see that34 C(x) = C(x|ε), C(x|x) = O(1) and C(x|y) ≤ C(x) + O(1). 
This definition will be of great importance to clarify some intrinsic features of 
interdependence between some concepts or parts of a given theory.  

The importance of the invariance theorem is crucial for the recent popularity and 
wide use of Kolmogorov Complexity. Regarded as a measure of information that 
contains a string x, it differs from the other classical views of information (Shannon, 
Hintikka, ...) where the information of an object depends on the number of objects 
of the alphabet or world under consideration. [Li and Vitányi 1997] show clearly this 
distinction: 

We are interested in a measure of information content of an 
individual finite object, and in the information conveyed about an 
individual finite object by another individual finite object. Here, 
we want the information content of an object x to be an attribute 
of x alone, and not to depend on, for instance, the means chosen 
to describe this information content. Making the natural 
restriction that the description method should be effective, the 
information content of an object should be a recursively invariant 
property among the different description systems. Pursuing this 
thought leads straightforwardly to Kolmogorov complexity. 

Another fundamental (and trivial) property is the following one: 

Theorem A.35. Upper limits 

C(x) ≤ l(x) + O(1). 

since we can always describe a string x as a program more or less similar to “PRINT 
x” depending to the descriptional scheme used. We will refer this program as the 
trivial mention description.  

However, as [Chaitin 1974] points out: 

                                                           
34 O(1) represents any constant that is independent of x and y. In the introduction the notation a <+ b 
iff a ≤ b + O(1) was given  which is commonly used in the rest of this thesis. In this appendix it will 
only eventually used. 
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the complexity of the great majority of strings of length n is 
approximately n, and very few strings of length n are of 
complexity much less than n. The reason is simply that there are 
much fewer programs of length appreciably less than n than 
strings of length n. More exactly, there are 2n strings of length n, 
and less than 2n-k  programs of length less than n - k. Thus the 
number of strings of length n and complexity less than n - k 
decreases exponentially as k increases. 

Moreover, the incompressibility theorem says that “every finite set A of cardinality m has 
at least m(1-2-c) + 1 elements x with C(x) ≥ log m - c”. 

It is precisely for those strings that are so irregular and cannot be compressed, 
that the shortest description is the trivial mention description. These strings are 
called incompressible. A formal generalisation of this is given by the following 
definition: 

Definition A.157  A string x is c-incompressible if C(x) ≥ l(x) − c.  

 

Incompressible strings have an important feature, they pass all tests of statistical 
randomness (the contrary is not the case).  As Chaitin states again [Chaitin 1974]: 

These considerations have revealed the basic fact that the great 
majority of strings of length n are of complexity very close to n. 
Therefore, if one generates a binary string of length n by tossing a 
fair coin n times and noting whether each toss gives head or tail, it 
is highly probable that the complexity of this string will be very 
close to n. In 1965 Kolmogorov proposed calling random those 
strings of length n whose complexity is approximately n.  

A non-intuitive property of incompressible strings is that it may have compressible 
substrings, corresponding to the known fact that a random sequence must contain 
long runs of zeros. 

Another non-intuitive property is that C(x) is nonmonotonic on prefixes, i.e. the 
complexity of a part can turn out to be bigger than the complexity of the whole35. 

Another important property is expressed as the non-additive character of plain 
descriptional complexity: 

C(x,y) ≤ C(x) + C(y) + O(log(min(C(x), C(y)))) 

The complexity of two strings (the length of the shortest program that can print 
them separatedly) is less (or equal) than the sum of the complexities of both string plus 
a term that is necessary, in the worst case, to separate one from another. 

                                                           
35 For instance, we may have a very short program p to print the first 65536 (216) primes. Modifying 
that program to print the first 65530 (216-6)  primes will probably be a little larger (to express the −6 
difference). 
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This ugly term can be eliminated by using the Algorithmic Prefix Complexity, 
defined in a similar way:  

Definition A.158. Prefix-free Complexity 

K(x) = min { l(p) : φ(p) = x } 

but forcing φ to be a partial recursive prefix function36, i.e., if φ(x) < ∞ and φ(y) < ∞, then 
x is not a proper prefix of y. This makes K additive: 

K(x,y) ≤ K(x) + K(y) + O(1) 

K(x) has some additional advantages over C(x), and therefore is often considered the 
standard algorithmic complexity or Kolmogorov Complexity. 

There are several properties that are useful when working with Kolmogorov 
Complexity: 

Some Properties:  

 K(x*|x) ≤ log l(x) + O(1) 

 K(x|x*) ≤ O(1) 

 C(C(x)) ≤ log l(x) + 1 

 C(x*) = C(x) + O(1)  

The proofs can be found in [Li and Vitányi 1997]. 

A.3 Mutual Information and Information Distance 
The algorithmic information about y contained in x is defined as: 

Definition A.159. Common Information 

Ic(x : y) = K(y) −−−−  K(y|x) 

and the mutual information: 

Definition A.160. Mutual Information 

I(x : y) = K(x) + K(y) −−−−  K(x, y) 

Although both definitions can differ by a great constant, there is an important 
asymptotical result which states:  

Theorem A.36.  

Ic(x : y) =
+ Ic(y : x) =

+ I(x : y)  

The notions of common and mutual information allow the definition of a very 
interesting concept: universal distance [Bennett et al. 1997]: 

                                                           
36 This kind of coding is well-known in the theory of communication. One message can be separated 
from the following one without any information of the position or the length. 
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While Kolmogorov Complexity is the accepted absolute measure 
of information content in an individual object, a similarly absolute 
notion is needed for the information distance between two 
individual objects, for example, two pictures. 

However, several definitions of Information Distance have been presented. 

Definition A.161. Variants of Information Distance 

Universal Effective Information Distance: 

E0(x,y) = min(l(p) : U(p,x) = y, U(p,y) = x 

 where U is a universal machine. 

The Max Distance: 

E1(x,y) = max(K(x|y), K(y|x)) 

Reversible Distance: 

 E2(x,y) = KR(y|x) = min{l(p) : UR(p,x) = y} 

 where UR is a universal reversible machine. 

Sum Distance: 

E3(x,y) = K(x|y) + K(y|x) + O(log K(x,y)) 

From these definitions, and in order to select the most appropriate one, [Bennett et 
al. 1997] show the following relations:  

Theorem A.37. Relation between Distances 

E1(x,y) = max{K(y|x), K(x|y)} =log   

E2(x,y) = KR(y|x) =+ 

E0(x,y) = min{l(p): U(p,x) = y, U(p,y)=x} <log 

K(x|y) + K(y|x) =log E3(x,y) <log 

2E1(x,y) 

Finally, E1 is selected as the cognitive distance between two objects, by using the 
following trivial modification: 

Definition A.162. Universal Information Distance 

 E(x,y) = E1(x,y) + c iff x ≠ y, and 

 E(x,y)= 0 iff x = y 

and it satisfies the triangle inequality, it is 0 if and only if x = y, it is symmetric and it 
is upper semicomputable and normalised, i.e., it is an admissible distance. Moreover 
it is a universal distance, because for every admissible distance D’(x,y) we have E(x,y) 
<+ D’(x,y). [Bennett et al. 1997] 
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A.4 Algorithmic Probability and Inductive Reasoning 
If we are talking about K(x) as a complexity measure is because it provides an 
objective value of the complexity of a string x. This first correspondence shows both 
counter-intuitive and intuitive results: incompressible (random) strings are “complex” 
and very regular strings are simple. 

The other correspondence is more accurate and it is established between K(x) and 
the information content of a string. Information and complexity get connected 
through the notion of probability [Li and Vitányi 1997]: 

This gives an objective and absolute definition of ‘simplicity’ as 
‘low Kolmogorov complexity’. Consequently, one obtains an 
objective and absolute version of the classic maxim of William of 
Ockham (1290?-1349?), known as Occam's razor: “if there are 
alternative explanations for a phenomenon, then , all other things being equal, 
we should select the simplest one”. One identifies ‘simplicity of an 
object’ with ‘an object having a short effective description. In 
other words, a priori we consider objects with short descriptions 
more likely than objects with only long descriptions. That is, 
objects with low complexity have high probability while objects 
with high complexity have low probability. Pursuing this idea 
leads to the remarkable probability distribution 2-K(x) below. 

Thus we can formally define the probability that a string x was algorithmically 
produced by a random sequence taken as a program: 

R(x) = 2-K(x) 

Occam's razor has always been a recurrent theme in philosophy of science and 
induction, but now it assumes a main role. Although Karl Popper said that there is 
no such a objective criterion, K(x) is indeed an objective criterion for simplicity. This 
is precisely what R.J. Solomonoff and G. Chaitin proposed as a 'perfect' theory of 
induction, in [Li and Vitányi 1997] words. The same [Chaitin 1974] explains: 

Solomonoff and the author proposed that the concept of 
complexity might make it possible to precisely formulate the 
situation that a scientist faces when he has made observations and 
wishes to understand them and make predictions. In order to do 
this the scientist searches for a theory that is in agreement with all 
his observations. We consider his observations to be represented 
by a binary string, and a theory to be a program that calculates this 
string. Scientists consider the simplest theory to be the best one, 
and that if a theory is too “ad hoc”, it is useless. How can we 
formulate these intuitions about the scientific method in a precise 
fashion? The simplicity of a theory is inversely proportional to the 
length of the program that constitutes it. That is to say, the best 
program for understanding or predicting observations is the 
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shortest one that reproduces what the scientist has observed up to 
that moment. 

If we regard theories as descriptional sequences of some facts, by using Occam's 
Razor Principle we will choose the one that is shorter. In other words, Occam’s 
Razor is just the assumption of the probability distribution 2-K(x). This leads to the 
definition of the Minimum Description Length (MDL) principle, which is discussed 
in chapter 2. Note that Chaitin’s claim “Scientists consider the simplest theory to be the best 
one, and that if a theory is too “ad hoc”, it is useless” is only partially fulfilled by the MDL 
principle, since for random evidences, the MDL principle gives the most “ad hoc” 
theory, the evidence itself. 

Although the MDL principle can be seen as a plausibility criterion, it can also be 
used as a methodological one. In other words, a selection criteria is always directly 
applicable to the sifting of theories. But most of the times, we do not have a ‘given’ 
range of theories to select. Precisely, we would like the contrary: to obtain a good 
(read shorter) theory from facts. 

Given a sequence of facts, say x, we may essay the following algorithm. 

Universal Enumeration Algorithm (UEA): From i=1 upto l(x) take the 2i possible programs 
of length i and run them to check if one of them produces x. If it does, then stop. If found, this is 

the shortest description. If not, "PRINT x" is the shortest description. 

We have presented a universal algorithm to find the simplest theory to explain some 
facts! Unfortunately, this algorithm is uncomputable, because some programs never 
end (the undecidability of the halting problem). There are some ways of facing this 
problem (such as executing the programs up to a limit number of steps), but even if 
we make it computable, there are some drawbacks: 

• The UEA will be still O(2l(x)+1) in the worst case. 
• Due to the nonmonotonicity on prefixes of K(x), if we are given a new 

example, the minimum descriptional theory may be shorter. Obviously, only 
one example does not justify a re-execution of the algorithm, because the 
theory may be shorter only up to a laconic constant. It is better to patch the 
new example. 

A.5 Resource-bounded Complexity and Universal 
Search 

The problem with K(x) and the MDL principle is that they are not computable unless 
the description mechanism is restricted drastically. Instead of this undesired 
restriction, there is a way of maintaining the description mechanism powerful (such 
as Turing Machines, grammar and general-purpose computers, i.e. universal partial 
recursive functions) without falling in incomputability. This can be accomplished by 
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limiting a resource, e.g. time, of the strings that we would be used as description. As 
we will see below this is sufficient to ensure that the universal enumeration algorithm 
(UEA) ends. 

The other reason to introduce resource bounds is more intuitive. We are 
considering the shortest description as the best one. But “decompressing” the 
description may consume so many resources (e.g. time) that we would prefer a 
description that is a little bit longer but easier to decompress. [Chaitin 1974] puts it 
this way: 

There are less than 2n strings of complexity less than n, but some 
of them are incredibly long. If one wishes to communicate all of 
them to someone else, there are two alternatives. The first is to 
directly show all of them to him. In this case one will have to send 
him an incredibly long message because some of these strings are 
incredibly long. The other alternative is to send him a very short 
message consisting of n bits of axioms from which he can deduce 
which strings are of complexity less than n. Although the message 
is very short in this case, he will have to spend and incredibly long 
time to deduce form these axioms the strings of complexity less 
than n. 

The usual resource-bounded variant of descriptional complexity takes into account 
both the time and the working space used to decompress the description. Since the 
required space is generally smaller than the time, we directly introduce the following 
definition: 

Definition A.163.  Time-Bounded Kolmogorov Complexity 

C t(x) = min { l(p) : φ t(p) = x ∧ cost (p) ≤ t } 

where φ is a universal computer which does the computation of translating p into x 
in at most t steps. Obviously t > l(x) if we want C t(x) to exist, because printing x just 
takes l(x) steps. Also obviously, for t = l(x) + c, Ct(x) must exist (by using the 
program "PRINT x"). There is another interesting property: 

C c�t�log(t)(x) ≤ C t(x) + c  

i.e., a rise of the time limit allows obtaining shorter descriptions. Although C t(x) is 
monotonically decreasing with respect to t, each x will determine a different relation 
between t and Ct(x). 

We have dealt about a bound but we are more interested in finding a compromise 
between length and time. 

There are many ways to weigh the length of the description p and the time to 
decompress it to the original string x, e.g. the product l(p)�cost(p,x), a normalised 
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product l(p)�cost(p,x)/l(x) and others. The expression that has been shown to be the 
most appropriate37 one is due to [Levin 1973] and is referred as Kt complexity38:  

Definition A.164.  Levin-Solomonoff Complexity 

Kt(x) = min { LT(p) : φ (p) = x } 

where LT(p) = l(p) + log cost(p). 

It is straightforward to obtain the limits of Kt: 

log l(x) + c ≤ Kt(x) ≤ l(x) + log l(x) + c  

The left-hand side is justified because x must be printed and this takes at least l(x) 
steps. The right hand side is obtained by using the mention trivial description 
“PRINT x”. 

The great advantage of Kt is that it is computable. From here it is easy to see that: 

K(x* LT |x) ≤  O(1) where x*LT is the program for x where LT(x* LT) = Kt(x) 

Since we have that Kt(x) is effectively computable, we can reformulate our Universal 
Enumeration Algorithm (UEA): 

Time Bounded Enumeration Algorithm (TBEA): Begin with the upper limit L= l(x) 
+ log l(x). From i=1 to l(x) take the 2i possible programs p of length i and run them 
(upto a limited number of computation steps 2L- i) to check if φ(p)=x. If it does, then 
modify L to (l(p) + log cost(p)). If finally found, this is the shortest description. If not, 

"PRINT x" is the shortest description. 

The worst case of this algorithm is still O(2l(x)+1) but for compressible strings it is 
likely that L will be reduced and therefore the average cost of the algorithm. 
Furthermore, if we know a good initial description we can start with its 
corresponding L, using TBEA as a theory refinement algorithm. Moreover, TBEA is fully 
parallelisable. Also, a slight restriction of the descriptional language may turn the 
algorithm almost tractable. 

The TBEA is a variant of the SEARCH algorithm presented in [Li and Vitányi 
1997] which is also a variant of the universal optimal search procedure of Levin which 
shows a worst-case cost of only O(2K(x)+1) in [Levin 1973]. 

                                                           
37 Levin showed its optimality for universal search problems. That is to say, an enumeration algorithm, 
ordered by LT, was optimal in the sense that there is no other search algorithm that can be better for 
all the possible search problems. 
38 Using the logarithm of the cost instead of the cost or the product of l(p) � cost(p) would allow the 
consideration of shorter programs that are NP-hard (or exponential), that otherwise would be replaced 
by the program "PRINT x" that would have less complexity. 
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A.6 Algorithmic Potential 
Before, we have seen that the more time cost we allow the shorter descriptions we 
expect to obtain. This means that for each x, the length of the description and the 
time to compute it are inversely related. This relation between length and time 
suggests the introduction of two borrowed concept from physics. Following [Li and 
Vitányi 1997], time is a resource identified with ‘energy’ and: 

Intuitively, we would like to define potential as the amount of time 
that needs to be pumped into a number by a computation that 
finds it. 

Computing a large composite number from two primes costs only 
a small amount of time. To recover the primes is likely to be 
difficult and time-consuming. This suggests a notion of potential 
numbers such that high-potential primes have relatively low-
potential products. Such products would be hard to factor, 
because all methods must take the time to pump the potential 
back. We will show that if factoring is not in P, then this indeed is 
the reason why. 

Formally, a string x is k-potent if k is the least positive integer such that Kt(x) ≤ k log 
l(x). For instance, the string 1n is 1-potent because Kt(x) ≈ 1�log(n) whereas an 
incompressible string s is (l(s)/log l(s) +1)-potent since Kt(s) = l(s) + log l(s). There is a 
direct correspondence with potential and some computational complexity theorems. 
For more details see [Li and Vitányi 1997]. 

If we regard set of concepts as sequences, a potent sequence can be the formal 
correspondent to the notion of a hard-to-learn concept. 

A.7 Algorithmic (or Logical) Depth and 
Sophistication 

Another intuitive notion of sequences that seems to be formalisable by variants of 
Kolmogorov Complexity, is depth [Li and Vitányi 1997]: 

From the point of view of an investigator, a sequence is deep if it 
yields its secrets only slowly: one will be able to discover all 
significant regularities in it only if one analyzes it long enough. 

Taking Kt(x) (the potential) directly results in incompressible strings as being the 
deepest, which is not intuitively accurate. A better approach can be considered if we 
recall that a binary string x is b-compressible if K(x) ≤ l(x) - b. From here we can 
introduce the notion of logical depth as it was introduced by [Bennett 1988]: 

Definition A.165  A string x is (d,b)-deep if and only if d is the least time required by 
any b-incompressible program to print x. 
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We also call ε = 2-b the significance level. We say a string x is d-deep iff x is (d,∞)-
deep. 

Definition A.166  At any significance level, x is d-shallow if its depth does not exceed 
d. Any string x must take at least n= l(x) steps to be printed. If x is n±O(1)-shallow (at 
all significance levels), then we will simply call x shallow. 

 

From both definitions we get intuitive consequences. A random (incompressible) 
string x of length n is always shallow, because it can be printed by its shortest 
program (PRINT ‘x’) of length n ±O (1), in n steps. But simple strings such as 1n are 
also shallow. So we have that logical depth is different from both algorithmic 
information and algorithmic potential. 

An interesting property (for biology) is the following one [Li and Vitányi 1997]: 

Depth is stable. That is, deep strings cannot be quickly computed 
from shallow ones. In the genetical sense, organisms evolve 
relatively slowly. This may be called the Slow Growth Law. There 
is a mathematical version of such a law. Consider any string x and 
two significance parameters s2 > s1. A random program generated 
by coin tossing has probability less than 2-(s2-s1)+O(1) of 
transforming x into an excessively deep output, one whose s2-
significance depth exceeds the s1-significance depth of x plus the 
run time of the transforming program plus O(1). 

Koppel introduced the notion of sophistication with the goal of distinguish the 
structural part of an object [Koppel 1988] from its data or non-compressible part of 
it. Sophistication is measured by the use of a special kind of Turing Machines φ’, 
which separate program from data. Sophistication is then measured as Soph(x) = 
min{l(p) : ∃d such that φ’(p,d) = x} with the restriction that p must be total, i.e., 
defined for all d. This last restriction precludes that the whole description is passed to 
the part of data, by maintaining an interpreter i of the data d’ = <p,d>. According to 
Koppel [Koppel 1987], “the sophistication of an object is the size of that part of the most concise 
description of that object which describes its structure, i.e., the aggregate of its projectible properties. 
For example, the sophistication of a string that is random except that each bit is doubled (e.g. 
00110000110011....) is the size of the part of the description that represents the doubling of the 
bits”.  

Koppel showed [Koppel 1987] that “sophistication” and “depth” were equivalent 
up to a constant. Some problems of both sophistication and depth are discussed in 
the chapter 6 of this dissertation. 
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B. Publications 
Generated from this 

Thesis 
 

 

Ich habe nichts dagegen wenn Sie langsam denken, Herr Doktor, aber 

ich habe etwas dagegen wenn Sie rascher publizieren als denken.39 

Wolfgang Pauli (1900-1958) 

 

 

 

 

Many chapters of this thesis dissertation have been reflected more or less completely 
in several publications. Their references are included in this appendix. For a 
complete version of them, please visit the web page: 
“http://www.dsic.upv.es/~jorallo/escrits/escritsa.ht m”.  

 

Other publications by the author (which can be found at appendix C) are also 
indirectly related with this work. Most of them can also be found at the same 
address. 

 

Finally, an electronic version of this dissertation can be found at 
“http://www.dsic.upv.es/~jorallo/tesi/tesi.htm ”. 

 

                                                           
39 I’m not scared when you think slowly, Doctor; I’m really afraid when you publish quicker than 
think.  
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D. Acronyms 
 

 

Entre deux mots il faut choisir le moindre. 

Paul Valéry (1871 - 1945) 

 

 

 

 

Many acronyms appear in this dissertation. The intention has been to give the full 
meaning the first time the acronym appears in the text but, in some cases, there can 
be a long space between the first appearance and the second one. Therefore, a listing 
of all them is included here with their correspondence or a brief explanation. 

 

AC: Computational Accepter. 

AI: Artificial Intelligence 

AILP: Abductive Inductive Logic Programming. 

ALP: Abductive Logic Programming [Kakas et al. 1993]. 
ANN: Artificial Neural Networks. 

ATP: Automatic Theorem Proving. 

B: Generally, the Background Knowledge. 

CBR: Case-Based Reasoning. 

CRC: Cyclic Redundancy Code. 

DBMS: Database Management System. 

DS: Computational Deterministic Derivational (or simply Deductive) System. 
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E−−−−: Generally, the Negative Evidence. 

E: Generally, the Evidence. 

E+: Generally, the Positive Evidence. 

EBL: Explanation-Based Learning. 

G(xy): Computational Information Gain from y to x. 

GD: Generalisation Degree. 

H: Generally, the Hypothesis. 

ID3: successful machine learning algorithm [Quinlan 1986, 1990]. 

ILP: Inductive Logic Programming. 

IQ: Intelligence Quotient. 

K(xy): Relative Kolmogorov Complexity of x given y. 

KDD: Knowledge Discovery in Databases. 

Kt(xy): Relative Levin Complexity of x given y. 
LGG: Least General Generalization. 

LLL: A new field called “language, learning and logic” which combines logic, ML and NLP. 

LT(�): Function weighing the length of a program with the log. of its computational cost. 

MBR: Model Based Reasoning. 

MC: Model Complexity. 

MDL: Minimum Description Length. 

ML: Machine Learning. 

MLE: Maximum Likelihood Estimator. Also, Minimal Length Encoding. 

MML: Minimum Message Length. 

NLP: Natural Language Processing. 

NP: Non Polynomial. 

P: Generally, a Program. Also Polynomial (computable in polynomial time). 

PAC-learning: Probably Approximate Correct learning.  

PC: Proof Complexity. 

RL: Reinforcement Learning. 

RLGG: Relative Least General Generalization. 

SAT problem: to decide whether a Boolean formula in conj. normal form is satisfiable. 

SED: Shortest Explanatory Description. 

SLD: Selective linear resolution for definite clauses. 

SLDNF: SLD with Negation as Failure. 

T: Generally, a Theory. 
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TG(xy): True Information Gain from y to x. 

TP: Computational Theorem Prover. 

TT: Turing Test. An Imitation Game, for ascertaining humanity.  

V(xy): Absolute (Time Ignoring) Information Gain from y to x. 
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A 

Abduction, VII; IX; 19; 21; 22; 39; 40; 51; 137; 

142; 242; 303; 306; 308; 312; 313; 315; 317; 

320; 322; 324; 327; 329; 331; 333; 336 

Abductive Logic Programming (ALP), 40; 337 

Aesthetics, VIII; 45; 76; 78; 80; 92 

Analogy, VII; IX; 23; 41; 129; 145; 146; 169; 

235; 313; 319; 328 

Angluin, 32; 35; 94; 196; 226; 235; 306 

Aristotle, 19; 21; 22; 25 

Artificial Intelligence (AI), 10; 21; 27; 28; 36; 

41; 78; 84; 224; 225; 233; 234; 235; 238; 240; 

284; 303; 305; 306; 310; 312; 315; 317; 319; 

320; 322; 324; 325; 326; 328; 329; 330; 332; 

334; 336; 337 

Artificial Neural Networks, 130; 169; 337 

Authentic Learning, 94 

Automatic Theorem Proving (ATP), 8; 12; 13; 

19; 26; 27; 28; 30; 83; 117; 128; 237; 337 

Axiomatic System, VIII; 113 

B 

Background Knowledge, 51; 146; 337 

Bacon, 21; 31; 319 

Bayes, 5; 31; 33; 307 

Beneyto, I; XIX; XX 

Boris, XX 

C 

Carnap, 1; 4; 5; 14; 25; 31; 43; 44; 48; 49; 50; 

88; 98; 121; 122; 156; 157; 160; 170; 197; 

306; 309 

Case-Based Reasoning (CBR), 46; 52; 119; 121; 

337 

Chaitin, XX; 10; 25; 35; 114; 193; 225; 227; 

290; 292; 295; 296; 297; 309; 310; 313 

Coherence, 327; 333 

Combination of Inference Processes, VII; 50 

Comprehensibility, 11; 229; 230; 320; 332 

Compression, 227; 289; 320; 322; 324; 328; 333; 

334; 335 

Confirmation, V; VII; IX; 47; 160 

Consilience, IX; 11; 34; 129; 140; 143; 145; 159; 

169; 203; 302; 303; 316 

Cussens, 6; 7; 311 

D 

Data Quality, XI; 245; 247; 250; 317 

Database, 248; 308; 311; 312; 337 
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Database Managament System (DBMS), 248; 

337 

Deduction, V; VII; VIII; IX; 1; 10; 19; 22; 24; 

26; 29; 44; 83; 87; 98; 121; 125; 127; 128; 

154; 158; 169; 281; 283; 307; 309; 311; 312; 

314; 320; 322; 328; 329; 330; 331; 336 

Discovery, VIII; XI; 83; 91; 248; 285; 311; 312; 

313; 318; 321; 322; 323; 325; 327; 328; 329; 

331; 333; 336; 338 

E 

Eager Methods, VII; VIII; 45; 119 

Effort, VII; 45; 116; 236 

Entropy, 97; 289; 314; 315; 316; 331 

Enumeration Algorithm, 201; 296; 298 

Exception, IX; 99; 177; 179 

Explanation, IX; 14; 40; 46; 119; 132; 173; 199; 

310; 311; 312; 313; 316; 321; 322; 324; 327; 

328; 329; 330; 331; 338 

Explanation-Based Learning, 40; 119; 121; 131; 

310; 338 

Explicitness, VIII; 77 

F 

Factorisation, X; 234 

Flach, XX; 21; 39; 40; 41; 44; 48; 49; 50; 303; 

306; 313; 315; 317; 324 

G 

Genetic Programming, 201; 319; 321 

Gödel, 24; 25; 43; 114; 285; 303; 309; 316; 317; 

318; 323 

Gold, 31; 35; 94; 127; 226; 255; 286; 315 

H 

Hempel, 3; 34; 48; 49; 50; 84; 160; 170; 316 

Hernández, I; XVII; XX; 145; 169; 203; 220; 

232; 235; 238; 240; 241; 242; 250; 286; 302; 

303; 316; 317 

Hintikka, VIII; XIII; XV; 1; 4; 5; 10; 11; 12; 13; 

25; 44; 55; 57; 76; 83; 98; 111; 112; 113; 124; 

127; 128; 159; 284; 285; 291; 318 

Hofstadter, XX; 41; 42; 197; 227; 228; 318 

Homo Sapiens, 226; 232; 237; 238 

Hume, 5; 21; 129 

I 

ID3, 33; 95; 338 

Induction, V; VII; VIII; X; 1; 2; 19; 22; 30; 35; 

43; 83; 87; 88; 121; 125; 127; 128; 189; 192; 

203; 219; 281; 303; 306; 308; 311; 312; 313; 

315; 316; 317; 318; 324; 325; 326; 328; 329; 

334; 336 

Inductive Logic Programming (ILP), VII; 4; 12; 

15; 19; 35; 36; 37; 38; 39; 40; 45; 119; 121; 

125; 127; 130; 132; 201; 202; 207; 219; 221; 

234; 250; 257; 274; 287; 305; 306; 309; 311; 

314; 317; 319; 320; 321; 322; 325; 326; 327; 

332; 334; 336; 337; 338 

Inference, I; V; VII; VIII; 1; 12; 13; 19; 35; 37; 

42; 45; 47; 50; 55; 56; 83; 100; 109; 119; 123; 

129; 281; 289; 303; 306; 312; 315; 316; 317; 

318; 319; 327; 328; 331; 333 

Inference Paradox, V; 281 

Information Gain, I; V; VIII; IX; X; 13; 53; 56; 

59; 62; 64; 68; 70; 80; 83; 88; 90; 94; 95; 96; 

98; 101; 127; 162; 173; 194; 203; 206; 218; 

281; 303; 316; 338; 339 

Intellectual Abilities, X; 15; 223 

Intelligence, 8; 21; 123; 223; 225; 226; 227; 233; 

285; 303; 305; 306; 307; 308; 309; 310; 311; 

313; 314; 315; 317; 318; 319; 320; 321; 322; 

323; 324; 325; 326; 327; 328; 329; 330; 331; 

332; 333; 334; 335; 336; 337; 338 

Intelligence Quotient, 15; 31; 223; 224; 226; 

227; 228; 232; 234; 243; 274; 286; 338 

Intelligibility, 11 

Intensionality, V; IX; X; XI; 14; 15; 144; 173; 

185; 189; 194; 196; 201; 203; 221; 250; 260; 

281; 285 

Interestingness, VIII; IX; 76; 78; 79; 159 

Intermediate Information, 13; 83; 122; 128 

K 

Kant, 21; 44 

Kirsh, VIII; 55; 58; 71; 76; 77; 78; 80; 92; 94; 

320 

Knowledge Discovery in Databases (KDD), XI; 

248; 249; 250; 251; 313; 338 

Knowledge Systems, 334 

Kolmogorov, V; VI; XII; XIII; XV; 1; 3; 5; 7; 

10; 14; 16; 18; 35; 57; 59; 68; 69; 80; 88; 97; 

112; 173; 175; 186; 188; 189; 192; 199; 227; 

281; 282; 284; 289; 290; 291; 292; 293; 294; 

295; 297; 299; 303; 320; 322; 334; 338 

Kolmogorov Complexity, V; XII; XIII; 1; 3; 5; 7; 

10; 14; 16; 18; 57; 59; 69; 80; 88; 112; 173; 

186; 188; 189; 192; 199; 227; 281; 284; 289; 

290; 291; 293; 294; 297; 299; 303; 320; 322; 

334; 338 

Kuhn, 31; 32; 33; 217; 321 
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L 

Lazy Methods, VII; VIII; 45; 119; 305 

Least General Generalization (LGG), 338 

Levin, XIII; XV; 1; 3; 8; 18; 35; 58; 64; 80; 218; 

227; 298; 322; 331; 338 

Levin Complexity, 18; 80; 338 

Llull, 26; 201; 223 

M 

Machine Learning (ML), XI; 31; 35; 36; 50; 83; 

131; 201; 240; 246; 254; 255; 256; 260; 262; 

276; 306; 308; 309; 310; 311; 312; 313; 315; 

316; 317; 320; 322; 324; 325; 326; 327; 328; 

329; 330; 331; 332; 333; 334; 336; 338 

Maintenance, 245; 264; 272 

Mathematics, IX; 27; 159; 318; 320; 321; 323; 

328; 334; 336 

MDL. See Minimum Description Length 

Michalski, 21; 39; 50; 324 

Minimum Description Length (MDL), VII; X; 

XIV; XVI; 5; 9; 13; 14; 15; 32; 33; 34; 35; 42; 

45; 48; 50; 76; 83; 84; 88; 89; 90; 91; 93; 94; 

98; 122; 127; 129; 130; 131; 132; 133; 145; 

147; 162; 169; 173; 175; 178; 186; 189; 190; 

192; 193; 195; 196; 199; 201; 202; 203; 204; 

205; 212; 213; 215; 216; 217; 219; 221; 222; 

260; 284; 285; 289; 290; 296; 302; 317; 328; 

338 

Modal Logic, 321 

Model Based Reasoning (MBR), 45; 119; 121; 

285; 303; 316; 317; 338 

Monotonic, 312; 326; 331 

Muggleton, XX; 4; 5; 35; 36; 38; 39; 43; 103; 

132; 196; 202; 204; 205; 219; 274; 325; 326; 

332 

N 

Natural Language, 274; 310; 332; 336; 338 

Natural Language Processing (NLP), 274; 338 

Neus, XIX; XX; 232; 235; 238; 240; 242; 285; 

303; 317 

Noise, IX; 143 

O 

Oblivion Criterion, 91; 164; 211 

Occam’s razor, 5; 9; 42; 84; 132; 186; 191; 192; 

308 

Optimality, VIII; 13; 45; 53; 74; 114; 283 

P 

PAC Learning, 32; 94; 132; 226; 287; 306; 311; 

320; 338 

Paradoxes, V; 281 

Partition, 183 

Pattern, X; 186; 312; 318; 334 

Philosophy of Science, XIX; 306; 318; 326; 331 

Pietarinen, VIII; 76; 118; 128 

Pinto, XIX; 317 

Plato, 21; 34; 196; 335 

Plausibility, 2; 11; 90; 193; 229 

Popper, XIII; XV; 1; 4; 5; 6; 7; 11; 13; 31; 32; 

34; 49; 50; 83; 84; 88; 90; 91; 118; 119; 127; 

128; 162; 191; 194; 283; 287; 295; 329 

Potential, XII; 299; 314; 325 

Projectible Description, X; 186; 188 

Psychometrics, 223; 226; 228; 240 

Q 

Query Learning, 226; 235 

Quine, 3; 10; 44; 329 

Quinlan, VIII; 33; 37; 76; 94; 95; 96; 118; 127; 

128; 207; 285; 329; 338 

R 

Randomness, 289 

Reasoning, V; VII; XII; 2; 19; 41; 45; 53; 54; 

119; 124; 281; 285; 295; 303; 306; 307; 309; 

310; 312; 313; 314; 315; 316; 317; 318; 319; 

324; 327; 328; 329; 330; 332; 336; 337; 338 

Redundancy, 184; 337 

Representation Gain, VIII; 13; 53; 71; 81; 283 

Rissanen, 32; 88; 132; 260; 307; 330 

S 

Schmidhuber, VIII; 35; 52; 76; 78; 79; 94; 133; 

219; 331 

Shannon, 4; 5; 95; 97; 291; 331 

Simplification, VIII; 13; 53; 72 

Software, XI; 245; 253; 257; 307; 308; 309; 310; 

311; 313; 314; 316; 319; 322; 323; 326; 327; 

329; 332; 333; 334; 335; 336 

Solomonoff, 32; 35; 88; 91; 189; 290; 295; 298; 

332 

Stability, 191 

Subpart, IX; 182 

Subprogram, IX; 183; 184 
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Thagard, XX; 9; 34; 42; 84; 140; 235; 318; 333 

True Information Gain, VIII; 70; 80; 339 

Turing, XIV; XVI; 18; 24; 31; 35; 66; 85; 175; 

182; 187; 223; 224; 225; 235; 238; 239; 240; 

241; 285; 287; 289; 290; 291; 296; 300; 302; 

307; 308; 314; 316; 317; 321; 324; 325; 331; 

333; 334; 339 

Turing Test (TT), 223; 224; 225; 238; 239; 240; 

287; 302; 308; 314; 316; 317; 321; 331; 339 

U 

Universitat de València, I; XIX 

Universitat Politècnica de València, XIX 

Unquestionability, X; 193; 223; 228; 229 

V 

Validation, IX; XI; 144; 256; 260 

W 

Whewell, 11; 34; 140; 159; 169; 284; 287; 335 

 

 
 


