

Universitat de València

Doctoral Dissertation / Tesis Doctoral

Computational Measures of

Information Gain and Reinforcement
in Inference Processes

Medidas Computacionales de Ganancia de Información y

Refuerzo en Procesos de Inferencia

José Hernández Orallo

Supervisor/Director: Prof. Dr. Rafael Beneyto Torres
 Catedrático de Lógica y Filosofía de la Ciencia
 Universitat de València

A thesis submitted to the Universitat de València in accordance with the requirements
of the degree of Doctor of Philosophy in the Department of Logic and Philosophy
of Science.

September 1999

 II

0.

 III

 IV

 V

Abstract and Keywords

This work is devoted to the formal study of inductive and deductive concept
synthesis usefulness and aftermath in terms of information gain and reinforcement
inside inference systems. The set of measures which are introduced allow a detailed
and unified analysis of the value of the output of any inference process with respect
to the input and the context (background knowledge or axiomatic system).

Although the main measures, computational information gain, reinforcement and
intensionality, are defined independently, they (alone or combined) make it possible
to formalise or better comprehend several notions which have been traditionally
treated in a rather ambiguous way: novelty, explicitness/implicitness,
informativeness, surprise, interestingness, plausibility, confirmation,
comprehensibility, ‘consilience’, utility and unquestionability.

Most of the measures are applied to different kinds of theories and systems, from
the appraisal of predictiveness, the representational optimality and the axiomatic
power of logical theories, software systems and databases, to the justified evaluation
of the intellectual abilities of cognitive agents and human beings.

Keywords: Inference Processes, Evaluation Measures, Induction, Deduction, Information,
Kolmogorov Complexity, Reasoning, Inference Paradox, Information Gain, Inference Confirmation,
Reinforcement, Intensionality, Measurement of Cognitive Abilities, Evaluation of Logical Theories,
Knowledge-Based Systems, Machine Learning, Inductive Logic Programming, Intensionality.

 VI

Resumen y Palabras Clave

Esta tesis se centra en el estudio formal de la utilidad y resultados de la síntesis de
conceptos inductivos y deductivos en términos de ganancia de información y
refuerzo en sistemas de inferencia. El conjunto de medidas que se introducen
permiten un análisis detallado y unificado del valor del resultado de cualquier proceso
de inferencia con respecto a la entrada y el contexto (conocimiento previo o sistema
axiomático).

Aunque las medidas más importantes, ganancia computacional de información,
refuerzo e intensionalidad, se definen de manera independiente, permiten (solas o
combinadas) formalizar o comprender mejor varias nociones que han sido tratadas
tradicionalmente de una manera bastante ambigua: novedad, la diferencia entre
explícito e implícito, informatividad, sorpresa, interés, plausibilidad, confirmación,
comprensibilidad, ‘consiliencia’, utilidad e incuestionabilidad.

La mayoría de las medidas se aplican a diferentes tipos de teorías y sistemas, desde
la estimación de la capacidad de predicción, la optimalidad de representación, o el
poder axiomático de teorías lógicas, sistemas software y bases de datos, hasta la
evaluación justificada de las habilidades intelectuales de agentes cognitivos y seres
humanos.

Palabras Clave: Procesos de Inferencia, Medidas de Evaluación, Inducción, Deducción,
Información, Complejidad Kolmogorov, Razonamiento, Paradoja de la Inferencia, Ganancia de
Información, Confirmación de la Inferencia, Refuerzo, Medición de Capacidades Cognitivas,
Sistemas Basados en el Conocimiento, Aprendizaje Computacional, Programación Lógica
Inductiva, Intensionalidad.

 VII

Contents

Abstract and Keywords .. V
Contents .. VII
Extended Abstract ... XIII
Resumen Extendido .. XV
Authorship .. XVII
Acknowledgements.. XIX

1. INTRODUCTION ... 1

1.1 Introduction .. 2

1.2 Motivation and Precedents ... 4

1.3 Aims .. 10

1.4 Overview and Organisation .. 12

1.5 Terminology and Notation ... 17

2. ON INFERENCE PROCESSES AND THEIR RELATIONSHIP 19

2.1 Introduction .. 20

2.2 Deduction ... 24
2.2.1 Automated Deduction and Logic Programming .. 26
2.2.2 Resource-Bounded and Non-omniscient Deduction .. 29

2.3 Induction .. 30
2.3.1 The MDL principle and other Selection Criteria .. 32
2.3.2 Grammatical Inference and Induction of Functional Programs ... 35
2.3.3 Inductive Logic Programming (ILP) .. 36

2.4 Abduction ... 39

2.5 Reasoning by Analogy .. 41
2.5.1 Case-Based Reasoning ... 41

2.6 On the Relation between Inference Processes ... 42
2.6.1 Inference Processes, Effort and Lazy/Eager Methods ... 45
2.6.2 Inference Processes and Confirmation .. 47
2.6.3 Towards a Combination of Inference Processes .. 50

 VIII

3. INFORMATION AND REPRESENTATION GAINS 53

3.1 Introduction .. 54

3.2 Resource Consumption and Gain .. 57

3.3 Relative Information Value .. 59
3.3.1 Properties ... 60

3.4 Time-Ignoring Information Gain .. 62

3.5 Computational Information Gain .. 64
3.5.1 Fundamental Properties .. 65
3.5.2 Unique Interface Formulation ... 66
3.5.3 Other Properties ... 67

3.6 Information Gain and Complexity ... 68

3.7 True Information Gain ... 70

3.8 Representation Gain.. 71
3.8.1 Universal Simplification .. 72
3.8.2 Representational Optimality ... 74

3.9 Comparison with Related Information Measures.. 76
3.9.1 Kirsh’s Theory of Explicitness ... 77
3.9.2 Nake’s Theory of Aesthetics and Schmidhuber’s Interestingness ... 78

3.10 Summary and Contributions of This Chapter .. 79

4. INFORMATION GAIN AND INFERENCE PROCESSES 83

4.1 Introduction .. 84

4.2 Information Gain and Induction ... 88

4.3 Creativity, Learning and Discovery .. 91

4.4 Quinlan’s Information Gain and Gain Ratio ... 94

4.5 Information Gain and Deduction .. 98
4.5.1 Example: Information Gain for Logical Theories .. 101

4.6 Hintikka’s Surface and Depth Information .. 111

4.7 Axiomatic Systems Optimisation .. 113
4.7.1 Single Evidence Representational Optimality ... 114
4.7.2 Theory Optimisation for Multiple Evidence ... 116
4.7.3 Pietarinen’s Systematic Power .. 118

4.8 A Characterisation of Lazy and Eager Inference Methods 119

4.9 Induction, Deduction and Information .. 121
4.9.1 Intermediate Information ... 122
4.9.2 Resource-Bounded and Fallible Inference ... 123

4.10 Summary and Contributions of This Chapter ... 127

 IX

5. CONSTRUCTIVE REINFORCEMENT ... 129

5.1 Introduction ... 130
5.1.1 Reinforcement as Selection Criterion ... 131

5.2 Reinforcement Learning ... 131

5.3 Reinforcement with respect to the Theory Use .. 133

5.4 Reinforcement with respect to the Evidence .. 135

5.5 Evaluation of Inductive Theories .. 136
5.5.1 Knowledge Construction, Revision and Abduction .. 137
5.5.2 Consilience can be precisely defined .. 139
5.5.3 Intrinsic Exceptions, Consilience and Noise ... 143
5.5.4 Reinforcement, Intensionality and Cross-Validation ... 144

5.6 Analogy, Consilience and Reinforcement ... 145

5.7 Extended and Balanced Reinforcement ... 146

5.8 Rewarded Reinforcement .. 150

5.9 External Inconsistencies. Negative Reinforcement ... 151

5.10 Reinforcement and Deduction .. 154
5.10.1 Derived Rules Explicitation ... 154
5.10.2 Non-Omniscient Deduction .. 157
5.10.3 Reinforcement, Consilience and Interestingness in Mathematics ... 158

5.11 Reinforcement as a Theory of Confirmation ... 159

5.12 Reinforcement and Information Gain ... 161
5.12.1 Reinforcement vs. Gain .. 162
5.12.2 Combination of Gain and Reinforcement ... 162
5.12.3 Forgetting Highly Reinforced Parts .. 163

5.13 Reinforcement and Theory Understandability .. 164

5.14 Computing Reinforcement .. 167

5.15 Summary and Contributions of This Chapter ... 168

6. INTENSIONALITY AND EXPLANATION .. 173

6.1 Introduction ... 174

6.2 Extensional and Intensional Definitions .. 176

6.3 Exception-Free Descriptions .. 177
6.3.1 Exception-Free Logic Programs .. 179

6.4 Subprograms and General Reinforcement .. 182
6.4.1 Subpart and partitions ... 182
6.4.2 Subprogram ... 183
6.4.3 General Reinforcement ... 183

 X

6.5 Projectible Descriptions and ‘Pattern’ .. 186

6.6 Intensionality, Informativeness and Explanatory Induction............................ 189
6.6.1 Descriptive vs. Explanatory Induction ... 192
6.6.2 Unquestionability .. 193

6.7 Information Gain and Intensionality .. 194

6.8 Intensionality, Learning, and Meaning .. 196

6.9 Summary and Contributions of This Chapter .. 197

7. EVALUATION AND GENERATION OF INDUCTIVE HYPOTHESES . 201

7.1 Introduction ...202

7.2 Evaluation of Inductive Logical Theories ..203
7.2.1 Generality Measures: GD(TE) and g(H) .. 204
7.2.2 The MDL principle based on Model Complexity .. 204
7.2.3 The MDL principle based on Proof Complexity .. 205
7.2.4 Information Gain revisited: G (TE) ... 206
7.2.5 Reinforcement Revisited ... 206
7.2.6 Example ... 207

7.3 Generation of Inductive Hypotheses .. 217
7.3.1 Information Gain and the Enumeration Approach ... 218
7.3.2 Randomised example-driven Induction, Reinforcement and Gain ... 219

7.4 Summary and Contributions of This Chapter .. 221

8. MEASURING INTELLECTUAL ABILITIES 223

8.1 Introduction ...224

8.2 Requirements and Technical Problems..224

8.3 Unquestionability ..228

8.4 Establishing Absolute Difficulty ...229

8.5 The Test ..230

8.6 Measurement of Pretended Intelligent Systems ...232

8.7 Factorisation..234
8.7.1 Inductive Factors .. 234
8.7.2 Deductive Abilities ... 235
8.7.3 Other factors ... 237

8.8 The C-test and The Turing Test ...238

8.9 Summary and Contributions of This Chapter ..239

 XI

8.10 Appendix. An Example of C-Test... 240
8.10.1 A Toy Memory-less Abstract Machine ... 241
8.10.2 The Generation of k-Hard Strings .. 242
8.10.3 The Tests ... 242
8.10.4 Subjects and Administration .. 243
8.10.5 Results .. 243

9. PROSPECTIVE APPLICATIONS .. 245

9.1 Introduction .. 246

9.2 Representational Data-Mining and Data Quality .. 247
9.2.1 Knowledge Discovery in Databases (KDD) ... 248
9.2.2 Relationship between Intensionality and Data Quality .. 250

9.3 Software Topologies and Reinforcement ... 253
9.3.1 Adapting the ML framework ... 254
9.3.2 Sample data. Training set .. 255
9.3.3 Granularity of propagation ... 255
9.3.4 Validation data. User’s accordance.. 256
9.3.5 Software and reinforcement ... 257
9.3.6 Validation propagation by reinforcement .. 260
9.3.7 Measurement in practice ... 262
9.3.8 Modification propagation ... 263
9.3.9 Modification dependences .. 265
9.3.10 System topologies and maintenance cost ... 268

9.4 Other Applications ... 273
9.4.1 Meaning and Language Understanding .. 273
9.4.2 Agents Communication... 274

9.5 Summary ... 275

9.6 Appendix .. 277

10. CONCLUSIONS.. 281

10.1 Introduction .. 282

10.2 Main Contributions ... 283

10.3 Open Questions and Future Work ... 285

10.4 Concluding Remarks .. 288

 XII

A. A BRIEF REVIEW OF KOLMOGOROV COMPLEXITY 289

A.1 Introduction ..290

A.2 Mathematical Definition and Properties ..290

A.3 Mutual Information and Information Distance ...293

A.4 Algorithmic Probability and Inductive Reasoning ..295

A.5 Resource-bounded Complexity and Universal Search296

A.6 Algorithmic Potential ...299

A.7 Algorithmic (or Logical) Depth and Sophistication ..299

B. PUBLICATIONS GENERATED FROM THIS THESIS 301

C. REFERENCES .. 305

D. ACRONYMS ... 338

E. INDEX ... 342

 XIII

Extended Abstract
This work introduces several evaluation measures which are applicable, in a
consistent and effective way, to different inference processes. In particular, these
measures are established through two main tools:

• The theory of Kolmogorov Complexity, and especially Levin’s space-time
variant, allow the definition of a measure of information gain which depends
on the effort that has been invested in any given inference process.

• The theory of reinforcement, understood as the propagation of truth or
certainty degrees from some statements to others, makes it possible to define a
theory of confirmation which includes in a quantitative way both deductive
and inductive confirmation.

Both tools are not (strictly) semantical, and it is precisely this fact which allows the
measurement of different dimensions which have not been tackled successfully to
date from purely semantical approaches: informativeness, plausibility, ‘consilience’,
intensionality, intelligibility and utility.

The first part of this thesis is based on the fact that processes that are apparently
so unlike as induction and deduction can be explained in a computational framework
as inference processes that both generate an output from an input. Obviously, they
must observe different criteria or restrictions, which have been widely studied in
philosophy of science and mathematical logic, respectively. In this computational
framework, both processes are regarded as non-omniscient processes, i.e., resource-
demanding processes. Levin’s variant, which weighs the additional amount of
information and computational time which is required to perform an inference, is
used to define a single gain measure of that inference.

The leading results are obtained by applying the gain measure in an equally
clarifying and unifying way to both inductive and deductive processes. In the case of
induction, the information gain represents how informative the hypothesis is with
respect to the observations, in Popper’s sense, and it is compared with other
evaluation criteria for induction, mainly simplicity. In the case of deduction,
information gain also represents how much informative the conclusion is from the
premises, which establishes a generic measure of the gain obtained whenever an
explicit knowledge is extracted from an implicit knowledge. In fact, this represents a
generalisation of Hintikka’s notions of surface and depth information for first-order
logic.

Apart from its unifying and explanatory power, the measure of information gain
which is presented, although computable, is, as expected, computationally intractable,
and it is not directly applicable to concrete systems. Accordingly, a more efficient and
detailed measure is introduced, based on the reinforcement or use of the components

 XIV

of an inductive theory or axiomatic system. Reinforcement represents a measure of
the confirmation of a theory, which includes the propagation of confirmation by
deductive and inductive inference (thus giving a measure of plausibility or utility,
too). Moreover, reinforcement is easy to compute and it is positively related to
information gain.

Another connection is established between the idea of implicitness and the notion
of intensionality of a description. It is shown not only that extensional definitions
have no gain at all but also that intensional definitions, the latter understood as
definitions without exceptions, have a great probability of showing a high
information gain. Moreover, the theory of intensionality allows the formalisation of
the idea of comprehension, and helps to make the difference between descriptive
induction and explanatory induction, the latter requiring that all the evidence should
be ‘consiliated’ by the theory, by avoiding exceptions or extensional cases.

The previous measures are particularised for logical theories and are compared
with other measures in the literature, especially the Minimum Description Length
(MDL) principle. It is shown that the measure of reinforcement is more detailed and
comprehensive. Furthermore, it is more robust, because it avoids the problem of
induction for finite and random evidences, where the MDL principle suggests the
evidence itself and, consequently, nothing is learnt.

The non-omniscient view of inference processes makes it possible to relate the
computational capability of a rational agent with several inference problems. More
precisely, the difficulty of an instance (or problem) can be defined in terms of the
information gain from the problem to the solution and the intrinsic complexity of
the solution. A comprehension test is then devised, and correlates, at the sight of
results, with classical psychometric tests, representing a formal and non-
anthropomorphic alternative to the Turing test.

Finally, several applications of information gain and reinforcement are shown for
other inference processes such as abduction or analogy, and many others are
sketched for artificial intelligence and computer science: rational agents with limited
resources, knowledge-based systems, and knowledge discovery in databases.

All in all, the most important result of this work is an operative clarification of the
relationship between the notions of inference, information and confirmation. As a
conclusion, the view of induction and deduction as inverse processes in terms of
information gain is definitively dismissed for non-omniscient systems and for agents
with limited-resources, human beings and computers included among them.

 XV

Resumen Extendido
Esta tesis introduce varias medidas de evaluación que son aplicables, de una manera
consistente y efectiva, a diferentes procesos de inferencia. En particular, dichas
medidas se establecen a partir de dos herramientas fundamentales:

• La teoría de la complejidad de Kolmogorov, en especial, la variante de Levin
espacio-temporal, permite definir una medida de ganancia de información que
depende del esfuerzo que se haya invertido en cualquier proceso de inferencia.

• La teoría del refuerzo, entendida como propagación del grado de verdad o
certeza de unos enunciados a otros, permite definir una teoría de la
confirmación que incluye de una manera cuantitativa tanto la confirmación
deductiva como la confirmación inductiva.

Ambas herramientas no son semánticas, y es precisamente este hecho lo que permite
medir con éxito diferentes dimensiones que no han sido bien abordadas hasta ahora
desde aproximaciones puramente semánticas: informatividad, plausibilidad,
‘consiliencia’, intensionalidad, inteligibilidad y utilidad.

La primera parte de esta tesis se basa en el hecho de que procesos aparentemente
tan diferentes como son inducción y deducción pueden explicarse en un marco
computacional como procesos de inferencia que generan una salida a partir de una
entrada, y que deben cumplir ciertos criterios o restricciones, ampliamente estudiados
en filosofía de la ciencia y en lógica matemática, respectivamente. En este marco
computacional, ambos se pueden ver como mecanismos no omniscientes, es decir,
procesos que consumen recursos. La variante de Levin que pondera la cantidad de
información adicional para llevar a cabo la inferencia y el tiempo computacional
empleado en ella, es utilizada para definir una medida única de la ganancia de dicha
inferencia.

Los primeros resultados se obtienen al aplicar dicha medida de manera igualmente
clarificadora y unificadora tanto en procesos inductivos como deductivos. En el caso
de la inducción, la ganancia de información representa cuán informativa es la
hipótesis respecto a las observaciones, en el sentido de Popper y se compara con
otros criterios de evaluación de teorías inductivas, principalmente el de simplicidad.
En el caso de la deducción, la ganancia de información también representa cuán
informativa es la conclusión a partir de las premisas, estableciendo una medida
genérica de la ganancia obtenida al extraer un conocimiento explícito a partir de un
conocimiento implícito, tal como fuera apuntado por Hintikka con las nociones de
información superficial y profunda para la lógica de primer orden.

Aparte de su poder unificador y explicativo, la medida de ganancia de información
que se presenta, aunque computable, es, como era de esperar, intratable
computacionalmente, y no es aplicable directamente a sistemas concretos. Por esta

 XVI

razón se introduce una medida más eficiente y detallada, basada en el refuerzo o uso
de los componentes de una teoría inductiva o de un sistema axiomático. Aunque el
objetivo inicial, como se ha apuntado antes, es proporcionar una medida de
confirmación de una teoría que incluya la propagación de la confirmación por
inferencia deductiva o inductiva, dicha medida se relaciona positivamente con la
ganancia de información.

Por último, se establece la conexión entre la idea de conocimiento implícito y la
noción de intensionalidad de una descripción, mostrando no sólo que las definiciones
extensionales tienen ganancia cero sino que las definiciones intensionales, entendidas
éstas como definiciones sin excepciones, tienen gran probabilidad de tener ganancia
de información alta. Además, la teoría de la intensionalidad permite formalizar la idea
de comprensión, y ayuda a diferenciar entre inducción descriptiva e inducción
explicativa, requiriendo ésta última que todas las observaciones sea ‘consiliada’ por la
teoría, evitando excepciones o casos extensionales.

Las medidas anteriores se particularizan para teorías lógicas y se comparan con
otras medidas de la literatura, especialmente el principio de la descripción de longitud
mínima (MDL), y se muestra que la medida de refuerzo es más detallada y
comprensiva. Asimismo, es más robusta, ya que evita los problemas de inducción
para evidencias finitas y aleatorias, donde el principio MDL sugiere la evidencia
misma, no dando así ninguna explicación para la evidencia y, más aún, no
aprendiendo nada.

La visión de los procesos de inferencia como no omniscientes permite relacionar
la capacidad computacional de un agente racional con diversos problemas de
inferencia. En particular, se define de una manera formal la dificultad de una
instancia (o problema) a partir de la ganancia de información desde el problema a la
solución y la complejidad intrínseca de la solución. Esto permite realizar tests de
comprensibilidad, que correlan, a la vista de los resultados, con los clásicos tests
psicométricos y suponen una alternativa formal no antropomórfica al test de Turing.

Finalmente, se muestran diversas aplicaciones de la ganancia de información y el
refuerzo a otros procesos de inferencia como la abducción o la analogía, y se esbozan
otras muchas en el campo de la inteligencia artificial y la computación, desde los
agentes racionales con recursos limitados, los sistemas software basados en el
conocimiento, hasta el campo de “descubrimiento automático de conocimiento” en
bases de datos.

En definitiva, el resultado más importante de esta tesis es el esclarecimiento de la
relación entre las nociones de inferencia, información y confirmación. Como
conclusión, la visión de inducción y deducción como procesos inversos en términos
de ganancia de información se descarta definitivamente en sistemas no omniscientes
y de recursos limitados, entre ellos los seres humanos y las computadoras.

 XVII

Authorship

The work in this thesis dissertation is the independent and original work
of the author, except where explicit reference to the contrary has been
made. No portion of this work has previously been submitted in support
of an application for a degree of this or any other university.

Autoría

El trabajo que se muestra en la presente tesis no ha sido previamente presentado para
la obtención de alguna titulación o diploma en ésta o cualquier otra institución
educativa superior. Por lo que conozco, ninguno de los materiales que aquí se
presentan han sido previamente publicados o escritos por otra persona excepto en
aquellas partes donde se hacen referencias de manera explícita.

José Hernández Orallo, martes, 17 / mayo / 2011

 XVIII

 XIX

Acknowledgements

My first notion of resource-bounded complexity was experienced from my first
computer, a slow but powerful Z80 with only 48K. As a teenager, on some occasions
I even dreamt about how to make it reason in some way. A few years later, after a
computer science degree, I already knew that the challenge would surely take a much
more important part (or the whole) of my life.

In 1995, after six months and a day of reflections in France, I felt that I still
needed to learn a great deal if I intended to do something positive about the matter.
The attractive contents of the doctorate program of the Department of Logic and
Philosophy of Science of the University of Valencia, and the first interview with my
supervisor Rafael Beneyto, arose inside me the firm conviction that I would never
give up that challenge, at least the aim to be always aware of its state of the art.

During the first year and a half of my doctorate courses, the major problem was
to combine jobs in different companies with a thirteen-month-long substitutive
social service, and still make the lectures something profitable, with a sort of juggling
and sleeplessness. The major gratitude is given to those who suffered me in those
difficult moments, especially Neus and my mother.

In the summer of 1996 I was granted with a six-week visit to the Dept. de la
Ciencia de la Computación de la Pont. Universidad Cat. de Chile, under the
Intercampus Programme, with subject “logical knowledge representation”. Javier
Pinto, who tutored me there, was a great stimulus and a source of knowledge about
many different areas, from situation calculus to modal logics.

My position as a full-time teaching and research assistant in the Dept. de Sistemes
Informàtics i Computació (DSIC) de la Universitat Politècnica de València (UPV)
since late 1996 has provided an exceptional platform from which to go on with more
dedication (and motivation) with this work. I must acknowledge the resources the
department has afforded me, in particular, the DSIC research commission, which
defrayed part of the participation costs in some conferences during 1998. The
Extensions of Logic Programming (ELP) group, led by María Alpuente, has shown
its availability and support since the first moment, and the joint work with María José
Ramírez has been so productive partially due to this atmosphere.

Nonetheless, it is in this Dept. de Lògica i Filosofia de la Ciència de la Universitat
de València where I have found the main source of wisdom and kindness (and I
hope it will still be so for many years). I am particularly grateful to Jesús Alcolea (I
pleasingly remember his under-graduate lectures on philosophy of mathematics), José
Pedro Úbeda, Juan Manuel Lorente and Enric Casaban. They made a computer

 XX

scientist feel comfortable in a department of logic and, essentially, I learnt a lot from
them.

During the last two years of development of this dissertation, parts of it have been
submitted to several journals and presented in diverse conferences. Many comments,
suggestions and, of course, critiques have been extremely helpful for directing and
growing it. Concretely, the following people have improved this dissertation with
fruitful discussions, corrections, material or technical support: Kenneth Wexler, Peter
Flach, Boris Siepert, Atocha Aliseda, Mark Derthick, John Lloyd, Stephen
Muggleton, Paul Thagard, the anonymous referees of CCIA’98, Nigel Crook,
MªCarmen Juan, Carlos Monserrat, Kike Araque, Rose Barreiro, Enrique Fueyo,
Peter Wegner, Lorenzo Magnani, Vincent F. Hendricks, Enrique Hernández, Alen
Varsek, Joan Carles Micó, Neus Minaya, and Ismael García (some publications
derived from this work have been co-written with the latter two). Finally, I am much
obliged to the main inspirers of chapter 8, Greg Chaitin and Douglas Hofstadter, for
their encouraging comments, especially during 1997, when the main ideas were
taking shape.

Finally, I would like to thank my supervisor, Rafael Beneyto, for letting me take
some risks, but not too many, in this free quest in quicksand. I also appreciate the
effort to realise the venture of this thesis to him and the other members of the
reading committee.

En fi, tots els adés citats saben que la Ciència és una companya exigent. Ens furta
temps, som i esforços, dels quals només a voltes ens en torna fruits. Més bé encara
ho sap la meua dona, i a ella promet tornar-li part del temps que, fins ara, no li n’he
pogut dedicar.

 XXI

To my mother,

From Pradilla to London, that’s certainly an odyssey life.

 XXII

1. Introduction

1

1

1. Introduction

Certa amittimus, dum incerta petimus1

Plauto, II century BC, Pseudolus, 685

Abstract: This chapter introduces the motivations for this work, by realising some problems that
pervade the conception of inference processes, mostly their joint interpretation in terms of information
and plausibility, or its traditional view as inverse processes derived by Carnap’s probabilistic
calculus. Some precedents that recognise these problems, mainly the deductive inference paradox and
Popper-Miller’s argument, and some partial solutions, such as Hintikka’s distinction between depth
and surface information, are discussed. New tools, such as Kolmogorov Complexity, especially
Levin’s space-time variant, are required to account for non-omniscient deduction, where the effort of
any inference, either deductive or inductive, would be recognised. Moreover, a constructive extension of
a theory of reinforcement could also address the confirmation problem of both inductive and deductive
inference. These non-strictly semantic tools also centre the scope of this work. Hence, the concrete aims
are given by the measurement of different dimensions under this machinery: informativeness,
plausibility, consilience, intensionality, intelligibility and utility. The end of the chapter includes an
overview of each of the chapters, and some necessary notation.

Keywords: Evaluation Measures, Inference Processes, Induction, Deduction,
Semantic Information, Kolmogorov Complexity, Reasoning, Inference Paradox.

1 We abandon the certain for seeking the uncertain.

2 José Hernández Orallo - Doctoral Dissertation

 2

1.1 Introduction

Reasoning involves different inference processes. Logic has traditionally studied
deduction from a semantic point of view, according to completeness and correctness,
devoted to ascertain which inference rules and conclusions are sound. Induction,
however, is a quite different matter. For any sufficient expressive language, there are
infinite valid hypotheses for any given evidence. The main and pristine question of
induction has always been the establishment of hypotheses selection criteria, either
epistemological or methodological. Plausibility (or likeliness), utility,
comprehensibility and informativeness have been the most vindicated criteria,
although they can all be understood in many different (even contradictory) ways.
These measures have been adapted and applied to other hypothetical inference
processes, such as abduction and analogy, but rarely addressed as fundamental issues
for deduction. The reason is quite simple: a theorem prover is not intended to rate its
theorems, it must only state which formulae are theorems and which are not.

However, reasoning is much more than theorem proving, much more than
inductive generalisation and much more than abduction, analogy and other partial
inference processes. And it is much more than the sum of all of them. If we can
combine consistently and profitably different inference processes, we will enlarge the
power and applications of the separate advances in different fields of logic,
philosophy of science, artificial intelligence, automated reasoning and machine
learning that have taken place in the last half of the XXth century. This would allow
that the progress in these different areas would be applied to make intelligent
systems, capable of acquiring and deriving new knowledge.

The subject of this work is the unified evaluation of inference processes, under
different dimensions, mainly plausibility, utility, comprehensibility and
informativeness. The interest and extension of this work will be devoted to those
pairs (dimension, process) which lack appropriate measures. On the other hand, in
the case an existing theory accounts for a given pair of dimension and inference
process, it will be referred, as the case of plausibility for monotonic and non-
monotonic deduction.

For such a study it is necessary to evaluate the contribution of each inference, in
order to invest resources towards useful and valuable results. The result of an
inference process, in many cases, is a (new) concept, assertion or fact (as a simple
hypothesis, a theorem or property, a proof, a whole (or part of a) theory, a change of
confirmation degree...). A concept may appear in all its varieties, including necessary,
auxiliary, inductive and synthetic concepts. Apart from a proper concretisation of the
term ‘concept’ (determining different approaches depending on the representation),

1. Introduction

3

3

it is first required to settle on such fundamental issues as deduction, induction,
information and complexity, as they are known to date.

Different tools will be used in this work, which will also determine its scope. The
first necessary tool is a universal and independent measure of information, which
could be used for both induction and deduction. This measure of information is
represented by Kolmogorov Complexity. Since the appearance of the idea of the
shortest algorithmic description for a given object in the sixties, the theory has been
successfully applied to fundamental areas of mathematics, computer science, artificial
intelligence, physics and philosophy of science. To our concern, Kolmogorov
Complexity has addressed fundamental problems of statistics, induction, information
and complexity. However, little work has been done to address two important topics:
representation and deduction. Representation issues have been neglected due to the
invariance theorem (i.e. any universal machine can emulate any other universal
machine with a constant additional space and time cost) and the process of
deduction has been usually forgotten because the absolute version of Kolmogorov
Complexity, denoted by K(x) and defined in section 1.5, does not consider the time
of computation.

As we will see, many insights can be drawn about information transformation, be
it inductive or deductive, by using as theoretical tools the absolute Kolmogorov
Complexity K(x) and, especially, Levin’s version, denoted by Kt(x) and also defined in
section 1.5, which weighs space and time. Derived concepts from K and Kt will allow
to account for some dimensionalities: informativeness, comprehensibility, and,
partially, plausibility.

The other important tool is the idea of reinforcement, well-known in psychology
and machine learning but under-exploited in theoretical and philosophical
considerations. The idea can be found in a philosophical context by many
empiricists, and concretely Quine’s “empiricism without dogmas” [Quine 1953],
where any conflict with experience on the periphery of knowledge entails
readjustments in the inner parts of the field: truth values must be re-distributed
between some of the previous statements. The idea of propagation, later on
exploited by artificial neural networks, is clearly stated by him: “Once the values are re-
distributed among some statements, it is also necessary to re-distribute the values of other statements
which can be logically connected with the first (...)” [Quine 1953].

Although the idea of a propagation of confirmation from the outer part of
perception to the inner part of cognition has been successful for artificial neural
networks, it has not been extended to more constructive and expressive frameworks.
The reason may possibly be found in that a direct use of reinforcement for
constructive representational languages leads to paradoxes since it is possible to add
fantastic concepts which are used for the rest of a theory, and reinforcement of the
whole theory is increased in a tricky way. This problem will be solved in chapter 5, as
a point in between Hempel’s quantitative and Carnap’s qualitative solutions to the

4 José Hernández Orallo - Doctoral Dissertation

 4

problem of inference confirmation, so triggering many different applications2 that
were handicapped by this paradox.

1.2 Motivation and Precedents

Traditionally, induction and deduction have been seen as complementary inference
processes. However, during the last half of the XXth century, induction has
frequently been seen as the inverse of deduction, in terms of information gain, i.e.,
induction increases information and deduction decreases it. This view was
axiomatised by Carnap, who formalised in the fifties [Bar-Hillel and Carnap 1953]
Popper’s notion of semantic information, informally introduced in the thirties, as a
counterpart to statistical information, represented by Shannon’s mathematical theory
of communication.

Semantic Information was defined as the negative logarithm of the probability as
given by Carnap’s Probabilistic Interpretation of First-Order Predicate Calculus. It
has the following well-known properties:

p(
_
||||) = 0

p(⊥) = 1

p(P ∧ Q) = p(P ∩ Q)

p(P ∨ Q) = p(P ∪ Q)

p(¬P) = 1 − p(P)

p(P) ≤ p(Q) if P |= Q

From the very beginning the difficulties to harmonise semantic information and
statistical information theory were shown clearly. As we will comment later, Hintikka
(see for instance [Hintikka 1970a]) introduced the difference between surface and
depth information in order to establish the intuitive fact that both deduction and
other truth-preserving processes (such as the introduction of auxiliary concepts)
could as well generate information, improve the utility and manageability of the
deductive system by changing syntax while preserving its semantics.

Without any note related to Hintikka’s work, the justification of induction which
is used in the field of Inductive Logic Programming (ILP) (see e.g. [Muggleton 1996],
resorts to “Shannon’s information theory” for introducing, without more discussion,
the usual assignment I(P) = −log p(P). From here, if P |= Q, then we have, from the

2 Utility is not directly addressed by reinforcement but what I will show in chapter 5 is that
reinforcement can be used for utility if actions are also considered to be reinforced. Even more,
reasoning actions can also be reinforced, and this makes it possible for improving the reasoning
abilities of a system.

1. Introduction

5

5

last property of Carnap’s Probabilistic Calculus, that p(P) ≤ p(Q). By using this
assignment we have that I(P) ≥ I(Q), i.e., the premise must have more information
than the consequence.

After this rationale, the popular assertion “deduction loses information and induction
increases it” seems compelling. However, this restricted view of information precludes
any possibility of deduction as a useful, valuable process, known as the inference
paradox, which I will discuss below. But even more, Shannon’s information theory
has been substituted by the more general and accurate view of information,
Descriptional or Kolmogorov Complexity, making popular the Minimum
Description Length (MDL) principle for induction. The MDL principle, a
formalisation under information theory of Occam’s razor, chooses the theory which
minimises I(T | E) with T being the hypothesis and E the data. Since the evidence is
correct, I(E) = 0, and taking logarithms to Bayes’ rule we have:

 I(T | E) = I(T) + I(E | T)

In this moment, I(x|y) is sometimes [Muggleton et al. 1992] [Muggleton and Page
1994] computed by its Kolmogorov Complexity K(x|y), i.e., the minimum encoding
of T. The result is that the shorter the hypothesis with respect to the data, the more
likely. Although this usually works for logic programs, we have a very
counterintuitive result of using K(x) instead of I(x): deduction increases length and
induction decreases length. Thus the length (or K(x)) cannot be a good
approximation to the intuitive idea of information according to Carnap. This seems
to comply with Popper in his denial of an objective measure for information.

The roots of these problems, however, can be found in the view of deduction as
an omniscient, complete and perfect process, which leads to the inference paradox and,
as a consequence, the inductive paradox (or impossibility of inductive probability), also
known as the scandal of deduction [Hintikka 1973] and the scandal of induction
(advocated by Hume), respectively.

Let us see first the inductive paradox. Popper and Miller started a vigorous debate
(see [Mura 1990] for an extensive account) on the relationship between deductive
relations and probabilistic support with their paper A Proof of the Impossibility of
Inductive Probability [Popper and Miller 1983]. Popper and Miller made the claim that
any positive probabilistic support of evidence e for a hypothesis h, as measured by
s(h,e) = p(h,e) − p(h) is due solely to deductive relations (properly understood)
between e and h. An immediate corollary is that inductive (i.e. non-deductive)
probabilistic support does not exist. In other words, Popper and Miller claim that all
probabilistic support is deductive.

Their argument is based on an omniscient view of logic, i.e., complete: “we find
that what is left of h once we discard from it everything that is logically implied by e,
is a proposition that in general is counter-dependent on e” [Popper and Miller 1983].

6 José Hernández Orallo - Doctoral Dissertation

 6

Let us see this result by using elementary logic, directly from [Cussens 1998]:

Definition 1.1 For any proposition b, Cn(b) is the class of all consequences of b
which are not logical truths. Cn(b) = {x: b |= x and |≠ x }.

Definition 1.2 Two propositions, a and b, are deductively independent if and
only if Cn(a) ∩ Cn(b) = ∅. Otherwise they are deductively dependent.

Lemma 1.1 For any two propositions a and b, Cn(a) ∩ Cn(b) = Cn(a ∨ b).

PROOF.

 x ∈ Cn(a) ∩ Cn(b) ⇔ a |= x, b |= x, |≠ x

 ⇔ |= ¬a ∨ x, |= ¬b ∨ x, |≠ x

 ⇔ |= (¬a ∨ x) ∧ (¬b ∨ x), |≠ x

 ⇔ |= (¬a ∧ ¬b) ∨ x, |≠ x

 ⇔ |= ¬(a ∨ b) ∨ x, |≠ x

 ⇔ a ∨ b |= x, |≠ x

 ⇔ x ∈ Cn(a ∨ b) �

Corollary 1.2 For any two propositions a and b, a and b are deductively
independent if and only if |= a ∨ b , i.e., (a ∨ b) is a logical truth.

PROOF. Using Lemma 1.1, Cn(a) ∩ Cn(b) = ∅ ⇔ Cn(a ∨ b) = ∅ �

Corollary 1.3 b is deductively independent of a if and only if ¬a |= b.

PROOF. |= a ∨ b ⇔ ¬a |= b. The result follows immediately from Corollary 1.2 and
Definition 1.2. �

There are two problems with Popper-Miller’s focus on pure inductive support.
Firstly, for the dependence between a and b to be purely inductive, it apparently has
to be the case that a and b are deductively independent, but this is equivalent to
having ¬a |= b. So, if the dependence between a and b is purely inductive, the
deductive dependence between ¬a and b has to be maximal. This connection
between pure inductive dependence and deductive consequence shows that it is not
possible to define a notion of purely inductive dependence, which is free from
deductive contamination3.

3 It is remarkable to see that, from the descriptional point of view, i.e. K(x), deductive dependence and
independence are extremely close, namely a |= b and ¬a |= b.

1. Introduction

7

7

As [Cussens 1998] points out “However, there seems no reason to suppose that inductive
(i.e. ampliative) inference should not be deductively contaminated. There can be a relation between
deduction and induction, without the two types of inference being equivalent, or one reducible to the
other. In fact, I take the investigation of this relation by Popper and Miller to be the most useful
contribution made by the Popper-Miller argument”.

This clearly neglects the modern view of induction and deduction as inverse
inference processes. Even more, “any notion of ‘induction’ as a sort of complement to
deduction seems untenable” [Cussens 1998].

A more proper conception is based on the idea that deduction preserves
semantics whereas induction amplifies it, so in this way they can be very different
processes but not exactly inverse. The paradox also arises when these two main
inference processes are evaluated in terms of knowledge. Simplistically, the role of
acquiring new knowledge is left to induction whereas deduction is just used to
retrieve this knowledge when necessary (the deductive database viewpoint).

But whoever has some original view of deduction, namely some non-omniscient
view of deduction (such as any who has worked on automated deduction or has
practised mathematics), knows well that many deductive inferences give us much
information inside the same axiomatic system, without changing the model (or set of
inferable facts). Even more, this information is worth enough being ‘remembered’ or
maintained explicitly.

As it has been said, the problem of deduction is derived from the classical
“inference paradox”, mainly indicated by Mill (he is not the first to insinuate the
problem but the classical source of the discussion), also recognised as the main
unsolved problem for the justification of deduction by [Dummett 1973] and
expressed in these terms by [Cohen and Nagen 1935]: “if the conclusion of an inference is
not contained in the premises, it cannot be valid; and if it is not different from them, it is useless;
however, the conclusion cannot be contained in the premises and be at the same time novel;
consequently, inferences cannot be both valid and useful.”

Both the inductive paradox and the inference paradox are motivated by the
thought that deduction is omniscient while induction is not. Two escapes are
possible. The first one is to consider both deduction and induction omniscient,
which would mean that reasoning is useless and the only increase of information can
be given by perception. The second possibility is much more conspicuous: to
consider both deduction and induction as imperfect or incomplete inference
processes which require some effort, and, consequently, they are valuable because
they help to make explicit what was implicit.

The main idea of this thesis is to consider information and use dependence instead
of deductive dependence. Nonetheless, information dependence cannot be used in
an absolute (time independent) way as it is given by absolute Kolmogorov
Complexity. Namely, if we have a |= b then K(b | a) = 0 (unless b is a subset of all the

8 José Hernández Orallo - Doctoral Dissertation

 8

consequences of a), however K(a | b) is usually greater then 0. In other words, if time
is not considered (omniscient deduction) the classical result is obtained once again:
deduction does not give information and induction can provide it. The things change
radically if we consider the same relation using time-space variants of K. That is to
say, if we consider Levin’s Kt, we have that both Kt(b | a) and Kt(a | b) can be greater
than 0, because if the deductive system has limited resources, it has not omniscience
or it is incomplete, the deductive inference of b from a can provide information as
well, depending on how explicit a |= b is in the system.

For the case of use dependence, valid and interesting inferences help to shorten
proofs and are useful to compact a theory or make it more comprehensible. For
instance, consider a |= b and c |= d. The discovery of the following deductive
connections a,c |= e, e |= b and e |= d is valuable because both b and d can be derived
only from e and this derivation could be much easier. Consider now a |= c and b |= c.
The discovery of the inductive concept d such that d |= a and d |= b is valuable because
both a and b are a consequence of d, and this d may help to explain both facts or to
unify the evidence. Although induction has recognised this gain, it is deduction
which still lacks a general and widely accepted account of deductive informativeness
and novelty, despite the fact there are some fields of artificial intelligence which
urgently demand such an assessment.

The first field which requires measurements of information gain is automated
reasoning, or more properly, automated theorem proving (ATP), which is highly
interested in avoiding useless inferences and maintaining explicit those properties
that can be useful to find a proof of a theorem.

The second field is more related with artificial intelligence, and is known as
bounded-rationality, in the search of deduction methods which are efficient and
where the cost of a deductive inference is recognised as an important factor which
should be minimised, by many different means, such as avoiding the re-derivation of
useful and common facts which are costly to derive from the axioms. A rational
system is seen in a dynamical way [Girard et al. 1989], distinguishing what is
potentially derivable (i.e. provable), what is feasibly derivable, and what is explicitly
known in a given situation.

Finally, in my opinion, there is a heritage in Philosophy and a practice in Artificial
Intelligence of studying deduction and induction in a separate way. As we have seen,
many works are untenable when they are contrasted with the deductive/inductive
counterpart in terms of information. So it seems attractive to study a possible
‘conciliation’ among induction, deduction, use and information. In particular, a clear
account of knowledge and representation shifts via conceptualisation is not possible
if the previous question is not clarified first.

Although the view of omniscient deduction still pervades many philosophical
investigations about the relation between induction and deduction, there are, of

1. Introduction

9

9

course, some precedents. Different non-semantic evaluation measures for deduction
and induction have been introduced in the literature. However, they have almost
always been studied separately.

Surely, it is induction which has introduced more evaluation criteria, motivated by
the problem of the justification of induction. From the point of view of plausibility,
many selection criteria have been advocated. Simplicity, exemplified by Occam’s razor
and its modern formalisation as the Minimum Description Length (MDL) principle is
the most vindicated and successful one, because it is both a plausibility and
methodological criterion. Other related criteria are cross-validation, maximum
likelihood estimators (MLE) according to a selected prior, generality, specificity,
explanatory power, etc. Some of them will be reviewed in the next chapter.

In general, if we consider a concept as a new creation (either as a result of and
inductive, abductive, analogical or deductive process) one must distinguish some
main characteristics of that concept4.

According to hardness, many subjective and informal distinctions have been
presented between hard and easy concepts. Basically, a concept is hard if the
disjuncts of the concept to be obtained are “spread out” in the instance space, but it
can yet be formulated with the given features [Kramer 1995]. On the contrary, easy
concepts are those that can be secured even by simple reasoners [Holte 1993].

According to necessity, [Ling 1991] distinguishes informally between accessory or
useful concepts, which are not crucial but help to compress or better express a
theory, and necessary, i.e., concepts that make it possible to learn or define a given
concept. The first ones can only improve the form of the solutions but the latter can
be necessary to find the solution.

According to nature [Kramer 1995] we can distinguish among extensional and
intensional. Extensional concepts, often known as features, are defined as an
extensional definition of a set. On the contrary, intensional concepts are defined as a
comprehensive property or function for them. A finer division may be established
between intensional concepts with and without recursion. Concepts without
recursion can be intensional, but just if they are derived or defined from other
concepts. [Thagard and Nowak 1990] call them concept combinations. On the other
hand, recursive concepts are usually intensional: they are derived concepts such that
in the definition the concept itself appears directly or indirectly. The connection
between recursive concepts and necessary concepts has been studied in logic5 and
also in machine learning [Stahl 1995], and some authors [Ling 1991] state that they
are the only ones that are necessary.

4 It is relevant to highlight that if one allows definition rules in a deductive system, one may observe
the similarities between learning a concept (which can be identified as an induction) and defining a
new concept from other (which can be identified as a usual deductive task).
5 Frege was the first to clarify the notion of concept invention in formal theories, with its informal
explanation of the difference trivial and non-trivial definitions in logic and mathematics.

10 José Hernández Orallo - Doctoral Dissertation

 10

A last additional aspect is the comprehensibility of induced concepts (generally,
referred to humans) and this is not the same as compressibility or syntactical
simplicity (although sometimes elegance has been seen as a unified term for both
comprehensibility and simplicity [Quine 1953] [Chaitin 1998]), as [Kramer 1995]
points out “[...] comprehensibility and syntactical complexity might be correlated, but surely are
not the same.”

Despite all this variety, only plausibility criteria have been formalised in a
convenient way. Hardness, necessity, nature and comprehensibility have generally
been studied in an informally and usually unrelated way.

For the case of deduction, the scene is still worse. Deduction has traditionally
lacked from this interest, and logic has mainly been devoted to ascertain the
correction of a deductive inference, its semantic validity, its completeness, and not its
practical or informational value. Even epistemic and modal logics have almost always
(see e.g. [Duc 1997]) taken logical omniscience for granted. Apart from Hintikka’s
approach, only recently has there been a renewed interest about the evaluation of
deductive inference, precisely in the fields of automated theorem proving and
bounded rationality seen before. It is then compelling to recognise the importance of
auxiliary concepts in a formal framework and state in a clear way that deduction can
also increase information. An expected question to this urgency is whether we are in
a better situation now to address this problem than some decades ago.

Since the time Hintikka tried to clarify the paradoxes of induction and deduction
in terms of information gain and utility, the accepted view of information has
changed in a very important way, towards the more general and universal view based
on Kolmogorov Complexity. Moreover, some fields of AI, such as machine learning
and knowledge-based systems have helped to clarify the problem and recognise the
cost and non-omniscient character of both induction and deduction. All this allows
much more challenging goals with a reasonable chance of success.

1.3 Aims

The main aim of this work is the formal study of concept synthesis usefulness and aftermath in terms
of information gain and reinforcement inside inference systems. The measures to be developed should
be consistently and equally applicable for both deductive and inductive inference.

The central concern will be the evaluation (and not the generation) of concepts,
although some issue in this regard will be punctually addressed. For this evaluation,
several coherent measures should be devised, valid both for deduction and induction.
Concretely, the specific objectives of this work are given by the measurement of the
following dimensions:

• Informativeness: a new measure will assign the information gain of a given
inference from a concept x to a concept y. This will allow to clarify the notions

1. Introduction

11

11

of explicitness and implicitness, and to give general and alternative notions to
Hintikka’s surface and depth information of deductive systems and Popper’s
informativeness for induction.

• Plausibility: this dimension is not applicable for classical deduction. We will
measure this dimension for non-truth-preserving processes (induction,
approximate or non-monotonic deduction, abduction, ...) by means of a theory
of reinforcement, given by the necessary use of each part of a theory or system in
the rest and the evidence.

• Consilience: this dimension, informally introduced by Whewell in 1847, is
related to the degree of uniformity to which a theory covers its consequences,
and it is also usually referred (with slightly different nuances) as coherence or
unification. It has usually vindicated in explanatory induction, where the theory
must be comprehensive with the evidence, in the way that all the examples
must be covered or unified by the same general rule or cause.

• Intensionality: a pristine question associated with any definition is whether it
is extensional (by extension) or intensional (by comprehension). A first analysis
of this question will show that it is not appropriate to assign a Boolean answer
to it. Consequently, a degree of intensionality will be introduced, closely related
with the idea of exception.

• Comprehensibility / Intelligibility: A measure will be introduced to sacle
the difficulty of comprehend, namely the degree of comprehensibility or
intelligibility of a given concept. It will also be particularised to estimate the
difficulty of different problems of inductive and deductive character. This will
allow the measurement of intellectual abilities, without anthropomorphic
contamination.

• Utility: in deductive systems, the utility of the introduction of new concepts
for different purposes is informally clear: a better understanding of the whole
theory, a more concise expression of the same idea, a reduction of the
computational time and size of future deductions (i.e. proofs), etc. This
necessity of intermediate information will be formally shown. In the case of
induction the notion of utility is closely connected to plausibility, as it will be
represented by the use of reinforcement for measuring utility in deductive and
inductive inference.

It is obvious to see that most of these dimensions are dependent or counter-
dependent, and this is admissible provided they represent intuitively different and
useful measures. This phenomenon is also motivated by the use of different
representational mechanisms, and some of these ‘dependences’ cannot be elucidated
in an absolute way because they may depend on the descriptional mechanism. In this
sense, it is stronger the intention to allow that these measures could be applied to any
representational mechanism, although in some cases some minor restrictions could
be assumed, in order to allow finer and more practical measures.

12 José Hernández Orallo - Doctoral Dissertation

 12

Some derived measures for optimality of the representation and the whole
behaviour of any deductive system will be sought. For deduction, this can be done
without the collation with the outer experience. This inner feedback, similar to the
notion of experimental mathematics, is clearly shown in game theory, a topic that
was also tackled by Hintikka jointly with the distinction between depth information
and surface information [Hintikka 1973]. Some classical notions of philosophy of
mathematics will be attempted for a clarification, as the choice of the set of axioms
and important theorems to work on. Utilitarian and simplicity justifications
[Tymoczko 1986] are usually pointed out but rarely formalised.

For induction, though, the outer evidence is the main (but not exclusive) factor
that determines the goodness of a theory. Nonetheless, an inductive theory can be
constructed for different purposes: explain the evidence, predict future evidence, to
describe the evidence, to be comprehensive, etc.

Finally, the combination of induction, deduction, confirmation and information
gain will be particularised for the evaluation of logical theories, but its application to
different aspects of modern databases and complex software systems will be essayed.

1.4 Overview and Organisation

The rest of this work is organised as follows:

Chapter 2, On Inference Processes and Their Relationship, reviews some necessary
background about inference processes and their relationship. Although a brief
description and history of deduction, induction, abduction and analogy is discussed,
the emphasis is lain on computational approaches for both induction and deduction,
mainly in a logical framework. Automatic Theorem Proving (ATP), usually known
simply as automated reasoning, and resource-bounded rationality are highlighted as
the computational approaches of deduction which more urgently require the
integration of evaluation measures because inductive techniques are beginning to be
used. On the other hand, Inductive logic programming (ILP) is shown as a machine
learning paradigm which uses logical theories as representational language and the
role of deduction could also be exploited. Other inductive paradigms are just referred
to the literature, such as grammatical inference, propositional learning, and artificial
neural networks. Obviously, it is vain to address the nature of even a single inference
process in one chapter, or even in a book, but a brief review of them may show their
differences, relationships and similarities. Among the latter we have some important
ones that motivate this work: first, every inference is usually guided by an interest to
obtain a new assertion or new knowledge, not explicitly present previously and,
secondly, the result of an inference process must be evaluated in order to discern if
the result is valuable enough to be preserved or discarded (forgotten), according to the

1. Introduction

13

13

effort which has been performed to obtain it, its plausibility or degree of confirmation,
and its interest or utility.

Chapter 3, Information and Representation Gains, introduces the first and most
theoretical measure of the thesis. The main purpose is to evaluate the amount of
information that has been made explicit in a reasoning step. Initially, a measure of
time-ignoring information gain V(x|y) represents the degree of information of x
which is implicitly in y. For non-omniscient systems, where the notion of effort makes
sense, the intuitive notion of information is re-understood in terms of resource
consumption. The choice of the function LT, which weighs space and time, as an
appropriate measure of effort, neglects the idea of effort exclusively based on time or
space. A new effective function, called computational information gain G(x|y), which
depends on the computational effort (time and space), measures the proportion of x
which can be easily obtained by the help of y. Some of its properties are studied, and
it is compared with different informal but outstanding notions: implicitness vs.
explicitness, some questions about aesthetics and interestingness. Finally, some
notions for whole systems or theories are introduced, such as Representation Gain, a
general notion of Simplification and the definition of a Representational Optimality
criterion.

Chapter 4, Information Gain and Inference Processes, takes advantage of the definitions
and measures given in the previous chapter. Computational Information Gain,
namely G, is used to explain the informativeness of a hypothesis with respect to
some evidence and to explain the gain or the reduction of effort that takes place
when a conclusion or theorem is deductively established from an axiomatic system.
In the case of induction, Popper’s idea of informativeness is grasped by the use of G.
Moreover, a new notion of authentic learning is introduced, ensuring that learning
has taken place, independently of how compressible the evidence is, unlike the MDL
principle. In the case of deduction, different adaptations of G are introduced for
several deductive paradigms. Appropriate approximations for logical programs are
derived and illustrated, which make it possible for measuring in practice these gains.
This chapter also includes a comparison with Hintikka’s ideas, establishing the
relationship between G and Surface Information, and between V and Depth
Information. Several general measures of System Optimisation and Systematic Power
are also introduced, which show the usefulness of Intermediate Information in ATP
and mathematical practice. The conciliation among induction, deduction and
information is made possible if omniscience is neglected, although it is recognised
that a measure of utility or plausibility is also necessary to account for the whole value
of an inference process.

14 José Hernández Orallo - Doctoral Dissertation

 14

Chapter 5, Constructive Reinforcement, presents an operative measure of confirmation
for general constructive theories, studying the growth of knowledge, theory revision,
abduction and deduction in this framework. The new approach performs an
apportionment of credit with respect to the ‘course’ that the evidence or set of
derivables makes through the rules of the learnt/axiomatic theory. For the case of
induction it is shown to be both a utility and plausibility criterion, and it is connected
with other classical evaluation criteria, such as cross-validation and the MDL
principle. For the case of classical deduction, since confirmation is fully propagated,
it turns out to be a utility criterion that establishes how useful a property, lemma or
theorem is for the rest of the theory. It is also applied to other inference
mechanisms, such as analogy, approximate deduction, abduction and explanatory
induction, the latter represented by a balanced distribution of reinforcement, so
formalising the notion of consilience. The theory is also extended with negative
reinforcement, so connecting this approach with more classical notions of
reinforcement, based on rewards and penalties. In the end, reinforcement and
information gain are compared.

Chapter 6, Intensionality and Explanation, addresses the problem of formally
distinguishing between an extensional definition or description and an intensional
one (or by comprehension)6. This notion is quite difficult to grasp formally for finite
concepts because there are many different ways to disguise an extensional description
to look like an intensional description. A first formalisation for the case of logical
theories of the idea of intensionality is introduced in terms of avoidance of
exceptions, these seen as extensional or non-validated parts of a theory. The
definition of intensionality and reinforcement to any descriptional language is
essayed, based on a formal and general definition of subprogram, but the
formalisation is much more complicated that the one made for rule-based
representational languages. Different concepts based on descriptional complexity are
introduced, such as projectible descriptions and stable descriptions to account more
easily for the notion of intensionality in general. The final approach allows the
definition of an explanatory variant of Kolmogorov Complexity, which allows to
define an explanatory counterpart to the MDL principle. Some connections are also
established. First, intensionality is closely related to information gain, since

6 Intensional (or indexical) logic is the study of assertions and other expressions whose meaning
depends on an implicit context or index, such as time or spatial position. This type of logic was
originally developed (by Kripke, Carnap, Montague, Church, Tarski and others) to help understand
natural language, in which such expressions abound. Obviously, an indexical definition cannot be
extensional because it depends on other definition or concept in order to find the thing referred.
However, our notion of intensional definition is self-contained and is quite different from the notion
of indexical expression. The use of this logic should not be confused with the proposal of chapter 6,
although some roots of the difference between induction and abduction may be found in the
distinction between self-contained explanations or contextual explanations.

1. Introduction

15

15

extensional descriptions are neither intensional nor informative. Secondly,
explanation is also related to the notion of unquestionability, which is given when
there are not alternative explanations, and the notion of comprehension, both
notions being necessary for chapter 8.

Chapter 7, Evaluation and Generation of Logical Theories, initially reviews the most
classical criteria for the evaluation of Logic Programs used in ILP, especially two
variants of the MDL principle. Next they are compared with reinforcement,
intensionality and gain, as defined in the preceding chapters, and the first positive
results are shown. In terms of plausibility, reinforcement is manifestly better than the
MDL principle, either for whole positive evidence, partial positive evidence and
partial positive and negative evidence. Intensionality can be computed to know in
which degree the data is ‘conciliated’ by the theory, and in some cases it can be a
prerequisite (abduction, explanatory reasoning, etc.). Finally, for the case of
evaluation, gain has only some auxiliary use, mainly for ascertaining when a real
learning has taken place, i.e., the theory is original with respect to the data. Apart
from evaluation, the question of how reinforcement and gain can be combined for
guiding a machine learning algorithm is discussed. First, it is shown that the
enumeration algorithm is compatible with an increase of gain, because the theories
are not data but hypothesis driven. Secondly, a data-driven approach can still be
constructed with the help of randomised approaches such as genetic programming,
where the selection criterion (oblivion criterion) is a combination of the optimality of
the program (the individual) and the gain (unusual or rich genotype).

Chapter 8, Measurement of Intellectual Abilities, presents the most fascinating
application of this thesis. Initially, the main factor of intelligence is identified as the
ability to comprehend, derived from the notion of comprehension introduced in
chapter 6. However, some technical problems arise when this factor is to be
measured, especially unquestionability, as originally defined in chapter 6, and an
absolute scale of difficulty of comprehension. Both problems are solved in this
chapter and the result is a comprehension test, or C-test, exclusively defined in terms
of universal descriptional machines. Despite the absolute and non-anthropomorphic
character of the test it is equally applicable to both humans and machines. Moreover,
it correlates with classical psychometric tests, thus establishing the first firm
connection between information theoretic notions and traditional IQ tests. From
here, a factorisation is outlined, considering other inductive and deductive factors,
thus allowing a theoretical study of their inter-dependence, something that has only
been possible in an experimental way, by the statistical correlations studied in
psychometrics.

16 José Hernández Orallo - Doctoral Dissertation

 16

Chapter 9, Prospective Applications, includes some proposals that are mainly at a
theoretical stage. The first application is given for information systems, popularly known
as databases. According to the optimal representation measures seen in chapters 3
and 4, the best organisation for deductive databases is discussed, in order to improve
the performance of database operations depending on which operations are more
frequent and the degree of regularity of the data. Finally, both deductive and
inductive processes (and their integration) will be increasingly more important in
future databases, which will be better known as knowledge bases or knowledge
systems, with data-mining (inductive) abilities. Another application is the study of
validation and maintenance characteristics of software systems under the analogy
between software science and philosophy of science or, more precisely, between
software construction and machine learning. Reinforcement measures from chapter 5
are adapted to define a measure of software ‘predictiveness’, which is identified with
software validation, to represent the stability of a system. An inversely related
measure, the probability of modification, is also obtained for each component and
for the whole system. Some models of maintenance cost are presented, based on a
detailed combination of predictiveness and modifiability, and different software
arrangement topologies are studied theoretically under these models. Finally, some
other applications are outlined, especially related with language, meaning, and
communication, and their applications to agents communication.

Finally, Chapter 10, Conclusions, comments on the results of this work, its main
contributions, the open questions and the future work. The Appendix A is devoted
to give a quick and comprehensive review on Kolmogorov Complexity and some of
the properties and related concepts which are used from chapter 3 to chapter 8. The
Appendix B references the publications originated from this thesis. The work is
closed by Appendix C, which contains any reference which is alluded to in this
dissertation or have been used as a base or motivation for this work, Appendix D,
which includes the acronyms used throughout the dissertation and Appendix E, an
analytical index.

The following figure illustrates a graph of dependences of this dissertation. The
graph has only suggestive character because the chapters have not been written to be
read independently, and a sequential reading is more recommended:

1. Introduction

17

17

Ap. ACh. 1

Ch. 2 Ch. 3

Ch. 4

Ch. 5
Ch. 6

Ch. 7 Ch. 8Ch. 9

Graph of Dependences

Since chapter 2 is a review of inference processes, anyone who is familiar with them,
namely deduction, induction, abduction and analogy may prefer to take only a
reading to its last section. This section is devoted to their relationship, which is aimed
to be clarified in this work.

1.5 Terminology and Notation

In general, notation will be introduced when needed in each chapter. Even acronyms
are always quoted in their extended form the first time they appear (and a list of
acronyms is included in appendix D).

Nonetheless there is some basic terminology, which will be used throughout all
the dissertation, that I have preferred to include here. The reader may come back
here from any subsequent chapter if any notation seems odd.

Unless specified, a finite alphabet Σ composed of symbols will be used. If not
specified, Σ = {0, 1}. A string, concept or object is any element from Σ*, with � being
the composition operator, usually omitted or represented by <a,b> = a · b. The
empty string or empty object is denoted by ε. The term l(x) denotes the length or size
of x in bits and log n will always denote the binary logarithm of the value n. The
relation <lex between two objects denotes precedence in the left-to-right
lexicographic order, considering 0 <lex 1. The term yn..m, with n ≤ m, denotes the
symbols from position n to position m. Note that by a position we refer to the virtual
space between two symbols, i.e., y0..l(y) denotes the whole string y, and y0..l(y)−1 .
Consequently there is always one more position than symbol in any string. For every
string y and every natural number n, yn..n = ε. With y..m , yn.., and yk we denote y0..m,

yn..l(y), and yk−1..k, respectively. A string x is a substring of y iff there exist two strings
z,w such that y = zxw, or, what is equivalent, yn..m = x with n = l(z) and m = l(z) + l(x).
A string x is a prefix of y iff there exists a string z such that y = xz, or, what is

18 José Hernández Orallo - Doctoral Dissertation

 18

equivalent, x = y0..m being m = l(x). Given any string x, x-d = x0..l(x)−d denotes the prefix
of x with length 0..l(x)−d, i.e. the string x without its d elements. The term x¬i
represents exactly the same string as x but changing the ith bit by its complement., i.e.
x¬i = x0..i · 1 · xi+1..l(x) iff xi = 0 and x¬i = x0..i · 0 · xi+1..l(x) iff xi = 1.

Some theoretical results which are obtained in this work are asymptotic, and the
following notation will be quite useful: a =+ b means a = b + O(1), a <+ b means a < b +

O(1), and a =log b means a = b + O(log(var(b))), where var(b) denotes the variable or
size of b.

A universal machine φ will be any machine which can emulate a universal Turing
machine. φ(p,y) denotes the result of the execution of p in φ with input y. Costφ(p,y)
denotes the computational cost (steps of the machine φ) of executing the program p
with input y. From here, the following definitions can be given,

Definition 1.3 Kolmogorov Complexity.

K(x|y) = min { l(p) : φ(p,y) = x }

It is also supposed that the machine φ uses a prefix-free codification method for
programs.

The term x
* denotes the first minimal program for x in enumeration order.

Consequently l(x*
) = K(x).

Definition 1.4 Levin Complexity.

Kt(x|y) = min { LT(p) : φ(p,y) = x }

where LTφ(p) = l(p) + log2 Costφ(p,y).

These two definitions just only give a hint about Kolmogorov (or Algorithmic)
complexity K and its space-time variant Kt. Many other properties and derived
concepts will be used or referenced throughout all the dissertation. Hence, it is
recommended that the reader takes a look first at appendix A if she is not familiar
with the theory.

2. On Inference Processes and their Relationship

19

19

2. On Inference
Processes and their

Relationship

For every belief comes either through syllogism or from induction.

Aristotle, Prior Analytics, Book II, Chapter 23, 330 BC

Abstract: This chapter gives a quick account (or recall) of inference processes: deduction, induction,
abduction and analogy. More specifically, the emphasis is lain on computational approaches of
induction and deduction, mainly in a logical framework, such as Automatic Theorem Proving
(ATP), Resource-bounded Rationality, and Inductive Logic Programming (ILP). Instead of
highlighting their differences, the major similarities among them are considered. Any inference process
requires an effort to make explicit something that was implicit, and how this is distributed
determines the difference between lazy inference methods and eager ones. It is also shown how
inference processes can be equally understood in terms of confirmation, provided a quantitative (and
not a qualitative) propagation is used. Finally, the combination of different inference processes is
discussed and some precedents in this line illustrate the need of unified evaluation measures for all of
them.

Keywords: Inference, Logic, Reasoning, Induction, Deduction, Abduction, Analogy,
Information, Semantic Information, Explanation-Based Learning, ILP.

20 José Hernández Orallo - Doctoral Dissertation

 20

2.1 Introduction

Any work that deals about deductive and inductive inference cannot begin from
scratch. It would be folly to do that. However, the acceptance of the heritage of
centuries of philosophical enquiries about the matter has the advantage of using what
has been solved and clarified, but also has the drawbacks of reluctant paradoxes and
weak foundations, carried along the way. It is not my intention to open a discussion
about these foundations, especially about the problems of inductive inference. The
reader should not consider this a disclaim from discussion, but the first sections of
this chapter must be understood as a kind of anthology and introduction of notions
which may be useful for the rest of the dissertation. Anyone familiar with deduction
and induction can step directly to the last section of this chapter, which discusses the
problems and utility of the combination of different inference methods.

Let us begin by introducing a definition of inference: “a process of reasoning by
which an agent modifies (part of) its beliefs”. According to this common definition,
there are some important traits of any inference process that are implicit in it. First of
all, there is an intentional character in any inference process, with the aim to obtain
new knowledge from some new data or previous beliefs, either real or imaginary.
Secondly, there is an epistemological character of any inference, because it provides
novel information, which was not explicitly known before the inference process. This
new knowledge may be a concept (a fact, a rule or property), or the refutation or
confirmation of a previous or assumed belief. Any intermediate plausibility
assignment for a belief, between refutation (this is not the case) and confirmation
(this is the case), is also possible, and is given by the degree of reinforcement that
several inference processes have assigned from other beliefs and their corresponding
‘plausibilities’. Note that, in this context, the fundamental issues for understanding
inference seem to be the notions of information, novelty, belief, explicitness and
reinforcement.

In some way, any inference process involves an argumentation with own’s beliefs,
and, in principle, is more related with dialectics than with analytics. However, in the
context of logic, it is usual to see a distinctively different notion of inference, as correct
argumentation. Hence, the interest is to discover sound rules of inference to make a
logic, in order to associate “what can be inferred” with “what follows logically”. This
is what is sometimes called “the logico-maniacal version of inference” [Vega 1987]
which is usually accompanied with assumptions such as “the result of any inference
is a necessary result from its premises”, “an inference is only justified if and only if it
is a correct application of a rule of inference”, which leads to the paradox of
inference that I have commented in the previous chapter and I will also discuss in
this one.

2. On Inference Processes and their Relationship

21

21

This view of deduction has been majority since Aristotle (384/3-322 BC) until the
XXth century, and logic has been mainly concerned in distinguishing valid inference
schemata from invalid ones. This view, however, precluded the study of some other
kinds of plausible inference to account for a theory of plausible inferences which are
used in everyday situations.

Accordingly, the kind of valid or truth-preserving inference, or what [Flach 1995a]
properly calls satisfaction-preserving inference7, more commonly known as deduction,
was, during many centuries, granted the prominence (when not the exclusivity) of
reasoning. On the contrary, induction, as the process of inferring plausible general
rules or concepts from a factual evidence, had been indirectly addressed by Plato
(427-348 BC), in his study of perception and reality, and by Aristotle himself, but it is
not until the works of the philosophers Bacon (1561-1626), Locke (1632-1704),
Berkeley (1685-1753), Hume (1711-1776), Kant (1724-1804) and Mill (1806-1873)
when an important and deserved role is given to inductive reasoning.

More recently, during the XXth century and mostly under the field of Artificial
Intelligence, there has been an increasing interest on other inference processes.
Abduction is a kind of hypothetical inference introduced in the XIXth century by
Peirce (1839-1914) because, in his opinion, neither deduction nor induction, alone or
combined, could unveil the internal structure of meaning [Yu 1994]. Recently,
abduction has been shown to be one of the most practical inference mechanisms for
AI applications such as diagnosis or problem solving. Analogical reasoning has also
been elected as a different reasoning mechanism that pervades all our thinking [Polya
1957]. However, the great difference of analogy with respect to deduction, induction
and abduction is that the result of an analogical inference process is not intended to
be plausible, and this process is more related with creativity, value, problem-solving
abilities, intelligence, etc., than with validity or correctness.

The existence of different inference processes has led to the accepted view that
reasoning must be composed of many of them, with diverse characteristics, aims and
mechanisms, and in a convenient combination. In order to achieve a successful
combination it is necessary to ascertain the characteristics and differences of each of
them. A first classical characterisation of deduction as a truth-preserving inference
process and the rest of processes as plausible (hypothetical) ones has changed
radically after the development in the XXth century of different modal and non-
classical logics. Although in Prior Analytics, Aristotle also introduced the four most
important modal particles; the extension of the figures was never intended to fall
outside the framework of what is valid or what is not. However, recent non-classical
logics, such as probabilistic, fuzzy and nonmonotonic logics, are not truth-
preserving, in the way that deductive inferences are assigned a degree of probability or,

7 Michalski affirms that deduction is truth-preserving while induction is falsity-preserving [Michalski
1993].

22 José Hernández Orallo - Doctoral Dissertation

 22

simply, they are just plausible in a more or less vague way and, finally, can be
defeated. Hence the name defeasible logics for them.

Consequently, the dual classification between deduction and other inference
processes cannot be found, in general, in terms of validity or truth-preservation. It
cannot also be found in a difference among general to specific (deduction), specific
to general (induction) and specific to specific (abduction and analogy) since it is easy
to find different counterexamples. In fact, mathematical induction is a truth-
preserving mechanism by which a general property can be derived from single facts,
which, in fact, was also first introduced by Aristotle in his Posterior Analytics.

Simplistically, but more pragmatically, it is usual to characterise these inference
processes in the following way, under semantic considerations. Given the following
implication,

A, B = C

each process can be understood as taking A, B, C as inputs or outputs.
• Deduction: if A represents the axioms or premises, B the background

knowledge, and A and B are given, then C can be obtained by deduction, and
it is called the consequence of A in the context of B. An example of deduction
could be “Input: Every banana is yellow. This fruit is a banana. Output: this
fruit is yellow”.

• Induction: if B represents the background knowledge, and C represents the
evidence, and B and C are given, then A can be obtained by induction and it is
called a rule or description of C under B. An example of induction could be:
“Input: These 6 fruits are yellow and 5 of them are bananas. Output:
Presumably, every banana is yellow”.

• Abduction: if B represents the background knowledge, and C represents the
evidence, and B and C are given, then A can be obtained by abduction and it is
called the explanation or assumption of C under B. An example of abduction
could be: “Input: This fruit is yellow. Bananas are yellow. Output: This fruit
may be a banana”.

Note that the distinction between induction and abduction as it has been illustrated is
only terminological. More concretely, in the case of induction, it is usually assumed
that C is a set of examples and A is a general rule for them. In the case of abduction,
C may be a single fact and A is usually also a fact that explains the occurrence of C
under the context B. In many cases, this A should be selected from a set of abducibles.

Sometimes the difference between deduction, induction and abduction is made in
the context of causality. Given a rule, deduction would discover the future effect of a
perceived cause. Abduction would discover the past cause of a perceived effect.
Induction would discover the rule given the cause and the effect repeatedly.
However, this view also presents some problems because deduction is sometimes

2. On Inference Processes and their Relationship

23

23

propagated backwards to the cause or conditions (e.g. “The light is on. Necessarily
the lamp is ok”), although some authors would say that this is an abduction.

Distinctively, analogy cannot be seen in the context of an implication of the form
A, B = C. On the contrary, it must be seen in a context of similarity or association.
In fact, analogy is sometimes considered a suggestive process (or source of
connections) rather than an inference process.

• Analogy: Given A is-to A’ and C, obtain C’ such that A is-to A’ as C is-to C’
in the context of B. An example of analogy could be: “Input: John has three
children. Yesterday, he entered Susan’s shop and bought three scarves. Peter
has two children. Today, Peter has entered Susan’s shop. Output: Possibly,
Peter has bought two scarves.”.

In some way, analogy can be described as an induction to a temporary rule, followed
by a deductive or abductive inference over this rule. For the previous example, the
generalisation is that “every father buys in Susan’s shop as many scarves as the
number of children he has”, which, although quite unbelievable in general, may serve
to draw the deductive conclusion that “Peter has bought two scarves”. An abductive
conclusion would be given in the case the example would be changed to “Input:
John has three children. Yesterday, he entered Susan’s shop and bought three
scarves. Today, Peter has entered Susan’s shop and has bought two scarves. Output:
Probably, Peter has two children”. The context is extremely important for analogy.
Consider for the first example that yesterday it was terribly cold and today it is sunny
and hot. Maybe, Peter has bought two bathing shorts.

Analogy suggests another way of classifying an inference process. Some inference
processes work on the fly, i.e. they are lazy, in the way that they are only used when
needed, such as analogy or abduction. Other inference processes, though, are more
eager, in the way that they try to obtain concepts or rules that would be necessary in
the future, as constructive induction performs. Finally, deduction is sometimes lazy,
such as everyday deductive inferences, and sometimes eager, such as mathematical
practice.

In this chapter we will make a quick review of these different inference processes
and some of their most successful computational realisations and, finally, their
relationship and the problems of their combination. Obviously, it is vain to address
the nature of even one of them in a single chapter, but a brief review of them may
show their differences, relationships and similarities. This would highlight some
deficiencies of their combination which are given mainly due to a poor measurement
of their value, as it was shown in the motivations of the previous chapter and as it is
going to be further justified here.

24 José Hernández Orallo - Doctoral Dissertation

 24

2.2 Deduction

Surely, deduction is the inference process that has been studied more deeply in the
history of philosophy, mathematics and logic. In fact, it is the inference process par
excellence and it is even still considered a synonym for inference or reasoning, although
this chapter is partly devoted to make the reader forget that idea. The word
deduction has usually been related with logic, consequence, entailment, proof,
syllogism, truth, etc. In the end, although it is the best-known inference process,
there still many open and fundamental questions, what gives a hint of how poorly
known the other inference processes are.

The formulation of logic, and the formalisation of deduction within it, is known
and used nowadays in the way that Boole and, mainly, Frege, developed in the XIXth
century. Later on, up to the half of the XXth century, some crucial ideas for modern
logic were developed: Russell’s theory of types, Gödel’s incompleteness theorems,
Skolem functions and Herbrand Universe (also due to Skolem), the notion of
interpretation and unification (Herbrand), Natural Deduction and Sequent Calculus
[Gentzen 1935][Prawitz 1965].

But it is the advent of computer science and the notion of computation that
forces a re-understanding of deduction. The works of Turing, Post, Church and
Kleene established the major connections among lambda-definable functions,
Turing-computable functions, general recursive functions and the intuitive notion of
computable functions. The notion of computable function is crucial for different
reasons, but for the case of deduction is especially important for two things. First,
the most important notion which is derived from computation is precisely that of
incomputability, which, translated to deduction, corresponds to the notion of not
provable or undecidable propositions. Secondly, the connection between lambda-
definable functions and computable functions allows the extension of most results
given in computation to deduction, mainly complexity results derived from Blum’s
notion of ‘computational cost’ and ‘complexity classes’ [Blum 1967]. In other words,
not every feasible deduction takes the same amount of time to be performed, i.e.,
computed.

This has allowed talking about three dimensions: consistency, completeness and
pragmatics of any deductive system. The connection between the first two
dimensions began with Gödel’s famous incompleteness result: it is well known that a
consistent system that is able to express arithmetic cannot be complete. More
recently, the study has centred on the relation between the two last dimensions:
completeness and pragmatics. It has been shown that even for very restricted
representation mechanisms (such as propositional logic) if completeness is desired,
there is no efficient deduction method8. Only very reduced representations, such as

8 Provided NP ≠ P, i.e. Non-Polynomial problems are not reducible to Polynomial ones.

2. On Inference Processes and their Relationship

25

25

strict subsets of propositional logic are consistent, complete and computational
feasible (or, what is equivalent, polynomial).

The relationship among these three dimensions was also studied in the most
general case by Chaitin who established the correspondence of Gödel
incompleteness results in terms of descriptional complexity [Chaitin 1982]. More
importantly, he showed the apparently intuitive conclusion that a compromise is to
be found among the space of the theory, its degree of (in-)completeness and its
computational complexity. In his words: “any formal system in which it is possible to
determine each string of complexity less than n has either (...) few bits of axioms and needs incredibly
long proofs, or it has short proofs but an incredibly great number of bits of axioms. (...)This is
analogous to the dilemma of a scientist who must choose between directly publishing his observations,
or publishing a theory that explains them, but requires very extended calculations in order to do
this.” [Chaitin 1974].

As a result of these many negative results (and the strictness of classical logic for
artificial intelligence applications), there has been an enormous effort towards non-
classical logics (see e.g. [Haack 1978] for a review). Modal logics, although already
introduced long ago by Aristotle, have been formalised recently, under the works of
Lukasiewicz, Lewis, Carnap, Kripke, Hintikka and Lemmon. From the possible
worlds semantics [Moore 1984] and Kripke’s semantics [Kripke 1963], different
logics of believe and modal logics are studied under the following axioms [Konolige
1992]:

(K):L(φ ⊃ ψ)⊃ (Lφ ⊃ Lψ)

(D):Lφ ⊃ ¬L¬φ
(T):Lφ ⊃ φ
(4):Lφ ⊃ LLφ
(5):¬Lφ ⊃ L¬Lφ
(P):φ ⊃ Lφ

Axiom (K) is known as the axiom of deduction, (D) is the non-contradiction axiom,
(T) is the axiom of infallibility, (4) is the axiom of the conscience of own’s knowledge
(or positive introspection axiom), (5) is the axiom of the conscience of ignorance (or
negative introspection axiom) and (P) is the axiom of complete wisdom.

Some combinations of these axioms have intuitive interpretations and others are
just impossible or lead to very intuitive results (see e.g. the discussion about the
different uses of S5, KD45, K45 in [Halpern 1997]).

Other logics are many-valued logics (Lukasiewicz9, Rosser), free logics (Lambert),
intuitionistic logic ([Brouwer 1907] and [Heyting 1920]), constructive logic ([Martin-
Löf 1982]), linear logic (Girard), dialogics (Lorenzen), combinatorial logic ([Curry
1920]), deontic logic ([von Wright 1951]), epistemic logic (Hintikka 1962), pragmatic

9 See the essay “On three-valued logic” (1920) in [Lukasiewicz 1970]).

26 José Hernández Orallo - Doctoral Dissertation

 26

logic (Montague10), intentional logic ([Zalta 1998]), restrictions of predicate logic
formalising semantic networks ([Woods 1975]), such as terminological or description
logics [Brachman 1977] [Baader et al. 1992] [Patel-Schneider and Swartout 1994]
[Donini et al. 1997], fuzzy logic [Zadeh 1965, 1972], probabilistic logic [Nilsson
1986] and other non-monotonic logics [Marek and Truszczynski 1993] [Antoniou
1997]: default logic (Reiter 1980), defeasible logic (Nute 1988, 1991), possibilistic
logic, temporal logics (situation calculus [McCarthy 1968], event calculus [Kowalski
and Sachi 1997]), etc.

Although some of them have been applied successfully (deontic, fuzzy, temporal,
many-valued) or have provided interesting theoretical results (intuitionistic, linear),
many of the problems of pragmatics have not been solved by these variants (except to
those which restrain considerably the expressiveness such as description logics
[Borgida 1996]). Additionally, higher-order logic [Leivant 1994] has developed
pragmatic and creative inference methods and techniques, because higher-order
deduction is incomplete, and the relevance is then given to tractability.

There are two areas where pragmatics has been addressed as a fundamental or
even foundational issue. The first one is automated deduction, which deals with feasible
computational deduction and, consequently, has given one of the most successful
applications for computer science, the logic programming paradigm. The second one
is called resource-bounded deduction, and it is devoted to employ optimally the
computational resources available (space and time) for deductive problems. The
paradigm is also applied to other problems that require reasoning (and this is the
reason why it is also called resource-bounded rationality). Let us review both areas.

2.2.1 Automated Deduction and Logic Programming

The idea of an automated calculus of logic is firstly introduced by Llull (1235-1315)
with his Ars Magna, which would be determinant for Leibniz’s (1646-1716) “De Arte
Combinatoria” where the notion of logic as reckoning or calculus is explicitly
vindicated or, more exactly, longed for. But it is not until the advent of the first
computers that automated deduction becomes a reality.

The aim of the first systems was Automatic Theorem Proving (ATP) and this may
be the reason for ATP being an alternative name (although more restrictive) for
automated deduction. These first essays evolved very closely to the development of
the first years of artificial intelligence. There were two main streams. A first one tried
to emulate human mechanisms of reasoning justified by the fact that mathematician
do no use strict rules and symbolic rules to prove a theorem. The second stream
considered logic a better tool to obtain their goals. The best results have always been
given by the second approach, as it is clearly justified by Alan Bundy: “[…] logic-based
approaches have been frequently criticised, but have survived due to the failure of alternative

10 See (Dowty et al. 1981).

2. On Inference Processes and their Relationship

27

27

approaches. In fact, most attempts to produce non-logic based automated reasoning end up
reinventing logic — except that the new wheel is usually more hexagonal than circular. Techniques
such as semantic nets, frames and production rules have each had a brief flowering, before being
recognised as the old wolf in sheep’s clothing. There are successful non-logic based techniques, for
instance neural nets, but they cannot simulate sustained arguments, e.g. mathematical proofs.”
[Bundy 1991].

Inside of the logical stream, the initial idea was to put into practice the most
popular deductive systems, in particular Gentzen’s sequent calculus. Accordingly, for
the first systems that were implemented, such as SAM (Semi-Automated
Mathematics), human intervention was crucial. In 1966, the release 5 of this
interactive prover proved the first new lemma for mathematics (in lattice-theory), that,
in its honour, is called SAM’s lemma.

However, these efforts drew little attention to mathematicians. On the contrary,
and due to the growth of the field of program verification motivated by the software
crisis of the sixties, computer scientists were indeed the most interested in an
automatisation of proofs, which, in the case of program verification, were especially
tedious.

But in 1963, when the field seemed more open, Robinson introduces the
resolution principle [Robinson 1965]; it is in the Argonne Laboratories where Wos,
Robinson and Carson programmed in 1965 the first prover based in binary
resolution. The same year, Robinson introduces the concept of hyper-resolution
[Robinson 1965b]. This turns out to be a major swift towards the paradigm
introduced by Herbrand in 1930, especially the unification algorithm, (re-discovered
by Prawitz in 1960), and the theoretical concepts of universe, interpretation and
model.

In 1969 Green discerned the possibility of using the resolution principle to solve
problems of any kind [Green 1969] and, just in 1970, the ATP community provided
one of the most contributions to AI, the programming language Prolog. The same year,
Kowalski presented its formal semantics and Colmerauer designed its first
interpreter.

The use of a theorem prover as a programming language [Kowalski 1974] boosted
the paradigm of logic programming. In addition, first-order logic was even more used
than initially expected in many applications of artificial intelligence and computer
science (e.g. databases). In this context, the works on variants of resolution have
been countless since then. Only in 1978, Loveland [Loveland 1978] already included
in his book 25 variants of resolution.

From this moment and after the initial important applications and successes of
SLD (selective linear resolution for definite clauses) and SLDNF (selective linear
resolution for definite clauses with negation as failure), discouragement soon
appeared; resolution is complete and improves the combinatorial explosion but it

28 José Hernández Orallo - Doctoral Dissertation

 28

does not eliminate it. The negative results re-appeared, as if they had been forgotten:
the proof of an arbitrary fact under resolution is NP even for the case of
propositional logic. ATP Programs of the time got lost in many useless ways to find
the proof of complex theorems.

In the three last decades, Automatic Theorem Proving has advanced remarkably
in techniques, results and applications, according to the proof of new non-trivial
theorems, as well as the time that is required to prove some existing ones with
current systems. According to [Wos 1994]: “to gain an appreciation of the progress that has
occurred in this young field in but three decades, one need only realize that the more effective
programs used now are more capable of solving problems that require reasoning than are the vast
majority of people, even if restricted to university students. Perhaps the error that underlies the
position taken by those who assert that automated reasoning programs offer little and that the field
has made essentially no progress rests with comparing these programs to the better (sic)
mathematicians and logicians”.

Most of these advances do not come from new theoretical results in logical
systems, but from the use and development of AI techniques, e.g. heuristics, the
realisation of the relevance of intermediate information and a convenient use of
resources (memory and time). However, the techniques that are beginning to being
used are more related with hypothetical inference than deduction: “Concepts like
analogy, use of examples and counterexamples, special cases, and much more of this kind would
account for an additional dimension to be added to our space of methods. It is only then that
mathematicians would begin to get truly interested in using such systems in their daily work and
discover proofs perhaps even for long-standing and well-known conjectures in a cooperative way”
[Bibel 1991]. For instance, some new approaches such as that of [de la Tour et al.
1987] and some new tools such as the resonance strategy [Wos 1996] use analogy.

Abstraction has also been one of the main techniques in automated deduction,
which, if it is used hand-made corresponds to the use of schemata, as they were
introduced by [Plaisted 1980], where the skeleton of first-order proof is extracted to
apply to other proofs. The idea has been more and more sophisticated since then and
nowadays the proofs are made through the use of ‘proof plans’ [Bundy 1991].

Furthermore, these plans and meta-information are beginning to be incorporated
in higher-order deductive systems. An example of this is the HOL system, a typed
higher-order deductive system, based on the LCF system, which used rewriting
techniques. Additionally, HOL also includes backward proofs, based on the notion
of tactic, introduced by Robin Miller [Milner 1978]. A remarkable feature of HOL is
that the system is extensible and the set of consequences (usually infinite) of a theory
are not considered until they have been proven in the system. In other words,
theories are extensible and dynamical systems.

The current stage, as we have said, is the introduction of inductive generalisation
and hypothetical reasoning in these systems, in order to discover new schemata. This
is easier to do in higher-order systems because they are able to represent inside the

2. On Inference Processes and their Relationship

29

29

language the concepts of proof, tactic, schema, etc. Finally, a new question arises: is
the use of inductive techniques for deduction a paradox?

2.2.2 Resource-Bounded and Non-omniscient Deduction

Resource-bounded reasoning was introduced by I.J. Good [Good 1971] and H.
Simon [Simon 1982] as a way to make reasoning in the large feasible for artificial
intelligence applications [Russell and Wefald 1991]. The most technical stream of this
proposal evolved from the theoretical notions of approximate or anytime algorithms.
“Anytime algorithms offer a trade-off between computation time and quality of
results” [Zilberstein 1995]. This resource-bounded rationality (see [Zilberstein 1996]
for a survey) involves randomised heuristics in order to obtain approximately the
solution of a problem. The reason for this approach is simple: for some problems “it
is not feasible (computationally) or desirable (economically) to compute the optimal answer”
[Zilberstein 1996]. In the case of deduction, under this context, the idea is not to find
a proof for a theorem in some system but obtain a degree of plausibility for it. Since
it is inspired in approximate algorithms, the techniques are usually based in Monte-
Carlo like methods or genetic algorithms, which usually give a probabilistic correct
answer whose probability depends on the time the algorithm is supplied. For
instance, there are approximate algorithms that give with an astonishing high
probability of success, whether a number is a prime, and they are used in practice
instead of other exact, but intractable, algorithms.

In the context of first-order logic, entailment and subsumption can be re-defined
into resource-bounded entailment or resource-bounded subsumption, respectively
[Sebag and Rouveirol 1997]. Obviously, this approach entails new problems, since
deduction may be inconsistent. In Zilberstein’s words, “(there are) two sources of
uncertainty. The first source is internal to the system and relates to its capability to produce
incrementally improving solutions and to assess their quality. The second source of uncertainty is
external and relates to unpredictable change in the environment in which the system operates”
[Zilberstein 1999]. The effort has been centred to deal with these inconsistencies.

Non-omniscient deduction is closely related with this entire problem, although it
is something more general that must not be necessarily based on approximated
deductive methods but originated from different sources, such as multi-agent
systems. In the end, non-omniscience is something much more frequent that could
be expected because, for any high expressible system (e.g. able to formalise
arithmetic), deduction is incomplete, so any deductive inference is valuable, since it
not only clarifies the doubt of whether something holds or not (which is implicitly in
the premises for a complete system), but provides information about whether it is
possible to know whether it holds or not. Even in complete systems (e.g. resolution
for Herbrand logic), non-omniscient deduction may also come from a lack of
resources, and this is more conspicuous in real-time applications.

30 José Hernández Orallo - Doctoral Dissertation

 30

In any case, since we are dealing with inconsistencies, it is necessary to consider
theory revision. As a result, other inference processes different from deduction are
much more necessary and the term non-omniscient rationality (for a review see
[Moreno 1998]) is used instead. The idea is to loose the standard epistemic modal
axioms of the system and let other inference processes arrive to some conclusions
and increase and improve its knowledge.

Moreover, when resources are scarce it is necessary to have a measure to evaluate
which reasoning actions are valuable to perform according to the expected gain and
the resources they require. And this depends highly on the distribution of time-space
limitations. In the case of hard spatial limitations, only few costly things should be
maintained in an explicit way and time will be used to derive everything from them.
On the contrary, if time is crucial and memory is large, then the system will use a lot
of intermediate information, in order to accelerate any further needed inference (this
is the deductive database viewpoint). However, comprehensive measures to evaluate
and act in these situations have not been introduced to date, and as I stated in
chapter one, and they are the main goal of this work.

For the approach that begins in the next chapter, not many other concepts about
deduction will be needed. A basic notion of deduction as given from an introductory
logic course is sufficient, although for some chapters it is required some familiarity
with logic programming, where the classical source is [Lloyd 1987]. For the reader
who is not familiar with computational notions is also advisable to take a look at
some book about logic and computation (e.g. [Boolos and Jeffrey 1989]).
Additionally, but not necessarily, the reader may be interested in extending some of
the topics which have been so briefly introduced in this section: for a history of logic
see e.g. ([Kneale and Kneale 1984] or [Heijenoort 1967]) and for more information
about ATP see e.g. [Bibel 1991] or [Mackenzic 1995].

2.3 Induction

The term ‘induction’ has always been surrounded by controversy. There is no widely
accepted definition for it and even some philosophers deny that it can exist such a
thing as “inductive reasoning”. Nonetheless, almost everyone associates the word
induction with the process of theory abstraction from facts, the problem usually
faced by a scientist. The main problems arise when it has been tried to “logicise”,
trying to imitate the same treatment as deduction. It has been even known (in my
opinion improperly) as the “logic of discovery”, but there has not been any
appropriate formalisation of induction under a logical system.

Although the process of induction is still poorly known, its objectives are widely
recognised as the construction of a hypothetical theory to explain past facts and/or
predict future experiences. The set of facts is usually called evidence or observations and
the theory is usually known as hypothesis. In many occasions, there is a background

2. On Inference Processes and their Relationship

31

31

knowledge or bias that can constrain the inductive problem. In practice, the synthesis
of theories from facts is still nowadays a fundamental problem to cognitive science
and philosophy of science. There is a common and broader view of induction, called
learning, which is used by every human being and many animals, that is still less
known and even more intriguing.

As said before, the attention to induction was highlighted by Bacon in his Novum
Organum (1960) and later converted into methodology by Mill in his System of Logic
(1843). However, there is also a statistical view of induction, which begins with Bayes
(1702-1761) in his “Essay towards solving a problem in the doctrine of chances” [Bayes 1764],
continues with Laplace and, finally, Boole in his “The Laws of Thought”, which was
the first applications of logic algebra to probability. Later on, this would allow
Carnap to develop its probabilistic calculus. In addition, many purely statistical
induction tools have been developed in the last two centuries, e.g. regression
techniques.

There are three stages in induction (and hypothetical inference in general):
generation, evaluation and confirmation. Generation has only been addressed without
mysticism recently, under the machine learning community, initially motivated by
Turing’s paper ‘Can machines think?” [Turing 1950], where he argued that a machine
could learn if it is programmed to programme itself. Simplistically, there are three
main methods for induction: data-driven induction, schema-driven induction and
enumeration approaches. Obviously, most systems use a combination of them.

Evaluation is the most remarkable and discussed issue of induction. The concept
of verisimilitude [Popper 1968] is the level of agreement with the facts. A theory t1 has
more verisimilitude that t2 if t1 implies as many true observational sentences as t2 and
has less false observational sentences (exceptions). However, he then argued that the
most scientific criterion was that of “falsifiability”, i.e., the best theory is the one that
is the easiest one to falsify. Intuitively, if a theory is intrinsically easy to falsify and it
cannot be falsified by essaying possible examples then it is much more reliable than a
theory that provides no way to make experiments to refute it.

Kuhn was more pragmatic. In his opinion, a theory or paradigm that is refuted by
a single or more facts can still be used if there is no alternative better paradigm.
Obviously, after some time, a great amount of anomalies forces the introduction or
generation of another paradigm [Kuhn 1970].

Machine Learning (ML) is the subfield of artificial intelligence that studies the
techniques and possibilities for making machines learn. It has been shown that both
generation and evaluation issues are extremely coupled in practice. After some initial
systems which learned some simple problems from IQ tests, plans and some toy
domains, the study took a more theoretical character. The seminal paper of Gold in
inductive inference [Gold 1967] introduced the notion of “identification in the limit”.
In this paradigm several strong results were proven, mainly that even regular or

32 José Hernández Orallo - Doctoral Dissertation

 32

propositional concepts were not learnable in the limit from positive data only [Blum
and Blum 1975] [Angluin and Smith 1983].

Due to this discouraging result, [Valiant 1984] introduced Probably Approximate
Correct learning (PAC-learning) in an effort to make a more realistic theory of
learning, which could be made feasible for more expressible representation
languages. The machine learning community implicitly accepted Kuhn’s paradigm,
because most of its applications deal with approximate learning. With the same aim,
Angluin introduced the paradigm of query learning [Angluin 1987], as a learning
session that is helped by the possibility of making arbitrary queries to a teacher. After
that, most of the papers in computational learning theory are concerned with these
two paradigms [Blumer et al. 1987] [Blumer et al. 1989] [Board and Pitt 1990].

In the last decade, there have been many revisions and critiques of these
paradigms because they are still too pessimistic, in the way that they always consider
the worst case and not the mean case. See for instance [Abe 1997] or [Freivalds et al.
1995].

Finally, confirmation is the last aspect of induction. At first sight, it seems the easiest
thing: a hypothesis can be refuted or confirmed by the evidence. As we will see,
confirmation is not that easy, because “theories may be refuted, but they cannot be confirmed
beyond any doubt” [Popper 1968]. We will return on confirmation in the last section of
this chapter.

2.3.1 The MDL principle and other Selection Criteria

From all the selection criteria that have been discussed in the literature of induction,
simplicity is the most vindicated and recurrent one. It is attributed to William of
Ockham 1290?-1349? (although the same idea was held by John Duns Scotus twenty
years before) this theme in philosophy of science and induction:

Occam’s Razor Principle: “if there are alternative explanations for a phenomenon, then,
all other things being equal, we should select the simplest one”.

This principle was rejected by Popper because he said that there was no objective
criterion for simplicity. But descriptional complexity, K(x), gives an objective
criterion for simplicity, as it is seen in appendix A. This is precisely what R.J.
Solomonoff proposed [Solomonoff 1964] as a ‘perfect’ theory of induction, in [Li
and Vitányi 1997] words.

Moreover, Descriptional Complexity inspired J. Rissanen in 1978 to use it as a
general modelling method, giving the popular MDL principle [Rissanen 1978, 1986,
1996]:

2. On Inference Processes and their Relationship

33

33

Minimum Description Length (MDL) principle:

The best theory to explain a set of data is the one that minimizes the sum of:
• the length, in bits, of the description of the theory; and
• the length, in bits, of data when encoded with the help of the theory.

In the second term we enclose the exceptions, if any.

Philosophically, the MDL principle matches with Kuhn’s notion of “changing
paradigms” [Kuhn 1970]: Exceptions are patched until they are long enough to force
the revision of the paradigm (or model) of the theory.

Apart from its success, the first justified reason to use the MDL principle is
avoiding overgeneralisation. When two generalisations cover all the cases, we select
the shortest one. In some way, the MDL principle finds a good compromise between
generality and specificity that improves the predictability of the hypotheses. [Li and
Vitányi 1997] give an informal justification of the predictability of the MDL principle
in the following way:

[...] a priori we consider objects with short descriptions more
likely than objects with only long descriptions. That is, objects
with low complexity have high probability while objects with high
complexity have low probability. Pursuing this idea leads to the
remarkable probability distribution 2−K(x) [...].

If not explained, the term “a priori” makes of this no justification. The arbitrariness
of its use is given by the following explanation: when we decide to study a
phenomenon that we deem is not random (for instance the course of the planets) it
is because we expect some mechanism behind it. A mechanism is an algorithm, so if
we expect to know it and to be usable, it has to be relatively simple. So this “a priori”
distribution is not so arbitrary, it is a methodological criterion. From here a formal
proof derived from Bayes Rule can be found in [Li and Vitányi 1993] (pp. 308-309).

This is the reason why it is commonly said that “the shorter the hypothesis the
more predictable it is”, which supports the MDL principle. In conclusion, it has been
usually recognised by the machine learning community that learning and induction
can be understood as data compression [Blumer et al. 1987] [Blumer et al. 1989].
However, as it will be discussed, the MDL principle gives many problems for
explanatory induction and, mostly, when combined with deduction.

There are many other evaluation criteria. Among the probabilistic selection
criteria, Maximum Likelihood Estimators [Case and Smith 1983] and Bayesian
Learning are based on posterior probability. A special case of these is Quinlan’s Gain
Ratio, which has given the most successful machine learning algorithm: ID3 [Quinlan
1986, 1990]. Other criteria are not probabilistic but still based on statistical roots,
such as cross-validation. Cross-validation is based on a simple idea. Consider an
evidence, which is composed of n examples. Select a random sample of m examples
(m < n). Use whatever generation algorithm to obtain different hypotheses for these

34 José Hernández Orallo - Doctoral Dissertation

 34

m examples. The best hypothesis would be the one that better behaves for the data
which has been reserved (m − n examples).

Another evaluation criterion is known as ‘consilience’, introduced by Whewell in
1847 for the evaluation of scientific theories. Informally, as it has been used to date, a
model or theory is ‘consilient’ if it is predictive, explanatory and unifies the evidence.
Since all of these criteria are desirable, consilience was informally introduced as a
fundamental issue for theory construction and modelling. Consilience has always
been alluded in the context of scientific explanation or explanatory induction
[Harman 1965] [Hempel 1965] [Ernis 1968]. Moreover, one of the important traits of
abduction, seen as the inference to the best explanation, is that the abductive
hypothesis (known as assumption) must be the most ‘compliant’ with the
background knowledge. This can also be identified with the notion of ‘coherence’
[Thagard 1978].

Just another popular (and simple) criterion is to choose the most general
hypothesis. This criterion is only useful for some restricted representations, because
for positive data only, the most general theory would be “everything is true”. On the
contrary, if we have (or may have) negative data also, it is quite related with the most
falsifiable hypothesis, as vindicated by Popper.

To make an idea of the disparity of some selection criteria, there are many other
applications where the most specific theory is preferable. For instance, the first rule
used for induction of logic programs was the relative least general generalisation (rlgg)
introduced in the late 1960s by Reynolds and Plotkin [Plotkin 1970]. For more
ambiguity, another term exists for this rule, which is known as the subset principle
[Wexler 1992], i.e., if two hypotheses cover the data, we select the most specific one.
It is curious that this principle was identified as an intensional principle because it
solved some cases of ‘hyperlearning’ or “Plato’s problem on the poverty of
stimulus”, when the number of samples were two small or only positive examples
were given. In general, however, the most specific hypothesis is the data itself, which
is useless.

Finally, some connections between the former evaluation criteria have been
established. Theoretically, the MDL principle is closely related to the Minimum
Message Length (MML) principle and Maximum Likelihood Estimators [Case and
Smith 1983]. It has also been compared with cross-validation [Kearns et al. 1999] and
Bayesian Learning [Gull 1988].

There have been little interest about other quality criteria not related with
plausibility (accuracy and coverage). For instance, according to understandability, the
most important work is [Sommer 1995b], which recapitulates old criteria and
introduces new ones for evaluating the quality, in terms of understandability, of
induced theories. Some of them, although rudimentary, are closely related with some
of the measures that will be introduced in this work, especially reinforcement and
intensionality.

2. On Inference Processes and their Relationship

35

35

2.3.2 Grammatical Inference and Induction of Functional Programs

A great amount of the ML literature during the last decades is devoted to non-
symbolical learning technique such as regression, neural networks, fuzzy systems, and
Bayesian trees. Since deduction is not relevant for them, the combination of
inference processes is not a problem nor a necessity at the moment.

Therefore, we are interested in the important development of symbolic
approaches, initially originated by universal representational languages, such as
Turing machines and LISP. Initially, universal Turing machine programs were used
from the most theoretical point of view to study induction, serving as an arbitrary
machine for the works of [Solomonoff 1964], [Kolmogorov 1965] [Levin 1973]
[Chaitin 1969]11 and many others. The relation between algorithmic (or Kolmogorov)
complexity and induction appeared soon, reformulating the foundations of statistics.
Despite its enormous importance in any work on induction in the last three decades,
only recently these ideas have been used practically directly [Schmidhuber et al. 1997]
or indirectly in ILP [Muggleton et al. 1992] [Muggleton and Page 1994].

Grammatical inference (see a classical source [Angluin and Smith 1983] or a more
recent one [Sakakibara 1997]) began after the seminal paper of Gold in inductive
inference [Gold 1967], studying the learnability of different kinds of languages and
other theoretical issues. Nowadays, a second grammatical inference stage is more
centred in efficient induction (generally using the state merging operators instead of
enumeration techniques) of regular or context-free grammars for pattern recognition
applications, generally using sequential [Velenturf 1978] or subsequential automata
[Oncina et al. 1993].

Apart from Chaitin, LISP was also initially used as a representational language for
induction in the works of [Summer 1975] [Biermann 1978] (see [Smith 1984] for a
survey), with execution traces techniques. The goal of these systems was more
concerned with automatic programming than learning. Later, the induction of
functional programs has been retaken with modern techniques (evolutionary
programming, MDL principle, folding) [Olson 1994], [Olson 1995] also with the aim
of program synthesis from examples.

Recently, ILP has been presented as a means to undertake both the learning and
the automatic programming views in the same framework, since program synthesis
can be understood also in these terms, if the hypothesis must cover exactly all the
data. It also unveils novel uses: relational data mining, and the semi-automatic
generation of new scientific theories.

11 Nowadays, Chaitin uses to work with elegant LISP programs.

36 José Hernández Orallo - Doctoral Dissertation

 36

2.3.3 Inductive Logic Programming (ILP)

Despite its popularity in the last decade, inductive Logic Programming (ILP) is just a
framework of learning in first order logic. Seen more pompous, “ILP bridges
Machine Learning, Computational Learning Theory, Statistics and Logic
Programming” [Muggleton et al. 1995].

Inside the general framework of learning and induction, the recent importance of
ILP may be justified by many reasons. First, one of the advantages of ILP is the
ability of using background knowledge and the understandability of theories,
differing radically with other novel approaches such as fuzzy systems or neural
networks. Second, ILP is a more tractable and natural framework for many problems
and has all the hypothesis validation efficiency of SLD-resolution. Third, due to the
logical representational language, it is easier to state formal considerations about the
hypotheses, the evidence and their relationship. Fourth, the induction time of some
classical problems (list reversal, sorting) has been reduced to the order of seconds12
instead of minutes [Olson 1994], which makes ILP feasible for new applications. A
last reason may be found in the aim to reconvert those people who many years ago
entered Logic Programming with AI views, remarkably the Japanese heritage of the
fifth generation, being relegated in the late eighties to theorem-proving, databases
applications and automatic programming.

The problem addressed by ILP can be simply stated as the inference of a theory (a
logic program) from facts (or evidence logic theory) using a background logic theory.
Evidence can be only positive E+ or both positive and negative {E+, E−}.
Additionally, a background knowledge theory B (another logic program) can be used.
Finally, the desired theory or hypothesis H must observe the following properties.

B ∧ H = E+ (posterior sufficiency)

B ∧ H ∧ E− ≠ � (posterior satisfiability)

Besides, it is assumed that,

B ∧ E− ≠ � (prior satisfiability)

B ≠ E+ (prior necessity)

In a broader sense and under the conditions of perfect learning (no error allowed in
the posterior sufficiency property), ILP can be considered just as a special case of
logic program synthesis from formal specification. According to [Deville and Kung-
Kiu 1994] there are three main methods of program synthesis: constructive synthesis
where a program is the result of a constructive proof of a conjecture (the
specification), deductive synthesis including a lot of techniques where some deduction
rules make the final program correct with respect to the specification, and, inductive
synthesis, which is exemplified by ILP.

12 The computational power of modern workstations has also influenced in these results.

2. On Inference Processes and their Relationship

37

37

The evidence E+ and E− is usually given in an extensional manner (i.e., as facts)
but the framework does not exclude intensional (i.e., theories) as evidence. However,
most of ILP systems cannot deal with intensional evidence and usually make a pre-
processing to generate sample outputs from it or make some kind of saturation to
complete it from the background knowledge [Rouveirol 1994]. It is important to
note here that if the evidence is given as a theory, it can be regarded as a program-
transformation problem. Clearly, there is a strong relation between generalisation-
specialisation techniques in ILP and program transformation techniques.

[Shapiro 1981] can be considered the seminal work for ILP. Shapiro’s Model
Inference System (MIS) is the best representative of the incremental family of ILP
systems. In MIS the initial program is empty and the model is refined using a so-
called refinement operator. He claimed that there is a most general refinement
operator, complete for clausal logic. But, as it is shown in [Niblet 1993], his operator
is not complete and no “natural” refinement operator can exist without introducing
redundancy or incompleteness. This means that Shapiro’s enumeration of logic
programs according to the order that is established by his refinement operator is not
complete. Despite this fact and the combinatorial explosion for complex problems
[Furukawa et al. 1997], most incremental top-down ILP systems are inspired in it.
From the current top-down systems, FOIL [Quinlan 1990] [Quinlan and Cameron-
Jones 1995] is the most important and efficient one.

The bottom-up solution consists in finding the Most Specific Hypothesis (MSH)
according to Plotkin’s Relative Least General Generalization (RLGG) [Plotkin 1970]
(see [Mizoguchi and Ohwada 1995] for extensions in ILP) which means that the
minimal hypothesis (according to set inclusion) is sought. Popular systems of this
kind are Duce and Cigol (in propositional logic and first-order logic respectively),
which use the so-called refinement operators:

Absorption:

q ← A p ← A, B

q ← A p ← q, B

Identification:

p ← A, B p ← A, q

q ← B p ← A, q

Intra-Construction:

p ← A, B
 p ← A, C

q ← B p ← A, q q ← C

38 José Hernández Orallo - Doctoral Dissertation

 38

Inter-Construction:

p ← A, B
 q ← A, C

p ← r, B r ← A q ← r, C

Intra-Construction is specially interesting for predicate invention. These operators
can be used to modify the configuration of the bottom-up search.

Golem [Muggleton and Feng 1990] also uses a subsumption lattice. To ensure a
complete and non-redundant lattice, the rlggs constructed by Golem are forced to
have only a tractable number of literals by requiring ij-determinate definite clause
theories [Muggleton and Feng 1990]. Golem was the first ILP system used
successfully in many applications, some of them traditionally studied with regression
techniques.

Recently, the system Progol has been devised [Muggleton 1995] based also on a
subsumption lattice over MSH. The power of Progol originates from its new mode
operations and some new ad-hoc statistical considerations to balance the length of
the hypothesis with its generality in the case of positive data only and to maximise
compression in the case of both positive and negative data. According to [Muggleton
1995], the Progol approach is of a more fundamental nature, based on the inversion
of model-theory deduction (inverse entailment), than that of inverse theorem
proving techniques (inverting resolution) of Duce and Cigol.

Progol has been applied for learning relations on scientific problems, mainly the
prediction of mutagenic molecules [Srinivasan et al. 1994] and other molecular
chemistry applications. This use for practical applications [Bratko and Dzeroski 1995]
has been highlighted as the most relevant feature of ILP.

One of the most remarkable things about ILP is that it has made clear the
necessity of inventing new predicates as bias shift operation [Stahl 1995]. Moreover,
they have popularised the difference between useful and necessary predicates. An
example of useful predicate is “parent(X,Y)” to express the idea of
“grandparent(X,Y)”. It is not necessary because we can make do with “father(X,Y)”
and “mother(X,Y)”. An example of necessary predicate is “ancestor(X,Y)” to express
the idea of “relative(X,Y)”. As it was seen in the first chapter, useful predicates allow
the hypothesis to be shorter, but the generalisation is not strictly necessary. The
second ones are recursive ones that are strictly necessary to learn a concept.

In our opinion, predicate invention could be better tackled using high-order logic.
In this sense, but with different purposes, Lloyd [Bowers et al. 1997] proposed a
jump from ILP to Higher-Order Logic, using a new programming language called
Escher [Lloyd 1995], based on Church’s simple theory of types [Church 1940], with
emphasis on constructs that would be useful for induction.

2. On Inference Processes and their Relationship

39

39

Finally, there are many other non-symbolic techniques for learning in the machine
learning community: artificial neural networks, fuzzy approaches, regression... but, as
said before, are less interesting for this thesis and can be found in [Mitchell 1997].
For an up-to-date covering of a more philosophical and logical view of induction I
recommend Flach’s thesis dissertation [Flach 1995a]. For ILP I recommend [Lavrac
and Dzeroski 1994][Muggleton and De Raedt 1994][De Raedt 1996] [Nienhuys-
Cheng and de Wolf 1997].

2.4 Abduction

Abduction (sometimes wittily called Sherlock Holmes’ intelligence [Josephson and
Josephson 1994]) is a kind of hypothetical inference process introduced by Sanders
Peirce (1839-1914). Peirce asserted [Peirce 1867/1960] that neither deduction nor
induction can help us to unveil the internal structure of meaning [Yu 1994]. He
thought that another kind of reasoning was necessary to account (jointly with
induction and deduction) with all the aspects of human reasoning.

Although we will get back on the problem of meaning in subsequent chapters,
nowadays, abduction is usually considered as a special kind of induction or, at most,
both are seen as different kinds of hypothetical inference, as [Michalski 1987] points
out: “inductive inference was defined as a process of generating descriptions that imply original facts
in the context of background knowledge. Such a general definition includes inductive generalisation
and abduction as special cases”.

More concretely, it is usually accepted that abduction is a mechanism for
completing knowledge about a certain individual (generally inventing a fact to fit with
a theory that is given), thus explaining why the given observations were not predicted
by the initial knowledge. On the contrary, induction tries to extend knowledge (or to
make a new theory) for predicting future observations.

In our view, the difference may be more of nature than of purpose: induction
works without constraint (although an auxiliary background theory can be used)
whereas abduction tries to find a hypothesis that is ‘compliant’ with some higher law
that constrains how hypotheses can be. In this way, abduction may be seen as
induction in a fixed context, closer to Peirce’s original postulate [Flach 1996]:

The surprising fact, C, is observed;

But if A were true, C would be a matter of course.

Hence, there is reason to suspect that A is true.

This “matter of course” is usually represented as a background theory or common-
sense theory T (known as paradigm in philosophy of science or a constraint bias in
inductive learning). Accordingly, abduction can be represented as usually:

A ∪ T = C

40 José Hernández Orallo - Doctoral Dissertation

 40

but with the additional condition that A cannot be an anomaly in the context of T
and it cannot be an invention either (a fantastic but possible assumption). As any
hypothetical inference process, many A’s could be found; consequently, some
selection criteria must be chosen in order to find the most appropriate one.

In general, a clear distinction between induction and abduction has not been
presented to date (see e.g. [Flach and Kakas 1999] for a state of the art). Abduction is
then generally seen as the process of making assumptions to explain some facts. It is
related to explanatory induction (completion of the data), commonly described as
“inference to the best explanation” [Harman 1965]. For instance the fact “the shoes
are wet” can be explained because “the grasp was wet” and the latter because “it
rained last night”. “Explanatory induction” distinguishes from enumerative induction
[Ernis 1968] by using some coherence criteria (or metrics [Ng and Mooney 1990]).
Given an observation, in the absence of noise, an explanation must give the causes
for the whole observation. For instance, if we have seen smoke and fire co-occurring
999 times over 1000 times, we can describe this observation as “P(smoke-fire) =
0.999” and we have a reliable prediction. However, no explanation is given, mainly
because there is not any underlying mechanism justifying the co-occurrence nor the
anomaly.

Finally, as we said, there is another trait of abduction related with causation, and
this has motivated the alternative name ‘retroduction’ for abduction [Hanson 1958].
Different frameworks for formalising causation soon appeared with the early expert
diagnosis systems, exemplified by causal networks, especially Peng and Reggia’s causal
abductive network [Peng and Reggia 1987], along with other probabilistic or possibilistic
frameworks such as Pearl’s Causal Theories, using a Bayesian belief network [Pearl
1988], [Pearl 1993]. In this context, an explanation that consists of an only cause for
all the data is frequently preferable over separate causes for co-occurring phenomena,
following Reichenbach’s principle of common cause [Reichenbach 1956]. We will get on
these topics in subsequent chapters.

Many people (Peirce among them) have considered abduction a rather different
reasoning mechanism. As a result, ALP (Abductive Logic Programming) [Kakas et al.
1993] has appeared in the area of logic programming as an isolated paradigm, with
numerous applications in databases. Impressively, in some reviews (e.g. [Eiter et al.
1997]) no reference appears to ILP or any induction-related paradigm. [Adé and
Denecker 1994] proposed unsuccessfully AILP (Abductive Inductive Logic
Programming): “... we argue that both abduction and induction are different, yet related forms of
reasoning on incomplete knowledge. They are both forms of hypothetical reasoning and attempt to
“complete” the knowledge by proposing additional hypotheses. However, they differ in the sort of
hypothesis”. They just see the role of ILP in finding general rules to explain some data
and see ALP in finding some data that fills some gaps in proposed theories.

Also, EBL (Explanation-based Learning) and Abductive Explanation Based
Learning can be considered more specific cases of abductive reasoning.

2. On Inference Processes and their Relationship

41

41

To settle momentarily the question, in my opinion, the major difference originates
mainly from the different aims and utility, and what is given, which usually turns
abduction much easier and constrained than induction. In abduction we try to complete
our knowledge about a certain individual, by generally inventing a (past) fact to fit
with a theory that is given, while in induction we want to extend (make a new theory)
our knowledge to predict (future) individuals.

For an up-to-date covering of abduction I recommend Aliseda’s thesis
dissertation [Aliseda-Llera 1997]. For the relation between induction and abduction I
recommend [Flach and Kakas 1999].

2.5 Reasoning by Analogy

As it has been said, an analogy is a transference of information from the
characteristics of one situation to the characteristics of another situation. Analogy is
also a hypothetical inference process that can sometimes provide correct results
(such as whales are mammals) or incorrect (such as the ancient view of the stars as
wholes in a black sphere which separated the world from fire). In fact, analogy has
always been used as a pragmatic tool and also as a source of metaphors, even for
aesthetic purposes.

How to distinguish plausible analogies from fantastic ones has also been the main
question of analogy, as an augmented version of the main problem given in
induction. Recently, a pragmatic use of analogy has been addressed in AI, which has
generated an extensive bibliography about learning by analogies [Kling 1971]
[Gentner 1983] [Greiner 1988] [Hall 1989] [Derthick 1990] [Winston 1992]
[Hofstadter et al. 1995]. Analogy can be seen as two-layer explanatory induction (or as
[Holland et al. 1989]’s second-order morphisms), following the known fact that some
rule or structure [Gentner 1983] is shared between two previously independent facts,
so making possible the transfer of rules and methodologies from one case into the
other one. This kind of creative analogy or inductive analogy is known also as
interpretative analogy [Indurkhya 1991].

There is a close connection between analogy and induction, analogy and
abduction, and even analogy and deduction, as it is seen in mathematical practice. As
we said in the introduction, an analogical inference can be seen as an inductive step
followed by an abductive (or deductive) step.

2.5.1 Case-Based Reasoning

Case-based reasoning appeared to address the problem of everyday abductive
explanation [Kass 1986], [Leake and Owens 1986], [Schank 1986], [Leake 1992],
[Shank et al. 1994]. Its main feature is its non-constructive character. Instead, it is

42 José Hernández Orallo - Doctoral Dissertation

 42

schema-based and analogy-based, i.e., every explanation is based on a similar case on
prior episodes from memory.

The question arises: how can a case-base reasoning system start? It must record
always the first episodes (and after a time it will have an intractable amount of
samples to compare with) or “it assumes that the system begins with a fairly extensive set of
schemas —a sufficient set to capture the classes of events that are of interest” [Leake 1995]. This
implies accounting only for “stereotyped events” schematised in “frames”, “scripts”
or “MOPs” [Charniak 1978], [Cullingford 1978], [DeJong 1979], [Lebowitz 1980],
[Minsky 1975], [Schank and Abelson 1977], [Schank 1982] [Plaza 1992]. It is
supposed that some kind of analogy has to be made between past experiences and
new facts. The difference is that the required mappings are used for just one situation
and not constituted as a general rule.

Despite the limitation of pure case-based reasoning (in our view), one remarkable
thing is the clarification of the issue when to explain. The case-based model proposed a
method for automatically generating appropriate targets to fill in gaps in
understanding, based on detection of comprehension failures revealed by anomalies
that arise during the understanding process. In [Leake 1995] words: the “explanation
process is triggered when anomalies arise”. But “anomalies not only provide guidance
about when to explain, but of what to explain as well” [Leake 1995]. In this way,
statistical and MDL-based induction is not useful for explanations, because
anomalies are not detected until a great number of them force a change of model.
The ‘best’ explanation is based on “probabilities” or “costs” of the assumptions.
These ‘costs’ are usually measured in terms of “Occam’s razor” but based on the
“number of assumptions” and “structure coherence” [Ng and Mooney 1990]
[Thagard 1989] much more than on a simplistic MDL principle. Case-based
explanation is strongly influenced by similarity to previous-explained episodes and to
stereotyped patterns. Some methods [Charniak and Shomony 1994], [Hobbs et al.
1993], [Pearl 1988] assume that the information on the probability or “cost” of each
assumption and rule is available to the explainer. Case-based reasoning, in general,
assumes that only “coarse-grained” likelihood information is available [Leake 1995].

For more information and technical details about analogy I recommend [Winston
1992]. [Hofstadter et al. 1995] is suited for more philosophical or psychological
issues of analogy.

2.6 On the Relation between Inference Processes

There are many open questions about the nature of each inference process, as long
as many more technical problems. The things get even more complicated when one
tries to understand the relation between different inference processes and to study
their combination. The emphasis has almost always been lain in highlighting their

2. On Inference Processes and their Relationship

43

43

differences and seeing them as opposed inference processes rather than
complementary.

In principle, it may seem clear that induction must, in some way, depend on
deduction, because every hypothesis must be deductively checked with the evidence.
However, this should not boldly lead to the view of induction as the inverse of
deduction13. The following words of Stanley Jevons [Jevons 1874] state clearly this
view:

Induction is, in fact, the inverse operation of deduction, and
cannot be conceived to exist without the corresponding
operation, so that the question of relative importance cannot
arise. Who thinks of asking whether addition or subtraction is the
more important process in arithmetic? But at the same time much
difference in difficulty may exist between a direct and inverse
operation; the integral calculus, for instance, is infinitely more
difficult than the differential calculus of which it is the inverse.
Similarly, it must be allowed that inductive investigations are of a
far higher degree of difficulty and complexity than any questions
of deduction; ...

They are “both modern sounding and relevant” [Muggleton 1995] to current
techniques. The view is also endorsed by from the logical interpretation of
probability, initiated by John Maynard Keynes [Keynes 1921] and Rudolf Carnap
[Carnap 1950, 1952], although the main ideas can be found in the work of George
Boole.

Carnap acknowledged that probability “has two distinct, legitimate meanings: that of a
degree of confirmation (related to the subjectivists’ concept of probability), and that of a relative
frequency (as used by frequentists). To make the distinction clear, Carnap uses Probability1 to denote
the former, and Probability2 to denote the latter. Carnap’s main interest was with Probability1.
Unlike the subjectivists, however, Carnap postulates that Probability1 is a purely logical concept, and
that values Probability1(h | e) can be correctly determined by a purely logical analysis of h and e.”
[Jaeger 1998], h being the hypothesis and e the evidence.

Carnap aimed to define P(h, e, S, N), where S is a finite subset of an infinite
vocabulary of unary relations and N a finite domain of constants14. Carnap takes for
granted that this will actually be independent of S and reduces the problem to obtain
P(h, e, N). Even with these restrictions and assumptions, Carnap concludes, after
studying some possibilities, that the best of them “is not entirely inadequate” ([Carnap
1950, p. 565]). In Jaeger’s words “Looking back at these works by logicists we can probably

13 Except the 'abductivistics', considering abduction as a different category from deduction and
induction.
14 The reason for this restriction is simple, if the language is infinite and we consider non-unary
relations it is not always possible to determine all the consequences of a statement, by Gödel’s First
Incompleteness Result, and this probability is ill-defined.

44 José Hernández Orallo - Doctoral Dissertation

 44

rightfully say that their original program has failed. A purely logical concept of probability has not
proven to be viable. An obvious reason for this is the fact that we have essentially unlimited and
arbitrary choices for which language to choose for expressing probabilistic information” [Jaeger
1998]. A purely logical concept of induction has not been possible either as it is
shown in [Flach 1995a], who is able to give a logical account for abduction but not
for induction. Note that a similar problem was found by Hintikka in his formulation
of surface and depth information [Hintikka 1970a] for deduction.

There have been other investigations on the search of a proper view of semantic
information (e.g. [Wittgenstein 1922], [Mackay 1959] [Devlin 1992] [Maddox 1993]),
but they have never obtained the popularity of probabilistic accounts of information
and logic, or other utilitarian views of information ([Howard 1966] [Aisbett and
Gibbon 1999]).

In the end, the best that could be drawn from the probabilistic view of logic (or a
logical view of probability) is Carnap’s Probabilistic Calculus [Bar-Hillel and Carnap
1953], exhaustively developed in [Kemeny 1953], which, in fact, has been highly
influential to the view that induction and deduction are inverse processes in terms of
information. The main rule of Probabilistic Calculus is, as we reminded in the
previous chapter, the following one:

p(P) ≤ p(Q) if P |= Q

According to it, deduction decreases information and induction increases it. Note,
however, that this omniscient view of deduction is incompatible with the notion of
inference we have begun this chapter “a process of reasoning by which a person
modifies (part of) its beliefs.”. Deduction decreases information and, consequently,
does not change belief (provided premises are not forgotten). This does not motivate
at all a system to perform deductive inference, because, under this paradigm, it is
useless.

Nonetheless, the omniscient view of deduction was already rejected by Kant. He
was especially concerned to study what kind of knowledge can be provided by both
induction and deduction. He distinguished truths that are a priori and a posteriori
(empirical) but, more importantly, he recognised that some a priori propositions may
be synthetic, in the way they are derived from other a priori propositions15. In this
sense, synthetic (both a priori and a posteriori) propositions are valuable in the way
that they can amplify our knowledge (i.e., informative). However, Kant was flustered
by the following question: How is it possible to establish propositions that are
universally valid and, at the same time, amplify our knowledge? Or in its more
modern formulation, how deduction can provide some new knowledge? By that
time, the idea of computational cost or resource consumption was not even augured,

15 Even for the empiricists (like Quine), for which there cannot be an absolute distinction between the
analytic and the synthetic, Kant represents the recognition of inference as a mean of synthesis of new
concepts, not explicitly given before the inference process (or processes) has taken place.

2. On Inference Processes and their Relationship

45

45

so Kant’s solution was found in what he called Transcendental Aesthetics. Curiously, this
transcendental aesthetics was based on the notions of space and time, although from
a much more existential point of view from the notions of space (bits) and time
(computation steps) that will be used in this work.

2.6.1 Inference Processes, Effort and Lazy/Eager Methods

The Ancient Greeks were not interested in the effort that any inference requires.
Their passion for philosophical and scientific meditation did not motivate an interest
to reduce this effort of reasoning, which, for the Greek Culture, was even pleasant. It
is only with the advent of the notion of machine and its applications to artificial
intelligence and other many different practical problems, that effort and cost turn out
to be relevant.

I have been discussing the differences between inference processes. When we
consider information and effort, some similarities begin to shine: first, every
inference is usually guided by an interest to obtain a new assertion or new
knowledge, not explicitly present previously and, secondly, the result of an inference
process must be evaluated in order to discern if the result is valuable enough to be
preserved or discarded (forgotten), according to its interest and the effort which has
been performed to obtain it.

This engages with the field of resource-bounded reasoning, where this effort is
beginning to be weighed with the value of the expected results: “Instead of building
systems that find a ‘good’ answer, the goal of resource-bounded reasoning techniques is to find an
‘optimal’ answer. Optimality, however, is defined with respect to the system knowledge and
computational capabilities” [Zilberstein 1999]. For such a measure of optimality it is
necessary to evaluate the effort in computational capabilities from what was known
before an inference process and what is known after it. In other words, a resource-
dependent information gain measure is required.

The case of analogy also suggests another way of classifying inference processes.
Some inference processes work on the fly, i.e. they are lazy [Aha 1997], in the way they
are only used when needed, such as analogy or abduction, and other inference
processes are more eager, in the way they try to obtain concepts or rules that would be
necessary in the future, as constructive induction performs.

More concretely, eager learning extracts all the regularity from the data in order to
work with intensional knowledge, i.e., a model. Examples of eager learning are Model
Based Reasoning (MBR) and Inductive Logic Programming (ILP). The MDL
principle gives a theory that is usually eager for compressible data and lazy for
uncompressible data. I will investigate in this thesis more eager criteria, in order to
anticipate or ‘invest’ in more complex (or intensional) theories.

There has also been a very important and fruitful research in lazy learning
methods [Aha 1997]. Examples of lazy learning methods are k-neighbouring or

46 José Hernández Orallo - Doctoral Dissertation

 46

distance-based techniques, case-based reasoning (CBR) or instance-based reasoning
and analogical reasoning. As we have seen in some of these methods, examples are
memorised as extensional knowledge with some information about their results and
other characteristics. In the moment of a query or a new problem, the system works
hard to extract which previous experiences are more appropriate to the new
problem, by selecting the most similar cases or by making the most plausible analogy.

A quite updated comparison of lazy and eager (also called inductive in this paper)
methods can be found in [López de Mántaras and Armengol 1998]. Some works
[DeJong and Mooney 1986], [Mooney 1990] have introduced flexible frameworks to
combine EBR and induction, known as “explanation-base schema acquisition”
(EBSA). The difference in laziness of CBR and EBSA is illustrated by [Leake 1995]:

A key difference between case-base explanation and explanation-
based schema acquisition concerns the preferred level of
generalization. Explanation-based schema acquisition assumes a
sufficiently high-quality domain theory to allow immediate
generalization of new episodes whenever licensed by the rules of
the domain theory. Whenever explanation-based schema
acquisition systems encounter new situations that do not fit
previous generalizations, they first explain the situation by doing
backwards chaining, using their library of previous rules and
schemas. After completing an explanation, they immediately
perform explanation-based generalization of the explanatory chain
to form a new generalized schema for future use. Case-based
explanation instead takes a very conservative approach to
generalization. At the time an explanation is generated, case-based
explanation simply stores that specific explanation. If that explanation
must be generalized to apply to another situation, the
generalization is done only at the time that the explanation must
be re-applied, and only to the extent required to explain the new
situation.

Despite this continuous repetition of things that have been done several times
before, the advantages of lazy methods are their flexibility and the economy of
resources in the short and medium terms, because a reasoning effort is only done
when a new problem appears. Another important advantage is that revision is
unnecessary, because no model of reality is constructed.

In contrast, the advantages of eager methods are given by the fact that they can be
constantly pre-processing all the received information and they can profit idle time
resources. If the model is accurate, the answer to a new problem is immediate.
Moreover, most of the given examples can be forgotten when their model is reliable
enough, reducing storage and increasing manageability in the large.

This distinction, however, has not been clearly stated in the literature for
deduction. Nonetheless, deduction can also be sometimes lazy, such as everyday

2. On Inference Processes and their Relationship

47

47

deductive inferences, and sometimes eager, such as mathematical practice. Only
program specialisation and transformation techniques [Pettorossi and Proietti 1990,
1996a, 1996b] [Dershowitz and Reddy 1992] deal with the transformation of
deductive systems or programs into more efficient ones, preparing the program
representation to the expected facts it should cover, something that could be seen as
eager or anticipative deduction.

The reaction time of both inductive and deductive inference is crucial in action
systems, and the quotient between reaction time and quality of response is the main
point, highlighted by [Horvitz 1990]. Since then, there has been an increasing interest
in the context of resource-bounded systems, and it has been shown that the question
not only depends on the expectation of kind of problems (problem type prediction)
but also on the preparation and representation of the background knowledge, i.e. the
theory, from which quick inferences must be generated. According to this
expectation (or past problems) a measure of representational optimality could be quite
useful.

The choice between lazy and eager inference methods clearly depends on time
and space resources but also on the frequency of use. For instance, almost everyone
of us reminds explicitly how old we are but usually do not store explicitly how many
years have passed since we finished secondary school. Hence, some time (and effort)
must be employed to derive that information when it is needed. In other words, an
oblivion criterion is required to discern which things should be maintained explicitly.

Finally, complexity connections between different inference processes have also
been established in terms of computation, which make even clearer that deduction
and induction are not inverse processes. It is little surprising then the recent result
that “Some Learning Systems are Interactive Proof Systems” [Sempere 1998].

2.6.2 Inference Processes and Confirmation

Another common trait of any inference process is that an inference can be confirmed
or refuted. Even in the case of non-hypothetical inference, i.e. classical deduction, it
is completely different to state “B is a logical consequence from A” that to state “B is
a logical consequence from A due to proof C”. This also highlights that a theorem
prover provides useful information, because a proof does supply new knowledge,
meta-knowledge about the certainty of other pieces of knowledge. In fact,
mathematics is full of conjectures, which may or may not be confirmed or refuted.
But even in the case of computational deduction we must admit some possibility of
error, and, consequently, additional confirmations are useful. Obviously, for
hypothetical inference, the role of confirmation is more blatant because evaluation
criteria are usually not sufficient to select the ‘right’ hypothesis with certainty.

The consideration of confirmation propagation motivates a refinement in
terminology, perfectly illustrated by these words from [Li and Vitányi 1997]:

48 José Hernández Orallo - Doctoral Dissertation

 48

The Oxford English Dictionary defines induction as “the process
of inferring a general law or principle from the observations of
particular instances”. This defines precisely what we would like to
call inductive inference. On the other hand, we regard inductive
reasoning as a more general concept than inductive inference,
namely, as a process of reassigning a probability (or credibility) to
a law or proposition from the observation of particular instances.

In other words, inductive inference draws conclusions that accept
or reject a proposition, possibly without total justification, while
inductive reasoning only changes the degree of our belief in a
proposition. We need also to distinguish inductive reasoning from
deductive reasoning (or inference). In deductive reasoning one derives
the absolute truth or falsehood of a proposition. This may be
viewed as a borderline case of inductive reasoning.

It is somehow startling for the author of this work to note that the solution for this
confirmation propagation, which will be given in chapter 5, accounts both for
deductive and inductive confirmation by regarding deductive confirmation as a limit
(or borderline) of inductive confirmation. Moreover when [Li and Vitányi 1997] are
strenuous upholders of the MDL principle.

After this regard to terminology, let us review two different solutions for the
confirmation problem. Two philosophers and logicians from the Wiener Kreis
addressed the problem: Carnap and Hempel. A quantitative concept of degree of
confirmation, as a value between 0 and 1 for a hypothesis given an evidence, was
developed by Carnap, who associated it, as we have said, with a notion of probability.
On the contrary, Hempel introduced a qualitative concept of confirmation, i.e., a
Boolean relation between hypothesis and evidence, in the way that E confirms H or
E does not confirm H. In order to devise such a logical relation of confirmation,
Hempel introduced five adequacy conditions [Hempel 1943, 1945]. Let us recall
them (from [Flach 1995a]):

(H1) Entailment condition: any sentence which is entailed by an observation report
is confirmed by it
(H1.1) Any observation report is confirmed by itself.

(H2) Consequence condition: if an observation report confirms every one of a class
K of sentences, then it also confirms any sentence which is a logical
consequence of K.
(H2.1) Special consequence condition: if an observation report confirms a hypothesis H, then it

also confirms every consequence of H.

(H2.2) Equivalence condition: if an observation report confirms a hypothesis H, then it also
confirms every hypothesis which is logically equivalent with H.

(H2.3) Conjunction condition: if an observation report confirms each of two hypotheses,
then it also confirms their conjunction.

2. On Inference Processes and their Relationship

49

49

(H3) Consistency condition: every logically consistent observation report is logically
compatible with the class of all the hypotheses which it confirms.
(H3.1) Unless an observation report is self-contradictory, it does not confirm any

hypothesis with which it is not logically compatible.

(H3.2) Unless an observation report is self-contradictory, it does not confirm any
hypotheses which contradict each other.

(H4) Equivalent condition for observations: if an observation report B confirms a
hypothesis H, then any observation report logically equivalent with B also
confirms H.

(H5) Converse consequence condition: if an observation report confirms a hypothesis
H, then it also confirms every formula logically entailing H.

Loosely, H1 and H2 can be identified as deductive (downward) confirmations, H3 is
an inductive confirmation in Popper’s sense (the theory has not still been refuted by
the evidence), and H5 is an abductive (upward) confirmation. H4 is the most natural
and doubtless one, at least if modalities are not taken into account. However, H2 and
H2.1 turn out to be inconsistent with H5, a problem known as the “confirmation
paradox” [Hempel 1943, 1945] [Hesse 1974]. His solution is to drop one of the two
conditions, but, as Flach points out, “Hempel solves the problem on the formal level by
dropping the converse consequence condition in favour of the consequence condition. However, on the
intuitive level the paradox remains, since Hempel does not provide a clear justification of his choice”
[Flach 1995a]. Moreover, H2.2 generates some problems with general formulae that
Hempel tries to solve through a narrower relation of direct confirmation, which is
somehow closely related to the subset principle, i.e., if two hypotheses cover the
data, choose the most specific one. Flach’s qualitative solution is much more
convincing; he separates two subsets of adequacy conditions which account
separately for explanatory (abductive) and confirmatory (descriptive) reasoning, so
enlightening some classical distinctions between inductive and abductive reasoning.
However, in my opinion, the original view of confirmation is not represented by the
second choice alone, nor by the first one. The problem is that a qualitative account
of confirmation cannot conciliate H2 with H5, i.e., downward or forward (deductive)
confirmation with upward or backward (abductive) confirmation, because both have
different strength.

One claim of this thesis, which is especially defended by the results of chapter 5,
is that it is possible to weigh consistently both sources of confirmation, although it
cannot be done with a measure of probability, in a strict sense, but a measure of
plausibility, which does not comply with Carnap’s Probabilistic Calculus. Another
reason for this is to avoid the non-informativeness problem of probabilistic
approaches of confirmation, as pointed out by Popper: “Those who identify confirmation
with probability must believe that a high degree of probability is desirable. They implicitly accept the
rule: ‘Always choose the most probable hypothesis!’ Now it can be easily shown that this rule is
equivalent to the following rule: ‘Always choose the hypothesis which goes as little beyond the evidence

50 José Hernández Orallo - Doctoral Dissertation

 50

as possible!” ([Popper, 1963, pp. 289-90]), or maybe, just take the evidence itself as a
complete extensional hypothesis. Carnap, on the contrary, obviates this problem by
separating the problem of probability from that of interestingness: “Inductive logic alone
does not and cannot determine the best hypothesis on a given evidence... This preference is determined
by factors of many different kinds...” ([Carnap 1950, p.221], from [Flach 1995a], p. 30).
Maybe an intensionality degree or an information gain measure could be in Carnap’s mind.

More precisely, the approach for a theory of confirmation that will be undertaken
in the chapter 5 of this dissertation is based on a gradual (non-Boolean) propagation
of confirmation, a solution in between Hempel’s and Carnap’s, which allows to
include both H2 and H5, a theory which is also between the MDL principle and
Popper’s informativeness criterion. This measure of reinforcement will be shown to
be useful for deduction, induction and abduction.

2.6.3 Towards a Combination of Inference Processes

The research in artificial intelligence has usually studied inference processes in a
separate way. Although abduction has sometimes been seen in conjunction with
deduction in nonmonotonic models of reasoning or probabilistic logics, induction, as
the way to generate theories from facts or learn in an automated way, has usually
been a separate thing, addressed by the machine learning community.

Apart from Popper and Miller’s view that every inductive support is deductive
(quite reasonable if we assume that for all a and b, a → b ≡ ¬b → a), there have even
been some essays to see induction as deduction, with the illusion that all the
problems of combination would be solved, because there would only be a unique
inference process. [Shanahan 1989] studied the use of deduction for prediction and
abduction for explanation and [Gregoire and Saïs 1996] claimed that inductive
reasoning is sometimes deductive. In my opinion, these results are obtained by
misconceptions or a different understanding of some of the inference methods
involved, which, in any case, do not solve the main problem of their combination.

In the last decade, the first successes of ML have motivated the punctual use of
ML techniques for other problems of deductive character, such as software
engineering and automated deduction [Langley and Simons 1995]. But only recently,
agent theory addressed the problem of reasoning with combined inference processes,
at least in an informal way. There is again some interest about the association of
different inference processes in order to make more intelligent systems. In fact, it has
been realised that many different processes of learning or knowledge acquisitions can
be explained as suitable combinations of basic inference processes: induction,
abduction and deduction. In [Michalski 1993], different combinations and variants of
hypothetical reasoning are given in the following table:

2. On Inference Processes and their Relationship

51

51

Variant INPUT Background
Knowledge

OUTPUT

Empirical Inductive
Generalisation

Dawski’s paintings,
“A girl’s face” and
“Lvov’s cathedral”
are beautiful

 Maybe all Dawski’s
paintings are
beautiful

Constructive Inductive
Generalisation

(generalisation + deductive
derivation)

Dawski’s paintings,
“A girl’s face” and
“Lvov’s cathedral”
are beautiful

Beautiful paintings tend to
be expensive (and opposite)

Maybe all Dawski’s
paintings are
expensive.

Inductive

Specialisation

John lives in Virginia Fairfax is a “subset” of
Virginia

(Living in x implies living in
superset of x)

Maybe John lives in
Fairfax

Concretion

John is going to New
York

John likes driving

(“Driving to” is a special
case to “going to”)

Liking to drive m-implies
driving to places

Maybe John is
driving to New York

Abduction There is smoke in
the house

Smoke usually indicates fire
(and conversely)

Maybe there is fire in
the house

Constructive abductive
generalisation

(generalisation + abduction)

Smoke is in John’s
apartment

Smoke usually indicates fire
(and conversely)

John’s apt. is in the Golden
Key building

Maybe there is fire in
the Golden Key
building

Table 2.1. Different combinations and variants of hypothetical reasoning.

The purpose of the preceding table is to illustrate how classical inference processes
can be ‘camouflaged’ under different names. Moreover, it shows that the view of
deduction as specialisation and induction as abstraction or generalisation is
completely erroneous; abduction can generalise or specialise and induction can also
generalise or specialise.

The question is then, if these complex or derived inference processes are
composed of simpler or basic inference processes, does this mean that plausibility,
informativeness and confirmation must be assigned as a sum of its parts? And, if this
is the case, is it possible to combine plausibility criteria of induction with plausibility
criteria of nonmonotonic deductive inference? Does have the same meaning
informativeness for abduction, induction and deduction? The things seem even more
complicated if we intend to measure the value, novelty, or internal utility of these
inferences, depending of a background knowledge that has been constructed as well
from varied inference processes. In other words, which results are to be maintained
explicitly?

There have been, of course, some approaches to solve this problem. The most
successful ones, although in limited domains, are based on combinations of

52 José Hernández Orallo - Doctoral Dissertation

 52

reinforcement learning and effort or resource optimisations [Barto et al. 1995]
[Schmidhuber et al. 1997a, 1997b] [Martin 1998].

The first symbolic approach in this direction is SOAR [Newell 1990], but it is
based on a single learning method called chunking. The main feature of SOAR but it
highlights when and why a reasoning process should be triggered. The system
THEO [Mitchell et al. 1991] is also a self-improving system that integrates more
learning methods.

The system Noos [Arcos and Plaza 1996] combines problem-solving (deductive)
techniques with multiple learning methods [Plaza and Arcos 1993] (induction and
CBR [Armengol and Plaza 1994]). The major feature of this latter system is that
includes metalevel capabilities and reflection about the learning strategies and how
the goals have been achieved.

 However, there has not been presented to date a general theory that would
account for this combination in general. A partial effort in this line [Aisbet and
Gibbon 1998, 1999] is based on the use of utility to account for information in a
logical framework, or the MOBAL system [Morik et al. 1993][Sommer et al. 1995],
which restructures a theory according to different criteria while retaining the set of
computed answers.

In the end, there is a need for evaluation criteria that solve the main characteristics
of inference, as we saw in the introduction: information, novelty, belief, explicitness
and confirmation. In the end, as an outcome of this problem of inference
combination, a necessity arises: new unified and coherent evaluation measures.

3. Information and Representation Gains

53

53

3. Information and
Representation Gains

Al funesto aforismo de que “el saber no ocupa lugar” —lo cual,

en rigor, es falso– opongo siempre este otro: “pero el aprender

ocupa tiempo” y mientras se aprende una cosa podría

aprenderse otra de más sustancia.

Miguel de Unamuno, 1865-1937, Sobre la enseñanza del clasicismo.

Abstract: this chapter introduces a theoretical measure for evaluating the amount of information
that has been made explicit by the effort of a reasoning step. The properties such a measure should
observe are discussed. Initially, a measure of time-ignoring information gain V(x|y) is essayed,
which represents the degree of information of x which is implicitly in y. However, it does not take
into account time, and, consequently, it does not grasp the idea of effort. For non-omniscient systems,
where the notion of effort makes sense, the intuitive notion of information is re-understood in terms of
resource consumption. The choice of the function LT, which weighs space and time, as an appropriate
measure of effort, neglects the idea of effort exclusively based on time or space. A new effective
measure of computational information gain G(x|y), which depends on the computational effort (time
and space), measures the proportion of x which can be easily obtained on the help of y. Some of its
properties are studied, and it is compared with different informal but outstanding notions:
implicitness vs. explicitness and some questions about aesthetics and interestingness. Finally, some
definitions for whole systems are introduced, such as Representation Gain, a general notion of
Simplification and a Representational Optimality criterion.

Keywords: Reasoning, Information, Bounded Rationality, Computational Resources,
Information Gain, Transformation Gain, Explicit vs. Implicit, Interestingness.

54 José Hernández Orallo - Doctoral Dissertation

 54

3.1 Introduction

Reasoning can be characterised as a kind of computational process that transforms
information. As we said in the preceding chapter, for many centuries, the attention
was focused on characterising reasoning in terms of truth. Long before the modern
notions of computation and information were developed, philosophers strove for
understanding and formalising logic as a truth-preserving deductive process. Later
on, induction was distinguished as a probabilistic or non-truth-preserving process
where knowledge could be amplified from.

Nonetheless, it has been patently clear in artificial intelligence that truth
considerations are not sufficient for characterising reasoning. Infinite many different
extensions of logic have been introduced accordingly: non-monotonic, modal, multi-
valued, fuzzy, default, ... with more or less outstanding theoretical results and
applications in different areas. However, there is a feature of formulae that is as
important as truth. It is their value or utility. Tautologies are true formulae, but most
of them are useless. This suggested the classical conception of information related to
the number of excluded worlds, so leading to the assignment I(x) = 2−P(x). This entails
that any two different representations of the same concept have always the same
information and probability. For instance, “log (x � y) = log x + log y” has the same
information as “x+x = 2x”, and, in this world and at this moment, “the capital of
France is Paris” has the same information as “Paris is Paris”. However, their
informativeness is quite different. Apart from their significance in the philosophy of
language and the study of meaning, it is a general issue that pervades reasoning.
Modalities, quotes, partial derivations/evaluations have been exhaustively studied in
the literature, especially in automated deduction, but only utility criteria have given
auspicious results. Despite relative utility criteria, there are absolute criteria that affect
the value of a concept. These absolute criteria are centred in the degree of intension of
a concept. We will get back on this question on chapter 6. In this chapter and the
following one we will study reasoning dynamically, as a computational process that
transforms information into more convenient representations.

Recently, as it has also been commented, there has been an increasing interest in
regarding reasoning as a resource-bounded process ([Simon 1982], see [Zilberstein
1996] for a survey) as a reaction [Moreno 1998] to the wide use of Kripke’s semantics
[Kripke 1963] of possible worlds for formalising rational agents. Reasoning involves
effort, which can be computationally expressed as resource consumption, especially
space and time. Accordingly, cognitive systems organise their space resources (i.e.
their memory) in order to minimise this effort in the future. Since memory resources
are finite, intelligent cognitive systems usually memorise the information they receive
in a selective and intensional way. Some information that was already implicitly or

3. Information and Representation Gains

55

55

explicitly present in the system's knowledge is discarded whereas new and interesting
information is included in a convenient way.

If a system is omniscient, any implicit information can be made explicit without
effort. In this case, it is easy to determine what is ‘new’ information: any piece of data
such that is not covered or subsumed by previous knowledge, i.e. it is independent to
it. Thus, the knowledge of an omniscient system increases as new and independent
information is being added. Under this classical view, the knowledge of a system can
only change from the interaction with a world or reality. A paradoxical and usually
neglected consequence of this is that an omniscient system does not need to think,
because only external perceptions have influence on knowledge. In this way,
information can be seen as energy; a close system cannot increase its
energy/information.

On the contrary, if a system is not omniscient, reasoning is mainly devoted to
make explicit what was implicit16, which includes the connection of different parts of
knowledge, the detection of redundancies, the construction of plans and its
consequences, the imagination of what-if, etc. Moreover, if it is neither omniscient
nor completely consistent, it may detect inconsistencies and improve the robustness
and ontology of knowledge. In other words, non-omniscient systems have many
more functionalities to study on, much more dynamics, and, mainly, they are more
realistic.

As a result, a non-omniscient system has another kind of uncertainty. This is
precisely what motivated Hintikka’s difference between shallow and deep
information: “The alleviation of this kind of uncertainty must be reflected by any realistic measure
of information that we have effectively available (insofar as distinct from the information that in some
way we have potentially available)” [Hintikka 1973]. Therefore, a reasoning step from y to
x will be more valuable as more implicit information of y is made explicit. In other
words, given a y and an x we want to measure how much information of x is
explicitly in y. If all the information of x is already explicitly in y, then x is not much
valuable with respect to y, i.e. x is obvious from y and there is no significant
reduction of uncertainty. On the contrary, if most of x is not explicitly or implicitly in
y or it is hard to make it explicit, then there is an information gain of x with respect
to y.

The goal is then a measure that evaluates the information gain that any reasoning
process can obtain from a given knowledge y to the result x. Among theses processes
we have:

a) Problem Solving: y as a problem and x is one solution.
b) Consistence Checking: y can be inconsistent and x makes it manifest.
c) Deductive Inference: x a deduction from y.

16 Although Kirsh gives this role to computation: “computation is a process of making explicit,
information that was implicit” (Kirsh 1990).

56 José Hernández Orallo - Doctoral Dissertation

 56

d) Inductive Inference: x an induction from y.
e) Abductive Inference: x an abduction from y.
f) Analogical Inference: x is analogous to y (or x shows the analogy between y1 and y2,

with y = < y1, y2>).
g) Representational Transformation: x and y are alternative representations for z.
h) Conceptual Simplifications: x is a simplification of y.
i) Conceptual Optimisation: x is a better representation for z than y.

It is clear that process a) can be conveniently defined to subsume processes b), c) and
d), and g) subsumes processes h) and i). In this chapter we will centre on processes a)
and e) in a generic way, in order to introduce different measures of information gain.
The next chapter will be devoted to study inference processes b) c) d) and e) f) in a
detailed way.

As we have said, a function F(x, y) of information gain from y to x must evaluate
how informative is x with respect to y. This measure should conform with the
following fundamental properties:

1) F(x, y) should be smaller as long as x is more obvious from y and it should be
greater as long as x is more difficult to obtain from y.

2) F(x, y) = min∀x,w(F(x, w)) iff x = y. In other words, no transformation, minimum
gain.

3) F(x, y) = max∀v,w(F(v, w)) iff y is useless for x.

The last property can be understood in two ways: y can be useless for obtaining x
because x and y are absolutely independent, or, y has common information with x
but it is useless because it is extremely intricate or difficult to discover. Since, as we
will see, it is not computable to know whether two objects are absolutely
independent, we will consider the last interpretation.

In what follows we will introduce different measures and we will study their
properties. We will dub “information values” those measurements which can be
negative and positive, comparing the effort from y to x with the effort from x to y. In
the cases studied, they all result to be inconsistent with most of the preceding
properties. Their introduction is justified because they are useful to understand the
measures that are presented later on.

Finally, we will establish some technical properties in order to make the function
measure the proportion and degree (0...1) of the information of x which is explicitly
in y:

4) 0 ≤ F(x, y)

5) F(x, y) ≤ 1

We will only use the name of Information Gain for any measure for which properties
1, 2, 3 hold and Normalised Information Gain if it is also compliant with properties
4 and 5.

3. Information and Representation Gains

57

57

Hintikka claimed that “a measure of information that would not be effectively
computable is almost absurd” [Hintikka 1973]. According to this, a last property will
be taken into account:

6) F must be computable.

This last property depends on how the effort from implicit information to explicit
information is measured. As we will see, F will only be computable if time is
considered as a factor of the effort.

3.2 Resource Consumption and Gain

The difference between explicit and implicit can only be made if reasoning entails an
effort or difficulty (if not, everything implicit would be explicit). Any effort must be
measured according to some resource consumption (time, energy, external additional
data, accuracy loss, ...). Consequently, depending on which measures of resources
were chosen, different measures of information gain could be obtained.

From a computational point of view there are two main resources to be
considered: space and time. Without loss of generality, given a system φ, any piece of
information x which represents an object or a fact from the world can be coded as a
binary string. However, if φ is a universal descriptional system, there are infinite
many representations for x in φ, i.e., different strings d such that φ(d) = x, that we
denote by {dx}. In order to measure the resource-optimality of each dx it is sufficient
to define a resource-function over space and time, i.e., a function over the length of
the description, denoted by l(dx), the additional space which is required to go from dx
to x, denoted by Space(dx), and the time cost, denoted by Cost(dx). In this way, if we
define the resource-function R = F(l, Space, Cost), the best R-representations of x
can be generically obtained in the following way:

Opt(x) = argmin { R(dx) | φ(dx) = x }

Note that Opt(x) is a set since there can be more than one representation that makes
R(�) minimal. Finally, the resource-complexity can be defined as RC(x) = min { R(dx)
| φ(dx)=x }.

If we simply define R as l(dx), we have that RC(x) = K(x), i.e., the Kolmogorov
Complexity of x. This measurement of resource as space of the description ignores
time. As a result, it only recognises the implicit information that cannot be made
explicit unless some extra information is added. It does not recognise that something
can be implicit because it requires time to make it explicit. Some unintuitive
consequences are derived. For instance, an encrypted document would be explicit
information, because there is a very short program (try all the combinations for the
key) that would finally decrypt the document to make it ‘explicit’).

58 José Hernández Orallo - Doctoral Dissertation

 58

On the other side, if we define R as Cost(dx), we would have that RC(x) = l(x) if x
is finite and RC(x) = ∞ if x is infinite. If we measure the information gain under this
resource we would have even more unintuitive consequences, because any extra
information is not included in the resource function and the information gain from y
to x would always be the time it takes to print y, because y could always be given
without cost.

As we will see, the compromise is found by measuring both time and space. In
this case, it is possible that some implicit information cannot be made explicit unless
some extra information is added. Moreover, it recognises that something can be
implicit because it requires time but no extra information to make it explicit. The
question is how to weigh space and time. In 1973 Levin showed that the weighing
R(dx) = l(dx) + log Cost(dx) can be used to construct a “universal optimal search
algorithm” as an enumeration algorithm ordered by R(dx) that were optimal (up to a
multiplicative constant factor) for any inversion problem (given a y and a function f,
obtain x such that f(x) = y). This function R, which is usually denoted by LT,
produces the well-known Kt complexity.

The rationale for LT is simple: suppose the solution of a problem has size n and
to check the solution is made by an oracle. In order to obtain the correct solution we
can provide the n bits of the solution extensionally or we can essay all the possible 2n
combinations without providing any additional information to guess the correct
answer. The first method has the cost of n bits of additional information whereas the
second method has the cost of 2n computations (and questions to the oracle). By
using LT both methods have the same cost: n. Normally, the optimal way from the
problem to the solution is given by a balance between both methods: some
information (hints) is given extensionally and some other information is computed.
As Kirsh points out: “it seems that there is a principled difference between space and time. But
we have learned otherwise. Accordingly, just taking computational effort as the measure of
explicitness, there is no way of choosing whether to represent a given block of information by a
powerful procedure plus limited data or by a weak procedure plus exhaustive data” [Kirsh 1990].

For the purposes outlined at the beginning, it provides a good compromise
between space and time17. However, different parameterised factors could be added
according to the system’s characteristics. After these notions of ‘effort’ it would seem
easy to define a notion of ‘value’ increase or ‘gain’ from an object to another.
However, an effort can be done in vain, so it may entail no information gain. We will
see how to avoid partially or completely this ‘vain effort’ phenomenon.

Sections 3.3 and 3.4 investigate the possibilities of K(x) for defining an
information gain, inspired in well known derived notions of K(x), as mutual

17 Using the logarithm of the cost instead of the cost or the product of l(p) * cost(p) allows the
consideration of short programs that are NP-hard (or exponential), that otherwise would be replaced
by the program "PRINT x", because it would have less complexity.

3. Information and Representation Gains

59

59

information and information distance. Section 3.5 introduces Computational
Information Gain based on Kt(x), which will be shown to comply with the properties
sketched in the previous section. Section 3.6 relates it with some classical concepts of
computational complexity, showing the robustness of the definition. Section 3.7
introduces a variant that it is theoretically free from the addition of new and
unrelated information (vain effort phenomenon) in order to inflate information gain.
Section 3.8 presents a measure that compares 3 objects instead of only 2 to formalise
the idea of representational transformation. This special case is dubbed
representational gain. Finally, section 3.9 compares information gain and other
measurements that are introduced in this chapter with existing related notions
appeared in the literature.

3.3 Relative Information Value

Kolmogorov Complexity (K(x)) is an objective measure of the absolute amount of
information of an object, up to a fixed constant, which depends exclusively on the
descriptional system that is used. Conditional Kolmogorov Complexity (K(x|y)) is an
objective measure of the relative amount of information of an object x with respec to
an object y.

One of the most significant properties of K(·|·) is that, in general, K(x | y) ≠ K(y | x),
known as the asymmetry of Kolmogorov Complexity. It is straightforward then to
understand K(x | y) as the data ‘cost’ or ‘effort’ necessary for going from y to x. In the
same way, the time-weighted variant Kt(x | y) can be viewed as the data and time
‘cost’ or ‘effort’ necessary for going from y to x. Moreover, it is easy to adapt these
functions to follow two of the three properties of a metric (at least asymptotically),
namely, (1) F(x, y) =0 iff x=y, because K(x | y) and Kt(x | y) are always strictly greater
than 0 and (2) F(x, y) + F(y, z) ≥ F(x, z). As we have just commented on, they do not
follow the third property of a metric, symmetry.

In fact, this has given many problems for the definition of a proper measure of
universal distance [Bennett et al. 1998] between objects because “The conditional
complexity K(y|x) itself is unsuitable [...]. K(ε|x), where ε is the empty string, is small for all x, yet
intuitively a long random string x is not close to the empty string”. Nonetheless, it is precisely
this asymmetry which makes information transformation worthy and allows the
possibility of measuring information gain.

The first idea of information value can be based on measuring the cost or effort in
one way with respect to the cost or effort in the other way. For instance, if x is a
program for y, it is usually more valuable to have x than to have y, because,
intuitively, if one has x then one has y. The idea is to compare the way from y to x
with the way back from x to y. This leads exactly to the definition of relative
information value:

60 José Hernández Orallo - Doctoral Dissertation

 60

Definition 3.1 The relative information value of x with respect to y, denoted W'(x
| y) is defined as:

W'(x | y) = K(x | y) − K(y | x) [Zurek 1989a]

This measure W' was introduced by Zurek as the thermodynamic cost of
computation. Some of its properties are studied in [Zurek 1989a].

For our purposes, it is easy to check that W'(x | y) does not follow any of the
properties of the introduction. For instance, W'(x | y) would be negative if y is more
valuable than x and positive if x is more valuable than y.

However, it is interesting to study some other properties in order to know where
the definition can be modified to make the way towards better definitions such as
those introduced in sections 3.4 and 3.5. The first reader can perfectly step to these
sections directly.

3.3.1 Properties

Theorem 3.1 If x and y are independent, i.e., the common information I(x:y) =
+
 0,

we have that W'(x | y) =
+
 K(x) − K(y), so the value of x with respect to y only

depends separately on the minimal lengths of objects x and y.

PROOF. By the following property Ic(x : y) =
+ Ic(y : x) =

+ I(x:y), the result is
straightforward. If x and y are independent, we have that the contained
information of y with respect to x is 0, i.e. Ic(x : y) = K(y) − K(y | x) =

+ 0 and the
contained information of x with respect to y is 0, i.e., Ic(y : x) = K(y) − K(y | x) =

+ 0.
Hence K(y) =

+ K(y | x) and K(x) =
+ K(x | y) resulting in W'(x | y) =+ K(x) − K(y). �

Our main concern, however, is precisely centred when x and y have a close relation
as problem-solution, premise-conclusion, evidence-hypothesis, etc. For instance, the
closest relation is given by the following theorem, when x is a program for y.

Theorem 3.2 If x is a program for y we have that W'(x | y) =+ K(x | y).
PROOF. Since x is a program for y we can construct the program p = “Execute

the input ”, which is of constant size. Hence, K(y | x) = l(p). From here, W'(x | y)
= K(x | y) − l(p) =

+
 K(x | y). �

Consequently, if x is a program for y, the information value is reduced to the
measurement of the relative information of x with respect to y. This suggests the use
of some properties of relative information and their extension to information value.
For instance, obtaining the first shortest program for a given y is not much valuable:

3. Information and Representation Gains

61

61

Theorem 3.3 If x=y*, i.e., the first minimal program for y, we have that:

W'(x | y) <+ log l(y) + 2 log log l(y)

PROOF. From Theorem 3.2, since x is a program for y, W'(x | y) = W'(y* | y) =+ K(y*

| y). Additionally, for all x, K(x* | x) =+ K(K(x) | x). The > sense is obvious and the
other sense is explained by the following construction: if we know K(x), then we
know l(x*) and we can construct the 2l(x*) programs of length l(x*) and execute
one step of each of them (in lexicographical order) instead of running them
sequentially. The first one that gives x is x*.

Moreover, in [Li and Vitányi 1997] it is shown that the complexity of the
complexity function K results to be K(K(x) | x) <

+
 log l(x) + 2 log log l(x).

Consequently, W'(x | y) = W'(y* | y) =+ K(y* | y) <+ log l(y) + 2 log log l(y). �

Since log log l(y) is negligible with respect to log l(y), the first shortest program for a
string y is at most log l(y) worthy from having simply y. In other words, finding y*,
which is not only a very hard problem but also not computable in the general case,
turns out to be only worthy log l(y). The explanation can be found in that the
shortest program for y has a short description “the shortest description for y”. An
important question is whether this phenomenon generalises for any compression
ratio between x and y, or this unintuitive result only happens for maximal
compression.

Let us first formalise the notion of compression ratio:

Definition 3.2 Let x be a program for y. We define the compression ratio of y
with respect to x as:

R(x :y) = l(y)/ l(x):1

or simply R(x:y) = l(x)/l(y).

From here, the following theorem shows that there is no monotonic relation
between W’ and the compression ratio.

Theorem 3.4 Consider the set S={<x,y>, x is a program for y }. In S, W'(x | y) is
non-monotonic with respect to R(x:y) and non-monotonic with respect to R(y:x)
either.

PROOF. The non-monotonicity with respect to R(x: y) can be clarified if we see
that there is a y such that we can find a non-minimal compressed program x for y
with l(x) > K(y) with K(x | y) > log l(y) + 2 log log l(y). This is justified because if
we choose x= <z, r> where z is any program for x and r is an uncompressible
string such that K(r) = K(r/y) = K(r/y*) = l(r), and x is still a program for y. By

62 José Hernández Orallo - Doctoral Dissertation

 62

choosing l(r) > log l(y) + 2 log log l(y) we have K(x | y) > K(z) + log l(y) + 2 log log

l(y).

By Theorem 3.3, W'(y* | y) <+ log l(y) + 2 log log l(y), but we have just seen that
there exists a z such that , W'(x | y) > log l(y) + 2 log log l(y),. By the way x was
constructed it is necessarily longer than y* so R(y*:y) > R(x:y).

The non-monotonicity with respect to R(y:x) is easy to show. Just choose x=y
p, i.e.

the program "PRINT y". Obviously W'(x | y) =
+
 0. Just choose a y that is

compressible. There is a program y’ l(y’) < l(y) where W'(y’ | y) > 0 (just use y* and
add random bits). Since y is compressible R(y’:y) > 1 = R(yP : y). �

It is reasonable to accept that most non-first-minimal programs for y are more
informative than the first-minimal program. This makes the first non-monotonicity.
The contrary non-monotonicity is more expectable. In the end, Theorem 3.1,
Theorem 3.2 and Theorem 3.3 are sufficient to discard W’ as a measure of gain.
Moreover, Theorem 3.4 shows that W' is not appropriate for measuring a clear
relation (ignoring time) between the compression achieved between x and y, either,
so the applications of W’ for measuring some kind of information value or gain are
discarded.

3.4 Time-Ignoring Information Gain

The previous definitions did not follow any of the properties of the introduction.
Here we will introduce new measures to approach the final solution. In addition, in
the previous section, we have unveiled the main problems of the preceding measure:
time-independence and the arbitrary addition of random information. In this section
we present two different ways to avoid or reduce the latter problem whereas the
following section introduces a time-dependent version to solve the former.

As it has been said, the aim of the following definition is to avoid the increase of
W'(x|y) by the addition to x of random information.

Definition 3.3 The weighed and normalised (time-ignoring) relative information
value of x with respect to y is defined as:

V'(x | y) = W' (x | y) / K(x)

The function is undefined iff x = ε and it is well defined for any x ≠ ε since K(x) > 0.

It is easy to show that V'(x | y) ≤ 1. However it can be a very large negative
number if K(y | x) is much greater than K(x | y).

Theorem 3.5 If x and y are independent then V'(x | y) = 1 − K(y) / K(x).

3. Information and Representation Gains

63

63

The proof is trivial from Theorem 3.1.

Once again, a relevant case is precisely when x is a program for y.

Theorem 3.6 If x is a program for y we have that V(x | y) =+ K(x | y) / K(x).

The proof is trivial from Theorem 3.2.

This last theorem and the fact that new and arbitrary information can still be
unrelated in any case without being compensated by K(y | x) suggests to neglect this
term and propose a new definition.

Definition 3.4 The normalised relative (time-ignoring) information gain of x with
respect to y, denoted V(x | y) is defined as:

V(x | y) = K(x | y) / K(x)

The function V(·|·)is undefined iff x = ε and it is well defined for any x ≠ ε since K(x)
> 0. For every x and y, it is obvious that 1 ≥ V(x | y) > 0. These are properties 4 and 5
of the introduction. The upper limit is precisely given when y does not contain any
information about x, i.e., Ic(x:y)= 0, as in Theorem 3.5. This complies with property 3
of the introduction if we understand it in one of the two possible ways: y is useless
for obtaining x because x and y are absolutely independent (and not the other
interpretation: y has common information with x but it is useless because it is
extremely intricate or difficult to discover).

The lower limit is given when x = y (which is the property 2 of the introduction)
but also when y is a program for x. In the latter case, when the execution of y is
complicated, we may have an important transformation from y to x, so property 2 is
not completely fulfilled. Apparently, x can be obtained from y, but the computational
time may be extremely high, so y is not so useful to obtain x, something that is not
reflected by V.

Moreover, property 1 is only accomplished if the terms ‘difficulty’ or ‘effort’ are
made equivalent with data size. Finally, the major problem is that K(�) is not
computable, which makes V not computable, contrarily to property 6. Let us study
in the next subsection a computable version of information gain, which, in addition,
solves many of the preceding problems.

64 José Hernández Orallo - Doctoral Dissertation

 64

3.5 Computational Information Gain

In section 3.2 we saw that the solution relies in not to measure only the data nor only
the time. A much more appropriate solution is based on a weighed length-time (LT)
foundation.

Definition 3.5 The normalised relative time-space information gain of x with
respect to y, denoted G(x | y) is defined as:

G(x | y) = Kt(x | y) / Kt(x)

where Kt(x | y) = argmin {LT(p): φ(<p,y>) = x} and Kt(x) = Kt(x | ε) and LT(p) = l(p) +

log Cost (p,y), with Cost being the computational cost18 of executing p with input y,
(the same weighing as Levin’s Kt) because it provides a good compromise between
space and time, as seen before, but another relation could be tuned. As before, the
function G(x|y) is undefined iff x = ε and it is well defined for any x ≠ ε since Kt(x)>0.

The major advantage of G is that it is computable, and due to this fact, in the
following we will use the name ‘computational information gain’ or, simply, if there
is no confusion with V, information gain.

Since G(x | y) is pondered by Kt(x), information gain measures the proportion
(between 0 and 1) of x which is obtained on the help of y. The use of Kt(x | y) implies
that the measure mixes both the portion (which parts of x are obtained from y) and
the degree (if each of these parts are obtained in a more or less difficult way from x).

For instance, given a ‘problem’ y = “(a − 3)(a + 2)(a5 + 4a4 − 18a3 − 64a2 + 17a +
60)” and its solution x =“the roots are a = 3, a = −2, a = −3, a = −5, a =4, a = −1, a
= 1”, and a system that has the knowledge for finding roots of arbitrary polynomials
(among other abilities), the function G(x | y) measures the length of stating correctly
the problem “Find the roots of the following polynomial:”, the logarithm of a
negligible time for discovering the roots of “(a − 3)(a + 2)” and finally, the minimum
between the logarithm of a considerable time for obtaining the roots of “(a5 + 4a4 −
18a3 − 64a2 + 17a + 60)” and the length of the direct quoting of the solution “a =
−3, a = −5, a =4, a = −1, a = 1”. In the case that the best Kt(x | y) is obtained
through solving “y” there is a part of x which is not helped by y, which is exactly the
length of “the roots are:”. However, the rest is not profited in the same way, there is
a part of x, where y turns to be extremely useful, which is “a = 3, a = −2”, but there
is another part where y is only slightly useful, which is “a = −3, a = −5, a =4, a = −1,
a = 1”.

18 The term Cost (p(y)) does not take into account the cost of a first reading y if it is not necessary for
computing x, so for every y we have Kt(ε | y) = 0.

3. Information and Representation Gains

65

65

It is quite doubtful that ‘portion’ and ‘degree’ could be isolated in general by any
measure (a very similar problem is realised in chapter 6). Fortunately, it is natural to
consider both factors in a measurement of information gain, due to property 1: “F(x,

y) should be smaller as long as x is more obvious from y and it should be greater as
long as x is more difficult to obtain from y”.

Finally, it is necessary to state clear now that G(x | y) does not measure the degree
of certainty of x with respect to y. For this reason, if y is a Boolean problem, there are
only two possible values for x, and both of them, true or false, have a gain of Kt(x | y) /
Kt(x) ≈ 1 provided y has a significant complexity.

Once we have unveiled part of the meaning of the function G, it is necessary to
study more properties of it.

3.5.1 Fundamental Properties

Let us show in this first subsection some of the properties that were claimed on the
introduction. The second subsection is motivated but some difficulties to comply
with property 2. The last subsection discusses other properties.

Apart from the first property which we have seen, namely that G is computable
(property 6), we can see that all the other properties of the introduction also hold.
For instance, properties 4 and 5 are shown by the following theorem:

Theorem 3.7 There exists a constant c such that for every x and y, log l(x)/(l(x) +

log l(x) + c) < G(x | y) ≤ 1.

PROOF. The second inequality G(x | y) ≤ 1 is obtained by considering that y must
only be read if it is necessary for obtaining x, so ∀x,y Kt(x | y) ≤ Kt(x). The limit 1
is obvious by choosing y = ε and the definition of Kt(x) as Kt(x | ε).
The first inequality is justified by the fact that the numerator follows

Kt(x | y) ≥ log l(x) (1)

because x must be printed and this takes at least l(x) + c2 units of time. In fact this
limit can be come close if x = y because the program “print the input” has a
temporal cost of approximately 2 � l(x). The denominator must follow this
disequality.

Kt(x) < l(x) + log l(x) + c (2)

because in the worst case, when x is random, l(x) + c1 bits of information are
needed for the program “print x” and at most l(x) + c2 units of time to be printed.
Both constants can be represented by a negligible new constant c. By (1) and (2)
we have that log l(x)/(l(x) + log l(x) + c) < G(x | y). �

When G is near to the maximum 1, a great computational effort (in information and
time) is needed to compute x from y. Therefore, y is useless to describe x in less time-

66 José Hernández Orallo - Doctoral Dissertation

 66

space, as property 3 stated. Contrariwise, when G is near to the minimum log l(x) /

l(x) (very close to 0) it means that y is very useful for describing x.

At first sight, it may seem that G complies with property 2 (i.e. if x = y, G is
minimum), but this is not the case as the following counterexample shows:

If x = y then Kt(x | y) ≤ c1 + log (2 � l(x) + c2) because x must be read from the
input and written on the output and this takes l(x) steps for reading and l(x) for
writing. However, the LT-best program p for x can be such that log l(x) << l(p) <<
l(x) and it outputs x in l(x) steps. In this case, Kt(x | p) ≤ c3 + log (l(p) + l(x) + c4) <<
c3 + log (l(x) + l(x) + c4) = c3 + log (2 � l(x) + c4). Since log l(x) << l(p), it is not
worthy to use p for Kt(x | y) and since p is the LT-best program for x we have that
Kt(x | y) = c1 + log (2 � l(x) + c2). Depending on these c1, c2, c3, c4, it may be the case
that Kt(x | p) < Kt(x | y) and consequently G(x | p) < G(x | y). So we have found a
counterexample when G(x | y) is not minimum.

To give a more concrete example, consider x = 1,2,3,4,5, ..., n. It is natural to
think that there is an n such that the best program p for x follows that log n << l(p)
<< n. It is just a matter of properly selecting this n to make Kt(x | p) < Kt(x | x).

The rationale is that for long but highly (and easily) compressible strings, it is not
much valuable to read the whole string as an input but describing it in a more
intensional way. This is something intuitive and it is clearly reflected by situations
when G(x | x) = 1. In the end, the difference that is necessary for making property 2
hold for G can be at most equal to the difference between G(x | y) = log l(x)/(l(p) +

log l(x) + c) and G(x | y) = log (2 · l(x))/(l(p) + log l(x) + c) which is precisely 1 / (l(p)
+ log l(x) + c). Since this situation appears only for long strings, this term can be
ignored in practice. However, let us see how to solve this minor problem in general.

3.5.2 Unique Interface Formulation

The preceding definitions are applicable to any universal descriptional mechanism:
Turing machines, lambda calculi, logical theories, programming languages, etc. In this
section we present a particularisation of G that has additional properties, property 2
being among them

Just choose a Turing machine φ with two tapes, an input-output tape and a work
tape with three symbols: 0, 1 and a delimiting symbol δ. Initially, the position of the
machine is at the first cell of the input-output tape and the input is considered from
this cell up to the delimiting symbol. When the machine halts, the output is precisely
defined from the position where the machine has stopped at the input-output tape
up to the delimiting symbol. We dub this kind of machines unique interface machines.

If we also define Ktφ(x) = Ktφ(x | ε) in this reference machine, the following
properties are straightforward:

3. Information and Representation Gains

67

67

• For every x, Ktφ(x | x) = 0, since the input-output tape does not need to be
affected.

• Ktφ(ε | x) = c, being this constant term c small. The necessary time and
information to put the delimiting symbol at the current position of the output
tape.

• Ktφ(ε) = Ktφ(ε | ε) = 0 because the delimiting symbol is at the current position
in the output tape.

It is clear then to see that for every x and y, 0 ≤ Gφ(x | y) ≤ 1, and precisely the
minimum happens only when x = y , i.e. for every x and y, Gφ(x | y) = 0 iff x = y,
which is still stricter than property 2 of the introduction.

Any universal descriptional system can be ‘wrapped’ into a unique interface
machine in order to work with a single input-output tape as the only external
interface. Consequently, all the properties of the introduction hold if the system is
modified accordingly. In the following I will refer to G in general and we will
concretise to Gφ if necessary.

3.5.3 Other Properties

In the same way we made for other measures, we can express G(x | y) in some other
ways, be it for the general case or for special cases. For instance, in Theorem 3.5 we
could express V’(x | y) = 1 − K(y) / K(x) if x and y were independent.

In the case of G, the ‘space-time’ independence between x and y is given when
Kt(x | y) = Kt(x) and Kt(y | x) = Kt(y). For G only the first equality has some
significance, and this is precisely when y is useless for x and G(x | y) = 1.

Finally, we will express G(x | y) in function of Kt(y). As expected, the following
theorem only relates them under a disequality.

Theorem 3.8 There exists a c, such that for every x and y, it holds that G(x | y) > 1
− (Kt(y) + c) / Kt(x).

PROOF. Let us prove first that there exists a c such that for every x and y, we have
Kt(x) < Kt(x | y) + Kt(y) + c. Use the Kt-minimal program yt that constructs y. Then
x can be generated from it by the less Kt-minimal program p for x given y. Both
can be joined for constructing a program for x directly with length l(yt) + l(p) + c1
and Cost(yt) + Cost(p) + c2. So there exists a constant c’ such that Kt(x) < l(yt) +
l(p) + c’ + log(Cost(yt) + Cost(p))) ≤ l(yt) + log(Cost(yt)) + l(p) + log(Cost(p)) + c’.
If we separate both processes, there exists a constant c such that Kt(x) < Kt(x | y) +
Kt(y) + c.

From here, Kt(x) − Kt(y) − c < Kt(x | y) and hence G(x | y) > (Kt(x) − Kt(y) − c) /
Kt(x) = 1 − (Kt(y) + c) / Kt(x). �

68 José Hernández Orallo - Doctoral Dissertation

 68

For instance, the previous theorem serves to make patently clear that if Kt(x) >>
Kt(y) then G(x | y) ≅ 1. In other words, complex concepts (in terms of Kt) are always
an information gain over simple concepts.

3.6 Information Gain and Complexity

In this section we will study the computational complexity required for increasing the
information gain and which are the relationships with other concepts of Kolmogorov
complexity, such as information potential.

The following theorem states the difficulty of obtaining, in an exclusive
algorithmic way, an x from a y with a gain close to 1:

Theorem 3.9 Consider a learning algorithm A* in P (i.e. polynomial), namely
∃p∈N

+ : O(n
p−1
) ≤ O(A*) ≤ O(n

p
), A* being of constant size, i.e., l(A*)= c. This

algorithm deterministically transforms y into x, where x is a program for y, with n

= l(y). There is a τ such that for all x and y, if n > τ and Kt(x) > k · p · log n, then
G(x|y) ≤ 2 / k.

PROOF. For every string of data y, let us construct x in the following way: x =

“apply A* to y”. Since we can construct x from <A*, y> in an easy way p= “apply
1st argument to 2nd argument” Kt(x |<A*, y>) ≤ LT(p) = l(p) + log cost (p) < c’ +
log np). It is obvious that Kt(x|y) < Kt(x |<A*, y>). So we have that Kt(x|y) < c’ +
log np = c’ + p log n.

If, as supposed, Kt(x) > k · p · log n, then the quotient G(x|y) = Kt(x|y) / Kt(x) ≤ ((c’
/ (p · log n)) + 1) / k. Since p > 0, just choose τ = n such that c’ / (p · log n) < 1.
From here, G(x|y) ≤ 2 / k. �

More plainly, the theorem states that if both x and y are long enough and there exists
a polynomial algorithm from y to x, then G(x|y) must be low. This means that the
measurement of Kt(x|y) is very dependent on the existence of an algorithm from y to
x and which complexity this algorithm has. Moreover, it shows the difference
between deduction (you have to tell which algorithm to use) and deterministic
computation (the algorithm is systematically used). This difference is represented in
G by the length of A*, which can be significant. In other words, it is very different
the assertion that A* can be used from the assertion that A* with input y necessarily
gives x. In the next chapter we will concretise this difference.

Before, we have seen that information gain is very dependent to the complexity of
x per se. For instance, if x is a Boolean answer to a question y, the complexity of x is

3. Information and Representation Gains

69

69

very simple, namely 1 bit, so Kt(x) is usually an exiguous 1 + c and this usually forces
Kt(x|y) = Kt(x) and logically G(x|y) =1.

There is a concept derived from Kolmogorov Complexity that captures and
generalises this idea with respect to the length of x. Let us take the definition from
appendix A:

Definition 3.6 A string x is k-potent if k is the least positive integer such that Kt(x)
≤ k log l(x).

For instance, the string 1n is 1-potent because Kt(x) ≈ 1�log(n) whereas an
incompressible string s is (l(s)/log l(s) +1)-potent since Kt(s) ≈ l(s) + log l(s).

If we regard set of concepts as sequences, a potent sequence can be the formal
correspondent to the notion of a hard-to-obtain concept. Obviously, for a potent x
there cannot be a short y such that Kt(x | y) would be small, because this would entail
that x could be obtained and described from y and hence Kt(x) would be also small.
The following theorem formalises and limits this idea:

Theorem 3.10 For every x and y, if x is k-potent then G(x | y) > 1 / k.

PROOF. If x is k-potent then (k−1)log l(x) < Kt(x) ≤ k � log l(x). Since Kt(x | y) >
log l(x) because it must print x we have that G(x | y) = Kt(x | y) / Kt(x) > log l(x) /
(k � log l(x)) = 1 / k. �

Since Theorem 3.10 marks a lower limit, it is only illustrative when k is low, namely
when x is very easy to obtain, and whatever y cannot be used for obtaining x with
less effort. For the previous example, x = 1

n, since there is a constant c such that x is
1-potent for every n > c, we obtain that for every y, G(x | y) = 1.

Theorem 3.10 holds for every y, even the case y = x, although in this special case
we have that G(x | x) = Kt(x | x) / Kt(x) < Kt(x | x) / ((k−1) � log l(x)) < 2 log l(x) /
((k−1) � log l(x)) = 2 / (k−1) which leaves an interval (1 / k, 2 / (k−1)).

Finally, let us see with two examples how information gain applies for NP
problems. Consider the SAT problem, i.e. to decide whether a given Boolean
formula in conjunctive normal form is satisfiable. If we consider y the problem and x
a certificate of the true solution (and we consider NP ≠ P), and y has n variables, this
certificate requires n bits to be expressed (a bit for each variable). Since the best
algorithm for solving the SAT problem, as far as it is known to date, is exponential, y
is not directly useful for x because the cost of solving the problem would be 2n and
log 2n = n so G(x|y) ≅ n / n = 1.

70 José Hernández Orallo - Doctoral Dissertation

 70

Even in the case that part of y can be profited if some extra information z is
provided such that m = l(z) < n and x can be computed from y and z. The question is
the cost of computing x from y and z. This cost cannot be less in the general case
than 2n-m , because otherwise x could be computed from y by evaluating all the
possible z (and there are 2m possibilities) and then it would have cost less than 2m � 2n-

m = 2n, placing the problem in P. As a conclusion, we can only obtain again an upper
limit 1 for the general case of this NP problem (although in many particular cases it
may happen that G(x | y) << 1).

As a second example, consider the colouring problem, i.e., the problem of
deciding whether a given graph of n nodes can be node coloured with k colours,
such that no edge connects two nodes of the same colour. It is known that this
problem is an NP-complete problem, due to its reducibility to the decision problem
SAT. Let us consider again y the problem and x the solution (and we consider NP ≠
P). If the graph has n nodes, the solution will consist of a string of length n as (c1, c2,
..., cn) where each ci represents that node i has colour ci. In the worst case, this string
has length (in bits) n � log k. In this case the cost of solving the problem still depends
on the essay of the 2n · log k combinations. Since log 2n · log k

 = n · log k we are still close
to the same upper limit G(x | y) ≅ n � log k / n � log k = 1.

3.7 True Information Gain

Although G(x | y) follows all the requirements of the introduction and many stability
and robustness properties that have been shown in the previous section, it is
important to be able to distinguish whether the gain G(x | y) is obtained by an
addition of random and unrelated information or, on the contrary, is obtained
because the computational effort from y to x is high, but no additional information is
needed. Since the result is relative to the complexity of x, this effect is somehow
reduced in G(x | y) but not eliminated. It is possible to compare G(x | y) with G(y | x)
to exclude some cases of unrelated information. In general, however, it is impossible
to know effectively when x does not contain random and unrelated information,
because this information can be interlaced with the rest in many intricate ways (even
in a cryptographical way). However K(x | y) exactly represents (but not computes) this
common information. This allows the following definition:

Definition 3.7 The true information gain of x with respect to y, denoted TG(x | y)
is defined as:

TG(x | y) = (Kt(x | y) − K(x | y)) / Kt(x)

The name true information gain is justified by the fact that it compensates what it is not
easily in y or it is not at all in y (Kt(x | y)) and what it is not at all in y (K(x | y)). The

3. Information and Representation Gains

71

71

result is a measure of exclusively what is in y but it is not easy to obtain19. In other
words, TG measures how much information of x is hardly implicit in y.

For example, in the previous NP problems we have that K(x | y) is very low (just
essay all the possibilities), so in these cases TG(x | y) ≅ G(x | y). This makes TG a
measure of computation time gain.

Consequently, if new unrelated information w is added to x and the rest z can be
obtained from y without regarding time-resources, TG(x | y) = (Kt(x | y) − K(x | y)) /
Kt(x) = (K(w) + Kt(z | y) − K(w)) / Kt(x) = Kt(z | y) / Kt(x), which only considers the
gain which is produced from z and ignores the unrelated information w.

One can wonder why we have not restricted before this additional information in
this way. The rationale is simple. It is useful for the measurement of the value of a
solution with respect to a problem, because the answer is implicitly in the question.
However, it would not be useful in the case of inference processes such as deduction
and induction because both of them require some additional information. In the case
of deduction we must select which conclusion of all the possible ones is x and in he
case of induction we must provide a selection criterion.

In the end, TG is not necessary if we use both V(x | y) and G(x | y) to perfectly
distinguish both cases. For instance if V(x | y)>0 there is new and unrelated
information which has been used to ‘inflate’ x. On the contrary, if V(x | y)=0 and G(x

| y)>0 we know that all that is measured by G is a true information gain. This serves
as a distinction between explicit and implicit information. Explicit information is
characterised when V(x | y) = 0 and G(x | y) ≅ 0 or, in Kirsh’s words “information is
explicitly only when it is ready to be used. No computation is necessary to bring the content into a
usable form” [Kirsh 1990]. On the other side, implicit information is given when V(x |

y)=0 and G(x | y)>0. Again, Kirsh’s words show the correspondence with the
informal notion of implicitness “the hallmark of implicit information is (what) it is not
explicit but could be made explicit”.

Moreover, G(x | y) is still useful for problem-solution matters because one can
constrain externally the introduction of random information. The advantage is that it
is more flexible and, more importantly, G(x | y) is computable whereas TG(x | y) and
V(x | y) are not. In other words, to know whether some piece of information is
implicitly in another piece of information is not computable.

3.8 Representation Gain

Information gain allows to compare any two objects x and y. In the special case
where x is a program or representation for y the gain can still be between almost 0 to

19 Note that Kt(x | y) − K(x | y) = min { LT(px) : φ(px | y) = x } − min { l(px) : φ(px | y) = x } is not equal to
min { log Cost(px) : φ(px | y) = x }.

72 José Hernández Orallo - Doctoral Dissertation

 72

1. However, there may be the case one wants to compare three objects x, x’ and y
with the following relationships: x is a representation for y and x’ is also a
representation for y.

We can use directly G to compare x and x’. In the case x and x’ are
representations for y we will say that G(x’ | x) is the representation gain from x to x’.
However for most cases, we will have that G(x’ | x) = 1 and G(x | x’) = 1 because x
and x’ are unrelated descriptions for y.

For example, consider a system φ which solves arithmetic expressions. It reduces
the following expressions:

sqrt(81) / 3 = 9 / 3 = 3

45 − 42 = 3

and let us denote the different terms as x = “sqrt(81) / 3”, x’ = “9/3”, y = “3” and
x’’= “45 − 42”. In the system, if x, x’ or x’’ are computed, all of them produce the
output y. It is natural to obtain that G(x’’ | x) = 1 and G(x | x’’) = 1. However, it is
expectable that G(x’ | x) < G(x | x’’). This is because G(x’ | x) is small, although not
minimal because it is necessary to say where the evaluation must take place and up to
which extent. G shows precisely what gives it name, the informativeness of the
description: x is more informative than x’ but it cannot be said that x is more or less
informative than x’’. In addition, it seems that the expression x’’’ = “log5(78 − 10! +
1218567124) + 27 − 37” is not more informative than “3’’. Accordingly, G(x’’’|y) =
G(y |x’’’) = 1, despite the fact that the first term results into the second one, the
computational cost is high and then it is not useful for obtaining “3” since it is more
economical to quote “3” directly.

But it is precisely this meaning of information gain what makes G inappropriate
for the discernment of a closely related notion, simplification. We would like a non-
semantical function that says that y is the result of all of them, that x’ is a
simplification of x and that x’’ and x are alternative representations for “3”.

3.8.1 Universal Simplification

For the previous example, we know that V(y | x) = V(y | x’) = V(y | x’’) = 0 and it is
expectable that G(y | x) > G(y | x’). But V(x’ | x) ≠ 0 because we must say that the
derivation must stop before the complete evaluation of the term. If we choose that x’
is a simplification of x exclusively because G(y | x) > G(y | x’), the problems arise
immediately because usually G(y | x) > G(y | x’’) despite the fact that x’’ is not a
simplification of x. As a result, we must add the condition that x’ can be obtained
from x (and not the reverse way), i.e., V(x’ | x) is low but not necessarily V(x | x’).
Note that we are using V and not G because a simplification may take a long time.

The following definition formalises this idea:

3. Information and Representation Gains

73

73

Definition 3.8 A concept or formula x' is a (r1,r2)-simplification of x in φ iff ∃y =
φ(x)=φ(x'), i.e. x and x’ are program for y in φ, and

G(y | x’)<G(y | x) and K(x' | x) ≤ r1�log K(x’) and K(x | x')>r2�log K(x’)

Intuitively, y is easier to obtain from x’ than from x, and x’ is implicitly in x but not
otherwise. We have used the logarithm in order to make the parameters (r1,r2) range
more appropriately. In addition, the last disequality has denominator K(x’) and not
K(x). This is because K(x) is usually greater than K(x’).

Note that the condition φ(x)=φ(x') forces that x and x’ are denotationally
equivalent. The first disequality says that x’ is a simpler representation than x for y.
The last disequalities favour that K(x) would be usually greater than K(x’) (but it is
not always the case).

Since there is no definite limit when a transformation can be considered an actual
simplification, the parametres (r1,r2) can be used to adjust the definition for different
purposes. Normally, r2 > r1. The choice of these constants is even more important
because we are talking about programs, which are usually of small size, and constants
are important.

A direct property of the preceding definition is that if x' is a (r1,r2)-simplification
of x, V(x |x’) > (r2−r1) � log K(x’) and V(x’ |x) < (r1−r2) � log K(x’), which illustrates
the difference in effort of both ways.

The reader could be tempted to recover more traditional notions of simplification:
“x’ is a simplification of x if x’ appears in a subsequent step of a derivation from x’
to x”. This is a quite comfortable definition but it is also pretty restrictive. First of all,
it requires the notion of deduction instead of computation, because computation has
only one possible derivation. Secondly, it only contemplates the possible derivations
that are allowed by the system, and it excludes some other possible simplifications.
Thirdly, and most importantly, there are intermediate steps in a derivation that are
not in any way a simplification.

Consider the alternative derivations for the previous example:

 sqrt(81) / 3 = sqrt(81 / 9) = sqrt(9) = 3

 45 − 42 = 5 − 2 = 3

 45 − 42 = 45 − 42 + 0 = 3

The first one should be excluded by most innermost functional evaluators, although it
is the most efficient way in this case. Moreover, few would recognise sqrt(9) as a
simplification of sqrt(81) / 3 without knowing the middle step. The second one is a
rule that is only used by humans, because few arithmetical systems have imbedded
that kind of rules. The third case shows a derivation where the second step is not a
simplification of the first one.

74 José Hernández Orallo - Doctoral Dissertation

 74

To account for these cases, there is a possible mixture of both approaches:

Definition 3.9 A concept or formula x' is a derivational simplification of x in φ
iff ∃y = φ(x)=φ(x'), i.e. x and x’ are program for y in φ, and

G(y|x’) < G(y|x) and there is a derivation from x to y which uses x’ as an
intermediate step.

This does not solve all the preceding problems because it allows that the following
possible derivation:

 sqrt(81) / 3 = 9 / 3 = 3 = 5 − 2 = 45 − 42 = 3

would make “45 − 42” a simplification of “sqrt(81) / 3”.

In this case, it is better to use Definition 3.8, because the notion of simplification
must depend on the notions of effort and complexity.

Definition 3.8 does not only mean that the cost from x to x' is less than x' to x but
that the information cost from x to x' must be small. This implies that if x’ and x are
programs for y and x’ is shorter than x but a great extra-data effort is required to
transform x into x’, we cannot talk about a simplification, because x and x’ are
alternative and differentiated programs. We will get back on the questions of
evaluation and simplification in the next chapter. For the moment, let us introduce
the notion of reduction.

Definition 3.10 A concept or formula x is (r1,r2)-reduced iff ¬∃x' such that x' is a
simplification of x.

This is the descriptional correspondence to normal form or completely evaluated
formula of functional programming.

3.8.2 Representational Optimality

The previous subsection formalised the ideas of simplification and normal or
reduced form in a generic and non-semantical way. However, we have not dealt with
representational optimality, i.e., the fact that there are better representations than
others. For instance, 256 is the decimal representation for s(s(s(... 256 times ...
(s(s(0)))...))), and 28 is another representation for 256, and consequently for s(s(s(...
256 times ... (s(s(0)))...))). Naturally, s(s(s(...256 times... (s(s(0)))...))) is a representation
of itself. The question is: is there any optimal representation for this object?

Given any three objects x, x’ and y, x and x’ being representations of y, by using
information gain directly we could compare that x’ is better than x by G(y | x’) < G(y |

x). As we have seen this would yield the normal form as the best representation. On
the contrary, if we say that x’ is better than x if G(y | x’) > G(y | x), we would have

3. Information and Representation Gains

75

75

that long and intricate descriptions are optimal. True information gain is not valid
either because the information of the representation is not implicitly coded in what is
represented (it is just otherwise).

Fortunately, the notion of optimal descriptions is the major issue of descriptional
complexity and, as was remarked in the introduction (and Appendix A), we can
measure the length (the shorter the better), the time (the faster the better) or a
combination of both. If we choose this last option (and the function LT again) we
can say that a representation x' is LT-better than a representation x iff ∃y =
φ(x)=φ(x'), i.e. x and x’ are programs for y in φ, and LT(x’) ≤ LT(x).

In the previous case the representation 256 is usually better than both s(s(s(... 256
times ... (s(s(0)))...))), and 28 because either it is shorter and still efficient for obtaining
the normal form (in unary notation) or it is approximately of the same size but much
more efficient. We can generalise this idea:

Definition 3.11 The representation enhancement between two representations x'
and x for y is defined as

RE(x’ , x) = (LT(x) − LT(x’)) / Kt(y)

This allows the definition of a concept that can be understood as a “maximum” or
optimal representation:

Definition 3.12 A representation x for y is LT-optimal iff ¬∃x' such that
RE(x',x) > 0.

This definition is equivalent to the following one: x is LT-optimal iff LT(x) = Kt(y),
the less complex (in LT terms) description. In chapter 2 we commented on the
choice of simple descriptions for induction and we will get back on this in the next
chapter (instead of y as the normal form, we will use y as the best representation).

A different result can be obtained if we combine the definition of simplification
with the definition of representation enhancement to obtain the following definition
of local optimality:

Definition 3.13 A representation x for y is locally optimal iff ¬∃x' such that x’ is
a simplification of x or x is a simplification of x’ such that RE(x',x) > 0.

In some way this represents a topological concept. There are infinite many
representations for a given string y, but they can be classified into different derivation
lines (a representation can be in different lines). In the previous example, if we
consider that the representation 28 is better than s(s(s(... 256 times ... (s(s(0)))...))) then

76 José Hernández Orallo - Doctoral Dissertation

 76

we have that 256 and 28 cannot be simplified one into another. In other words, they
are alternative representations. Moreover if both are local optima, we have that they
are alternative canonical representations for s(s(s(... 256 times ... (s(s(0)))...))).

Since for every finite string y there is always a program yP= “PRINT y”, we can
abuse notation and say there is a representation enhancement (or optimisation)
between y and x, being x another program for y.

Finally, it is important to distinguish the different notions that have been seen in
this section: representation gain, simplification, and optimisation. Representation
gain and simplification are inversely related notions in general, since gain usually
increments information and a simplification usually decrements it. Optimisation is a
more classical notion that it is somehow between the other two. We will get back on
them in the next chapter.

3.9 Comparison with Related Information Measures

The motivation of the introduction of new measures of information gain was the fact
that not only new and independent information can augment an agent’s knowledge.
The rationale is clear: first, there are no omniscient systems in practice, and,
secondly, there cannot be such a thing, because to know if two pieces of information
are independent is undecidable in general.

Nonetheless, almost every measure of information or information gain that has
been introduced to date has been given in unbounded terms (i.e., without
considering space or time resources). We will comment in the next chapter some
exceptions from the literature. However, there are related notions dubbed with
different terms that consider the notion of effort or resource consumption. Some
measures have led to complete theories. In this section we will revise three of these
theories, Kirsh’s theory of explicitness, Nake’s Theory of Aesthetics and
Schmidhuber’s Interestingness, which are mainly informal. The use of information
gain is useful to formalise them, and, in some cases, the outcomes are direct and
enlightening.

Many other measures are related with induction, with deduction or with both,
such as Pietarinen’s Systematic Power (both), Hintikka’s Deep Information
(deduction), Quinlan’s Gain Ratio (induction), MDL principle (induction) and
Bounded Rationality (both). We leave the discussion about these measures for the
next chapter. In fact, Quinlan’s gain ratio is the measure which is perhaps most related
with the information gain that we have presented in this chapter, because gain ratio
turns out to be essentially the same as V(x|y) (or, more properly, essentially its
contrary).

Let us begin with a problem that solely justifies the introduction of information
gain: the difference between explicit and implicit information.

3. Information and Representation Gains

77

77

3.9.1 Kirsh’s Theory of Explicitness

In “When Is Information Explicitly Represented?” [Kirsh 1990] Kirsh affirms that most
discussions of knowledge and representation fall into paradoxes due to weak and
ambiguous notions of the terms ‘explicit’ and ‘implicit’. Although initially moved by
the ‘deeper’ notion of implicitness, he soon recognises that explicitness has also been
problematic. Under the premise that clarifying explicitness is a prerequisite to clarify
implicitness because “implicit is that which is not explicit but which could be made so” [Kirsh
1990], he introduces a theory of explicitness, postponing a theory of implicitness.

The four conditions of explicit information are stated as follows:
• Locality: “the symbols which explicitly encode information must be easily

separable from each other”.
• Movability: “An ambiguous language may explicitly encode information only if

it is trivial (non-ambiguous) to identify the syntactic and semantic identity of
the symbol”

• Immediately readable: “symbols explicitly encode information if they are
readable in constant time”.

• Meaning: “the information which a symbol explicitly encodes is given by the
set of associated states, structures, or processes it activates in constant time”

If we consider x the information to be represented explicitly by y in a computational
way, then y is a program for x. The first two conditions can be easily fulfilled under
the notion of computation. The first one requires only to consider a code such that if
φ(x) = a and φ(y) = b then φ(xy) = ab, i.e., incontextual. The second condition is
imbedded by the non-ambiguous nature of computation.

By the third condition, we are forced to have Kt(x | y) ≤ k � log l(x) (linear time) or
even stricter Kt(x | y) ≤ k because y is a program for x and x must be obtained from y
in constant time. This usually implies that G(x | y) would be low if x has some
complexity.

Finally, the last condition can also be understood in this framework if we consider
y as an expression, x as its meaning and z as the background knowledge (associated
states, structures, or processes it activates). In this case we have that Kt(x|<y,z>) ≤ k
because the meaning of x can be obtained from y and z and it must be obtained in
constant time. Again, this implies a low value of G(x|<y,z>).

If we relax the condition of y being a program for x, we can generalise the
previous results on explicitness as a degree between implicitness and explicitness.
Moreover, this has been done in this chapter; we have already presented two
functions that formally state the degree of implicitness and explicitness. In addition,
most of Kirsh intuitions about the matter are fulfilled by these functions. Concretely,
V(x | y) measures how much information of x is implicitly present in y. If V(x | y) ≅ 0,
then x is all implicitly in y. If V(x | y) ≅ 1, then no part of x is implicitly in y. On the

78 José Hernández Orallo - Doctoral Dissertation

 78

other side, G(x | y) measures how much information of x (and in which degree) is
explicitly present in y. If G(x | y) ≅ 0, then x is all explicitly in y. If G(x | y) ≅ 1, then x
is not explicitly in y.

But all this also shows that Kirsh’s premise is false: explicitness is not necessary to
ascertain implicitness. Moreover, V(x | y) and G(x | y) generalise the notions of
implicitness and explicitness. The following table summarises this relation:

V(x | y) G(x | y) TG(x | y) V(x | y)/G(x | y) Meaning

1 1 0 1 x is neither implicitly nor
explicitly in y

0 1 1 0 x is deeply implicitly in y

1 ≅ 0 - - Impossible

0 ≅ 0 ≅ 0 0 x is explicitly in y

Table 3.1. Different cases and degrees of implicitness and explicitness.

Although V(x | y) / G(x | y) is well-defined and it is always between 0 and 1, it is not
sufficient to separate the three different cases (rows) covered by table 3.1, and TG
cannot differentiate them either. It is necessary then to use two functions. However,
from the definition of V, it is important to realise that only explicitness is
computable, so the first two cases of table 3.1 are effectively indistinguishable. This,
once again, justifies the use of G(x | y) as the only practical function to discern how
much information is explicitly or implicitly present between two concepts.

3.9.2 Nake’s Theory of Aesthetics and Schmidhuber’s Interestingness

Nake [Nake 1974] suggested that maximally interesting and aesthetically pleasing
input data exhibits an ideal ratio between expected and unexpected information. In
other words, things are considered boring if they are either too random or too
predictable.

Although this view of interestingness can be found earlier than Nake more or less
definitely, it is only recently that this idea has been adopted for AI. In particular,
Schmidhuber gets inspired by this notion of interestingness to propose a ‘curious’
agent [Schmidhuber 1997b] and a theory of incremental self-improvement
[Schmidhuber 1997a], which tries to augment its knowledge incrementally from
interesting things, ignoring what is known and what is too complicated for the agent.
Although Schmidhuber only formalises this idea for a particular agent architecture,
the issue is to measure the effort from the agent’s knowledge to a given knowledge
to obtain its “difficulty”.

3. Information and Representation Gains

79

79

In an absolute way, this theory of interestingness could be well formalised by K(x)
or Kt(x), namely x is interesting if 0 << K(x) << l(x) or in the space-time variant x is
interesting if log(l(x)) << Kt(x) << l(x) + log(l(x)). A more detailed study could even
lead to the notion of logical depth or sophistication, which will be treated in chapter
6.

However, if we relativise for an agent, this turns out to be the following
definition: x is interesting iff log(l(x)) << Kt(x | y) << l(x) + log(l(x)), being y the
knowledge of the agent. In other words, if Kt(x | y) is close to the minimum, then x is
known by the agent. On the contrary, if Kt(x | y) is close to the maximum Kt(x), then
x is extremely novel but also interestless.

Nonetheless, this formalisation of Schmidhuber’s ideas would make that short
random objects would always be interesting since Kt(x | y) is low but still significant.
This problem is not clarified by Schmidhuber, because he always refers to long pieces
of knowledge.

Fortunately, the solution to this problem is precisely information gain, because it
weighs the complexity Kt(x):

Definition 3.14 Interestingness

A concept x is interesting to an agent with a knowledge y iff

b − c < G(x | y) < b + c

where 0 ≤ b ≤ 1 is the agent’s boldness and 0 ≤ c ≤ 1 its curiosity threshold.

For instance, an agent with high boldness b= 0.7 and low curiosity c= 0.1 would be a
presumptuous agent (a know-all).

A final note about interestingness is that it is difficult to separate it from the
notion of purposed interest, which depends on many more things than knowledge
only; agent’s goals and desires. However, as we have shown, not only “there is no
knowledge without interest” [Habermas 1972] but knowledge also affects interest,
and this bi-directional influence should not be neglected.

3.10 Summary and Contributions of This Chapter

In the introduction we argued on the necessity and possibility of a measure of
information gain that evaluates the amount of information which has been made
explicit in a reasoning step. In order to make sense, we must be involved with non-
omniscient systems, where reasoning has the main goal of transforming knowledge
and obtaining ‘new’ results that were not obvious initially. We proposed several

80 José Hernández Orallo - Doctoral Dissertation

 80

properties that a function of information gain should comply with. Consequently, the
first part of this chapter is devoted to give a measure under these requirements.

In section 3.2 we made clear that the difference between explicit and implicit must
be based on a measure of effort, and this must be based on a measure of resource
consumption or resource complexity. In particular, we justified the use of LT = l(x)
+ log Cost(x) because it weighs in a very convenient way space and time resources.

Sections 3.3 and 3.4 have discussed in some previous definitions from
Kolmogorov Complexity which were introduced for other purposes. We showed
that these measures are not valid for our goals but, more importantly, we have
discovered the reasons-why they are not valid and what they lack. This insight is
exploited in Section 3.5, which introduces Computational Information Gain G(x | y),
the main contribution of this chapter. Despite its simple definition based on Levin
Complexity (Kt(x | y)), it fulfils all the properties stated in the introduction. In section
3.6 we studied other properties of Computational Information Gain. Especially, we
related it with some classical concepts of computational complexity, showing the
robustness of the definition in front of polynomial transformations. We have applied
G(x | y) to some NP problems and we have obtained intuitive results.

In Section 3.7 True Information Gain TG(x | y) is introduced as a variant of G
that avoids the addition of new and unrelated information. This definition and some
previous ones are used later to definitely clarify and formalise the difference between
implicit and explicit.

Section 3.8 deals about representations, that is to say, concepts that are
descriptions of other concepts. In this case we are interested in comparing two
different descriptions of the same concept, so we needed a measure that compares
three objects instead of only two. This leads to the notion of representation gain
between x and x’, which is just a particularisation of gain when x and x’ are
descriptions of a third concept y. If both x and x' are programs (representations) for y
we should retain the best one according to some criterion. Then we talked about
simplifications, and we clarified this notion, usual in computational and deductive
systems. Finally, we studied optimality, and we used again Kt(x) to measure this
resource optimality. Representation gain and simplification are inversely related
notions in general, since gain usually increments information and the simplification
usually decrements it, whereas optimisation between the other two.

Section 3.9 compared information gain with other information measurements
presented by other authors which are closely related with our proposal and we have
discussed the problems they have left open or have not formalised. They are easily
covered and clarified under our theory. In particular, we have formalised Kirsh’s
theory of explicitness, Nake’s Theory of Aesthetics and Schmidhuber’s
Interestingness, which were mainly informal. Information gain has enlightened and,
in some cases, generalised them.

3. Information and Representation Gains

81

81

As leading outset, the main contributions of this chapter are:
• The justification of a necessity of re-connecting the intuitive notion of

information with resource consumption or computational/reasoning effort.
• The choice of LT as an appropriate measure of effort, neglecting the idea of

effort exclusively based on time or space.
• A measure of time-ignoring information gain V(x | y) which represents the

degree of information of x which is implicitly in y.
• A new effective measure of computational information gain G(x | y), which

depends on the computational effort (time and space) and measures the
proportion of x which can be easily obtained on the help of y. In other words,
the degree of information of x which is explicitly in y.

• The study of its properties and the verification of their robustness with respect
to non-polynomial algorithms.

• Representation Gain as a special case of information gain. A general notion of
simplification and the definition of a representational optimality criterion.

• The comparison and clarification of different informal but outstanding
notions: implicitness vs. explicitness, aestheticism, and interestingness.

Some of the previous results could be, per se, quite outstanding. However, the
potential of these definitions, especially G, and their full utility will be still unveiled in
the next chapter.

82 José Hernández Orallo - Doctoral Dissertation

 82

4. Information Gain and Inference Processes

83

83

4. Information Gain
and Inference

Processes

Quaerendo invenietis20

J.S. Bach, from a canon of Musical Offering (1747)

Abstract: the notions introduced in the previous chapter are exploited here. The function G is used
to explain both the informativeness of a hypothesis with respect to some evidence (in Popper’s sense)
and the gain that takes place when a conclusion or theorem is deductively established from an
axiomatic system. Additionally, a new notion of authentic learning is introduced, ensuring that
learning has taken place, independently of how compressible the evidence is, unlike the MDL
principle. In the case of deduction, different adaptations of G are introduced for several deductive
paradigms, especially for logical programs, which illustrate the measuring in practice of these gains.
This chapter also includes a comparison with Hintikka’s ideas, establishing the relationship between
G and Surface Information, and between V and Depth Information. Several general measures of
System Optimisation and Systematic Power, where Intermediate Information is recognised useful in
ATP and mathematical practice, are also introduced. Finally, an oblivion criterion is defined, as
well as a characterisation of eager and lazy inference methods.

Keywords: Inference processes, Induction, Deduction, Bounded Rationality, MDL
Principle, Information Gain, Discovery, Machine Learning, Informativeness,
Creativity, Eager and Lazy Inference, Systematic Power.

20 Seeking you will find.

84 José Hernández Orallo - Doctoral Dissertation

 84

4.1 Introduction

The characterisation of inference processes was reviewed in chapter 2, following the
current practice in artificial intelligence, which likewise has taken the notions of
deduction, induction and abduction from philosophy. However, some adaptations of
these processes to artificial intelligence have been quite careless, mainly
terminologically. In general, the applications have usually been performed by using
inference process alone, with the view that they are separate inference processes. In
fact, the main branch of artificial intelligence, mostly devoted to deduction, has held
little relation with the machine learning community, mostly devoted to induction.
More recently, though, traditional paradoxes and inconveniences have been re-
appearing whenever more than one inference process is required to be integrated in
one application or system. The thing is especially blatant in the conjunction of
induction and deduction, because measures and paradigms used for deduction are
not only useless for induction but many times are inconsistent with it. Some reasons
of this failure of a consistent integration are:

• The deductive-nomological fallacy of explanatory induction introduced in 1949
by Hempel and Oppenheim [Hempel 1965] is a mistake (see e.g. [Thagard and
Shelley 1997]), because the necessary general laws (nomos) must be frequently
discovered by the process and not initially given, as the very special case of
non-monotonic deduction. This is only possible for abduction, i.e., non-
constructive induction, that can be seen as non-monotonic inference, although
some authors are not precise about terminology [Grégoire and Saïs 1997, even
using the term induction for abduction [Helft, 1989] [Núñez et al. 1995].

• The dilemma between selection criteria based on informativeness and selection
criteria based on likelihood. Despite the fact that Occam’s razor (and its
incarnation in the MDL principle) has been successful, any criterion based on
likelihood requires the definition of a prior distribution, which always is an
arbitrary choice. It seems more reasonable to understand any selection criteria
from a methodological point of view and let reality refute the wrong
hypotheses. In this way, more easily refutable hypotheses are preferable, as
Popper has always argued.

• The confusion among three related but different processes: amplificative
deduction, as the process of obtaining new theorems of a given axiomatic
system, theorem proving, as the process of obtaining the proof of given
theorems, and computational deduction (e.g. logic programming) which
identifies theorem proving with program computation. Although the last
equivalent was neglected some time ago [Fetzer 1988] [Fetzer 1991], it is still
common in AI the erroneous view of deduction as a deterministic process.

4. Information Gain and Inference Processes

85

85

• The thought of deduction as a perfect process, which is omniscient and truth-
preserving. We discussed in the previous chapter that omniscient reasoners are
not only unrealistic but also paradoxical in general. But the idea of deduction
as always truth-preserving is also unrealistic in real systems (even computers).
For instance, humans make errors and this does not preclude them to make
deductive reasoning. Consequently, we must accept that deductive reasoning can
also be non-truth-preserving, but not only in the way that it can be approximate
(such as many modern and non-monotonic logics have formalised) but
possibly erroneous.

• The thought that deduction is non-informative impedes that a system can be
motivated to obtain new deductive inferences, because the process from
premises to theorems is not valuable, because the conclusion has less
information than the premise.

• The apparent computational indistinguishability of deterministic induction and
deduction. Consider the following paradox: under a descriptional system φ, we
have that data x can be interpreted as a valid program for φ. If executed in the
system φ, it gives φ(x) = y, which, casually, turns out to be also a valid program
for φ. Even more casually, the result of executing the program y, i.e., φ(y), is the
data x. In other words, φ(x) = y and φ(y) = x, giving a fix point φ(φ(x)) = x. In
this case, it is difficult to say whether y is a deduction of x or is an induction of
x.

To clarify most of the preceding questions it is necessary to distinguish between
deterministic and non-deterministic inference processes. Given a computational
system φ, deterministic deduction is the same process as computation in φ, i.e., given
some axiomatic system x there is only one possible deduction, φ(x). In the other way,
deterministic induction, transforms a given data d in a more intensional
representation x, either exact or approximated, such that d is a deterministic
deduction of x, namely that x is a program for d, i.e., φ(x)= d.

On the other hand, non-deterministic deduction is an information-demanding
process, in the way that an axiomatic system x can potentially give many different
consequences, and it is necessary then to provide more information to select which
one. In other words, if d is a consequence of x, then there is a need of information in
order to obtain d alone, even in the case that the deductive system would be
omniscient and ideal.

As it is well known, non-determinism can be formalised by computation by the
use of non-deterministic Turing machines. Although the extreme complexity of
physical systems can disguise their final deterministic nature (at least to the level of
atoms), a fully deterministic system can always introduce some randomness in part of
its processes, thus emulating non-deterministic systems. Consequently, it is sufficient
to characterise non-deterministic deduction as deterministic computation in the

86 José Hernández Orallo - Doctoral Dissertation

 86

following way. Given a computational system φ, d is a consequence of an axiomatic
system x iff there exists some selection data w such that φ(<x, w>)= d, where w
represents which axioms of x should be used, in which order and up to which extent.
More formally, we can distinguish three kinds of deductive systems:

Definition 4.15 A Computational Deterministic Derivational (or simply
Deductive) System (DS) is defined as a deterministic computer φ which only
accepts programs of the form φ(<x, w>), where x is an axiomatic system and w is
the selection information which indicates which axioms from x must be used,
which occurrences must be selected and in which order. Finally, the following
condition must also be satisfied:

φ(<x, w>) = d → x |− d and w is a proof for d in x.

In contrast,

Definition 4.16 A Computational Theorem Prover (TP) is defined as a
deterministic computer φ, which only accepts programs of the form φ(<x, t>),
where x is an axiomatic system and t is a well formed formula of x such that:

φ(<x, t>) = 1w → x |− t , and w is a proof for t in x and

φ(<x, t>) = 0 → x |−/ t

Note that for highly expressible axiomatic systems, φ may not end for some
theorems.

Aside from randomness, non-determinism is usually simulated by the use of
backtracking (e.g. Prolog), which gives different proofs for t. Note that Definition
4.15 and Definition 4.16 are ‘structurally equivalent’. The difference only depends on
the interpretation of the input (w and t respectively) and the output (d and the proof
respectively). Note also that Definition 4.16 gives only one possible proof. The
definition could be modified to give the best proof according to some criterion.

Definition 4.17 A Computational Accepter (AC) is defined as a deterministic
computer φ, which only accepts programs of the form φ(<x, t>), where x is an
axiomatic system and t is a well formed formula of x such that:

φ(<x, t>) = 1 → x |− t , and

φ(<x, t>) = 0 → x |−/ t

A clear example of an accepter is a grammar, and these can be classified according to
Chomsky’s hierarchy, and both deduction and induction are increasingly complex
from type 3 to type 0. In addition, instead of a Boolean accepter, where there are two
values {0, 1}, this definition can be generalised for any set of values or classes { c1, c2,
... , cn } and we have a classifier system, where the system tells to which class ci the
input t belongs to.

4. Information Gain and Inference Processes

87

87

The difference between Definition 4.16 and Definition 4.17 is notorious and
fundamental in proof theory. For our purposes it is still more important, since G(w |
<x, t>) for Definition 4.16 can be high but G(a | <x, t>) for Definition 4.17 will be
usually low because both outputs (0 or 1) are easy to describe extensionally. In
practice, however, many deductive systems (e.g. a Prolog interpreter under slight
modifications) are able to perform the three kinds of deductive paradigms mentioned
above.

Once the main deductive paradigms are defined in terms of deterministic
computation, we can also define the main non-deterministic inductive paradigms.

Definition 4.18 Non-deterministic Induction. Given a computational
deterministic deductive system φ, non-deterministic induction is defined as a
transformation from a given data or evidence d into a more intensional
representation x, according to some criterion κ, represented by ϑ(<d, κ>)= x,
such that exists a w which makes φ(<x, w>)= d. In this case, φ(<x, �>) represents
the generalisation that has been produced by the inductive process (the
predictions).

A more general view of induction as theory acquisition and revision can also be seen
in this context.

Definition 4.19 Incremental Theory Construction. A first piece of data or data
example d1 generates an x1 such that there exists a w1 such that φ(<x1,w1>)= d1.
The second piece of evidence d2 modifies (extends or revises) x1 into a new theory
x2 such that there exist two w2,1, w2,2 such that φ(<x2,w2,1>)= d1 and φ(<x2,w2,2>)=
d2. This kind of incrementality is seen in the following chapter.

Concept learning, which is just a kind of inductive inference, can be defined directly
from an accepter or classifier system in the following way:

Definition 4.20 Concept Learner. Given an accepter or classifier system φ, a
concept learner transforms an evidence d = { <t1, c1>, <t2, c2 >, ..., <tn, cn> } into
a more intensional representation x, such that φ(<x,t1>)= c1, φ(<x,t2>)= c2, ...,
φ(<x,tn>)= cn. Once again, φ(<x, �>) represents the generalisation that has been
produced by the inductive process (all the new values that can be classified).

It is important to realise that the preceding definitions have given account for the
main paradigms of deterministic and non-deterministic induction and deduction,
exclusively based on computation (φ(<�, �>)=�, ϑ(<�,�>)=�). Deduction and
induction have been defined avoiding the use of the notion of semantics or truth, i.e.,
without making difference between a truth-preserving process such as deduction and
a hypothetical process such as induction. This allows the use of computation-based
concepts such as K(�) and Kt(�), and the derived notions of the previous chapter, to
deal with deduction and induction. As a result of the course of this chapter, we will

88 José Hernández Orallo - Doctoral Dissertation

 88

see that deduction and induction are not inverse processes in terms of information or
transformation gain, or, in other words, it is possible to apply the same measure of gain
for both of them.

In this chapter we will apply computational information gain G(x | y) for both
induction and deduction, according to the paradigms that have been defined in this
section. In the case of induction, information gain forces the hypothesis to be
informative (or computationally hard to discover) with respect to the evidence, so it
provides a formal account of what is to discover and what is to learn. In the case of
deduction, computational information gain distinguishes easy deductions from hard
ones, and allows, finally, to find a compromise for distinguishing which deductions
are worth leaving explicitly, and for which ones it is preferable to deduce them when
needed.

4.2 Information Gain and Induction

It seems more natural to study first our measure of information gain for induction,
because it has been usually argued that induction is the only informative inference
process. More precisely, it has been said that the more general the more informative
and the more specific the less informative. This idea was informally introduced by
Popper in the thirties and then formalised by Bar-Hillel and Carnap in 1953 for first-
order theories, giving the famous Carnap’s Probabilistic Interpretation of First-Order
Predicate Calculus. However, this relation between probability and semantic
information has some counterintuitive properties, as we commented in chapter 2.
For instance, p(T) = 0, which implies I(T) = ∞, or, in other words, the theory
“everything is true” is the most informative one.

On the other hand, there is an exclusively syntactic view of information,
represented by Kolmogorov Complexity. This soon motivated the view of
“induction as compression” [Solomonoff 1964], popularised by Rissanen’s Minimum
Description Length (MDL) Principle [Rissanen 1978, 1996]. Although it has been
successfully applied in many fields, this view gives many paradoxes too, as we also
saw in chapter 2.

For instance, the first unintuitive consequence arises when one intends to assign
probabilities to theories. In order to do this, it is necessary to use the prefix-free
version of Kolmogorov Complexity K(h), that makes the usual prior P(h) = 2

−K(h) be a
probability. But this prior provokes the following paradox. Suppose a given evidence
y and two deterministic theories (descriptions) x and x’ such that φ(x) = φ(x’) = y
where K(x’) < K(x). Under this prior, x’ should have more probability than x.
However, this is not intuitive since both represent the same theory (the prefix-free
condition still allows this). The point is that K(φ(x)) = K(φ(x’)) but K(x’) is not equal
to K(x). It seems that this problem can be solved by using P(h) = 2

−min{l(h’): φ(h) = φ(h’)}
 =

4. Information Gain and Inference Processes

89

89

2
−K(φ(h)), taking into account that the evidence is a prefix of φ(h). However, this

solution has not been commented in the literature (to my bibliographical knowledge)
probably because the resulting value P(h) is not a probability (ΣP(h) > 1).

In the case of non-deterministic induction, the same problem can be reproduced
as well. For most criteria, there can be two theories x1 and x2 such that not only there
exists a w1 which makes φ(<x1, w1>)= d and there is also a w2 which makes φ(<x2,
w2>)= d but φ(<x1, �>) = φ(<x2, �>), i.e. they are semantically equivalent. Moreover,
in the case that ϑ(<d, κ>)= x1, one theory would be better than the other, simply
because it is better according to some criterion. In other words, it is reasonable to use
a selection criterion for choosing between different possible theories, but not a prior
criterion to assign probabilities.

By using the MDL principle even without a prior, another important problem
appears: nothing can be learnt from random strings. Prediction is not possible since
the program x= “PRINT y” (the shortest program if y is random) is not enumerative
and it cannot even predict the following bit of y. Although we can easily force x to be
enumerative by converting it into “PRINT y FOREVER”, several questions arise: Is
this the best option for prediction? Is it informative? Is it valuable?

Instead of talking about the best model, it would be even more insightful to
evaluate how valuable it is to obtain a concrete description and whether it is worthy
to remember or forget it. This would be especially useful if an inductive method can
consider different hypotheses at a time, because some surprising, strange, difficult to
obtain, or curious hypotheses which have not been still refuted can be kept for future
use. On the other hand, obvious or easy hypotheses can be forgotten because they
would be easily generated again when needed.

In this way, G(x | y) provides a uniform measure of the relative value of the
hypothesis with respect to the data, the gain of the computational effort which has
been invested in the process from the data to the hypothesis. More precisely, if x is
the theory and y is the data, the two extreme cases are illustrative:

• Minimum: G(x | y) = log l(x) / (l(x) + log(l(x)) ≈ 0. The theory is evident from
the data. In other words, it is very easy to describe the theory from the data.
Some examples of this minimum are: a description full of exceptions or with
great extensionalities since they can be quoted easily from the data, or the nth
order polynomial obtained from n+1 data.

• Maximum: G(x | y) = 1. The theory is surprising or creative with respect to the
data. The data is useless (in time-space terms) to describe the theory (Kt(x | y) =
Kt(x)). It is necessary a great computational work on the data y to obtain the
theory and/or there is a need for external information. In other words, the
computational effort invested justifies x to be retained, because it is valuable.

90 José Hernández Orallo - Doctoral Dissertation

 90

It is important to highlight that G(x | y) measures the gain from y to x and not the
plausibility of x. For instance, the data “aaa...a” suggests the plausible theory “repeat
a for ever” which is easy to obtain from the data. At this point a clear distinction
between plausibility criteria and methodological criteria should be done:

• A Plausibility Criterion: a classical selection criterion that chooses the most
likely hypotheses. This criterion must be based on prior information, bias
information, context, etc. In chapters 5 and 6 we will address this question
again.

• A Methodological Criterion: for want of a reasonable plausibility criterion, a
methodological criterion can be used to select the most convenient theory for
operational purposes (reduction of complexity, optimisation of the whole
process, robustness).

For instance, Popper’s falsifiability criterion is of methodological kind and it aims for
more robust theories, although, in the long run, if the hypotheses cannot be falsified,
they become more plausible. The Maximum Likelihood Estimator [Case and Smith
1983] is a plausibility criterion, provided the prior is conveniently supplied, in this
case compared with cross-validation [Kearns et al. 1999] and Bayesian Learning [Gull
1988]. Finally, the MDL principle is both a plausibility criterion and a methodological
one, because shorter theories are more manageable.

Information Gain is a purely methodological criterion, because there is no reason
to think that ‘harder’ theories are more probable (more on the contrary, very intricate
processes in nature are only present in biological systems). However,
methodologically, information gain can be used to obtain a good “oblivion
criterion”. Let us explain this idea. It is well known that the plausibility of a
hypothesis depends on the data, the hypothesis itself and the context. But it is also
well known that the ‘confidence’ or ‘reliability’ of a hypothesis depends mostly on
the ability of the agent or learner to find alternative hypotheses. In this case, the
classical notion of a learner as a black box that outputs the best hypothesis according
to some plausibility criterion is misleading, because if the best hypothesis fails with
new evidence, the process must start again. On the contrary, it is more natural to
consider the learner separately from the selection criteria. In this case, a set of
possible hypotheses is generated by the learner: some of them are more plausible
than others and some of them are more informative than others. In this case, it is
interesting to maintain those hypotheses that have not been selected by the
plausibility criteria but are alternative explanations that could be selected later, if the
evidence discards other momentarily better hypotheses. The learner has invested
some effort to obtain these hypotheses and they must be preserved to recoup more
effort than it would be profited if only one hypothesis is remembered. Let us
formalise this idea:

4. Information Gain and Inference Processes

91

91

Definition 4.21 Oblivion Criterion. Given a plausibility criteria PC(h | d), and a
learner with alternative hypotheses and limited memory resources, its memory
politics can be ruled by the following oblivion criterion:

OC(h | d) = G(h | d) � PC(h | d)

The hypotheses with lower OC should be forgotten. For instance, if the plausibility
criterion is the MDL principle we have OC(h | d) = G(h | d) · 2

−l(h). By the use of the
G factor, for instance, a hypothesis “print d” for a random data d, would have OC(h |
d) = 0. This criterion turns out to be a quite reasonable compromise between
informativeness and simplicity. For compressible data, a short hypothesis is usually
informative and the final value of OC is not too much affected by G. On the
contrary, for random data, hypotheses generated by the MDL principle are discarded
because G is low21.

This engages with the classical dilemma between informative and probable
hypotheses. It is clear that an explanation must have some degree of plausibility to
avoid fantastic hypotheses, but in many applications, such as scientific discovery or
abduction, we must regard an explanation as an investment, even a “risky bet” that
could be soon falsified. This is merely Popper’s criterion of falsifiability [Popper
1962]: one does not always want the most likely explanation, because sometimes it is
the less falsifiable / informative too. More precisely, falsifiability is related with the
number of restricted worlds that can be testable whereas informativeness is not
directly related with testability.

The issue is clear when the data is random (and this usually happens with short
data because it makes no worthy any compression). The MDL principle (or the
simplicity criterion) just gives the data themselves, which does not correspond to the
idea of ‘model’. By using OC, different informative hypotheses can be induced. This
gives clues to the enigma of “hyper-learning” or “poverty of stimulus” [Reuland and
Abraham 1993] in those cases where the data suggests some obvious (but useless)
hypotheses instead of more creative ones.

4.3 Creativity, Learning and Discovery

The view of learning as compression [Solomonoff 1964] is also supported on the fact
that compression22 and informativeness are positively related in general. Let us show
that this is true, at least for ‘thorough’ learners:

21 There are, obviously, other traits that have influence over an oblivion criterion. In particular,
frequency of use and interest are, in many cases, more important than plausibility or gain. However,
frequency of use, plausibility and interest (what might be useful in the future) are included in the
measure of reinforcement which will be presented in the next chapter.
22 Note that the MDL principle does not ensure any compression at all in the general case.

92 José Hernández Orallo - Doctoral Dissertation

 92

Theorem 4.11 Consider a thorough learner Λ, which examines all the data or
nothing of it. If the hypothesis is very short with respect to the data (the
compression ratio R(d:h) > l(d) / log l(d)) then G(h | d) = 1.

PROOF. If the data is n = l(d) bits long, this takes at least n steps to read it, so KtΛ(h
| d) > log n if the learner examines the data and KtΛ(h | d) = KtΛ(h) if it ignores it.
Since the compression ratio R(d:h) > n / log n and R(d:h) = l(d) / l(h), we have that
l(h) < log n. Consequently, KtΛ(h) < log n. So it is preferable to ignore the data and
obtain KtΛ(h | d) = KtΛ(h) directly. This gives G(h | d) = 1. �

The condition of thorough learners may seem arbitrary. First of all, for the two
formulations which were considered in the previous chapter (two interfaces and
unique interface formulation), a given data “111...n...111” can be induced by reading
only m bits and not the n 1’s of the data, because the hypothesis “1 forever” is
obvious when sufficiently bits (m) are read. However, this can only be made
judiciously when there is enough redundancy (m is large).

This can prompt the reader to think that usual learners are not thorough, but
reality tells us otherwise. The overwhelming majority of machine learners always
examine all the evidence, so G could be even greater than 1. Note that in the
previous chapter we showed that G ≤ 1 because all the evidence needed not to be
read.

The aim of Theorem 4.11 jointly with Theorem 3.9 of the previous chapter is only
to show that efficient learners cannot obtain informative hypotheses. More
concretely, when using a polynomial learning algorithm for learning an evidence of
length n, a compression ratio much greater than n / (p log n) is required, which, for n
great and p low (as it is usually the case) is a very strict and difficult requirement. This
supports the thesis that efficient algorithms that work exclusively from the data cannot learn
valuable hypothesis or, seen the other way, efficient algorithms always quote
‘shallowly’ part of the data. This highlights the relevance of context, that thing which
is given and not learned, which serves to generate the hypothesis by trial and error
(using reality as an oracle), or by less drastic approaches, such as genetic algorithms.

In this sense, under the most intuitive notion of creativity, it is considered that a
creative concept cannot be easily obtained from anything else that was known
before, because in this case it would not be novel. Consequently, the clue to
creativity, if there is any, is to avoid repetition of old structures and patterns, in order
to make Kt(x | b) = Kt(x) where x represents the ‘novel’ concept and b is the
background knowledge. In Aesthetics, this novelty should not be extreme in order to
make the concept minimally comprehensible and hence interesting, as we discussed
in the previous chapter.

In the context of induction and learning, creativity is usually known as ‘discovery’,
or in Kirsh’s terminology, to make explicit something that was deeply implicit.

4. Information Gain and Inference Processes

93

93

According to this, not every inductive theory is a discovering; there are some
conditions that must be observed:

1. the theory must be ‘implicitly’ in the evidence e and the background knowledge
b.

2. the theory must not be ‘explicitly’ in the evidence e and the background
knowledge b.

3. the theory must cover/explain the data jointly with the background knowledge.
4. the theory should be confirmed (otherwise it is just a creative theory or

hypothesis but not a discovering).

We saw in the previous chapter how to formalise the first two conditions, taking
d=<e,b> namely V(h | d) is close to 0 for the first condition and G(h | d) is close to 1
for the second one. The third one is semantic and can be formalised in any of the
non-deterministic deductive systems of the introduction. The fourth condition
depends on further experimentation with more evidence or additional context
knowledge (it even could be deductively confirmed). However, the stricter the first
condition is followed, the less possibility that there are alternative plausible theories
for the evidence, because if not, V(h | e) should contain information about which one
to select, and it would be high.

Note that the theory can be implicit mainly due to the background knowledge.
The thing is completely different if the selection criterion is fixed a priori. In this
case, V(h | e) can be very low. For instance, in the case of the MDL principle, the
shortest description of a given data can be easily described as “the shortest
description for the evidence”, and the information conveyed by the shortest
description given the evidence (K(x* | x)) is very reduced, as we saw in Theorem 3.3.
This can be extended for V, as the following theorem shows:

Theorem 4.12 Given a thorough learner Λ, there exists a constant c which only
depends on Λ such that for every piece of data x longer than c such that K(x) > k
� log l(x), where k > 1, i.e. it is not excessively compressible, the first shortest
theory x* for it follows condition 1, more precisely, V(x* | x) < 2 / k.

PROOF. By Theorem 3.3, and since V(x | x*) = 0, we have that the first shortest
theory for a given piece of data x has V(x* | x) < (log l(x) + 2 log log l(x) + c1) /
K(x*). Since K(x*) = K(x) + c2 and K(x) > k � log l(x), then V(x* | x) < (log l(x) +
2 log log l(x) + c1) / (k � log l(x) + c2). Just choose c = 22c1, and V(x* | x) < (log
l(x) + 2 log log l(x) + log log c) / (k � log l(x)) < (log l(x) + 3 log log l(x)) / (k �
log l(x)). It is natural to expect that c is great enough to force 3 log log l(x)/ (k �
log l(x)) ≤ (1 / k). Otherwise, just choose c = max (22c1, 216), because 3 � log log
216 = 12 ≤ 16. Consequently, there is a constant c, such that V(x* | x) < (log l(x) /
(k � log l(x)) + (1 / k) = 2 / k, which for k great means that the theory is
implicitly in the evidence. �

94 José Hernández Orallo - Doctoral Dissertation

 94

But it is condition 2 which is questioned by the MDL principle, because it is not
ensured that the simplest theory is deeply present in the evidence. On the contrary,
many times it is explicitly found, as the following rationale shows: note that the
condition K(x) >> log l(x) of Theorem 4.12 is precisely the limit of the condition of
Theorem 4.11: (l(x) / l(h) = R(x:h) > l(x) / log l(x) implies l(h) = l(x*) = K(x) < log
l(x)), thus it seems difficult to find an interval where the MDL principle ensures
discovering in general.

A further insight on the previous results for the field of machine learning suggests
that if the hypothesis is evident from the data, no much learning should have taken
place. The issue is clear when the data is random (and this usually happens with short
data because it is no worth compressing it). For instance, the MDL principle just
gives the data itself, which does not correspond to the idea of ‘model’ or
‘explanation’. However, the most important learning paradigms are based on the idea
of identification: identification in the limit [Gold 1967], PAC model [Valiant 1984],
Query-Learning [Angluin 1988]. These paradigms are designed for infinite data, but a
learning algorithm that always gives a completely extensional (and not valuable)
description “print x” for any finite data x would formally learn, something that is
quite counterintuitive.

From here, and very far from the classical notion of ‘identification’ [Gold 1967],
we propose a different notion of learning (or discovering): the more a system learns
the more valuable the description is with respect to the data.

Definition 4.22 Authentic Learning or Discovering. We say that a concept or
theory x is an authentic learning or discovering with respect to y in a context β iff x is
a theory or description for y and Gβ(x | y) is close to 1.

This engages with the intuitive notion of learning as “knowing something that was
not known” and it is also applicable for other non-omniscient inference processes,
even deduction. In a proper way, discovering, as a special case, should be
accompanied by a confirmation (condition 4), whereas learning must not necessarily
be confirmed, because x is valuable per se. Condition 1 is not required for authentic
learning, either.

Finally, the idea of surprise is more related with anomaly, a failure of prediction,
and not only with the idea of novelty or new information. This issue will be
addressed later.

4.4 Quinlan’s Information Gain and Gain Ratio

In the previous chapter we studied the relation between computational information
gain and other related measures, such as Kirsh’s theory of explicitness and
Schmidhuber’s interestingness. In this section we will study the relation with

4. Information Gain and Inference Processes

95

95

Quinlan’s Information Gain, which will turn out to be the closest measure to G,
apart from their common name.

The algorithm ID3 for inducing decision trees [Quinlan 1986] and its
implementation and last version C4.5 [Quinlan 1993] is the most popular and widely
used program of the machine learning community. Its success relies on two facts:
firstly, many inductive problems can be reformulated as the problem of inducing a
decision tree, and, secondly, its evaluation measure, a modification of classical
information gain, allows a compromise between the optimal solution and efficiency.

For instance, let us consider the same observations from Quinlan’s classical
example, which contains four attributes and two classes:

Outlook Temp (ºF) Humidity (%) Windy? Class

sunny 75 70 true Play

sunny 80 90 true Don’t Play

sunny 85 85 false Don’t Play

sunny 72 95 false Don’t Play

sunny 69 70 false Play

overcast 72 90 true Play

overcast 83 78 false Play

overcast 64 65 true Play

overcast 81 75 false Play

rain 71 80 true Don’t Play

rain 65 70 true Don’t Play

rain 75 80 false Play

rain 68 80 false Play

rain 70 96 false Play

Figure 4.1. A small training set

If C is the set of class labels, we can compute the entropy of C in the classical
probabilistic way (Shannon’s entropy):

info(C) = H(C) = −∑c∈C P(c) log2P(c)

In this case H(C) = −9 / 14 × log2(9/14) − 5/14 × log2(5/14) = 0.940 bits.

If we choose the attribute ‘windy’ to split the evidence into two different
problems we can compute the entropy of each of them as H(C|windy = true) and
H(C | windy = false). A weighed sum of these two entropies gives the entropy after
the split. Generalising this we have:

infoX(C) = ∑v∈X P(v) · H(C | v)

where each H(C | v) is the entropy of each subtree which has been generated,
knowing v. For the previous case, if Xw = { windy = true, windy = false } then

96 José Hernández Orallo - Doctoral Dissertation

 96

infoXw(C) = 6/14 × (−3/6 × log2(3/6) − 3/6 × log2(3/6) + 8/14 × (−6/8 × log2(6/8) −
2/8 × log2(2/8) = 0.892 bits.

Then, it is natural to think that what we have gained after the split is the
difference in information between the whole evidence and the split evidence. This is
precisely what classical information gain formalises; the gain of considering feature X
is measured by computing the difference in uncertainty (i.e. entropy) between the
situations without and with knowledge of the value of that feature.

Definition 4.23 Classical (or Probabilistic) Information Gain [Quinlan
1986]

gain(X,C) = info(C) − infoX(C) = H(C) − ∑v∈X P(v) · H(C | v)

We have used the term ‘classical’ because this is just a generalisation of the traditional
equation of information given by x about C when X has only one element x:

I(X : C) = H(C) − H(C | x)

where H(C | x) is the conditional entropy, defined as H(C|x) = −∑c∈C P(c|x) log2P(c|x).

The previous example gives gain(Xw,C) = 0.940 − 0.892 = 0.048. If we choose Xo
= { outlook = sunny, outlook = overcast, outlook = rain } we have that gain(Xo , C)
= 0.940 − 0.694 = 0.246.

Information Gain, however, tends to overestimate the relevance of features with
large numbers of values. Imagine a data set of hospital patients, where one of the
available features is a unique “patient ID number”. This feature will have very high
Information Gain, because it exactly determines the class, but it does not give any
generalisation to new instances. To normalise Information Gain for features with
different numbers of values, Quinlan [Quinlan 1993] introduced a normalised
version, called Gain Ratio, which is Information Gain divided by split info(X), the
entropy of the feature-values.

Definition 4.24 Split Info [Quinlan 1993]

split info(X) = − ∑v∈X P(v) · log2P(v)

This last definition is a measure of the “complexity” of X. In the case X has two
values and each half of the evidence corresponds to each value we have a split info
equal to 1. For the previous example, split info(Xw) = − 6/14 × log2(6/14) − 8/14 ×
log2(8/14) = 0,985, and split info(Xo) = − 5/14 × log2(5/14) − 4/14 × log2(4/14) −
5/14 × log2(5/14) = 1.577 bits.

Definition 4.25 Gain Ratio [Quinlan 1993]

gain ratio(X,C) = gain (X,C) / split info(X)

In the previous case gain ratio(Xw ,C) = 0.048 / 0.985 = 0.049 and gain ratio(Xo ,C) =
0.246 / 1.577 = 0.156.

4. Information Gain and Inference Processes

97

97

This formula is justified experimentally but not theoretically. In fact, both gain and
gain ratio are currently used in practical applications (many times in the same
application), although the latter is more robust to large number of values.

By the theorem of (asymptotic) equality between Shannon’s Stochastic Entropy
and expected Algorithmic Complexity (first proved by Kolmogorov, see e.g. [Li and
Vitányi 1997]) we can make the translation to descriptional complexity of the
previous definitions:

Definition 4.26 Descriptional Gain and Descriptional Gain Ratio

desc gain (X,C) = desc info(C) − desc infoX(C) = K(C) − K(C |X)

desc gain ratio(X,C) = desc gain (X,C) / desc info(X) = { K(C) − K(C |X) } / K(X)

These last definitions resemble those of information gain of the previous chapter. In
particular, the following relation can be established:

Theorem 4.13 For every X and C, desc gain ratio(X,C) = 1 −−−− V(X | C) up to an
independent additive value c ≤ c’ / K(X), with c’ being another independent
constant.

PROOF. From Definition 4.26 we have that desc gain (X,C) = (K(C) − K(C | X)) /
K(X). A well-known property of K is that K(y|x) =

+

 K(<x,y>) − K(x) so desc gain

(X,C) =
+

 K(C) − K(<X,C>) + K(X) =
+

 K(C) − K(<C, X>) + K(X). By the same
property, K(C) − K(<C,X>) =

+

 −K(X | C), we have that desc gain (X,C) =
+

 −K(X | C)
+ K(X). In other words, there exists a c’ such that desc gain(X,C) = K(X) − K(X | C)
± c’.

By Definition 4.26 we also have that desc gain ratio (X,C) = desc gain(X,C) / K(X).
From the previous result desc gain ratio (X,C) = (K(X) − K(X | C) ± c’) / K(X) = 1 −
K(X | C)/K(X) ± c’ / K(X) = 1 − V(X | C) ± c’ / K(X). By taking c = c’ / K(X), the
theorem is proven. �

Since V is always between 0 and 1, for large values of X, desc gain ratio and V are just
complementary. If V(X | C) ≅ 1, X is completely new or independent to C, so it is
useless for making a split in C, and desc gain ratio(X,C) ≅ 0. On the contrary if V(X |
C) ≅ 0, X is fully imbedded in C, so it is extremely useful for making a split in C, and,
naturally, desc gain ratio(X,C) ≅ 1.

The reason for dividing by K(X) both in G and desc gain is quite the same: we are
not interested in an absolute value or a ratio, for if not, large X would give always the
best gains. Note that both ignore time, in contrast to G(X |Y). It would be interesting
to include time in the induction of decision trees by a measure of computational gain
ratio. Obviously, this falls out the scope of this thesis.

98 José Hernández Orallo - Doctoral Dissertation

 98

4.5 Information Gain and Deduction

As it is discussed in chapters 1 and 2, Carnap’s Probabilistic Interpretation of First-
Order Predicate Calculus [Bar-Hillel and Carnap 1953] spread the view of deduction
as an inference processes where the result had always less information than the
premises, as the property p(P) ≤ p(Q) if P |= Q clearly stated.

In fact, inductive criteria such as the generality degree criterion or the MDL
principle also corroborate this view. A deduction is always more specific than the
premises, and a theory always grows in size if its consequences are obtained and
adjoined.

The strongest response to the view of deduction as a non-informative process was
endeavoured by Hintikka [Hintikka 70b]: “there is, in addition to the scandal of induction, a
closely related and equally disquieting scandal of deduction (...) How does deductive reasoning add to
our knowledge (information)?”.

Once again, the answer must be associated to the notion of effort and the reality
of non-omniscient systems; deductions are frequently costly and their results are
therefore valuable, informative, novel and, in some cases, surprising.

In this way, G(x | y) also provides a uniform measure of the relative value of the
conclusions with respect to the premises, the gain of the computational effort which
has been invested in the process from the premises to the conclusions. More
precisely, if x is the conclusion and y is the premise, the two extreme cases are
illustrative:

• Minimum: G(x | y) = log l(x) / (l(x) + log(l(x)) ≈ 0. The conclusion is evident
from the premises. It is very easy to describe the conclusion from the premises.
Some examples which can produce this minimum are: a conclusion that adds
an easy tautology to the premises, a conclusion that just changes the order of
some logical components, a conclusion as a direct instance of a premise, or a
conclusion composed mostly of the premises and a few derived things.

• Maximum: G(x | y) = 1. The conclusion is surprising or even creative with
respect to the premises. The premises are finally useless (in time-space terms)
to describe the conclusion (Kt(x | y) = Kt(x)). It is necessary a great
computational work on the premises y to obtain the conclusion x or there is a
need for external information. In other words, the computational effort
invested justifies x to be retained. An example of this is a very difficult
theorem. For instance, Fermat’s theorem is much easier to describe per se that
by deriving it from many premises by using Wiles’ proof.

Most of deductions fall in between these two extreme cases. However, these extreme
instances give a hint of what G measures for deduction. It is interesting to compare
with the same analysis we made about the use of G for induction.

4. Information Gain and Inference Processes

99

99

The first case (G(x | y) ≈ 0) is somehow much clearer than the second case (G(x |
y) ≈ 1) as it is clearly illustrated by the following example from [Holland et al. 1989]:
“The fact that an inference is a valid deduction, however, is no guarantee that it is of the slightest
interest. For example, if we know that snow is white, we are free to apply a standard rule of
deductive inference to conclude that “either snow is white or lions wear argyle socks.” In most realistic
contexts such deductions will be as worthless as they are valid”. In fact, if we consider y = a
and x = a ∨ b, and b is much greater than a, the result of applying G is that G(x | y) ≅
1, which is quite counter-intuitive. There are, fortunately, at least two solutions for
this.

The first one is the use of the measure true information gain, seen in the previous
chapter, defined as TG(x | y) = (Kt(x | y) − K(x | y)) / Kt(x). Using G we would have
that there would be almost no difference between Kt(x | y) and K(x | y), and we would
have TG(x | y) ≅ 0. The second solution is the use of utility criteria like the one that
will be introduced in the next chapter. For this reason, in the following we will
consider G and not TG because we will suppose there are external restrictions (or
utility criteria) that avoid the inclusion of dummy information like “lions wear argyle
socks”.

It is also important to note that this phenomenon also happens in induction. For
instance, given the data “1,2,3,4,5,...”, a hypothesis “the natural numbers +
1342521515 − 1342521515” would be informative.

Exception made from the cases where dummy information is added, G recovers
the intuitive meaning of the word information for deduction, as when it is said that
logical and mathematical inference is valuable. In particular, we would like to clarify
different cases: given a theory and a proof sketch, how much valuable is the
theorem?. Or, given a theory and a theorem, how much valuable is the proof?.

Let us see how this measure particularises for these situations by using the
different deductive systems seen in the introduction. For instance, let us first
consider a computational deterministic deductive system φ as it was given by
Definition 4.15 as an oracle from theory x (and proof w) to theorem d (i.e. φ(<x,w>)=

d). The time used by the oracle is considered, we have the following results.

First, if we only have the theory x, the gains of obtaining a theorem d that is
effectively derivable from it are:

 Vφ(d | x) ≤ minw : φ(<x,w>= d) K(w) / K(d)

 Gφ(d | x) ≤ minw : φ(<x,w> = d) { Kt(w) + log Cost(φ(<x,w>)) } / Kt(d)

The gains are limited by the cost of obtaining the proof (K(w) and Kt(w) respectively)
and then using it to obtain d in the system φ, which in the last case, takes some time.
In both cases, it is selected the proof which minimises the whole cost. Since proofs
are always longer than the final result, these measures will usually be still high if the

100 José Hernández Orallo - Doctoral Dissertation

 100

derivation (i.e. the proof) is not given. In other words, these are upper limits,
sometimes w is not used because d is short.

In the case w is also given, we have that Vφ(d | <x,w>) = 0 as expected but Gφ(d |
<x,w>) = min (log Cost(φ(<x,w>)) / Kt(d), Gφ(d, x)) which can be still high if the
proof w takes a lot of time and there is no another much shorter proof. A high value
of G will then only happen for very intricate proofs and when the conclusion d is
very simple and it is more comfortable to quote d directly.

In contrast, a computational theorem prover φ, as we saw in Definition 4.16,
which outputs a proof w given a theory x and a effective theorem t, gives a Vφ(w |
<x,t>) = 0 and Gφ(w | <x, t>) is usually low if w is precisely the proof which is
generated by φ and it is efficiently obtained by φ. But if w is a different proof of the
canonical one generated by φ, and there are too many alternative proofs, Gφ(w | <x,
t>) can take practically any value between 0 and 1, because it is easier to quote the
proof. We will see later that, in a Horn logic program, the first SLD proof for a given
atom does not need any extra information. It is implicitly coded if given the program,
the deductive method and the selection criteria.

Finally, a computational accepter, given by Definition 4.17, which just outputs a
value a ∈ {0, 1} to say if t is a derivable theorem from x, then Vφ(a | <x, t>) = 0 if a
program for querying the oracle is shorter than quoting extensionally the answer and
Gφ(a | <x, t>) = 1 because to quote a single bit would be usually much more efficient
than to wait for the oracle. Although the use of gain for a computational accepter
does not make too much sense for a single atom, we can consider a classifier system,
where a ∈ { c1, c2, ... , cn }. In this case, Vφ(a | <x, t>) = 0 if n is great and Gφ(a | <x,
t>) would depend on the time cost of the oracle if n is great. In addition, the use of
information gain would be useful for computational accepters for checking whether a
set of atoms are true or false. The result is that a set of Boolean answers (a1, a2, ..., an),
which would usually larger to quote alone than if one has the theory and the
evidence.

Type of Deductive System V G

Ded. Inference System

• Without proof: Fφ(d | x) ≤ minw :

φ(<x,w>)=d K(w) /
K(d)

≤ minw : φ(<x,w>)= d { Kt(w) +
log Cost(φ(<x,w>)) } / Kt(d)

• With proof: Fφ(d | <x,w>) = 0 ≤ min (log Cost(φ(<x,w>)) /
Kt(d), Gφ(d, x))

Theorem prover: Fφ(w | <x,t>) = 0 quite variable

A Boolean Accepter: Fφ(a|<x, t>) = 0 1

4. Information Gain and Inference Processes

101

101

Classifier System: Fφ(a | <x, t>) = 0 for large n quite variable.

Figure 4.2. Different approximations for V and G for several deductive systems.

The difference between a theorem prover and an accepter highlights the two
components, descriptional and confirmative, of the idea of proof, and it also shows
that G only measures the former. There is an informative or descriptional
component, represented by G, which therefore is only present by obtaining the proof
trace w and not by obtaining only true and false. In this sense, it seems that accepters
are useless, because they do not provide information in G terms. But there is also the
confirmative component of a proof, at least so important as the informative
component, ignored by G, that is contemplated by theorem provers and accepters.
By regarding the informative component alone, which has been less studied than the
semantic or confirmative component, we are able to distinguish more definitely what
is a proof. More precisely, it is not the detailed relation of all the steps from the
axioms to the consequence, but only the information that is exclusively required
from the axioms to the consequence, under certain constraints (the description must
show how to perform valid and necessary combinations).

Regarding all the particularisations: derivational system (DS), theorem prover (TP)
and accepter (AC), we have tried to show that the information value of a result is
extremely dependent of the particular deductive process that is considered. In other
words, there is no descriptional information gain in some deductive processes where
the result is easily obtainable from the premises, although this provides a
confirmation.

4.5.1 Example: Information Gain for Logical Theories

Figure 4.2 summarises the results that can be obtained in general for several
deductive systems. These are rough approximations and, moreover, they are difficult
to compute. If we restrict the descriptional language we can be more precise and
obtain effective approximations for the preceding measures of gain. In particular,
logical theories allow the use of several metrics which have been introduced in the
literature for different purposes, and that can be adapted for much more concrete
and illustrative measurements of gain.

First order logic is undecidable in general, so the former limits only apply when
we know a priori that some theorem or derivation is effectively obtainable from the
theory. In this case, V is equal to 0 (except in the case where the proof is required),
and G depends on the computational cost of the derivations.

Herbrand theories are a subset of first order logic theories that are semidecidable,
resolution is a complete and correct method for them, all this automatisable in any
Prolog interpreter. By default, a Prolog interpreter acts as an Accepter, but it can
easily be adapted to work as a Deductive System or a Theorem Prover.

102 José Hernández Orallo - Doctoral Dissertation

 102

In order to apply G to logic theories we must find an approximation for K(T),
with T being a logical theory or logic program. The most common and easy solution
is to code a logic program as if it were to be transmitted, and K(T) is computed as
H(T), the entropy of T. Moreover, in order to express how much information is
required to describe a concrete proof of a given evidence with respect to a theory, we
will require as well the space complexity of a proof. Finally, it will also be necessary
to define the computational cost of a given derivation.

Let us define several approximations for these measures before using them in
particular definitions of V and G for logic programs.

4.5.1.1 The Space Complexity of a Theory: L(T)

Imagine the problem of transmitting a logic program. If we assume that the peer
does not know the Herbrand Universe and this is finite, we should also transmit it.
Since the names of the predicates, constants and variables are not relevant for the
theory, it is only necessary to transmit their number. In this way, the length of a logic
program is defined as in [Conklin and Witten 1994]:

Definition 4.27 Space Complexity of a Herbrand Theory

[Conklin and Witten 1994]

L(P) = log(v+1) + 1+ l (log p + 1) + ∑l∈P size(l)

v being the number of different variables used in the program, p the number of
different predicates and l the number of literals. The size of a literal is defined as:

size(l) = a log (v + c)

a being the arity of the predicate and c the number of constants in the Herbrand
Universe of the program.

The term log(v+1) serves for determining how many variables are in order to
differentiate constants from variables, because they are codified together in size(l).
The term l(log p + 1) specifies which predicate is used in each literal plus an extra bit
to say whether it is the last literal of a rule.

This measure does not cover the case of logic programs with function symbols,
but this could be solved by using flattening techniques before calculating L(P) 23.

For instance, the following program P1:

{ p(X,a,c).

 g(Z,b) :- h(a), p(W,Z,c).

 h(Y).

23 Another option L’(P) could be size(l) = ∑i=1..a size(argi) and size(arg) = log (v+c) + 1 if it is a variable
or a constant) or size(arg) = log (f) + 1 + ∑i=1..a size(argi) if it is a function.

4. Information Gain and Inference Processes

103

103

 h(Z,a). }

has 2 variables (after renaming, the second rule is the only one with 2 variables), 3
constants (a,b,c), 4 predicates (p/3, g/2, h/1, h/2), 4 rules and 6 literals.
Consequently,

L(P1) = log(2+1) + 1 + 6 (log 4 + 1) + 3 log (5) + 2 log (5) + log (5) + 3 log (5) + log (5)
+ 2 log (5) = log(3) + 19 + 12 log (5) = 48.4 bits.

The expression of L(P) can be simplified into L(P) = log(v+1) + 1 + l (log p + 1) +
at log (v + c) with at being the total number of arguments in all the literals.

4.5.1.2 The Space Complexity of a Proof of a given evidence:
PC(W<T,E>)

It is easy to describe a proof for a given theory and evidence in logic programs. The
measure is called the proof complexity for logic programs and it was introduced by
[Muggleton et al. 1988], for a very different purpose: defining an inductive evaluation
criterion. Although we will get back later on this original use, let us describe this
measure right now.

The proof complexity measure was originally denoted PC(E|T) [Muggleton et al.
1988] [Muggleton et al. 1992] and is also known as derivational complexity [Feldman
1972] for context-free grammars. It is defined in the following way:

Definition 4.28 Proof Complexity

[Muggleton et al. 1988, Muggleton et al. 1992]

Given a theory T, let :- G1, …, Gn be the current goal and the root of a success
branch in the SLD-tree. In this moment k rules can be selected where G1
(assuming leftmost computation rules) unifies with the rule head. So, it will
require log k bits to select the rule and the proper substitution, and requiring log
(c+v) for the substitutions supposing function-free programs ([Conklin and Witten
1994] do not take into account the substitution between variables, either) for
every variable in a non-generative rule, that is, a rule where the head contains one
or more variables not occurring in the rule body. Let us call PC(w|<T,a>) the
information which is required in this way to code the proof w of an atom. So:

PC(w|<T,E>) = ∑a∈E PC(w|<T,a>)

However, if the evidence is given, then to code the proof does not require to quote
the substitutions, because SLD finds them by mgu, and the information depends
only to select the leaves that give to different proofs. This means that the
information required is equal to 0 if there is only one possible proof. We will denote
with PC(w|<T, a>) the information to select a concrete proof w.

104 José Hernández Orallo - Doctoral Dissertation

 104

For instance, we want to describe p(a,b,b), p(a,c,d), p(b,d,e) and we have the
program

 P = { r1 ≡ p(a,Y,X) :- r(Y), q(Y).

 r2 ≡ p(Y,b, X) :- q(X).

 r3 ≡ p(b,X,Y).

 r4 ≡ r(b).

 r5 ≡ r(X).

 r6 ≡ r(e).

 r7 ≡ r(g).

 r8 ≡ q(b).

 r9 ≡ q(d). }

In this case we have:

PC((r1, r4, r8) | <P, p(a,b,b)>) = log 2 + log 2 = 2.

PC((r1, r4, r8) | <P, p(a,b,d)>) = log 2 + log 2 = 2.

PC((r1, r4, r8) | <P, p(a,b,c)>) = log 2 + log 2 = 2.

PC((r2, r9) | <P, p(a,b,d)>) = log 2 = 1.

PC((r3) | <P, p(b,d,e)>) = 0.

PC((r2, r9) | <P, p(c,b,d)>) = 0.

In fact, if we determine the search strategy (top-down), we must only say which of all
the possible proofs is, and in this case:

PC’((r1, r4, r8) | <P, p(a,b,b)>) = log 3 = 1.58.

PC’((r1, r4, r8) | <P, p(a,b,d)>) = log 3 = 1.58.

PC((r1, r4, r8) | <P, p(a,b,c)>) = log 2 = 1.

PC’((r2, r9) | <P, p(a,b,d)>) = log 3 = 1.58.

PC’((r3) | <P, p(b,d,e)>) = 0.

PC’((r2, r9) | <P, p(c,b,d)>) = 0.

This usually gives lower values for PC’ than PC, in general. On the contrary, if we do
not determine a priori the selection rule, nor the search strategy, the information
would be greater, in general.

4.5.1.3 The Proof-Relative Space Complexity of an Evidence: LPC(ET)

Imagine that we want to reckon the information which is required to select a subset
of the consequences of a logic program, for instance, we want to describe p(a,b,b),
p(a,c,d), p(b,d,e) and we have the program

4. Information Gain and Inference Processes

105

105

 P = { r1 ≡ p(a,Y,X) :- r(Y), q(Y).

 r2 ≡ r(b).

 r3 ≡ p(b,X,Y).

 r4 ≡ r(c).

 r5 ≡ r(d).

 r6 ≡ r(e).

 r7 ≡ r(g).

 r8 ≡ q(b).

 r9 ≡ q(d). }

Before, we have modified Definition 4.28 because the substitutions were not
necessary. Now they are necessary, but in this case we also require to modify
Definition 4.28 slightly because we must select which predicate opens the search tree.

Definition 4.29 Proof-Relative Space Complexity of an Evidence: LPC(ET)

Given a theory T, and a fact or atom a, we select the predicate from all the
possible predicates (only the predicates appearing in the heads are reckoned), which
takes log p bits. Then we construct a term G with new fresh variables for each
argument of the predicate and we generate a goal :- G.

Now let :- G1, …, Gn be the current goal and the root of a success branch in the
SLD-tree. In this moment we can select k rules where G1 (assuming leftmost
computation rules) unifies with the rule head. Thus, log k bits will be required to
select the rule and the proper substitution, and log (c+v) bits for the substitutions
(supposing function-free programs) for every variable in a non-generative rule, that
is, a rule where the head contains one or more variable not occurring in the rule
body. There is no extra bit to code which of these non-generative variables, because
they all will be given a substitution and they will be coded in the same order as they
appear in the head of the rule. However, log (c+v) bits are required because there can
be facts which contain variables and substitutions such as W/X (as coding p(X, X, a)
from p(W,Y,Z)). However this v varies from rule to rule being exactly equal to the
number of non-generative variables of the rule.

 Let us call LPC(a|T) the information which is required in this way to code an atom
from a given program T. Hence,

LPC(E|T) = ∑a∈E (LPC(a|T) + 1)

In the previous example we had 6 constants and a non-generative variable in the first
rule and two non-generative variables in the third rule, then:

If only non-generative (in order) are generated and there are no function symbols we
have:

106 José Hernández Orallo - Doctoral Dissertation

 106

LPC(p(a, b, b) | P) = log 3 + log 2 + log 7 + log 5 = 7.72 bits.

If we consider functions we would need log c + 1 if the substitution is for a constant
and log f + sum(argi) +1 if it is a function term.

LPC(p(a, b, b) | P) = log 3 + log 2 + log 7 + 1 + log 5 = 8.72.

In this case, compare with L(p(a, b, b)) = log 3 + 3� (log 6 + 1) = 12.35, i.e. quoting
p(a, b, b) without the program.

4.5.1.4 The Model Complexity of an Evidence: LMC(ET)

The preceding measure is convenient for single atoms or when the size of the
evidence is small. However, when E is large, it is usual that LPC(E|T) will be even
higher that L(E). Consider for instance:

the theory P1 = { p(a), p(b), q(X):-p(X), p(f) } and

the evidence E1 = { p(a), p(b), q(a), q(b) }.

It would be more appropriate to code K(E1| P1) as “M(P1) except p(f), q(f)” being M
the Herbrand Model of P1. Now imagine that E2 = { p(a), p(b) }. It would be better
in this case to code K(E2| P2) as “{ p(a), p(b) }”. This leads to the Model Complexity
measure [Conklin and Witten 1994]:

LMC(E|T) = 1 + min (L(M(T) − L(E)), L(E))

which measures the best of the two ways. The first bit is to distinguish which option
has been selected. With another additional bit, this could also be combined with LPC
into a new measure LMC,PC.

4.5.1.5 The Time-Complexity Measure: Cost(ET)

The complexity of logic programs was first studied by [Shapiro 1984]. One of the
measures that we introduced is the time-complexity measure Cost(E | T)

The cost of checking a single goal Cost(G | T) against a logic program can be
measured as the number of rules that have been essayed by SLD-refutation, using the
standard Prolog leftmost computation rule (i.e., the number of successful or failed
unifications) without counting backtracking. This is equivalent to the number of
leaves that are traversed by SLD.

Let us consider the following example to illustrate this measure:

P = { member(X, [X|Y]).

 member(X, [Y|Z]) :- member(X, Z). }

From here we have:

cost(member(a, [c,d,e,a,b,c]) | P) = 7

4. Information Gain and Inference Processes

107

107

This cost is a rough approximation, since it is computed independently to the cost of
the mgu, which depends on the size of the goal. Moreover, the use of proper
compilations or implementations (see [Clark 1991]) can make this measure very
variable because some comparisons can be avoided in some cases, even more if
partial evaluation techniques are employed. For other important topics about the
computational complexity of logic programs see [Shapiro 1984].

Without forgetting these limitations, we can give a measure of the computational
cost of a finite set of facts:

Cost(ET) = ∑G ∈ E Cost (GT).

For the preceding example, being E = { member(a, [c,d,c]), member(a, []),
member(a, [c,d,e,a,b,c]) }

Cost(ET) = 6 + 2 + 7 = 15

Note that this can be computed with mixed facts (positive or negative evidence).

A slight problem of this approach is that if we are given an infinite evidence (i.e.
E is given intensionally and not extensionally) we will not be able to compute
Cost(ET). The solution can be found by using an arbitrary distribution to extract a
finite set from it, and then compute an average cost.

However, in the following, we will also be interested in the computational cost if
the proof is also given. In this case, let us denote with Cost(G | <T, w>) the
computational cost of following the proof w of G, and it is measured in the same way
as Cost(G | P) but not reckoning the failed branches, just the successful way. This
gives the following result for the previous example:

Cost(member(a, [c,d,e,a,b,c]) | <P, (r2, r2, r2, r1)>) = 4

The measure can be generalised for a set of goals as Cost(E | <T, W>), where W is a
set of proofs. In this case, only positive evidence is possible, because negative ones
do not have a proof.

4.5.1.6 Derived Information Measures for First-Order Logical Theories

We have just introduced L(E), LPC(W | <T,E>), LPC(E | T), LMC(E | T), Cost(E | T),
Cost(E|<T,W>) and, finally, it would be easy to see that L(E|<T,W>)=0. By using all
these measures we are able to approximate V(�|�) in different ways for different kinds
of first-order logical systems. The G(� | �) version, however, requires a weighing
between space and time, and a proper selection of a L measure with a Cost measure.

For instance, in the case of LPC(a | P), it gives the minimal information for
selecting a concrete proof of a in P. But this measure does not obtain the whole
proof. This does not include the information for selecting from different predicates
when only one of them is valid, and extra computation is required to show that one

108 José Hernández Orallo - Doctoral Dissertation

 108

of the others fails. For instance, the program P = { p(X,Y) :- t(X,Y). p(a,b) :- q(a,X).
q(a,X) :- r(a,X). r(X,Y) :- s(X,Y). s(X,Y). }, makes that LPC(p(a,b)|P) = log 4 = 2. The
first rule does not affect the measure although there is the computational cost for the
negative branches. So, log Cost(E|T) will be used instead of Cost(E | <T, W>), giving
a proper LT(E|T) ≤ L(E|T) + log Cost(E|T).

With these considerations, let us give first the measures of gain for deductive first-
order systems:

 V(E|T) ≤ L(E|T) / L(E)

 G(E|T) ≤ { L(E|T) + log Cost(E|T) } / (L(E) + log CostPrint(E))

Note that for L(E|T), both LPC and LMC can be used.

If the proof w is also given, we have:

 V(E|<T, W>) = 0

 G (E|<T, W>) ≤ log Cost(E | <T, W>) / (L(E) + log CostPrint(E))

In the case of a first-order theorem prover the results are slightly different. If W is
composed exclusively of the first or canonical proofs (Wc) that the theorem prover
generates for each fact we have that:

 V(Wc|<T, E>) = 0

 G (Wc|<T, E>) ≤ log Cost(E|T) / (L(Wc) + log CostPrint(Wc))

and for any other proof:

 V(W|<T, E>) ≤ LPC(W|<T,E>) / (L(W)

 G(W|<T, E>) ≤ { LPC(W|<T,E>) + log Cost(E | <T, W>) } / (L(W) + log
CostPrint(W))

And, finally if we have an accepter, then to know if a set of evidences E are true or
false, we have:

 V(<a1, a2, ..., an) |<T, E>) = 0

 G(<a1, a2, ..., an) |<T, E>) ≤ log Cost(E|T) / (n + log n)

The following table summarises these results:

4. Information Gain and Inference Processes

109

109

Type of First-Order Deductive System V G

Ded. Inference System

• Without proof: Fφ(E | T) ≤ L(E|T)/L(E) ≤ {L(E|T)+log Cost(E|T)}
/ (L(E)+log CostPrint(E))

• With proof: Fφ(E | <T, W>) = 0 ≤ log Cost(E | <T, W>) /
(L(E) + log CostPrint(E))

Theorem Prover

• Canonical proof: Fφ(Wc| <T, E>) = 0 ≤ log Cost(E|T) / (L(Wc) +
log CostPrint(Wc))

• Other Proof: Fφ(W | <T, E>) ≤ LPC(W|<T,E>)
/ L(W)

≤ { LPC(W|<T,E>) + log
Cost(E | <T, W>) } /
(L(W) + log CostPrint(W))

A Boolean Accepter: Fφ(a | <T, E>) = 0 ≤ log Cost(E|T) /(n+log n)

Figure 4.3. Different approximations for V and G for several first-order systems.

4.5.1.7 Example

Let us see all these measures in an example:

P = { r1 ≡ father(john, michael)

 r2 ≡ father(john, henry)

 r3 ≡ father(john, steve).

 r4 ≡ father(steve, susan).

 r5 ≡ male(john).

 r6 ≡ mother(ann, susan).

 r7 ≡ parent(X,Y) :- father(X,Y).

 r8 ≡ parent(X,Y) :- mother(X,Y).

 r9 ≡ grandfather(X,Y) :- father(X,Z), parent(Z,Y).

 r10 ≡ sibling(X,Y) :- parent(Z,X), parent(Z,Y). }

P has 3 variables , 6 predicates, 16 literals, 7 constants, which gives L(P) = log(3 + 1)
+ 1 + 16 (log 6 + 1) + 31 � log 10 = 163.3 bits.

Given the following evidences:

E1 = { father(steve,susan) } with L(E1) = log(4)+1+1 (log 6 + 1) + 2�log 10 =
13.2 bits

E2 = { granfather(john,susan) } with L(E2) = 13.2 bits

E3 = { sibling(steve,michael) } with L(E3) = 13.2 bits

110 José Hernández Orallo - Doctoral Dissertation

 110

E4 = { granfather(john,susan). sibling(steve,michael) } with L(E4) = log(4) +1+
2 (log 6 + 1) + 4�log 10 = 23.5 bits

E5 = { father(steve,susan). granfather(john,susan). sibling(steve,michael). } with
L(E5) = log(4) +1+ 3 (log 6 + 1) + 6�log 10 = 33.7 bits

E6 = M(P) = { father(john, steve). father(steve, susan). male(john). father(john,
michael). father(john, henry). mother(ann, susan). parent(john, steve).
parent(steve, susan). parent(john, michael). parent(ann, susan).
granfather(john,susan). sibling(steve,michael). sibling(steve,henry).
sibling(michael,steve). sibling(henry,steve). sibling(michael,henry).
sibling(henry,michael). sibling(steve,steve). sibling(michael,michael).
sibling(henry,henry). . sibling(susan,susan).} with L(E6) = log(4) + 1 + 22
(log 6 + 1) + 40�log 10 + 1�log 10 = 214.5 bits

And ignoring the cost of printing, we have for the first measures (without proof),

V(E1|P) ≤ LPC(E1|P) / L(E1) = (log 6 + log 4) / 13.2 =4.6 / 13.2 = 0.35

G (E1|P) ≤ { LPC(E1|P) + log Cost(E1|P) } / L(E1) = (4.6 + log 1) / 13.2 = 0.35

V(E5|P) ≤ LPC(E5|P) / L(E5) = (log 6 + log 4 + 1 + log 6 + log 1 + 1 + log 6 +
log 1 + log 2 + log 2 + log 4 + log 4 + 1) / 33.7 = 18.8 / 33.7 = 0.56

G (E5|P) ≤ { LPC(E5|P) + log Cost(E5|P) } / L(E5) = (18.8 + log (1 + 19 + 5)) /
33.7 = 0.70

In the last case, the effect of the 16 failed unifications of “granfather(john,susan)”,
supposing top-down search strategy, affect more sensitively to the difference
between V and G.

When the evidence increases in number of facts, we see that the gain tends
towards a significant value of gain (usually > 0.5), which depends highly on the
number of rules with the same predicate in the head.

V(E6|P) ≤ LPC(E6|P) / L(E6) = (4 � (log 6 + log 4 + 1) + 2 � (log 6 + 1) + (log 6
+ log 1 + 1) + 4 � (log 6 + log 2 + log 4 + 1) + 10 � (log 6 + log 1 + log 2
+ log 2 + log 4 + log 4 + 1)) / 214.5 = 155.3 / 214.5 = 0.72

G (E6|P) ≤ { LPC(E6|P) + log Cost(E6|P) } / L(E6) = (155.3 + log (6 � 1 + 4 � 2 +
19 + 10 � 5)) / 214.5 = 161.7 / 214.5 =0.75

For large evidences, though, it could be more efficient to code using LMC.

V(E6|P) ≤ LMC(E6|P) / L(E6) = 1 / 214.5 = 0.01

G (E6|P) ≤ { LMC(E6|P) + log Cost(E6|P) } / L(E5) = (1 + log (6 � 1 + 4 � 2 + 19 + 10
� 5)) / 214.5 = 7.4 / 214.5 = 0.03

This suggests the use of a combined LMC,PC which will give low gains with evidences
which have most of the facts from M(T) (almost all the theory) or with few facts
which are derivable from a very instanced rules in the theory (exceptions).

4. Information Gain and Inference Processes

111

111

If the proofs are provided, the gains get down significantly, V(E|<T, W>) is
always 0 as we have seen, and G is only slightly greater than 0 when the proof is
difficult:

G(E1|<P,W>) = 0

G(E5|<P,W>) ≤ log Cost(E5|<P,W>) / L(E5) = log (1 + 4 + 5) / 33.7 = 0.10

G(E6|<P,W>) ≤ log Cost(E6|<P,W>) / L(E6) = log (6 � 1 + 4 � 2 + 4 + 10 � 5) /
214.5 = 6.1 / 214.5 = 0.03

Once seen the gains of obtaining consequences of a logic theory we can see that the
gain of obtaining a proof (the first proof) is equal to 0 for V(Wc|<T, E>) and

G (W1|<P, E1>) ≤ log Cost(E1|P) / L(W1) = log 1 / (log 6 + log 4) = 0

G (W5|<P, E5>) ≤ log Cost(E5|P) / L(W5) = log (1 + 19 + 5) / (log 6 + log 4 +
1 + log 6 + log 1 + 1 + log 6 + log 1 + log 2 + log 2 + log 4 + log 4 + 1)
= 4.6 / 13.8 = 0.33

G (W6|<P, E6>) ≤ log Cost(E6|P) / L(W6) = log (6 � 1 + 4 � 2 + 19 + 10 � 5) / (4
� (log 6 + log 4 + 1) + 2 � (log 6 + 1) + (log 6 + log 1 + 1) + 4 � (log 6 +
log 2 + log 4 + 1) + 10 � (log 6 + log 1 + log 2 + log 2 + log 4 + log 4 +
1)) = 6.4 / 155.3 = 0.04

The only result with a high value is G (W5|<P, E5>) which is again due to failed
unifications.

Finally if we have an accepter then to know if a set of evidences E are true or
false, we have that V(<a1, a2, ..., an) |<T, E>) = 0 but

G (W1|<P, E1>) ≤ log Cost(E1|P) / card(W1) = log 1 / (1 + log 1) = 0

G (W5|<P, E5>) ≤ log Cost(E5|P) / card(W5) = log (1 + 19 + 5) / (3 + log 3) =
4.6 / 4.6 = 1

G (W6|<P, E6>) ≤ log Cost(E6|P) / card(W6) = log (6 � 1 + 4 � 2 + 19 + 10 � 5) /
(21 + log 21) = 6.4 / 25.4 = 0.25

It is in these accepter systems when G is more useful. For instance, it is not worthy
to memorise the result of the truth value of E1 and E6 because they can more easily
be recovered than quoted. However, W5 is useful to recall for E5, i.e., it is better to
memorise that “granfather(john,susan)” is true than to obtain it from the rules each
time is required.

4.6 Hintikka’s Surface and Depth Information

As we said before, the first response to the view of deduction as a non-informative
process was endeavoured by Hintikka. While depth information is constant in a

112 José Hernández Orallo - Doctoral Dissertation

 112

deductive system, surface information can change. [Hintikka 70b] intended to
discern some properties that are found in deductive systems and to explain the
intuitive idea that logical truths do provide information.

To distinguish ‘cash’ information from ‘accessible’ or ‘potential’ information, he
developed a new theory of semantic information based on the probability of constituents
in First Order Logic. Therein he formalised the notions of depth and surface
information. The theory is difficult to use and has an important drawback, the
probabilities depend on the number of individuals taken into account.

Descriptional (or Kolmogorov) complexity allows the formalisation of Hintikka's
claims independently of the world of individuals and independently of the
descriptional language used (Hintikka’s approach was restricted to first-order
theories). Moreover, G(·|·) is based on the computable variant of Kolmogorov
Complexity, hence it is computable, and it takes into account time, clearly
differentiating what is currently or easily available from intricate information that
requires a lot of computational effort.

Nonetheless, the idea which is represented by G(·|·), that any effort of
transformation must be converted in an information gain, was already formulated by
him: “There cannot be any objective obstacles to seeing the conclusions right there in the premises, for
if there were, their removal would constitute an objective gain in information. In fact, the bluntest
and frankest of the philosophers taking this line, Ernst Mach, explicitly assented to this conclusion”
[Hintikka 1970b].

G(·|·) can be used in a similar way as Hintikka’s notion of surface information, to
recover the intuitive meaning of the word information, as when it is said that logical
and mathematical inference is valuable, mathematicians can be creative, original and
their results are worthy, as Hintikka also asserted24.

In the examples of logic programs, we have seen the difference between having
the theory in an intensional way and having the evidence expressed in atoms. In
many cases there is a gain between the intensional form and the extensional form,
because there is an effort. The same rationale was used by Hintikka from
constituents to atomic statements.

In our case, depth information is the result of considering the omniscience and
infinite resources of the deductive system, i.e. using V(x|y) instead of G(x|y). This
matches with the undecidability of depth information [Hintikka 1970b] since V is
not effective. In fact, Hintikka shows that depth information is the limit of surface
information, and we can easily establish a corresponding theorem between V and G.

24 Moreover, there is nothing subjective or psychological in this notion of surface information, nor
therefore in the measures of the additional information which a logical argument gives us.

4. Information Gain and Inference Processes

113

113

Consider the notation speedup(φa, φb) = n to denote that φa is n times faster than φb,
i.e., for each step that φb performs, φa performs at least n in the same time, or,
alternatively, that φa makes in 1 step more than n operations of φb.

Theorem 4.14 Select any universal machine φ, and define Gn in a machine φn such
that speedup(φn, φ) = n and that for any effective program p we have that φn(p)=φ(p).
Then for any pair of finite concepts x,y then lim n→∞Gn(x | y) = Vφ(x | y).
PROOF. The proof is direct from the definitions of G and V. For any pair of finite
concepts x and y we have that lim n→∞ Gφn(x | y) = lim n→∞ (Ktφn(x | y) / Ktφn(x)) =
lim n→∞Ktφn(x | y) / lim n→∞ Ktn(x) = lim n→∞ (min (LTφn(p): φn(<p, y>)= x)) / limn→∞

(min (LTφn(p): φn(<p, y>)= x)). Since for any effective program p, LTφn(p) = l(p) +
log Costφn(p) and φn(p)=φ(p), we have that for all p limn→∞ LTφn(p) = l(p) + log lim

n→∞ (max(Costφ(p) / n, 1)) since φn must perform at least one operation. This gives
lim n→∞ LTφn(p) = l(p) which leads to lim n→∞ (min (LTφn(p) : φn(<p, y>)= x)) / lim

n→∞ (min (LTφn(p) : φn(<p, y>)= x)) = min (l(p) : φ(<p, y>)= x) / min (l(p) : φ(<p,
y>)= x) = Kφ(x | y) / Kφ(x) = Vφ(x | y). �

The distinction between depth and surface information was motivated by the
resolute thought that deductive systems are resource-limited and not omniscient (or
in Hintikka’s words, logical inference is not tautological [Hintikka 1970b]). In this
sense, deduction is a much valuable (and informative) process.

Although the approach is qualitative different from Hintikka’s, his motivations
and results have a strong parallelism with the theory that is presented in this work,
especially in this chapter. In addition, Hintikka (and some of his colleagues) also
addressed his theory to account for different phenomena in inductive probability, the
problem of meaning, mathematical arguments, Frege’s distinction between trivial and
non-trivial definitions and many other topics directly or indirectly related with the
distinction between implicitness and explicitness. Many of these topics are also
addressed in this thesis.

4.7 Axiomatic Systems Optimisation

In the case of deterministic systems, where φ(T) = E, and E is finite, we can consider
the optimal T as the shortest one (i.e. l(T) = K(E)), the best one according to LT (i.e.
LT(T) = Kt(E)) or, as usual in computer science, the fastest one (in this case T =
“print E”). If E is infinite, we have that the shortest theory is still represented by
K(E) but in this case the best one according to LT and the fastest one match, and
must be obtained in the following way: if E is infinite we have that Kt(E) = min {
LT(T) : φ(E) = T } = min { l(T) + Cost(T) : φ(T) = E } = ∞.

114 José Hernández Orallo - Doctoral Dissertation

 114

In other words, it seems that time cannot be used for infinite evidences. There is a
way out for this. We could still obtain the best program according to LT: opt LT(E) =
{ x : ∃c ∀n ≥ c, Kt(E1..n)= x(n) } where E1..n represents the first n bits of E and x(n)
represents the same program x but limiting its output to size n. Note that this is not
possible to do for any program x, so the result of opt LT(E) is a program that outputs
one by one, without going back or modifying what has been output so far. Since E is
infinite, it is straightforward to see that the size of T can be ignored, since there exists
an n such that Cost(T(n)) would be greater, and we have that optT(E) = optLT(E).

However, for finite evidence (or due to practicality), it is necessary to find a
compromise between the size of the theory and its computational complexity. As we
commented in chapter 2, this was profoundly studied by Chaitin, who established the
correspondence of Gödel incompleteness results in terms of descriptional complexity
[Chaitin 1982]. The more powerful a system is the more blatant the dilemma is: “any
formal system in which it is possible to determine each string of complexity less than n has either (...)
few bits of axioms and needs incredibly long proofs, or it has short proofs but an incredibly great
number of bits of axioms. (...)This is analogous to the dilemma of a scientist who must choose
between directly publishing his observations, or publishing a theory that explains them, but requires
very extended calculations in order to do this.” [Chaitin 1974]

Nonetheless, the parallel is more figurative with mathematical practice: “One does
not really want the most compact axiom for deducing a given set of assertions. Just as there is a
trade-off between the number of bits of axioms one assumes and the size of proofs. Of course, random
or irreducible truths cannot be compressed into axioms shorter than themselves. If, however, a set of
assertions is not algorithmically independent, then it takes fewer bits of axioms to deduce them all
than the sum of the number of bits of axioms it takes to deduce them separately, and this is desirable
as long as the proofs do not get too long. This suggests a pragmatic attitude toward mathematical
truth, somewhat more like that of physicists.” [Chaitin 1982].

In general, though, we are not presented against deterministic deduction, such as
φ(x) = y, where there is only a consequence for a given description, but an axiomatic
theory, where we have to select the best theory with respect to a set, maybe infinite,
of consequences. This generates a more complex problem. Let us see it first with
single evidence and then with multiple evidence.

4.7.1 Single Evidence Representational Optimality

We can use the notions of representation simplification and representation
optimisation introduced in the previous chapter to show that this trade-off can be
made in practice.

Consider the following equational theory T for addition. Its shortest
representation is:

 X + s(Y) = s(X + Y)

 X + 0 = X

4. Information Gain and Inference Processes

115

115

where the rules are oriented left to right. We could derive similar measures for
equational programs than the ones that we had for logical programs. However, in
this case, the information gain should be measured from any term to its normal form,
acting as a theorem prover or deductive inference system but not as an accepter. For
instance, if we have that s0 + s(s0 + ss0) = sssss0 then G(sssss0 | <T, s0 + s(s0 +
ss0)>) is low, showing that the program and the left hand side of the equation is
useful for obtaining the right hand side.

By using the definition of derivational simplification, we have that, e.g., s(sss0 +
s0) and s0 + s(s0 + ss0) are alternative representations for sssss0, because both can
be derived into sssss0 and both are more complex than sssss0 (since G(sssss0 | <T,
s(sss0 + s0)>) < G(s(sss0 + s0) | <T, sssss0>) and G(sssss0 | <T, s0 + s(s0 + ss0)>)
< G(s0 + s(s0 + ss0) | <T, sssss0>).

Note that for the previous theory it is not strange to consider x3 = ssss...45
times...sss0 the best representation for 45d, because addition (alone) does not
provide any representational advantage.

Let us extend the previous theory with the equations of product:

 0 × X = 0

 sX × Y = X × Y + Y

This new theory (let us denote it by T’) has now 4 function symbols (0, s, +, ×).
Consider these three terms:

x1 = ((((s0 × ss0 + 0) × ss0 + s0) × ss0 + s0) × ss0 + 0) × ss0 + (s0),

x2 = s0 + ss0 × (0 + ss0 × (s0 + ss0 × (s0 + ss0 × (0 + ss0 + s0)))), and

x3 = ssss...45 times...sss0 both equal to 45d with respect to to T’.

We can obtain their optimalities:

 LT(x1 | T’) = 35 � (log 4) + log Cost(x1 | T’) = 70 + log 1340 = 80.4

 LT(x2 | T’) = 35 � (log 4) + log Cost(x1 | T’) = 70 + log 324 = 78.3

 LT(x3 | T’) = 46 � (log 4) = 92

The best representation is x2, and x3 turns out to be the worst, which agrees with the
usual representation of numbers in most developed cultures [Ifrah 1994]. And this
holds as T’ is not only better than T for representing the natural number 45 but the
complete set of natural numbers and other arithmetical evidence.

Finally, as we saw in the preceding chapter, we can compute the representation
enhancements between these representations. For this, we must only find Kt(y),
where y is the absolutely best representation, which in this case can be a
simplification of x2, more concretely y= s0 + ss0 × (ss0 × (s0 + ss0 × (s0 + ss0 ×
(sss0)))) with LT(x’2) = 29 � (log 4) + log 240= 65.9.

116 José Hernández Orallo - Doctoral Dissertation

 116

Then, the representation enhancements with respect to y are RE(x2,x1) = (LT(x1)
− LT(x2)) / Kt(y) = 0.03, RE(x2,x3) = (LT(x3) − LT(x2)) / Kt(y) = 0.20 and RE(x1,x3)
= (LT(x3) − LT(x1)) / Kt(y) = 0.18, and RE(y,x1) = (LT(x1) − LT(y)) / Kt(y) = (80.4 −
65.9) / 65.9 = 0.22.

4.7.2 Theory Optimisation for Multiple Evidence

We have seen the optimality of a single representation. Let us begin to explore if this
notion can be extended to a set of consequences or evidence E.

Given an evidence E, we are concerned with finding a theory T, such that E is
covered optimally by T. Since E is a set, we can weigh each element of E in some
other way than uniformly (we will get on this problem in chapter 6). Moreover, we
must select once again the criterion of optimality. Finally, we must distinguish
between a deductive system (DS), a theorem prover (TP) and an accepter (AC), or, in
other words, the theory should behave reasonably well for obtaining deductive
inferences, obtaining proofs or obtaining the truth value of formulae, respectively.

If we parameterise the optimality criteria (or the effort criteria), and we want a
uniform measure for all the evidence, we can measure the optimality of T with
respect to E as:

optDS(T| E) = argminT(Σe∈E Effort(e|T)).

optTP(T| E) = argminT(Σe∈E Effort(w|<T,e>)).

optAC(T| E) = argminT(Σe∈E Effort(a|<T,e>)).

for deductive systems, theorem provers and accepters, respectively. Or maybe we
want to measure the best theory for these three purposes:

opt(T| E) = argminT(Σe∈E α�Effort(e|T) + β�Effort(w|<T,e>) + γ�Effort(a|<T,e>)).

As we said before, if the evidence is infinite, a finite sample should be randomly
extracted from it in order to be able to compute the previous measures.

The question is now centred in selecting the criterion. As we saw, G and V are
measures of effort, and, in the cases of LT and L, the goal would be to minimise G
and V respectively. However, LT and L are not the only measurements of effort.
For instance, if the criterion is efficiency of inference, the best theory for deductive
inference is given by optDS(T| E) = argminT(Σe∈E Cost(e|T)). It is important to note that
even in this case of unlimited memory, the best system for E usually is not E itself
(apart from the case where E is infinite because an extensional description does not
exist). For instance, given the evidence “p(2), p(4), p(6),...., p(100000),” it is better to
have “p(X) : - even(X), X < 100000” than to search among the 100000 elements,
having a cost of about 100000/2 = 50000 mean time access.

4. Information Gain and Inference Processes

117

117

On the contrary, if the criterion is the size of describing the evidence we have that
optDS(T| E) = argminT(Σe∈E L(e|T)). For a logical program we could use optDS(T| E) =
argminT(LPC(E|T)) or argminT(LMC(E|T)) instead.

Most of these variants have a direct utility for different situations:
• The first measure, optDS(T| E) = argminT(Σe∈E Cost(e|T)) is applicable to solvers

and programs, because the necessary w can be seen as the input and e as the
output, and it is required that his process would be efficient. However, the
length of the theory should also be reduced, thus a reasonable L(T) must be
maintained. This dilemma is habitual when using partial evaluation [Alpuente
et al. 1998] and transformation techniques [Pettorossi and Proietti 1996b],
where specialised theories, which exhibit low computational cost to some part
of their consequences, may be quite large.

• If we measure the descriptional complexity, i.e., optDS(T| E) = argminT(Σe∈E

L(e|T)) , it is applicable to Conceptual Theories or Scientific Models, where the
evidence should be described with the help of the theory. In order to avoid
very complex theories, it would be better to use optDS(T| E) = argminT(Σe∈E

LT(e|T)) instead. This extends the previous notion of representation
simplification to that of theory simplification from T to T’, if Σe∈E LT(e|T’) is
less than Σe∈E LT(e|T).

• If we measure the cost of obtaining proofs, i.e., optPS(T| E) = argminT(Σe∈E

Cost(w|<T,e>)) we can apply it especially to Automated Theorem Provers
(ATP) where different benchmarks for set of characteristic proofs are applied
in order to discern which system is better than others [Suttner and Sutcliffe
1996].

• In mathematics, though, we are not interested in the time a proof takes to be
discovered (except some famous theorems, such as Fermat’s). Here optPS(T| E)
= argminT(Σe∈E L(w|<T,e>)) favours shorter proofs, which are something very
valued in mathematical systems. Even in ATP, as Wos pointed out (Wos 1996),
the ‘elegance’ of a proof is important, according to three criteria (length,
structure and compactness). In many cases, we introduce lemmata or
intermediate information in order to shorten the proofs although the system
size increases.

• Specialised to accepter systems, optAC(T| E) = argminT(Σe∈E Cost(a|<T,e>)) is
applicable for time optimisation of digital circuits and, if a is not Boolean, to
classifier systems.

• Finally, optAC(T| E) = argminT(Σe∈E L(a|<T,e>)) is not sensible, and it must be
replaced by argminT(LT(A|<T, E>)) being A an array giving the answers to
each e in E. This, finally, turns out to be very similar to the previous measure.

118 José Hernández Orallo - Doctoral Dissertation

 118

4.7.3 Pietarinen’s Systematic Power

In the previous subsection we have seen that many of the theory optimality measures
were made in order to minimise G and V of the evidence with respect to the theory.
Let us see how a similar outcome was obtained from a different departure, based on
Popper’s idea of explanatory power.

Juhani Pietarinen, in his paper “Quantitative Tools for Evaluating Scientific
Systematizations” [Pietarinen 1970] introduces a measure (and four different variants
of it) to account for the explanatory capacity, namely systematic power, of
hypotheses with respect to certain determinate data.

The idea is inspired in Popper’s measure of explanatory power [Popper 1959],
namely

 E(h, d) = { p(d | h) − p(d) } / { p(d | h) + p(d) }

where h represents the hypothesis and d the data. Popper’s measure is modified and
generalised by Pietarinen:

syst(h, d) = { unc(d) − unc(d | h) }/ unc(d)

By using four different measures of relative uncertainty (unc(d | h)) and absolute
uncertainty (unc(d)), all of them based on probability, Pietarinen gives four different
measures of systematic power, studying their specific properties.

Since the four measures had the advantages and drawbacks of being based in
probabilities, it would be interesting to introduce a fifth and a sixth variant, by using
the descriptional version of uncertainty, namely, relative complexity K(d | h) and
absolute complexity K(d) and their corresponding Kt versions.

Definition 4.30 Time-Ignoring Descriptional Systematic Power

syst5(h, d) = { K(d) − K(d | h) }/ K(d)

Correspondingly, we define

Definition 4.31 Space-Time Descriptional Systematic Power

syst6(h, d) = { Kt(d) − Kt(d | h) }/ Kt(d)

However, both definitions highly resemble previous notions seen in this chapter, as
the following theorem shows.

Theorem 4.15 syst5(h, d) = 1 −−−− V(d |||| h) and syst6(h, d) = 1 −−−− G(d |||| h)

In other words, under this view of uncertainty, the more powerful a system is, the
less the gain of the evidence with respect to the theory. This is equal to descriptional
Gain Ratio as it was derived from Quinlan’s Gain Ratio in Section 4.4, if H and D
are swapped, i.e. 1 − V(X|C) where H corresponds to the attribute X and D
correspond to the class C. Although the interpretation is quite different in both cases,

4. Information Gain and Inference Processes

119

119

a measure 1 − G indicates that a theory or a tree split must be invested in order to
minimise subsequent effort (value of G).

The measure syst6 is intuitive and applicable to the different kinds of deductive
systems we have just seen previous subsections. For instance, a system where its
deductions are hard to obtain, i.e., V(E|T) and/or G(E|T) are high, is difficult to test,
because it is hard to extract new evidences. This matches with Popper’s relative
potential satisfactoriness, or potential progressiveness, of scientific theories. This
criterion “characterizes as preferable the theory which tells us more: that is to say, the theory which
contains the greater amount of empirical information or content: which is logically stronger: which has
the greater explanatory and predictive power; which can therefore be more severely tested by comparing
predicted facts with observations” [Popper 1962].

On the contrary, V(W|<T, E>) and G(W|<T, E>) can be used to define the
systematic power of a mathematical systems, where proofs are required to be short,
given the theory and the theorems to prove.

4.8 A Characterisation of Lazy and Eager Inference
Methods

In chapter 2 we discussed two kinds of inductive inference methods: lazy methods
such as Explanation-Based Learning (EBL) and Case-Based Reasoning (CBR) and
eager (or inductive) methods, such as Model Based Reasoning (MBR) or Inductive
Logic Programming (ILP). The difference lays in the time where the inference effort
is made. For the case of lazy methods, reasoning is triggered whenever a new
problem or evidence appears, and all the history of previous cases is reviewed. This is
the reason why they are also called memory-based methods. On the contrary, eager
methods construct a model of the problem as this is fed, and when a new problem
case appears, the solution comes quickly by the application of the model. Since back
cases are no longer necessary if the model is reliable, they can be forgotten. This is
the reason why these methods are also called forgetful methods. See [López de
Mántaras and Armengol 1998] for an up-to-date state of the art of both methods.

Nonetheless, the difference between lazy and eager methods has always been
discussed in an informal way. A theoretical account of this distinction would help to
establish for which kind of problems each type of method would be more
appropriate. Moreover, their integration could be studied in a much more general
way than some fruitful but particular approaches [Armengol and Plaza 1994].

This formalisation can be made by the use of concepts related with information
gain. Consider the evidence as an ordered (indexed) set of examples: En = { e1, e2, ...,
en }. Each example is a pair (xi, yi) where x is the input and y is the output. A Boolean
evidence can always be transformed by restricting y ∈ { False, True }. Consider a

120 José Hernández Orallo - Doctoral Dissertation

 120

method or algorithm A that, for all m < n, if given the first m examples and the input
xm+1 predicts (correctly or not) the example m+1, i.e., y m+1.

Let us define Time(A, i) = the time from the moment that the algorithm is given
the next input xi till the moment it gives the value yi, i.e., the reaction time. This time
includes any process that the algorithm performs, including theory revision. In other
words, in the case that yi is wrongly predicted, the algorithm may perform some
operations to remake its model (if it has it) and this must be included in the measure
(which would be in this case a reaction and reflection time). From here the following
definition is straightforward:

Definition 4.32 Time Laziness

Lazinesst(A) = lim i→∞ { [∑j ≤ i Time (A, j)]/ i }

Obviously, in the case of good eager methods, their laziness would usually be low (it
would be always low if we do not incorporate the revision time but this would not be
fair). In the best case, when the algorithm identifies in a certain i the correct model M
of the evidence, then the time would be very reduced for the rest of the evidence,
since it would only be required to apply the model M, and Lazinesst(A) ∈
O(Cost(M)). On the contrary a lazy algorithm is constantly comparing with past
examples and the time cost will be more and more expensive because there will be
more and more past examples to compare, up to the limitation of memory resources.

Accordingly, it is not only time but space which mostly distinguishes lazy and
eager methods. As we have seen, an eager algorithm forgets the evidence whereas a
lazy method must store a great portion of it in order to make the comparisons.

Let us define Space(A, i) = the space in bits that is required to store the necessary
evidence and model for the algorithm to operate.

Definition 4.33 Space Laziness

Lazinesss(A) = limi�∞ { [∑j ≤ i Space(A, j)]/ i }

The space laziness of an eager method will depend on a model but it is again trivial
that this would always be l(M), i.e. a constant. On the contrary, the space laziness of a
lazy method will, in general, be equal to its memory capacity.25

We can combine in a single measure both time laziness and space laziness.

Definition 4.34 Time-Space Laziness

Laziness(A) = logτ(Lazinesst(A)) + σ �Lazinesss(A)

In general, if idle times can be used, inductive methods would be better (in the large)
for real-time applications. However, in most cases, a combination of lazy and eager
methods could be the best solution (such as [Armengol and Plaza 1994]). The

25 Note that the question for approximate algorithms is different, because the model is always an
approximation and more and more space will be needed to obtain better precision.

4. Information Gain and Inference Processes

121

121

previous measure allows that a joint value of laziness can be computed from the
separated algorithms, provided their separated resources and the frequencies of use
of each of them are known.

It is important to highlight that these measures are valid for induction, abduction,
analogy, and deduction (consider input-output pairs as evidence).

For abduction (EBL) and analogy (CBR) the result would be a high value of
laziness. For constructive induction (MBR and ILP), a low value of laziness is
expected. Finally, for deduction the result can be lazy (such as knowledge-based
systems) or eager (mathematics and software). Specialisation and transformation
techniques are used for software programs [Pettorossi and Proietti 1990, 1996a,
1996b] [Dershowitz and Reddy 1992], in order to make them more eager, in the
sense of Lazinesst(A).

The notion of eagerness and the oblivion criterion seen in section 4.2. can be used
together in order to optimise resources. Obviously, accuracy should not be
significantly affected by this.

4.9 Induction, Deduction and Information

In the scientific method, there is a traditional view that inductive processes are
primarily responsible of providing information to our knowledge, whereas deductive
processes reorganise them. We have seen that deductive processes also provide
information by this reorganisation, comparison and collation of previously induced
information. Knowledge acquisition and revision are thus continuous and highly
inter-related processes.

The classical view of mathematics, on the contrary, does not change its truths
frequently, but gives more relevance to some theorems, systems and methods,
depending to their applicability to other sciences or other parts of mathematics itself.
Axiomatic changes are motivated by these changes of interest, the addition of new
axioms or the discovering of new relationships or theorems. Recently, there is a an
increasing trend towards the view of mathematics as an experimental science
[Tymoczko 1986], which sees itself not so different to other experimental sciences.

Induction, deduction and information have been difficult to conciliate in the
literature. In the first chapter we commented on many paradoxes of the view of
induction as an inverse process of deduction. In this chapter, we have seen that both
deduction and induction are either informative or non-informative processes
depending on G(x | y), y being the data and x being the inferred result (an inductive
hypothesis or a deductive derivation). This contrasts, as we saw in the initial part of
this dissertation, with the traditional idea of induction as always information
increasing inference process and deduction as always information decreasing
inference process [Bar-Hillel and Carnap 1953].

122 José Hernández Orallo - Doctoral Dissertation

 122

Before, we have talked about the best theory for a given evidence (system
optimisation), but without considering prediction purposes (i.e. plausibility). If we
want to join both things we are forced to study first the relation of induction and
deduction under information gain and transformation. This implies the comparison
between G(T | E), which represents the inductive gain, and G(E | T), which
represents the effort of obtaining the evidence from the theory and, thus, its
testability and practicality. Following the asymptotic relationship Kt (T | E) + Kt(T) =
Kt (E | T) + Kt(E), a compromise between high inductive gain, plausibility and low
deductive gain should be found. In order to obtain this, we have that Kt(T) should be
low and Kt(E) should be high, which suggests that the theory should be much
simpler (in LT terms26) than the evidence. This may suggest the use of a LT-modified
MDL principle, for obtaining highly compressed and efficient theories.

However, we can recall one of the main problems of combining the MDL
principle with deduction. Probabilities do not behave well under deduction
transformations. Usually, if we have p = x ∨ y, the deduction x ∨ y ∨ ¬y should have
more probability, according to Carnap, but the MDL principle assigns it less
probability because it is longer. A probabilistic account based on an information-
theoretic framework is not possible since x ∧ y is as easy to construct as x ∨ y but
their semantics are completely different.

4.9.1 Intermediate Information

Contrarily, information gain measures the internal increase of information and allows
the distinction of which concepts are valuable and usable from an internal point of
view. However, this is not sufficient as Holland et al. points out: “One of the most
impressive research efforts on induction, that of Lenat (1983), has yielded programs for generating
concepts and heuristics for mathematics and other domains. However, the programs all encounter the
problem of “mud”, which is Lenat’s informal designation for uninteresting definitions and tasks.
Mud sooner or later accumulates to the point that a system becomes totally involved in a round of
tasks that contribute nothing to the expansion of concepts and heuristics.” [Holland et al. 1989].

In section 4.7 we have talked about partial evaluation techniques, lemmata, and
other forms of intermediate information that make a system better with respect to
some evidence. For instance, that addition is commutative (X + Y = Y + X) is a
property that allows to shorten many derivations in arithmetic. However, the
property (X + X + 3 = (X + 1) � 2 + 1) is not so useful in arithmetic. Nonetheless,
both are true from Peano’s axioms, i.e., both are theorems. Moreover, both have a high
value for G, but only one of them is worthy to maintain explicitly. In other words, it
has been shown that for the common evidences arithmetic deals with, commutativity
is extraordinary useful to memorise as an incarnate theorem whereas the other should
be deduced if ever is needed. Similarly, lemmata are a special kind of theorems (also

26 Note that this would be impossible for K, since K(T) ≥ K(E).

4. Information Gain and Inference Processes

123

123

with high G) which has no practical use for E, but it is useful for the proof of a
theorem.

Consider the same equational theory T for addition and product as before:

 X + s(Y) = s(X + Y)

 X + 0 = X

 0 × X = 0

 sX × Y = X × Y + Y

It can be proven from here that X + Y = Y + X and Y × X = X × Y. Since the
proofs are not short, their G is high. The question is whether these theorems should
be maintained in T or they should be removed because they are redundant
(omnisciently non-informative). Moreover, they can give problems of endless loops.

Recalling x1 = ((((s0 × ss0 + 0) × ss0 + s0) × ss0 + s0) × ss0 + 0) × ss0 + (s0), and
x2 = s0 + ss0 × (0 + ss0 × (s0 + ss0 × (s0 + ss0 × (0 + ss0 + s0)))), we have that
using both properties properly we have that LT(x1) ≈ LT(x2) because now the proof
of x1 is much shorter. This is expectable for many other evidences and, consequently,
optDS(T| E) = argminT(Σe∈E Cost(e|T)) should increase for an arithmetic solver
constructed with commutativity of addition and product. One may not preserve any
property, though, because this takes space, or may also take time because there are
more possibilities to essay, and not every property is equally useful. The oblivion
criterion can be adapted to select which set of deductive inferences are maintainable
and which are not, depending on the effort of obtaining them and their utility (aside
from their plausibility).

In the next chapter, we will centre on distinguish and effectively measuring why
(X + Y = Y + X) is a property reinforced by the evidence and the property (X + X + 3
= (X + 1) � 2 + 1) is not reinforced. We will see that reinforcement is what is lacking,
both a measure of plausibility and utility.

4.9.2 Resource-Bounded and Fallible Inference

Classical and Mathematical logic are omniscient. A logic formula is a theorem in a
system or not, independently of how many steps are necessary or how difficult is to
obtain them. The possible worlds semantics and Kripke’s semantics [Kripke 1963]
triggered the research over different logics of believe and modal logics. However, an
agent which is modelled by this semantics is logically omniscient, because they must
believe any classic tautology, and perfect reasoners, because they must believe every
classical logical consequence of its believes. This is not a realistic model of actual
agents (either human or computational) because these always suffer a resource
limitation, which makes impossible to become ideal reasoners. Maybe the major
problem of Artificial Intelligence has been to neglect this difference during too time.

124 José Hernández Orallo - Doctoral Dissertation

 124

The axioms of modal logics were essayed for each of their combinations, these
axioms being the following [Konolige 1992], as were introduced in chapter 2:

(K):L(φ ⊃ ψ)⊃ (Lφ ⊃ Lψ)

(D):Lφ ⊃ ¬L¬φ
(T):Lφ ⊃ φ
(4):Lφ ⊃ LLφ
(5):¬Lφ ⊃ L¬Lφ
(P):φ ⊃ Lφ

Their names depend on the authors but generally (K) is known as the axiom of
deduction, (D) is the non-contradiction axiom, (T) is the axiom of infallibility, (4) is
the axiom of the conscience of own knowledge, (5) is the axiom of the conscience of
ignorance and (P) is the axiom of complete wisdom.

Some of these axioms are related (for instance T and K imply D) and some
combinations have intuitive interpretations (see e.g. the discussion about the
different uses of S5, KD45, K45 in [Halpern 1997]).

For the use of inference processes such as induction and deduction, we are
precisely interested in K, D and T:

• Ontological Fallibility (¬T): An agent whose knowledge cannot be false is not
realistic, even more when we consider learning agents, whose knowledge is
empirical and, consequently, refutable. More clearly, induction would be
nonsensical if the axiom T holds, because inductive inference is necessarily
associated with error.

• Knowledge Extensibility (¬K): if this axiom is assumed, all the logical
consequences of a belief are also believed, i.e., every deep knowledge is made
shallow automatically (omniscience). Apart from the fact that this in only
possible for reduced representations, this would make that there would be no
difference between depth information and surface information in the sense of
[Hintikka 1970b]. On the contrary, if K is not assumed, deduction is more
related with ontology and deductive reasoning is useful to make explicit what
was implicit. Axioms 4 and 5 could also give raise to different degrees of
extensibility.

• Reasoning Fallibility (¬D): Since agents are based in languages with well-
defined semantics, it is not usually considered that the system could have
internal inconsistencies. But as well as T and K imply D, it is reasonable to
accept that if the system has ontological fallibility and its reasoning abilities are
not immediately omniscient., it is quite possible that an inconsistency of two
separate inductive theories could persist during a time until it is detected by
deductive reasoning. It is important to highlight that this makes deduction
even more useful. Finally, this is not equal to the possibility of wrong
deductions, which, for small applications, need not to be considered, but a

4. Information Gain and Inference Processes

125

125

complex cognitive system should take that possibility into account for the sake
of robustness, because any internal failure, could make the system collapse.

A fourth property, which only appears from a dynamical point of view, is the
possibility of oblivion, which has been discussed previously. However, oblivion is
much easier to model in the case of knowledge extensibility, because if K is assumed,
forgetting something implies forgetting everything that was implied by it.

Let us summarise in a table, the six reasonable combinations of these axioms and
the influence of these combinations for inductive and deductive inference:

Type of Knowledge Omniscient (K) Extensible (¬K)

Infallible

(T and D)

 Induction Nonsensical,
Deduction Useless

Induction Nonsensical

Fallible without
Contradiction

(¬T and D)

Deduction Useless Induction and Deduction
useful and compatible

(Horn theories, ILP)

Fallible with
Contradiction

(¬T and ¬D)

Contradictions are
immediately detected

Both Induction and
Deduction affect

positively to ontology

Figure 4.4. Combinations of modal axioms T, K, and D and influence to inference processes.

For expressible languages, only the combinations (¬K, ¬T and D) and (¬K, ¬T and
¬D) are possible. The last combination, (concretely ¬T and ¬D), allows two kinds
of refutations: inductive and deductive. The first one is the most classical one in the
literature: a new fact is inconsistent with the theory and it must be revised. The
second one is only possible if D is not assumed, which means that inconsistencies are
not detected immediately. Two inconsistent inductive theories can coexist a time in a
system until a deductive inference makes their contradiction explicit. In this case,
deduction also affects plausibility, because the better deductive inference works, the
surer the system that internal contradictions do not exist, and its predictions would
have more plausibility. Both kinds of refutation do not mean that the theories must
be necessary withdrawn, but they still can be used if they are practical to cover the
evidence. This is usual for scientific theories, which can coexist even when are
formally inconsistent (e.g. Relativity Theory and Quantum Theory).

The mechanism to resolve or work with inconsistent knowledge is open to
different applications. The most usual approaches are based on priorities,
confidences or credits, as we will use in the next chapter. Other approaches are more
semantical such as Nute’s defeasible logic [Nute 1988][Nute 1994], which opts for the
strongest inference step whenever a contradiction takes place, weighing the
deductive derivations performed.

126 José Hernández Orallo - Doctoral Dissertation

 126

Some authors think that weakening the standard epistemic systems results in
many intuitions about the concepts of knowledge and belief being lost [Duc 1997].
The reason of this unintuitive results may be due to the possible world semantics
[Moore 1984]. Duc’s solution is based in a logical ‘dynamisation’ of epistemic logic
inspired in dynamic logic [Harel 1984]: “if we say that the epistemic agent knows the laws of
logic, we do not mean that she knows some facts of the world, but rather that she is able to use these
laws to draw conclusions from what she already knows. The laws of logic are what the agent knows
implicitly; she does not need to possess them permanently. It suffices if she can recall them when she
needs them in order to infer new information from her explicit data base” [Duc 1997]. This
forces a re-understanding of modal epistemic logic: “Modal epistemic logics should
be interpreted as logics of possible, or implicit knowledge, and not as logics of actual,
or explicit knowledge”. Then, the clarification of the words implicit and explicit, as it
has been done in these two chapters, is also of the greatest relevance for modal
epistemic logic.

Another non-omniscient proposal is the idea of “conceivable worlds” [Moreno
and Sales 1997]. Instead of considering all the possible worlds, the agent can only
consider ‘conceivable worlds’: “A conceivable situation is any state that the agent can consider,
independently from its possible partiality or inconsistency” [Moreno and Sales 1997].
Moreover, this kind of agents “are continually analysing their beliefs, in order to
make them more resembling with real world”. The processes for this analysis to
remove inaccurate beliefs and refine true ones, dubbed “rational investigation”, is
characterised by these components [Moreno and Sales 1997]:

• Logical Analysis: the agent could make (limited) deductive inferences.
• Exploratory Analysis: the agent could raise questions and pose doubts such as

whether it implicitly believes or not some fact.
• Experimental Analysis: the agent could ask for data from the environment to

confirm or refute some of its beliefs.
• Knowledge Acquisition: the agent could incorporate to its beliefs the

information that is received from the environment.

According to this view of bounded rationality, it is necessary a measure of plausibility
would not always negatively affected by the addition of new intermediate
information to the theory.

On the contrary, we look for a measure where positive deductive results should
increase the reliability of the theory, and hence its plausibility, and negative deductive
results should decrease the reliability of the theory. This kind of measure is
endeavoured in the following chapter.

4. Information Gain and Inference Processes

127

127

4.10 Summary and Contributions of This Chapter

This chapter has taken advantage of the definitions introduced in the previous
chapter for inference processes, mainly induction and deduction. Both processes
have been expressed in terms of computation and not in terms of truth, and we have
also neglected any probabilistic account. Different kinds of deductive systems are
particularised: Derivers (DS), Theorem Provers (TP) and Accepters (AC). Without
truth or probability considerations it has been still possible to account for many
phenomena that inference processes deal with. Information Gain, namely G, is both
useful to explain the informativeness of a hypothesis with respect to some evidence
and to explain the gain or reduction of effort that takes place when a conclusion or
theorem is deductively established from an axiomatic system.

Section 4.2 concretises this idea for induction and recognises that if G(h | e) ≅ 0,
the theory is evident for the data. On the contrary, G(h | e) ≅ 1, an informative
induction has taken place, according to Popper’s informativeness. Induction is then
seen as an investment. However, this must be somehow restricted, and an oblivion
criterion is introduced to weigh valuable and plausible hypotheses.

In Section 4.3, G is compared with the idea of learning as compression and the
MDL principle. In the previous chapter we saw that efficient learners are shown to
be non-informative and in this section it is shown that compression favours gain.
However, the MDL principle does not ensure compression for most evidence, the
vast majority of them being incompressible. Gain is a much more robust measure
and with its help, notions such as creativity and scientific discovery are clarified, and
the classical view of learning as identification [Gold 1967] is neglected.

Section 4.4 revises Quinlan’s Gain Ratio, which is part of C4.5, the most famous
machine learning algorithm. Gain Ratio Measures the value that a split on an
attribute X has, when learning a decision tree for class C. The definition is adapted to
descriptional complexity and it is shown that descriptional gain ratio = 1 − V(X | C).

Deduction is addressed in Section 4.5. G(c | p) ≅ 0 if the conclusion c is evident
from the premises p. On the contrary, G(c | p) ≅ 1 when the conclusion is difficult
and surprising from the premises p. This idea is particularised for the different
deductive paradigms presented in the introduction. They are approximated for logic
programs, sometimes adapting classical measures in the LP or ILP literature. Finally,
an example illustrates these measures.

Section 4.6 compares our approach with Hintikka’s Surface and Depth
Information. Surface Information is identified with G and Depth Information with
V. We prove that V is the limit of G in the sense of Hintikka.

The notions of representational optimisation from the previous chapter are taken
up again and generalised in Section 4.7, by finding a compromise of size and time

128 José Hernández Orallo - Doctoral Dissertation

 128

that it takes to obtain the evidence from a theory. This is particularised for different
deductive paradigms, showing the role of Intermediate Information in ATP and
mathematical practice. In the end, Pietarinen’s Systematic Power suggests two
different descriptional variants of systematic power as 1 − V(d | h) and 1 − G(d | h),
corresponding with Popper’s relative potential satisfactoriness.

Section 4.8 formalises the distinction between eager and lazy inference methods,
by considering the time when the computational effort is made and / or how space
resources are used.

Section 4.9 finally undertakes the relation among Induction, Deduction and
Information, without forgetting plausibility. Classical induction criteria are
incompatible with intermediate deductive information. It is discussed that it is only
possible to conciliate them under resource-bounded rationality, avoiding omniscience
and allowing inconsistencies in knowledge. The first steps towards the theory of
reinforcement of the following chapter are taken.

The main contributions of this chapter are:
• It has been shown that a single measure of information gain can be applied to

both deduction and induction in a uniform way.
• Popper’s idea of informativeness is gathered by the use of G for induction.
• A new notion of authentic learning is introduced, ensuring that learning has

taken place, independently of how compressible the evidence is.
• Quinlan’s Gain Ratio is closely connected with V.
• Deduction can be informative and different measures are introduced for

several deductive paradigms.
• Appropriate approximations for logical programs are derived and illustrated,

which make possible to measure in practice these gains.
• Comparison with Hintikka’s ideas, establishing the relationship between G and

Surface Information, and between V and Depth Information.
• General measures of System Optimisation and Systematic Power, where

Intermediate Information is recognised useful in ATP and mathematical
practice.

• A formal account of the notion of lazy and eager methods, according to
response time and necessary memory resources.

• The conciliation among induction, deduction and information is made possible
if omniscience is neglected. However, when omniscience and infallibility are
neglected, the semantic tools are weakened. Consequently, other mechanisms
are needed to guide a system’s ontology.

The next chapter introduces a theory that makes possible and practical this
conciliation.

5. Constructive Reinforcement

129

129

5. Constructive
Reinforcement

Custom then, is the great guide of human life

David Hume, 1711-1775, An Enquiry Concerning Human Understanding 1748

Abstract: this chapter presents an operative measure of reinforcement for general constructive
theories as a quantitative theory of confirmation, studying the growth of knowledge, theory revision,
abduction and deduction in this framework. This approach performs an apportionment of credit with
respect to the ‘course’ that the evidence or set of derivables makes through the learnt/axiomatic
theory. For the case of induction it is shown to be both a utility and plausibility criterion, and it is
connected with other classical evaluation criteria, such as cross-validation and the MDL principle.
For the case of deduction it behaves like a utility criterion that establishes how useful a property,
lemma or theorem is for the rest of the theory. It is also applied to other inference mechanisms, such
as analogy, abduction and explanatory induction, the latter represented by a balanced distribution of
reinforcement, thus formalising the notion of consilience. The theory is also extended with negative
reinforcement, thus connecting this approach with more classical notions of reinforcement, based on
rewards and penalties. In the end, reinforcement and information gain are compared.

Keywords: Reinforcement Learning, Incremental Learning, Useful Theorems,
Inference Processes, Apportion of Credit, Knowledge Acquisition and Revision,
Consilience, Analogy, Theory Evaluation.

130 José Hernández Orallo - Doctoral Dissertation

 130

5.1 Introduction

In the previous chapter we finally arrived to the necessity and possibility of finding a
measure for conciliating induction, deduction, information and plausibility. Under
this measure, a positive deductive operation that connects two unrelated things
should also increase the reliability of the theory. On the contrary, negative
connections originated from internal or external inconsistencies should decrease its
reliability. Moreover, this measure should comply with plausibility, not differing too
much with some of the usual selection criteria in machine learning or inductive
inference, and should favour informative theories without compromising tractability
and applicability. At first sight this seems rather pretentious. However, this chapter
introduces an effective way to evaluate a system with respect to a given evidence,
where induction and deduction behave properly and not contradictorily.

In the case of deduction, the quality, robustness or reliability of a system is given
by how many connections can be established among their theorems and their final
evidence. In Kneale’s words: a “system is interesting mathematically if it is rich in theorems
and has many connections with other parts of mathematics” (from [Lakatos 1979]). In other
words, concepts and theorems with high connectivity are useful, ordinarily known as
properties.

In the case of induction, it has been shown that high connectivity is also positive
with induced theories. In fact, many inductive algorithms are based on the idea of
propagating reinforcement, as in RL (Reinforcement Learning) or ANN (Artificial
Neural Networks). However, the representational language that is used in these
inductive paradigms is poor and deduction is an ignored matter (i.e. deterministic and
supposedly efficient).

The question is whether we can extend the notion of reinforcement to more
expressive languages, where deduction is not so easy and may be informative.

The problem of propagating reinforcement from the evidence into the theory has
been shown especially troublesome in high-level languages, such as ILP, but the
same problem pervades other representations that allow redescription (e.g. neural
networks).

In this chapter, we present an operative measure of reinforcement for general
constructive theories, studying the growth of knowledge, theory revision, abduction
and deduction in this framework. Our approach performs an apportionment of
credit with respect to the ‘course’ that the evidence makes through the learnt theory.
The result is compared with other evaluation criteria, in the case of induction, such
as the MDL principle, and other utility criteria, in the case of deduction.

5. Constructive Reinforcement

131

131

Finally, we will study a more common view of reinforcement, where the actions
of an intelligent system can be rewarded or penalised, and we discuss whether this
should affect the distribution of reinforcement.

In the end, we will relate the theory of reinforcement with deduction and
axiomatic systems optimisation, and we will establish the connection with the
notions and results of chapter 3 and 4: information gain, representation gain,
maximisation of reinforcement of resource-bounded systems, etc.

5.1.1 Reinforcement as Selection Criterion

As we said in the second chapter, the aim of Machine Learning is the computational
construction of hypothetical inferences from facts.

However, we saw that given some evidence E, infinite many hypotheses H can be
induced ensuring H = E. Obviously, some selection criteria are needed. Depending
on different applications, some criteria have been used (e.g. the most specific
hypothesis, the most general one, the shortest one, the most informative one, ...). In
general, this choice implies the assumption of a prior distribution, which can be used
to derive the likeliness of the hypotheses. The MDL principle is the most famous and
used criterion. We also saw in chapter 2 many of its problems.

In this chapter, we intend to handle these difficulties with a dynamical
reinforcement. However, our approach has additional advantages: (1) no prior
assumption has to be made (apart from how to distribute this reinforcement, which
is the topic of this chapter), and (2) reinforcement can be more flexibly managed
than probabilities, and allows further insight on the relation between the evidence
and the theory.

5.2 Reinforcement Learning

As we have seen, whatever the approach to knowledge construction, the revision of
knowledge must come either from an inconsistency or from a lack of support. In the
latter case, a partial or total weakness of the theory can be detected by a loss of
reinforcement (or apportionment of credit [Holland et al. 1986]. There have been
several empirical and theoretical justifications for reinforcement in different fields,
from many empirical observations from on learning processes in animals or humans
to theoretical and practical verifications by cross-validation.

The study of reinforcement learning in restricted representations has been
especially fruitful in this decade (see [Kaelbling et al. 1996] for a survey) and it has
been recently related with EBL (see [Dieterich and Flann 1997]). One of the main
problems of reinforcement learning is that it is increasingly more difficult to assign
and ‘propagate’ the reinforcement (or apportionment of credit [Holland et al. 1986])
depending on two factors (which are as well related): (1) how eager the inductive

132 José Hernández Orallo - Doctoral Dissertation

 132

strategy is (vs. lazy methods such as instance-based and case-based reasoning [López
de Mántaras and Armengol 1998]) and (2) how expressible the language where
induction must take place is. Explanation Based Learning (EBL) and Inductive Logic
Programming (ILP) are two areas where the propagation of reinforcement faces
these issues in a more arduous way.

In this chapter we shall address the problem of reinforcement with eager learning
methods. As we saw in the previous chapters, eager learning methods extract all the
regularity from the data in order to work with intensional knowledge (instead of the
extensional knowledge of lazy methods [Aha 1997]).

Additionally, we will consider the problem with constructive languages. A
constructive language is a language that allows dynamical change of its
representational bias (what is sometimes known as the possibility of ‘redescription’),
i.e., new constructed terms can be created to express the evidence more compactly in
a more compact way. This is usually known in ILP as predicate invention.

In decision trees or attribute languages, no invented terms are induced and
reinforcement is distributed among the initial attributes. The main drawback of these
approaches is the lack of flexibility: when arrived to a ‘saturation’ point, the data is
not abstracted further and the mean reinforcement arrives to a limit. Consequently,
the ontology must be given and not constructed (a model of the ‘world’ is embedded
in the system) and the possible extensions of this world are very restricted.

In the case of learning in highly expressible frameworks, a main problem is
presented (apart from efficiency): the ontology of the new constructed concepts is
indirect. The usual solution to this problem is the assumption of a prior probability.
Once the probabilities are assigned, a Bayesian framework can be used to ‘propagate’
the distribution. In general, there is not justification at all of which prior distribution
to choose. In the absence of any knowledge, as we saw in chapter 2, the most usual
one is the MDL (Minimum Description Length) principle [Rissanen 1978, 1996]. The
MDL principle is just a formalisation of Occam’s razor. Theoretically, its close
relation with PAC-learning [Valiant 1984] has been established by (Blumer et al.
1987). Some high-level representation inductive methods have adapted these ideas
(e.g. U-learnability in ILP [Muggleton and Page 1995]). All of them are based on the
assumption of a prior. However, there are many riddles with the management of
probabilities and, in particular, the best choice, the MDL principle, has additional
ones.

As we will see, most of these difficulties would disappear if no prior distribution is
assumed and the knowledge is constructed by reinforcement, as the data suggest.
However, the translation of these ideas to general representational frameworks seems
difficult. First, the length of the structures which supposedly are to be reinforced is
variable. Second, and more importantly, it seems we can always invent ‘fantastic’
concepts that can be used in the rest of knowledge. Consequently, these ‘fantastic’

5. Constructive Reinforcement

133

133

concepts are highly reinforced, increasing the reinforcement ratio of knowledge in an
unfair way.

An immediate way out is the combination of reinforcement learning with some
prior, mainly the MDL principle, essayed under the name of ‘incremental self-
improvement’ [Schmidhuber et al. 1997] using syntactic minimality to restrict the
appearance of these inventions.

Notwithstanding, our approach also avoids ‘fantastic’ concepts but it is based
exclusively on reinforcement. Consequently, compression turns out to be an ‘a
posteriori’ consequence of a well-established reinforcement, instead of an ‘arbitrary’
assumption.

5.3 Reinforcement with respect to the Theory Use

For the study of reinforcement we need to introduce some basics for the kind of
representation languages to which it can be applied. A ‘pattern’ of languages is
defined as a set of chunks or rules r which are composed of a head (or consequence)
and a body (or set of conditions). Each rule is denoted in the following way r ≡ { h :-

t1, t2, ... ts }. A theory is simply a set of rules: T = {r1, r2, …, rm}.

Since no restriction of how h and ti can be (there may be variables, equations,
Boolean operators...), this definition can be specialised to propositional languages,
Horn theories, full logical theories, functional languages, some kind of grammars,
and even higher-order languages. In the following, the semantics of the
representations will be left unspecified and we will just say that e is a consequence of
P, denoted P = e (in other words, there is a proof for e in P, or, simply, P covers e).

Given the slight semantical and syntactical restriction of the previous paragraphs,
we introduce some useful and simple constructions which will shape our framework
with more determination.

Definition 5.35 A rule ri is said to be necessary with respect to T for an example e
iff

T = e and T − {ri} ≠ e

From here,

Definition 5.36 A theory T is reduced for an example e iff

T = e and ¬∃ ri ∈ T such that ri is not necessary for e

For the rest of the chapter, we consider a proof as a set of rules, independently of
their order of combination, the applied substitutions or number of times that each
rule is used. This unusual (and incomplete) conception of proof allows us to work
without considering the concrete semantics while maintaining an appropriate degree
of detail. This makes the following definition possible:

134 José Hernández Orallo - Doctoral Dissertation

 134

Definition 5.37 We say that S1 and S2 are alternative proofs for an example e in
the theory T iff

S1 ⊂ T, S2 ⊂ T, S1 ≠ S2 and S1 and S2 are reduced for e

We denote with Proof(e,T) the set of alternative proofs for an example e with respect
to a theory T. Finally, we can define Proofr(e,T) as the set of alternative proofs which
contain r . More formally,

Definition 5.38

Proofr(e,T) = { S : S ⊂ Proof(e,T) and r ∈ S }

With these naive constructions, we are able to introduce our first measurement of
reinforcement.

We present the first intuitive way to compute the reinforcement map for a given
theory, depending on past observations.

Definition 5.39 The pure reinforcement ρρ(r) of a rule r from a theory T with
respect to a given evidence E = {e1, e2, …, en} is defined as:

ρρ(r) = Σi=1..n card(Proofr(ei,T))

In other words, ρρ(r) is computed as the number of proofs of ei where r is used. If
there are more than one proof for a given ei, all of them are reckoned, but in the
same proof, a rule is computed only once.

Definition 5.40 The (normalised) reinforcement is defined as:

ρ(r) = 1 − 2−ρρ(r).

Definition 5.40 is motivated by the convenience of maintaining reinforcement
between 0 and 1. However, its computation is easy, as the following elementary
lemma shows:

Lemma 5.16 Suppose a new example is added to the evidence and it is covered
by the theory. For each rule r that is used for it, the new ρ’(r) can be easily
obtained from the old ρ(r) by:

ρ’(r) = [ρ(r) + 1] / 2

PROOF. The new ρρ’(r) is incremented by one, i.e. ρρ’(r) = ρρ(r) + 1. From here,
ρ’(r) = 1 − 2−ρρ’(r) = 1 − 2−ρρ(r) − 1 = 1 − 2−ρρ(r)

/2 = ½ · [2 − 2−ρρ(r)
] = ½ · [1 + 1 − 2−ρρ(r)

] = ½ · [1 + ρ(r)]. �

Corollary 5.17 If an example is removed from the evidence, for each rule r that
was used for it, the new ρ’(r) can be easily obtained from the old ρ(r) by:

ρ’(r) = 2 · ρ(r) − 1

Hence, if a rule r covers a single example we have ρ(r) = 0.5 and if the rule becomes
not necessary, then ρ’(r) = 0.

5. Constructive Reinforcement

135

135

Definition 5.41 The mean reinforcement ratio mρ(T) is defined as

mρ(T) = Σr∈T ρ(r)/m,

with m being the number of rules.

From these definitions one can verify that, in general, the most (mean) reinforced
theory is not the shortest one as the following example shows:

Example 5.1

Given the evidence e1, e2, e3, consider a theory Ta = {r1, r2, r3} where {r1} covers {e1},
{r2} covers {e2} and {r3} covers {e3} and a theory Tb = {r1, r2, r3, r4} where {r1, r4}
cover {e1}, { r2, r4 } cover {e2} and {r3, r4 } cover {e3}.

From here, Ta is less reinforced than Tb.

In the first case we have ρρa,1= ρρa,2= ρρa,3= 1 and mρ(Ta) = 0.5. For Tb we have ρρb,1=

ρρb,2= ρρb,3= 1, ρρb,4= 3 and mρ(Tb) = 0.5938.

In addition, redundancy does not imply a loss of mean reinforcement ratio (e.g. just
add twice the same rule).

However, measuring reinforcement of the theory presents problems of fantastic
(unreal) concepts:

Theorem 5.18 Consider a program P composed of rules ri of the form { h :- t1, t2,

.. ts }, which covers n examples E = { e1, e2, ... en }. If the mean reinforcement
ratio mρ < 1 − 2−n then it can always be increased.

PROOF. A fantastic rule rf can be added to the program by modifying all the rules
of the program in the following way ri = { h :- t1, t2, .. ts , rf }. Obviously, all the
other rules maintain the same reinforcement but rf is now reinforced with ρρ(rf) =

n. Since ρ(rf)> mρ then the new mρ’ must be greater than mρ. �

One can argue that these fantastic rules could be checked out and eliminated.
However, there are many ways to ‘hide’ a fantastic rule; in fact, cryptography relies
on this fact.

5.4 Reinforcement with respect to the Evidence

It can be derived from this problem that reinforcement must be combined with a
simplicity criterion in order to work (maybe neural networks theory is the field where
this avoidance of overfitting, ensured by simplicity, has been more thoroughly
studied in combination with reinforcement).

However, there is solution without explicitly making use of simplicity. The idea is
to measure the validation with respect to the evidence.

Definition 5.42 The course χT(f) of a given fact f with respect to a theory T is
defined as:

136 José Hernández Orallo - Doctoral Dissertation

 136

χT(f) = max S⊂Proof(f, T) { Πr∈S ρ(r) }

More constructively, χT(f) is computed as the product of all the reinforcements ρ(r)
of all the rules r of T that are used in the proof of f. If a rule is used more than once,
it is computed once. If f has more than one proof, we select the greatest course.

Whereas Definition 5.39 eased theory use, this must be restricted somehow, in
order to find a compromise between interconnectivity and complexity. Due the
multiplicative character of Definition 5.42, long proofs are also penalised, and this
compromise is attained.

The way reinforcements are calculated makes very complex programs to be
avoided, but redundancy is possible. However now there is no risk of fantastic
concepts. As said before, for any program P composed of rules ri of the form { h :- t1,

t2, .. ts }, which covers m examples E = { e1, e2, ... en } and their reinforcements ρi, a
fantastic rule rf could be added to the program and all the rules could be modified in
the following way ri = { h :- t1, t2, .. ts , rf }. The following theorem shows that now it
is not reinforced over the original one:

Theorem 5.19 The course of any example cannot be increased by the use of
fantastic concepts.

PROOF. Since the fantastic concept rf now appears in all the proofs of the n
examples, the reinforcement of rf is exactly 1 − 2−n and the reinforcements of all
the ri remain the same. Hence, the course of all the n examples is modified to
χ’(ej) = χ(ej) · rf = χ(ej) − χ(ej) · 2

−n. Since n is finite, for all ej ∈ E, χ’(ej) can never
be greater than χ(ej). �

5.5 Evaluation of Inductive Theories

Now it is time to start to use the previous measure to evaluate inductive theories.
The first idea is to use the greatest mean of the courses of all the data presented so
far, defined as:

Definition 5.43 The mean course mχ(T, E) of a theory T with respect to an
evidence E is defined as:

mχ(T, E) = Σe∈E χT(e)/n

with n = card(E) .

In order to obtain a more compensated theory, a geometric mean can be used
instead, which we will denote by µχ.

For every theory T, we will say that it is worthy for E iff mχ(T, E) ≥ 0.5. If the
representation language is expressible enough, it is easy to show that for every
evidence E there is at least a theory worthy for it (just choose a theory with an
extensional rule for covering each example). The same holds for µχ.

5. Constructive Reinforcement

137

137

5.5.1 Knowledge Construction, Revision and Abduction

The use of these simple values can be seen in the following long example, in order to
show the use of this new criterion for knowledge construction:

Example 5.2

Using Horn theories as representation (Prolog), suppose we have an incremental learning
session as follows:

 Given the background theory B = { s(a,b), s(b,c), s(c,d) } we observe the evidence

E = { e+1: r(a,b,c), e+2: r(b,c,d), e+3: r(a,c,d), e--1: ¬r(b,a,c), e--2: ¬r(c,a,c) }:

The following programs could be induced, with their corresponding reinforcements and
courses:

P1 = {r(X,Y,Z) :- s(Y,Z) : ρ = 0.875}

 χ(e+1)= χ(e+2)= χ(e+3)= 0.875

P2 = {r(X,c,Z) : ρ = 0.75

 r(a,Y,Z) : ρ = 0.75}

χ(e+1)= χ(e+2)= χ(e+3)= 0.75

P3 = {r(X,Y,Z) :- s(X,Y) : ρ = 0.75

 r(X,Y,Z) :- s(Y,Z) : ρ = 0.875}

 χ(e+1)= χ(e+2)= χ(e+3)= 0.875

P4 = {r(X,Y,Z) :- t(X,Y), t(Y,Z) : ρ = 0.875

 t(X,Y) :- s(X,Y) : ρ = 0.875

 t(X,Y) :- s(X,Z), t(Z,Y) : ρ = 0.5}

 χ(e+1)= χ(e+2)= 0.7656, χ(e+3)= 0.3828

P5 = {r(X,Y,Z) :- t(X,Y) : ρ = 0.875

 t(X,Y) :- s(X,Y) : ρ = 0.875

 t(X,Y) :- s(X,Z), t(Z,Y) : ρ = 0.5}

 χ(e+1)= χ(e+2)= 0.7656, χ(e+3)= 0.3828

At this moment, P1 and P3 are the best options and P4 and P5 seem ‘risky’ theories
according to the evidence.

 e+4 = r(a,b,d) is observed.

P1 does not cover e4+ and it is patched:

P1a’ = {r(X,Y,Z) :- s(Y,Z) : ρ = 0.875

 r(a,b,d) : ρ = 0.5}

χ(e+1)= χ(e+2)= χ(e+3) = 0.875, χ(e+4) = 0.5

138 José Hernández Orallo - Doctoral Dissertation

 138

 mχ = 0.78, µχ = 0.76

P1b’ = {r(X,Y,Z) :- s(Y,Z) : ρ = 0.875

 r(X,Y,d) : ρ = 0.875 }

χ(e+1)= χ(e+2)= χ(e+3)= χ(e+4) = 0.875

P2’ is reinforced = {r(X,c,Z) : ρ = 0.75.

 r(a,Y,Z) : ρ = 0.875}

χ(e+1)= 0.875, χ(e+2)= 0.75, χ(e+3)=χ(e+4)= 0.875

P3’ is reinforced = {r(X,Y,Z) :- s(X,Y) : ρ = 0.875.

 r(X,Y,Z) :- s(Y,Z) : ρ = 0.875}

χ(e+1)= χ(e+2)= χ(e+3)= χ(e+4) = 0.875

P4’ is reinforced = { r(X,Y,Z):-t(X,Y), t(Y,Z): ρ = 0.9375

 t(X,Y) :- s(X,Y) : ρ = 0.9375

 t(X,Y) :- s(X,Z), t(Z,Y) : ρ = 0.75}

χ(e+1)= χ(e+2)= 0.8789, χ(e+3)= χ(e+4) = 0.6592

mχ = 0.77, µχ= 0.76

P5’ is slightly reinforced

 P5’ = { r(X,Y,Z) :- t(X,Y) : ρ = 0.9375.

 t(X,Y) :- s(X,Y) : ρ = 0.9375

 t(X,Y) :- s(X,Z), t(Z,Y) : ρ = 0.5}

χ(e+1)=χ(e+2)=0.8789,χ(e+3)=0.4395,χ(e+4)=0.8789

mχ = 0.77, µχ= 0.74

At this moment, P1b’ and P3’ are the best options. Now P4’ and P5’ seem more
grounded.

 We add e--3 = ¬r(a,d,d)

P1a’ remains the same and P1b’ and P2’ are inconsistent, motivating the following
'patches' for them:

P2a’ = {r(X,c,Z) : ρ = 0.75.

 r(X,b,Z) : ρ = 0.75}

χ(e+1)= χ(e+2)= χ(e+3)= χ(e+4) = 0.75

P2b’ = {r(X,Y,Z) :- e(Y) : ρ = 0.9375.

 e(b) : ρ = 0.75

 e(c) : ρ = 0.75}

χ(e+1)= χ(e+2)= χ(e+3)= χ(e+4) = 0.7031

5. Constructive Reinforcement

139

139

P3’ and P4’ remain the same. P5’ becomes inconsistent.

 We add e+5 = r(a,d,e)

P1a’, P2a’, P2b’ can only be patched with e+5 as an exception because abduction is not
possible.

P3’ has abduction as a better option.

 P3’’ = {s(d,e) : ρ = 0.5

 r(X,Y,Z) :- s(X,Y) : ρ = 0.875

 r(X,Y,Z) :- s(Y,Z) : ρ = 0.9375}

χ(e+1)=χ(e+2)=χ(e+3)=0.9375,χ(e+4)=0.875,χ(e+5)=0.4688

mχ = 0.831, µχ= 0.805

P4’ makes the same abduction

 P4’’ = { s(d,e) : ρ = 0.5

 r(X,Y,Z):-t(X,Y),t(Y,Z): ρ=0.96875

 t(X,Y) :- s(X,Y) : ρ = 0.96875

 t(X,Y) :- s(X,Z), t(Z,Y): ρ = 0.875}

χ(e+1)=χ(e+2)=0.939,χ(e+3)=χ(e+4)=0.82,χ(e+5)=0.41

 mχ = 0.786, µχ= 0.754

At this moment, P3’’ and P4’’ are the best options.

Further examples of the theory would be required to distinguish with more reliability
which is the ‘intended’ one.

The example illustrates that, in general, and by using this new reckoning of
reinforcement, the shortest theories are not the best ones. More importantly, the
weak parts are detected by a low value of reinforcement, and revision, if necessary,
should be done to these parts of the theory. On the other hand, as soon as a theory
gains some solidity, in terms of increase of reinforcement, abduction can be applied.
Another advantage of this approach is that a ‘rated’ ontology can be derived directly
from the theory.

5.5.2 Consilience can be precisely defined

The idea of ‘consilience’, introduced by Whewell in the XIXth century [Whewell
1847], and other related concepts, such as Reichenbach’s principle of common cause,
Thagard’s coherence [Thagard 1978], all share the common idea of giving a
conciliating theory for all the data, i.e., all the evidence must be accounted by the
same explanation or by very closely related explanations.

In the context of reinforcement, it is easy to define consilience:

140 José Hernández Orallo - Doctoral Dissertation

 140

Definition 5.44 A theory T is partitionable with respect to an evidence E iff ∃T1,

T2 : T1 ⊂ T, T2 ⊂ T and T1 ≠ T2 such that ∀e ∈ E : T1 = e ∨ T2 = e . We define E1 =
{ e ∈ E : T1 = e } and E2 = { e ∈ E : T2 = e } and E12 = E1 ∩ E2. Finally, we will use
the term Sχ(T1 ⊕ T2, E) to denote the expression mχ(T1, E1) · [card(E1) −
card(E12)/2] + mχ(T2, E2) · [card(E2) − card(E12)/2].

Definition 5.45 A theory T is consilient with respect to an evidence E iff there
does not exist a partition T1, T2 such that Sχ(T1 ⊕ T2, E) ≥ mχ(T, E) · card(E).

In other words, a theory T is consilient with respect to an evidence E iff there
does not exist a bi-partition P ∈ ℘(T), such that every example of the evidence E is
still covered separately and there is no loss of reinforcement.

Example 5.3

Given the following evidence (in Prolog):

E = { p(a), p(b), p(e), q(a), q(b), q(e), q(f) }

The following program could be induced, with its corresponding reinforcements and
courses:

P = { p(X) : ρ = 0.875

 q(X) : ρ = 0.9375}

 mχ(E, P)= 0.9107

The following partition:

P1 = { p(X) : ρ = 0.875 }

 mχ(E1, P1)= 0.875

P2 = { q(X) : ρ = 0.9375}

 mχ(E2, P2)= 0.9375

In this case it is obvious that mχ(E1, P1) · 3 + mχ(E2, P2) · 4 = 0.9107 · 7, so, as
expected, P is not consilient.

The next example shows that consilience is a delicate notion:

Example 5.4 (using Horn theories)

Consider the following extensional theory T= { p. q. } for the following simple theory
E= { p, q }. As expected, mχ(T, E) = (0.5 + 0.5) / 2 = 0.5 and by using the partition T1=

{ p. }, T2= { q. } is easy to show that it is not consilient.

The trick is again the addition of a new fantastic rule f in the following way: T’= { p:- f.
q:- f. f }. As we have said, the mean course is robust to this kind of tricks, and it is clearly
lower: mχ(T’, E) = (0.5 · 0.75 + 0.5 · 0.75) / 2 = 0.375. However, the only partition
which is now possible, T’1= { p:- f. f }, T’2= { q:-f. f. } gives that Sχ(T’1 ⊕ T’2, E)=
0.25 · [1 − ½ · 0] + 0.25 · [1 − ½ · 0] = 0.5 < mχ(T’, E) · 2. The result is that T’ is
consilient!

5. Constructive Reinforcement

141

141

This example can be interpreted in two ways. If one has T and tries to make it
consilient by using a fantastic concept, she would get an important decrease in mχ(T’,
E) enough for discarding T’. On the other hand, if one considers T’ from scratch
(without knowing T), she could be cheated by the illusion that T’ is a good consilient
theory if these invented concepts were difficult to detect.

It is important to realise that Definition 5.45 is reliable; independently from
whether the unifying concept would be fantastic or not, the theory is properly
consilient.

The aftermath harmonises with the classical rationale of the plausibility of a
theory: it depends on the intuition, intelligence or whatever other ability to unveil
fantasies by comparing the current theory with other competing theories. The
advantage of these measures of mean course and consilience based on reinforcement
is that the first one avoids fantastic concepts, so giving an approximation to
plausibility, which must be weighed up with consilience.

The following example shows the use of mχ and consilience in the context of
abduction and background knowledge. In this case, invented concepts are more
difficult to introduce if the background knowledge cannot be modified by adding a
fantastic rule.

Example 5.5 (using extended logic theories)

Let us suppose that in the nineteenth century a biologist has the following incomplete
but fully validated background knowledge B, (∀r∈B ρ(r) = 1).

 B= { rb1: Vertebrate(X) :- Fish(X)

 rb2: Vertebrate(X) :- Reptile(X)

 rb3: Vertebrate(X) :- Bird(X)

 rb4: Vertebrate(X) :- Mammal(X)

 rb5: Has-wings(X) ∨ Has-fins(X) :- Bird(X)

 rb6: Has-wings(X) ∨ Has-fins(X) :- Echo-locates(X),Mammal(X)

 rb7: Hasn’t-mandibule(X) :- Agnate(X)

 rb8: Creeps(X) :- Reptile(X)

 rb9: Marine(X) :- Fish(X)

 rb10: Marine(X) :- Cephalopod(X) }

After performing some observations and dissections to a sample of animals from the
Pacific Ocean, some hypotheses can be abduced:

 E1 = { e1: Vertebrate(a), e2: Creeps(a) }

 h1 = E1 mχ(B+h1, E1) = 0.5

 h2 = { Reptile(a). } mχ(B+h2, E1) = 0.75

Moreover h2 is consilient with respect to E1.

142 José Hernández Orallo - Doctoral Dissertation

 142

 E2 = { e3: Vertebrate(b), e4: Marine(b) }

 h3 = E2 mχ(B+h3, E2) = 0.5

 h4 = { Fish(b). } mχ(B+h4, E2) = 0.75

 h5 = { Cephalopode(b). Vertebrate(b). } mχ(B+h5, E2) = 0.5

Only h4 is consilient. Note that, according to B, h5 is consistent.

 E3 = { e5: Vertebrate(c), e6: Has-wings(c) }

 h6 = E4 mχ(B+h6, E3) = 0.5

 h7 = { Bird(c). } mχ(B+h7, E3) = 0.75

 h8 = { Echo-locates(c). Mammal(c). } mχ(B+h8, E3) = 0.625

Both h7 and h8 are consilient.

 E4 = { e7: Vertebrate (d), e8: Hasn’t-mandibule(d) }

 h9 = E4 mχ(B+h9, E4) = 0.5

 h10 = { Agnate(d). Vertebrate(d). } mχ(B+h10, E4) = 0.5

 h11 = { Agnate(d). Vertebrate(X):-Agnate(X). } mχ(B+h11,E4) = 0.625

In this last case, only h11 is consilient, and it shows that an extension can be made to B
with new rules in order to cover the evidence in a consilient way.

However, the example shows that in many cases mχ is positively related to
consilience, so it is a good criterion to guide knowledge creation and revision.
Abduction has been naturally incorporated as a special case of explanatory induction,
where, in general, the hypotheses are factual (although in the examples h11 includes
non-factual ones and it can also be considered an abduction). It is remarkable to see
that the hypotheses would be more accurate if B would be not completely validated
∃r∈B ρ(r) < 1 or, even better, if a separate measure of frequency were added to B, so
reflecting the frequency of previous animal samples. Moreover, rb5 and rb6 should split
their heads in order to compute independently their reinforcement. This all is more
related with probabilistic abduction, which falls out of the topic of this chapter.

Finally, Definition 5.45 can be parameterised by introducing a consilience factor:

Definition 5.46

The degree of consilience of a theory T with respect to an evidence E is defined
as the minimum real number k such that there exists a partition T1, T2 such that: k
� Sχ(T1 ⊕ T2, E) ≥ mχ(T, E) · card(E).

From the computational point of view, both mχ and consilience degree should be
computed jointly, in order to reduce the number of partitions which are to be
examined.

5. Constructive Reinforcement

143

143

5.5.3 Intrinsic Exceptions, Consilience and Noise

Using reinforcement, an intrinsic exception or extensional patch can be easily defined
as a rule r with ρ = 0.5, i.e. it just covers one example e, or, in other words, it is
necessary for only one example. However we must distinguish between completely
extensional exceptions, when r does not use any rule from the theory to cover e, and
partially extensional exceptions when r uses other rules to describe e .

The following theorem shows that completely extensional exceptions should be
avoided to obtain consilient programs.

Theorem 5.20 If a worthy theory T for an evidence E has a rule r with ρ = 0.5,
and completely extensional, then T is not consilient.

PROOF. Just choose the partition T1 = T − r and T2 = T. Since ρ = 0.5 then r is
only used by one example er. Since it is a completely extensional exception, we
have that r does not use any rule from T1 to cover er, so ρ’(ri) = ρ(ri) for all ri ∈ T1.
Let n be the number of the examples of the evidence E. Hence, mχ(T1, E1) =

[mχ(T, E) · n − χ(er,T)] / (n−1) = [mχ(T, E) · n − ½] / (n−1) = [mχ(T, E) · n + mχ(T,

E) − mχ(T, E) − ½] / (n−1) = mχ(T, E) + [mχ(T, E) − ½] / (n−1).
From Definition 5.44, the disequality simplifies as follows:

Sχ(T1 ⊕ T2, E) =

mχ(T1, E1) · [card(E1) − card(E12)/2]+ mχ(T2, E2) · [card(E2) − card(E12)/2] =

[mχ(T, E) + [mχ(T, E) − ½] / (n−1)] · [(n−1) − (n−1)/2]+ mχ(T, E) · [n − (n−1)/2] =
mχ(T, E)·[(n−1) − (n−1)/2 + n − (n−1)/2]+[mχ(T, E) − ½] · [(n−1) − (n−1)/2] / (n−1) =

mχ(T, E) · [n] + [mχ(T, E) − ½] / 2
Since T is worthy, then mχ(T, E) ≥ 0.5., the left hand side

 Sχ(T1 ⊕ T2, E) ≥ mχ(T, E) · n = mχ(T, E) · card(E). �

In the same way, partially extensional exceptions are not convenient for consilience,
but a limit would depend on how many rules are been used by the exception, because
the separation would make the reinforcement of these rules decrease as follows ρ’(ri)

= 2·ρ(ri) − 1, by the corollary of Lemma 5.16.

In any case, not only intensionality (avoidance of exceptions) but consilience are
both very strict requirements in the presence of noise, because any piece of data
which is left as noise would be tried to be ‘conciliated’ with the rest of the theory,
sometimes in an artificial way.

However, if used correctly, reinforcement is a very powerful tool to control the
level of noise in a theory. This means that if we have any information or hint about
the expected noise ratio, we can adjust the percentage of examples covered by
extensional rules.

144 José Hernández Orallo - Doctoral Dissertation

 144

5.5.4 Reinforcement, Intensionality and Cross-Validation

Although the next chapter is devoted to the notion of intensionality, seen as
avoidance of exceptions, we advance some results for reinforcement. The idea of
intensionality is useful to distinguish between explanatory views of induction (and
abduction as a particular case) and non-explanatory induction. In the latter case the
goal is to describe compactly the evidence, but not to explain it. Moreover, there is a
strong relation between intensionality (or avoidance of exceptions) and hypothesis
stability.

In this section we will make the connection between intensionality (i.e. avoidance
of exceptions, as they were defined in the previous section) and cross-validation.
There are many variants of cross-validation (training-test split, leave-one-out or
deleted estimate or k-fold). The relation between leave-one-out cross-validation and
hypothesis stability was established by Devroye and Wagner [Devroye and Wagner
1979].

We will work with many-fold split, that is to say, we will take into account all the
possible splits in all the possible orders, to see the influence of intrinsic exceptions in
the theory. Let us denote with ne the number of rules r that just cover one example e.
In other words, if the example e had not appeared, the rule r would be useless. We
will make the following reasonable assumption: a natural learning algorithm is a
learning algorithm that does not add useless rules to the theory.

Let us define P(A,T,E,k) as the probability that the algorithm A gives the theory T
with the first k examples of the evidence E, considering all possible orderings of E.

Theorem 5.21 For any natural learning algorithm A,

P(A,T,E,k) ≤ 1 − [(n−ne)
n−k

 / n
n−k
]

with n = card(E).

PROOF. Let us denote with Ew the examples from E that are covered by a rule with
ρ = 0.5. Let w = card(E

w
), E

b = E− E
w and b = n−w. Obviously, w ≤ ne since there

can be examples covered by more than one exception rule. We denote with E1..k
and Ek+1..n the set of the first k examples and the rest of the n examples of a given
ordering of E, in other words, a split at position k. We define P

w
(E,k) as the

probability of E
w ∩ E

k+1..n ≠ ∅, i.e., the probability of having one exception
example in the second part of the split. By a simple combinatorial analysis, by
removing from the whole probability the probability of having all Ek+1..n from Eb,
this probability is:

P
w
(E,k) = [(w + b)

n−k
 − bn−k

] / n
n−k
 = 1 − [bn−k

 / n
n−k
]

Since b = n−w, we have

P
w
(E,k) = 1− [(n−w)

n−k
 / n

n−k
]

and w ≤ ne, then

5. Constructive Reinforcement

145

145

P
w
(E,k) ≤ 1− [(n− ne)

n−k
 / n

n−k
]

but P(A,T,E,k) ≤ Pe
(E,k) because A is natural. �

The result can be understood that one should avoid exceptions, in order to have
P

w
(E,k) = 1. For instance, given a theory with 3 exception rules for an evidence of

100 examples, we have that the probability that the theory could be found with
eighty examples is Pw

(E, 80) ≤ 1−9720/10020 = 0.46.
The ideas of intensionality have been used in an incremental learning system

[Hernández-Orallo and Ramírez-Quintana 1998] using Curry as a representation
language (a logic functional programming language based on narrowing with some
higher-order constructs). The results demonstrate that the intended hypothesis is
found sooner than when using the MDL principle, because the latter allows the
introduction of patches (exceptions) in an incremental session.

A deeper reflection on Theorem 5.21 shows that stability of the whole theory is a
very strict requirement. If it is substituted by partial stability, i.e., how many rules of
the theory can be obtained in early learning steps, the result may be quite different.
Moreover, the connection between mean course and cross-validation would be more
enlightening, although more difficult to obtain.

In the end, Theorem 5.21 is just an example of the connections that could be
established between model selection methods for constructive languages, using
reinforcement as a measure in a very differently way that other comparisons based
on error estimation and attribute complexities [Kearns et al 1999]. In this section it
has been done with a particular variant of cross-validation. In section 5.7 we will
address the relation with the MDL principle.

5.6 Analogy, Consilience and Reinforcement

Although induction and abduction are recognised as the basic processes in scientific
discovery, there is an inference process that is the fundamental mechanism for
obtaining consilient theories, analogy. The reason is simple: as we commented in
chapter 2, analogy extracts a common superstructure between two situations, and
this ‘shared’ superstructure is reinforced by both situations.

If we restrict analogy under the following scheme:

 Analogy:

 Background Knowledge: b entails E1 and c entails E2.

 Evidence: E1 and E2.

 Process: Extract similarities between b and c into a new superstructure a
in order to obtain a consilient theory composed of a, b’ and c’.

We can state that analogy favours consilience.

146 José Hernández Orallo - Doctoral Dissertation

 146

Theorem 5.22 If b entails E1, c entails E2, b does not entail E1 and c does not
entail E2, the new theory T ={ b’, c’, a } such that T1= { b’,a }= E1 and T2={c’,a }
= E2, and no other proper subset of T covers any example, is consilient.

PROOF. Since no other proper subset of T covers any example but T1 and T2,
then there is only one possible partition to study consilience {T1, T2}. Since E1
and E2 are non-empty, then mχ(a, E1) < mχ(a, E1 ∪ E2) > mχ(a, E2), and then Sχ(T1

⊕ T2, E) < mχ(T, E1 ∪ E2) · card(E1 ∪ E2). From Definition 5.45, T is consilient. �

Once again, analogy, as it has defined, allows the introduction of fantastic concepts.
In order to talk about a ‘real’ analogy, some information must be shared between b
and c and moved into a. In other words, b’ and c’ should be simplified with respect to
b and c. This can be related with reinforcement and extended from simple
components such as b and c to sub-theories composed of many rules or components.

Definition 5.47 Non-fictitious Analogy:

Consider a theory T covering E, i.e., ∀e∈E, T = e, which contains two sub-
theories T1 and T2, which cover E1 ⊂ E and E2 ⊂ E, respectively. A non-fictitious
analogy is the addition to T of a new super-theory A, and the modification of T1

and T2 into T’1 and T’2 such that T’ = ((T / T1) / T2) ∪ A ∪ T’1 ∪ T’2 covers E, i.e.
∀e∈E, T’= e, with the additional conditions that mχ(T’, E) ≥ mχ(T, E) and T’ must
be consilient with respect to E1 and E2.

Note that if T’1 = T1 and T’2 = T2 there cannot be analogy. This definition is more
accordant with classical computational approaches to analogy [Kling 1971] [Winston
1992].

5.7 Extended and Balanced Reinforcement

With the final measure introduced in section 5.4 there is still a tricky way of
increasing reinforcement: joining rules. If a high-level representation language allows
very expressive rules, larger rules can be made in order to stand for the same that was
expressed with separated rules, with the advantage of increasing reinforcement and
mean course:

Example 5.6

For instance, the following extended functional programs are equivalent:

Ta = { r1 = { f(X,a) → g(b) },

 r2 = { f(X,c) → i(d) } }

Tb = { r = { f(X,Y) → if (Y=a) then g(b)

 if (Y=c) else i(d) } }

but Tb would be more reinforced than Ta.

5. Constructive Reinforcement

147

147

In order to maintain the granularity of the theory there are two options: (1) the
introduction of a factor directly related with the number of rules, and (2) the
introduction of a factor inversely related with the syntactical length of each rule. We
will choose this second option to clarify that this modification still makes our
measure very different from a prior distribution such as the MDL principle.

With length(r) we will denote the length of a rule r for the concrete language
which would be used. The only restriction for length is that for all r, length(r) ≥ 1.
Thus we extend the definitions of section 5.4:

Definition 5.48 The extended pure reinforcement is defined as:

ρρ*
(r) = ρρ(r) / length(r).

The extended normalised reinforcement ρ*
(r) and the extended course χ*

(e) are
defined in the obvious way by using ρρ*

(r) and ρ*
(r), respectively.

With this extension, it is easy to show that —in the limit— that compression is an
excellent principle for increasing reinforcement:

Theorem 5.23 If the data E are infinite and a theory T is finite, the mean course
mχ*

(T, E) = 1.

PROOF. Given some infinite data as evidence E = { e1, ..., en }, without loss of
generality, consider that T can be exclusively composed of two rules: r1, which
covers all E except ei and, independently, r2, which covers ei. The reinforcements are
ρ*
(r1) = (1−2(1−n)/length(r1)) and ρ*

(r2) = (1−2−1/length(r2)) and the mean course mχ*
(T, E) =

[(n−1) � (1−2(1−n)/length(r1)) + (1−2−1/length(r2))] / n. For infinite data, we have that limn→∞

mχ*
(T, E)= 1. �

The result is independent of the last extension given by Definition 5.48. In general,
the theorem shows that maximum reinforcement matches with maximum
compression in the limit (simply because both are saturated). However, when the
data are finite we have many cases where they differ (significantly when the evidence
is incompressible). The most blatant case occurs when some exception is covered
extensionally (as r2, which covers di in the proof of Theorem 5.23) and there is an
important loss of reinforcement vs. a slight loss of compression. The following
example illustrates this point:

Example 5.7

148 José Hernández Orallo - Doctoral Dissertation

 148

Consider the following evidence e1–e10:

 E = { e1: e(4) → true, e2: e(12) → true,

 e3: e(3) → false, e4: e(2) → true,

 e5: e(7) → false, e6: e(7) → false,

 e7: e(20) → true,e8: e(0) → true,

 e9: o(3) → true, e10: o(2) → false }

where natural numbers are represented by using the functor s as the symbol for
successor, e.g. s(s(s(0))) means 3. The length (denoted l) of a rule is computed as
1+nf+nv, where nf means the number of functors (including constants as functors with
arity 0) and nv being the number of variables.

 From here, the following theories are evaluated:

 : l ρρ ρρ* ρ*

 Ta= {e(s(s(X)) → e(X) : 7 7 1 0.5

 e(0) → true : 4 5 1.2 0.5647

 e(s(0)) → false : 5 3 0.6 0.3402

 o(s(s(s(0)))) → true : 7 1 0.1429 0.0943

 o(s(s(0))) → false : 6 1 0.1667 0.1091}

The extended courses are χ*(e1, e2, e4, e7, e8) = 0.5 � 0.5647 = 0.28235, χ*(e3, e5, e6) =
0.5 � 0.3402 = 0.1701, χ*(e9) = 0.0943 and χ*(e10) = 0.1091.

The mean extended course mχ*’ is 0.2125.

 : l ρρ ρρ* ρ*

 Tb= {e(s(s(X)) → e(X) : 7 7 1 0.5

 e(0) → true : 4 5 1.2 0.5647

 e(s(0)) → false : 5 3 0.6 0.3402

 o(s(s(X)) → o(X) : 7 2 0.2857 0.1797

 o(0) → false : 4 1 0.25 0.1591

 o(s(0)) → true : 5 1 0.2 0.1294}

The extended courses are χ*(e1, e2, e4, e7, e8) = 0.5 � 0.5647 = 0.28235, χ*(e3, e5, e6) =
0.5 � 0.3402 = 0.1701, χ*(e9) = 0.1797 � 0.1294 = 0.02325 and χ*(e10) = 0.1797 � 0.1591
= 0.02859.

5. Constructive Reinforcement

149

149

The mean extended course mχ*’ is 0.1974.

 : l ρρ ρρ* ρ*

 Tc= {e(s(s(X)) → e(X) : 7 9 1.2857 0.5898

 e(0) → true : 4 6 1.5 0.6464

 e(s(0)) → false : 5 4 0.8 0.4257

 o(X) → not(e(X)) : 6 2 0.3333 0.2063

 not(true) → false : 4 1 0.25 0.1591

 not(false) → true : 4 1 0.25 0.1591}

The extended courses are χ*(e1, e2, e4, e7, e8) = 0.5898 � 0.6464 = 0.3813, χ*(e3, e5, e6) =
0.5898 � 0.4257 = 0.2511, χ*(e9) = 0.2063 � 0.5898 � 0.4257 � 0.1591 = 0.00824 and
χ*(e10) = 0.2063 � 0.5898 � 0.6464 � 0.1591 = 0.0125.

The mean extended course mχ*’ is 0.2681.

Note that the lengths (l(Ta)=29, l(Tb)=32, l(Tc) = 30) would not give many hints about
which theory to select.

The example also shows the advantages of this approach for explanation-based
learning. Since all the data must be explained, if a part is left in an extensional way (or
unrelated with the rest), it is penalised. On the other hand, we have seen in the
preceding sections that fantastic concepts are also avoided, so it results to be a balanced
criterion for a more reasonable degree of intensionality of theories, without falling
into fantasy.

Regarding Tc of Example 5.7, this measure can be adapted to situations where a
more compensated theory is required, by using a geometric mean instead of an arithmetic
mean. In addition, and concerning Ta, if exceptions (extensional parts) are not
admitted at all, any theory where a fact has a course value less than the mean divided
by a constant can be discarded. More formally,

Definition 5.49 A theory T is k-balanced with respect to an evidence E if:

¬∃ e ∈ E : χ*
(T, e) < k · mχ*

(T, E)

where k is a value between 0 a 1. If k=1 all the evidence must have exactly the same
course, and if k=0 every theory is balanced.

The use of a intermediate value (e.g. 0.5) suggests the triggering of theory revision
in an incremental framework in order to integrate (or reconcile) the example that has
low course with the theory.

150 José Hernández Orallo - Doctoral Dissertation

 150

5.8 Rewarded Reinforcement

Up to this moment we have only dealt with positive (and absolute) reinforcement.
An example is covered or not by the theory. In reinforcement learning, though, it is
usually assumed that the learner receives different reward and penalty values for its
actions. In other words, prediction hits can receive different degrees of reward and
prediction errors (including novelties and anomalies) can receive different degrees of
penalty (or negative reward).

Usually, this broader view of reinforcement is suitable for frameworks where
reasoning about action is necessary. The rewards are assigned depending on the
actions that the agent performs for each situation. Apart from Markov decision
processes [Kearns and Singh 1999], other more expressible temporal languages are
used for representation, such as event calculus or situation calculus [Kowalski and
Sachi 1997]. The important issue here is that our model selection measures can be
used for these high-level representations. The value of reinforcement can be
understood as the prediction reliability of the following situation sn+1 after every
possible action that can be performed in a certain situation sn. The task of the system
seems to be to select the one with the greatest reward. With this first approach, in the
case the result of the action matches with the evidence, a positive hit happens with
the predicted reward. However, in the case a prediction error occurs, the action
might have no awful consequences (no penalty), but, in some cases, it may be fatal.
The question is how ontology and ‘hedonism’ must be combined. It is commonly
accepted in psychology the claim that hedonism motivates ontology, and this is
stronger the earlier the stage of development of a cognitive system. In my opinion,
this motivation does not imply that they must be mixed. Moreover, rewards should
also be learned because they may change.

Hence, the choice of the best action must take into account both the reliability of
the prediction (i.e. the reinforcement) weighed with the reward, not the action with
the best reward alone (because it may be a very weak guess).

Summing up, the decision of which action should be taken would depend on:
• the reliability of recognising the situation where the agent is actually embedded.
• the reliability of predicting the consequence of a given action in that situation.
• the reward (or penalty) of the consequence.

This implies degrees of reliability in the evidence. This degree may come from
different reliabilities of the sensors of the system or from intermediate recognition or
sensor pre-processing subsystems. We will take this into account in the following
way: every fact of the evidence is assigned a real number as a reliability degree, −1 ≤
df ≤ 1. In this framework, the completely reliable positive examples are assigned a
value of df = 1 and the completely reliable negative examples are assigned a value of
df = −1.

5. Constructive Reinforcement

151

151

Definition 5.50 The 'grounded' course χ'(f) of a given fact f with respect to a theory
is computed as the normal course χ(f) multiplied by the reliability degree of f.
More formally, χ'(f) = χ(f) · df.

In the previous section we considered the length of rules. Another straightforward
extension to our approach is to consider the length of the examples, too. This can
also be incorporated in the same way as the reliability degree.

Finally, Definition 5.50 introduces negative values for df. Nonetheless, they are
still considered in a positive way for computing ρ. The next section discusses how to
incorporate this negative evidence into the theory.

5.9 External Inconsistencies. Negative Reinforcement

Hitherto we have only considered theories which are completely consistent with the
evidence. Whenever an uncovered or inconsistent example was found, the theory
was remade (patched) in order to cover the new positive example (novelty) or
uncover the new negative example (anomaly).

In some contexts, an anomaly, if not patched, should make the theory be rejected,
as it has been commented in the previous sections, where structural patches should
also be avoided. But in other contexts (approximate learning, noisy data, etc.) a single
anomaly should not force the revision of the whole theory.

A first idea to handle anomalies is to compute the course of positive examples and
compute the course of negative examples that are covered. An optimality criterion
for the theory could be given by the positive mχ minus the negative mχ. This could be
made by using Definition 5.50. Concretely,

Definition 5.51 The (+/−−−−) course χ(f) of a given fact f with respect to to a theory
is computed as the normal course χ(f) multiplied by 1 if f ∈ E+ and −−−−1 if f ∈ E−.

However, this measurement would not allow to know which rules are being affected.
Morever, it is somehow paradoxical because anomalies that occur through few very
reinforced rules are much more taken into account than anomalies that occur
through many reinforced rules or non-reinforced rules. In some way, Definition 5.51
measures the hardness for conciliating the anomaly, i.e., the difficulty to revise the
theory to account for the new evidence without reorganising the rest of the theory.
Or, seen in other way, how plausible is it to expect that f is noise, or, in other words,
a measure of surprise, from values close to 0 (no surprise) to values close to −1 (very
surprising).

If the theory is not to be remade or we want to detect which rules are affected, we
must propagate negative reinforcement into the rules, too. A much more insightful
extension is to re-consider the reinforcement of each rule in the following way.

152 José Hernández Orallo - Doctoral Dissertation

 152

Definition 5.52 The positive pure reinforcement ρρ+
(r) of a rule r from a theory

T with respect to some given positive evidence E+
 = {e

+
1, e

+
2, …, e

+
n} is defined

as:

ρρ+
(r) = Σi=1..n card(Proofr(e

+
i,T))

Definition 5.53 The negative pure reinforcement ρρ+
(r) of a rule r from a theory

T with respect to some given negative evidence E−
 = {e

−
1, e

−
2, …, e

−
n} is defined as:

ρρ−−−−(r) = Σi=1..n card(Proofr(e
−−−−
i,T))

Both measures are identical to Definition 5.39. The question is how to weigh positive
and negative pure reinforcement in a single value. One option is to normalise and
then to weigh them, formalised in the following way:

Definition 5.54 The (normalised) positive reinforcement is defined as:

ρ+(r) = 1 − 2−ρρ+(r)

Definition 5.55 The (normalised) negative reinforcement is defined as:

ρ−−−−(r) = 1 − 2−ρρ−−−−(r).

And finally,

Definition 5.56 The (normalised) reinforcement is defined as:

ρ1(r) = ρ+(r) − ρ−−−−(r).

It is obvious that this measure matches with Definition 5.40 if no negative evidence
is given. This is a very strict way of considering negative evidence because if a rule
has a single negative example covered by it, its reinforcement is necessary less than
0.5, so every positive evidence which is covered by it should be more optimally
covered by an extensional patch.

Moreover, there can be ‘independent’ properties such as “X + Y = Y + X” that
can be used for negative evidences, and they would be highly penalised by that kind
of measurement unless a smoothing factor is considered. In some cases, an ‘auxiliary’
rule could be distinguished for the ‘guilty’ rule because auxiliary rules often do not
cover any evidence alone. However, this heuristic is not valid in general.

Another option is to subtract them and then normalise them. More formally,

Definition 5.57 The pure reinforcement is defined as:

ρρ2(r) = ρρ+(r) − ρρ−−−−(r).

And normalised reinforcement ρ2(r) is obtained, by normalising, in the initial way.
This minimises the problem but, in the end, it is just a question of how to weigh
positive and negative reinforcement.

In fact, the best solution is to consider separately each (+/−) course χ(f), and both
variants of ρ+(r) and ρ−−−−(r), in order to know whether and where the theory should be
revised. Another derived measure of course could be given as:

5. Constructive Reinforcement

153

153

Definition 5.58 The course χ0
(f) of a given fact f with respect to a theory T is

defined as:

χ0
(f) = max S⊂Proof(f,T) { Πr∈S ρ+

(r) } if f ∈ E+

 −max S⊂Proof(f,T) { Πr∈S ρ−−−−(r) } if f ∈ E−−−−

And the mean mχ0
(f) is computed as ∑f ∈ Eχ0

(f) / card(E
−−−−)

Let us show the use of these new measures for the same positive and negative
evidence than Example 5.2:

Example 5.8

Consider the the background theory B = { s(a,b), s(b,c), s(c,d) } and the evidence

E = { e+1: r(a,b,c), e+2: r(b,c,d), e+3: r(a,c,d), e+4: r(a,b,d), e+5: r(a,d,c), e--1: ¬r(b,a,c),
e
--
2: ¬r(c,a,c) , e--2: ¬r(a,d,d) }:

T1 = { r1 = r(X,Y,Z) }: ρ+(r1) = 1 − 2−−−−5 = 0.96875

 ρ−−−−(r1) = 1 − 2−−−−3 = 0.875

 ρ1(r1) = ρ+(r1) − ρ−−−−(r1)

= 0.09375

 ρ2(r1) = 1 − 2−−−−(5−−−−3) = 0.75

 mχ0
(T1, E) = (0.96875 · 5 − 0.875 · 3) / 5 = 0.44

 mχ1
(T1, E) = (0.09375 · 5) / 5 = 0.09375

 mχ2
(T1, E) = (0.75 · 5) / 5 = 0.75

T2 = { r2 = r(X,c,Z) ρ+(r2) = 1 − 2−−−−2 = 0.75

 r3 = r(a, Y,Z) ρ−−−−(r2) = 0

 ρ1(r2) = ρ+(r2) − ρ−−−−(r2)

= 0.75

 ρ2(r2) = 1 − 2−−−−(2−−−−0) = 0.75

 ρ+(r3) = 1 − 2−−−−4 = 0.9375

 ρ−−−−(r3) = 1 − 2−−−−1 = 0.5

 ρ1(r3) = ρ+(r3) − ρ−−−−(r3)

= 0.4375

 ρ2(r3) = 1 − 2−−−−(4−−−−1) = 0.875

 mχ0
(T2, E) = (0.9375 · 4 + 0.75 · 1 − 0.5 · 1) / 5 = 0.8

 mχ1
(T2, E) = (0.4375 · 3 + 0.75 · 2) / 5 = 0.5625

 mχ2
(T2, E) = (0.875 · 4 + 0.75 · 1) / 5 = 0.85

The first theory is more positively reinforced but has 3 anomalies whereas the second
one is more extensional but it has only 1 anomaly. The three different measures give
better results for T2 than for T1. mχ1 is very strict with anomalies, mχ2 very lax and

154 José Hernández Orallo - Doctoral Dissertation

 154

mχ0 finds a compromise between the other two. For revision purposes, though, the
measure ρ1 is more illustrative to see which rule should be addressed first.

5.10 Reinforcement and Deduction

Reinforcement has almost always been related with induction in the literature, at least
always with learning algorithms. However, a deductive inference can establish new
connections and, consequently, the theory’s ontology and robustness, are also
increased. There are two different cases to consider here, omniscient and non-
omniscient systems. The existence of new deductive connections in non-omniscient
systems is intuitive and necessary, as we saw in the previous chapter. However, for
omniscient systems, are there any new connections to establish? The answer is no,
but this does not mean that the ‘explicitation’ of deductive consequences could not
increase the whole reinforcement in both omniscient and non-omniscient systems.
Let us first see this case:

5.10.1 Derived Rules Explicitation

There is an important trait of reinforcement propagation that has been latent in the
character of the theories we are dealing with. Theories are usually convenient and
reduced representations of the evidence they cover, and reinforcement is distributed
among these explicit rules and not all their derivable consequences.

This situation is especially appropriate for understanding jointly the function of
both induction and deduction in the construction of an ontology. As well as
induction adds new rules to a theory, deduction must be used to derive new
theorems from a theory, which can act as properties or rules that are adjoined
explicitly to it.

Consequently, new derivations can increase the reinforcement of the theory with
respect to the same evidence. For instance, if a rule a entails E1 and b entails E2. A
new rule c may be derived from a and b such that c entails most of E1 and E2.

Note that it is independent to whether the rule is derivable from a and b under the
same or different semantics where the theory operates. The relevance is that c is left
explicit, i.e., it composes the theory.

Consider the following example:

Example 5.9

Given the evidence

E = { e+1: p(a, c), e+2: p(a,b), e+3: p(c,a), e+4: r(c,c) }

and the following Horn theory

T1 = { r1 = p(X,Y) :- r(X,X). ρ(r1) = 1 − 2−−−−3 = 0.875

5. Constructive Reinforcement

155

155

 r2 = r(a,a). ρ(r2) = 1 − 2−−−−2 = 0.75

 r3 = r(a,b). ρ(r3) = 0

 r4 = r(b,c). ρ(r4) = 0

 r5 = r(c,c). } ρ(r5) = 1 − 2−−−−2 = 0.75

the theory is specialised by the following derivations (resolution)

 p(X,Y) :- r(X,X)

 r(a,a)

 p(a,Y)

and

 p(X,Y) :- r(X,X)

 r(c,c)

 p(c,Y)

and added to the theory:

T’1 = { r1 = p(X,Y) :- r(X,X). ρ(r1) = 1 − 2−−−−3 = 0.875

 r2 = r(a,a). ρ(r2) = 1 − 2−−−−2 = 0.75

 r3 = r(a,b). ρ(r3) = 0

 r4 = r(b,c). ρ(r4) = 0

 r5 = r(c,c). ρ(r5) = 1 − 2−−−−2 = 0.75

 r6 = p(a,Y). ρ(r6) = 1 − 2−−−−2 = 0.75

 r7 = p(c,Y). } ρ(r7) = 1 − 2−−−−1 = 0.5

Note that the reinforcement of the original rules are not modified by these derivations.
However, the courses of some examples are increased due to the use of r6 alone for e+1
and e+2. This happens because r1 is somehow fantastic for the evidence, an artificial way
to conciliate apparently sparse examples.

A question that is suggested by the preceding example, especially the case of r7, is
whether it is intuitive to assign to r7 a value of reinforcement less than the rules where
it derives from. In other words, if r1 has ρ(r1) = 0.875 and r2 has ρ(r2) = 0.75 we have
that r1,r2 = r7 but ρ(r7) = 0.7. This is contrary to what is given by Carnap calculus.

This apparent paradox is dissipated if one only understand the whole mean course
as a measure of plausibility and nothing more. In other words, the reinforcement of a
rule is only a measure of its use and it cannot be seen as a measure of independent
plausibility and even less of its probability.

There are some ways to give a measure of plausibility, different from
reinforcement. A first idea is to conceive course as plausibility, given the following
equation:

156 José Hernández Orallo - Doctoral Dissertation

 156

Definition 5.59 For every rule s such that T = s we define its plausibility as:

P1(s) = max S⊂Proof(s,T) { Πr∈S ρ (r) }
which is like Definition 5.42 but applied to rules as well as evidence. Or alternatively,

Definition 5.60 For every rule s such that T = s we define its plausibility as:

P2(s) = max S⊂Proof(s,T) { minr∈S ρ (r) }
Definition 5.60 matches with many works about logics with uncertainty values. For
instance, if C represents the certainty of a given fact, C(p ∧ q) = min (C(p), C(q)) and
C(p ∨ q) = max (C(p), C(q)). On the contrary, Definition 5.59 resembles some other
popular theories of uncertainty when C is measured between 0 and 1, C(p ∧ q) =
C(p) � C(q) and C(p ∨ q) = 1 − (1 − C(p)) � (1 − C(q))

These annotated plausibility can have a partial use to guide revisions of the theory,
and it is more important as long as the theory is getting larger, and parts of the theory
are instances or specialisations of more general theories that must be explicitly stated
for the sake of efficiency and shortening of proofs. We will get back on its use in the
following subsection.

However, for the whole theory, there is no need for a new whole plausibility
criterion, because mχ is robust to deduction. This is even more justified because
deduction cannot decrease the whole course of the theory, as the following theorem
shows:

Theorem 5.24 Given any theory T and any evidence E, if any rule r is added such
that T = r, then mχ(T, E) ≤ mχ(T ∪ { r }, E).

PROOF. By the definition of χ(T, e) = max S⊂Proof(e,T) { Πr∈S ρ (r) }it is obvious that
χ(T, e) ≤≤≤≤ χ(T ∪ { r }, e). �

The things are different if we consider negative reinforcement, at least for mχ0
(T, E),

which can be reduced by a derivation which jointly covers more negative examples
than its premises. For, mχ1

(T2, E) and mχ2
(T2, E) the previous theorem also holds. In

fact, in these latter two cases, it is usual than a specialisation (such as Example 5.8)
highly increases reinforcement, something that it is more accordant with Carnap’s
Calculus.

However, the question of which representation is the best for a given evidence,
discussed in the previous chapter, can be complemented by the use of these new
measures.

In the previous chapter we discussed about minimising LT(e) for any example e of
the evidence (i.e. shortening proofs), giving a measure of optimality as optDS(T| E) =
argminT(Σe∈E Cost(e|T)). In the context of reinforcement, we have seen that the best
theory was argmaxT(mχ(T, E)). Given a non-optimal theory constructed by induction,
we can still consider deduction for improving it, because we can express the same

5. Constructive Reinforcement

157

157

theory with more derived rules or a specialised version of it. Since induction is
usually a harder problem than deduction, it seems logical to profit any increase that
could be obtained by deduction before revising the theory by inductive methods.

According to reinforcement, we can define different variants of optimal
specialisations of a theory and representations by using exclusively deductive
inference:

Definition 5.61 Optimal Specialisation of a Theory:

A theory T is an optimal specialisation for E if there does not exist another T’ such
that T = T’ such that mχ(T, E) < mχ(T’, E).

Definition 5.62 Optimal Strict Specialisation of a Theory:

A theory T is an optimal strict specialisation for E if there does not exist another T’
such that ∀r ∈ T’, T = r and T ⊂ T’ such that mχ(T, E) < mχ(T’, E).

Definition 5.63 Optimal Representation of a Theory:

A theory T is an optimal representation for E if T = E and there does not exist
another T’ such that ∀e T = e ↔ T’ = e and mχ(T, E) < mχ(T’, E).

Definition 5.64 Optimal Strict Representation of a Theory:

A theory T is an optimal strict specialisation for E if T = E and there does not exist
another T’ such that ∀e T = e ↔ T’ = e and ∀r ∈ T’, T = r and T ⊂ T’ such that
mχ(T, E) < mχ(T’, E).

The difference between non-strict and strict variants is important. For instance, T
= { p(X,a,b). p(c,Y,c). r(b). r(c). } implies (under the close-world assumption) T’ = {
p(X,a,b). p(c,Y,c). p(c,a,Z) :- r(Z). r(b). r(c). } but T ≠ { p(c,a,Z) :- r(Z). }.

In many cases, these optimisations could be automatised. In fact, some inductive
algorithms work in the previous way (top-down). They construct the most general
theory and specialise it by deduction in order to arrive to the optimal (or an
acceptable) one.

5.10.2 Non-Omniscient Deduction

Inside non-omniscient systems, the relevance of deduction and the possibilities of
increasing reinforcement are much more important than in the case of omniscient
theories.

Imagine the situation of an axiomatic theory T composed of one part (or set of
rules) T1 such that entails E1, and a second part T2 that entails E2. No relation is still
established between T1 and T2. Imagine that a new theorem is found that establishes
that T1 entails T2, or, in other words, T2 is a special case of T1.

158 José Hernández Orallo - Doctoral Dissertation

 158

Many rules of T1 can be reinforced now by E2 too by, according to the formula
ρρ(r) = Σi=1..n card(Proofr(ei,T)), and, consequently, the plausibility of the whole theory
increases, according to χT(f) = max S⊂Proof(e,T) { Πr∈S ρ(r) }. This situation is usual in
physics, whenever two unrelated explained phenomena are connected by a theory.

The interpretation of new connections is different depending on the course of
each separate theory. For instance, if T1 is much more reinforced than T2, the
connection can be interpreted as an explanation for T2, which originally lacked the
support that T1 provides. In this case, the measures of plausibility which were
presented in the previous subsection (P1 and P2) may be useful to propagate
reinforcement downwards, to recognise the reinforcement that T2 deserves.

On the contrary, if T2 is much more reinforced than T1, the connection is then
understood as further support for T1.

Both cases are independent to the use of T2 in an explicit way after the
connection. This would depend on the time complexity of both T1 and T2. In many
cases, T2 could be much more efficient than T1 or even can give better value for χ
than T1, as in Example 5.9.

Additionally, a new established connection can 'consiliate' a theory that was
initially not consilient, because the evidence was explained by separate theories which
are now related, as we saw in section 5.6 and 5.7.

Finally, a new connection can be made with previously independent evidence. For
instance, consider the case where T1 entails E1, and T2 entails E2 and E3. A new
deductive connection establishes that T1 also entails E2. This must force the revision
of the theory, because there may be a better theory than T2 for covering E3. More
extremely, consider than it is also found that T2 also entails E3. Then T2 should only
be maintained if it covers better (according to some optimality criterion) the evidence
E2 and E3. In many other cases, it should be removed because it is no longer
necessary. It is necessary to detect the cases when, following the example, mχ(T1, E1
∪ E2 ∪ E3) ≥ mχ(T1 ∪ T2, E1 ∪ E2 ∪ E3) and consider whether T2 should be
preserved. This process would be similar to garbage collection, and finally removes
from explicit memory the properties and rules that are no longer used.

5.10.3 Reinforcement, Consilience and Interestingness in Mathematics

Finally, there are some questions about mathematical utility and interest that can be
enlightened by the use of reinforcement, more specifically, by the use of consilience.
Although consilience was introduced by Whewell for scientific theories, we can see
that this notion applies as well for mathematical theories.

For instance, Bundy et al. propose a system for inventing mathematical definitions
and conjectures [Bundy et al. 1998]. They use a weighed measure of parsimony and
clarity, but it is not sufficient to distinguish those concepts that the authors consider
interesting. For example, they find attractive the concept of ‘re-factorable numbers’,

5. Constructive Reinforcement

159

159

found by the system, which is defined as “those integers for which the number of factors is
itself a factor of the integer”. This can be easily understood as a very reinforced and
consilient concept, since the same rules are repeatedly used in the same definition.

The idea is not far from any theory that is originally constructed from an evidence
but, after a time, it finally becomes a very theoretical system, where deduction is also
as important as experimentation and induction. The question Hintikka raised open in
the seventies [Hintikka 1970a] is still relevant today:

[...] But even within deductive systematization there are many
other important properties of theories which we will not directly
deal with here. For example, it is claimed that theoretical concepts
may in some pragmatic sense give us deeper understanding and
better explanation of the phenomenon under investigation that do
statements in the vocabulary of λ only. We certainly agree with
this. Moreover, it may (or may not) be the case that theories using
auxiliary concepts are heuristically more fruitful, more manageable
and suggestive, and also simpler (in some sense) than purely
observational statements. Again, there may be strong ontological
concepts like fields or unconscious wishes, for example, because
we believe that there are such entities and that why can be studied
for their own sake.

Despite the restricted scope of our discussion, we believe that we
have already brought out something interesting. There are two
main aims which auxiliary terms are typically supposed to serve.
They are (observational) richness and economy. However, in the
literature of philosophy of science we find next to no insights as
to how they serve these purposes, and not even much indication
that they in fact succeed in doing so.

I think that both the information gain measure of the previous chapters and the
reinforcement theory of this one, give many results about how auxiliary concepts
serve these purposes, and a support that they in fact succeed in doing so.

5.11 Reinforcement as a Theory of Confirmation

In chapter 2, the two different approaches from two philosophers and logicians from
the Wiener Kreis were discussed. A quantitative concept of degree of confirmation,
as a value between 0 and 1 for a hypothesis given an evidence, was developed by
Carnap, who associated it, as seen, with a notion of probability. On the contrary,
Hempel introduced a qualitative concept of confirmation, i.e., a Boolean relation
between hypothesis and evidence, in the way that E confirms H or E does not
confirm H.

160 José Hernández Orallo - Doctoral Dissertation

 160

In the previous section we have included two different functions P1 and P2 which,
along with ρ and χ, could be used as a quantitative measure of confirmation,
somehow in between Carnap and Hempel.

In particular, they are compliant with some of Hempel’s adequacy conditions, but
in a quantitative way:

(H1) Entailment condition: any sentence which is entailed by an observation report
is confirmed by it.
(H1.1) Any observation report is confirmed by itself.

In other words, evidence is not questioned by the theory of reinforcement. The
plausibility of e is maximum if e ∈ E+.

(H2) Consequence condition: if an observation report confirms every one of a class
K of sentences, then it also confirms any sentence which is a logical
consequence of K.
(H2.1) Special consequence condition: if an observation report confirms a hypothesis H, then it

also confirms every consequence of H.

(H2.2) Equivalence condition: if an observation report confirms a hypothesis H, then it also
confirms every hypothesis which is logically equivalent with H.

(H2.3) Conjunction condition: if an observation report confirms each of two hypotheses,
then it also confirms their conjunction.

Reinforcement is partially accordant with H2 and H2.1, although this depends of how
many elements there are in K and their particular reinforcement values. Obviously it also
depends of which of the two functions (P1 or P2) is chosen. On the contrary, H2.2 is
not compatible with the theory developed in this chapter because the form (explicit
representation) is important for reinforcement. Finally H2.3 is partially followed,
provided both are consistent, although in any case the value is somehow minimised
by the conjunction, depending on P1 (product) or P2 (min).

(H3) Consistency condition: every logically consistent observation report is logically
compatible with the class of all the hypotheses which it confirms.
(H3.1) Unless an observation report is self-contradictory, it does not confirm any

hypothesis with which it is not logically compatible.

(H3.2) Unless an observation report is self-contradictory, it does not confirm any
hypotheses which contradict each other.

This adequacy condition has been included (in a quantitative way) by the fact that
only positive evidence distributes positive reinforcement and the view that negative
evidence distributes negative reinforcement.

(H4) Equivalent condition for observations: if an observation report B confirms a
hypothesis H, then any observation report logically equivalent with B also
confirms H.

This adequacy condition is completely fulfilled by the theory of reinforcement.

5. Constructive Reinforcement

161

161

(H5) Converse consequence condition: if an observation report confirms a hypothesis
H, then it also confirms every formula logically entailing H.

This is the base for reinforcement propagation, although this confirmation is
quantitative and greater as long as more evidence confirms each part of the theory.

The following classical paradoxes (from [Holland et al. 1986]) are also avoided by
the theory of reinforcement. The first one can be stated by the fact that the
proposition “All ravens are black” is confirmed by observations of ravens that are
black. But the statement “All ravens are black” is formally equivalent to the
statement “All nonblack things are nonravens” (Adequacy condition H2.2). The
latter proposition would be confirmed by a white shoe. Nonetheless, this does not
happen for reinforcement, since the form of the theory is important and more rules
are necessary for expressing “all nonblack things are nonravens”, apart from being of
little use for covering the evidence.

The other paradox is the famous “grue paradox” [Goodman 1965]. Define “grue”
as “green before time t and blue otherwise”. Then observing a green emerald seems
to confirm equally well both “All emeralds are green” and “All emeralds are grue”
(assuming t is still in the future). According to Goodman, from a syntactic
perspective it is hard to see why “All emeralds are green” is the most attractive
conclusion. However, there are syntactic criteria that solve this problem. A simplicity
criterion gives more plausibility to “All emeralds are green” than to “All emeralds are
grue” because the first one is shorter to describe (the second one must include the
definiton of grue). In the same way, the theory of reinforcement (although is partially
a semantic criterion) is also free from this paradox.

In my opinion, a quantitative (but not probabilistic) way is the only way to include
both H2 (top-down) and H5 (bottom-up). As a result, reinforcement is a theory
between the MDL principle and Popper’s informativeness, which is also useful for
deduction, induction, analogy and abduction.

5.12 Reinforcement and Information Gain

As we have seen, different measures based on reinforcement (especially mean
course) can act as plausibility criteria. On the contrary, Information Gain was a
measure of effort, of resource investment, that was only partially related to
plausibility. It is precisely the combination of a plausibility criterion and a gain
criterion which fully exploits the possibilities of both theories.

Let us first study the relationship between reinforcement and information gain
and then their combination.

162 José Hernández Orallo - Doctoral Dissertation

 162

5.12.1 Reinforcement vs. Gain

For the case of induction, when we analyse the information gain of a theory with
respect to an evidence, there are two special cases where both measurements are
positively related. The first case is given when the theory which has been induced is
completely extensional, namely, T = E. In this case, G(T | E) = 0 and mχ(T, E) = 0.5,

both being the minimum value of both measures.

A quite different case is when T highly compresses the evidence. As we saw in the
previous chapter, G(T | E) is usually high. In the same way, as we have seen in this
chapter, mχ(T, E) tends to 1 as the compression ratio increases.

In the rest of cases, there is no clear relation about the effort or gain for obtaining
the theory and its mean course, because, as we have said, both concepts represent
different dimensions.

For the case of deduction, we studied how to optimise (in this case, minimise) the
value of G(E | T), because a good theory should ease the extraction of its
consequences (maybe by the use of intermediate, valuable properties, which will be
discussed in the following subsections). By the way χ is computed, complex proofs
are avoided, because the reinforcement of each rule is multiplied, and, hence, quickly
lowered. However, this does not mean that the time complexity of obtaining a single
evidence cannot be high, because a rule can be used many times. Hence, the idea for
conciliating efficiency and reinforcement is to use a lot of rules few times, without
loops.

For both G(E|T) and V(E|T), it is also relative descriptional space which should be
minimised. In this case, a conciliation is much more difficult, according to the
formula ρρ(r) = Σi=1..n card(Proofr(ei,T)). A good way to increase the reinforcement of
a rule is that it participates in many proofs, so finally we have that each example
could have many different proofs. This makes that, given an example or a set of
example, more information is required to select which proof has been used and,
consequently, K(E| T) augments.

5.12.2 Combination of Gain and Reinforcement

In the previous chapter we talked about how intermediate information makes a
system better with respect to some evidence, by using G(E| T) as a measure of
optimality.

Consider again the same equational theory T for addition and product as before:

 X + s(Y) = s(X + Y)

 X + 0 = X

 0 × X = 0

5. Constructive Reinforcement

163

163

 sX × Y = X × Y + Y

For instance, a rule of commutativity r1 = (X + Y = Y + X) is a property which can
be derived from the previous theory that allows to shorten many derivations in
arithmetic. However, the property r2 = (X + X + 3 = (X + 1) � 2 + 1) is also
derivable from it but not so useful in arithmetic. However, both have a high value for
G, but only one of them would be worth maintaining explicitly, to lower G(E| T), as
it has been discussed in Section 5.10.1.

By using reinforcement, this is even more clear. It is sufficient to select a set of
examples of arithmetic practice to ascertain the utility of both rules.

Information gain jointly with reinforcement can also be used to know whether an
inductive or deductive effort has been useful. For instance, a new rule can be
obtained by induction from the evidence such that G(r | T) ≈ 1, i.e. with high effort.
Despite all the effort, if r does not help to increase the χ of the whole evidence, it has
been a vain effort. In the same way, a new rule can be obtained by deduction from
the theory such that G(r | E) ≈ 1, i.e., it has been a hard derivation. Despite all this
effort, if r does not help to increase the χ of the whole evidence, it has been again a
vain effort.

From here, once we have information about the effort of obtaining r and its
utility, we have the possibility to ascertain if r should be maintained or withdrawn,
according to the memory limitations of the system.

5.12.3 Forgetting Highly Reinforced Parts

Let us recall the oblivion criterion that was presented in the previous chapter.
Given a plausibility criteria PC(h | d), and a learner with alternative hypotheses
and limited memory resources, its memory politics can be ruled by the following
oblivion criterion:

OC(h | d) = G(h | d) � PC(h | d)

The hypotheses with lower OC should be forgotten.

By selecting PC(h | d) = mχ(T, E), and we have an oblivion criterion. This
criterion can be used for rules, since not all the rules which are derived by induction
or deduction can be maintained explicitly, and they must be erased from time to
time.

Moreover, as long as a theory is constructed from an upcoming evidence E1..n, this
evidence must be memorised, because if further evidence En+1 refutes the hypothesis,
E1..n, could be useful to revise and remake a new theory. However, this evidence
needs memory, and real systems do not have infinite capacities, so sooner or later
some evidence should be forgotten. A first naive idea is to forget the oldest data.

164 José Hernández Orallo - Doctoral Dissertation

 164

In another way, negative refuting evidence should also be maintained, something
suggested by Levi [Levi 1980]. He ascribed epistemic utilities to competing hypotheses.
The information value of a datum was defined to be the sum of the epistemic utilities
of hypotheses disproved by the datum.

A better solution is to realise that as long as more evidence is perceived, some
hypotheses are being validated. The examples that have a greater course have less
probability that the theory that covers them would be revised. Note also that Levi’s
ideas are also included, because negative evidence decreases reinforcement in any of
the ways seen in section 5.9.

In this way, we can define an oblivion criterion for the evidence:

Definition 5.65 Oblivion Criterion for an Evidence:

Given a theory T and an evidence E, the elements of E should be removed
according to:

OC(e | <T,E>) = mχ(T, e)

The original reinforcement of the rules should not be affected by this elimination.
This establishes a new situation, because the reinforcement should be incrementally
computed and they cannot be recomputed. This introduces an additional complexity
in how to treat the cases when two rules r1 and r2 cover an example that it is
removed. Both r1 and r2 should annotate the number of forgotten examples that have
been removed. The problem appears if a new evidence makes r1 inconsistent and it is
removed. In this case, r2 does not deserve the additional reinforcement of the
forgotten examples, because they were proven with the help of r1, which has been
removed. An easy solution may be to annotate the rules that are used to prove the
examples that are forgotten. This is somehow similar to MOBAL’s inference engine
IM2 [Emde 1992] [Morik et al. 1993], which maintains derivation information for
each statement (fact) in the theory. However, this solution requires a great amount of
memory, which is precisely the problem that is to be solved.

This more complex propagation of reinforcement will be left as future work,
although some ideas are outlined in an application for software maintenance, which
is presented in chapter 9.

5.13 Reinforcement and Theory Understandability

According to many aspects, theories with high and balanced course are reinforced
theories, which also explain all the data. Consequently, in terms of plausibility,
reinforcement turns out to be a good criterion. Methodologically, it usually provides
short theories and, due to the way reinforcement is computed, the derivations cannot
be much too complicated or involve too many rules. However, there are other

5. Constructive Reinforcement

165

165

methodological criteria whose behaviour with respect to reinforcement deserve to be
studied. The most important one is understandability.

[Sommer 1995b] precisely addresses this problem. His intuitions about
understandability of theories are the following ones:

1. Intermediate concepts, sparingly introduced, are a Good Thing.

2. Similarly, a deep inferential [hierarchical] structure is more understandable and easier to
maintain and modify, than a flat one, because it is more modular.

3. The more rules define a concept, the harder it is to grasp.

4. Long rules are harder to understand than short rules.

5. It is probably not a Good Thing if the encoding of a theory costs more (in some information-
theoretic sense) than like encoding of the instances it covers/derives/explains.

6. The more variables made reference to in a rule, the harder it is to understand.

7. The more non-head variables in a rule, the harder it is to understand.

8. The more constants appear in a rule, the less general value it has.

9. Non-generative rules are not a Good Thing.

10. The less instances a rule covers/derives/explains, the less inclined we will be to accept it
(and invest effort in understanding it).

11. The more instances are multiply (redundantly) covered/derived/explained, the less inclined
we will be to accept the theory (and invest effort in understanding it).

Intuition 1 is fully recognised by the theory of reinforcement and is also discussed in
section 5.10. Intuition 3 is also fulfilled by the character of reinforcement. Intuition 4
is observed due to the extended reinforcement modification made in section 5.7.
Intuition 5 has been shown by the connection between reinforcement and
compression. Intuitions 6, 7, 8, 9 are concerned with the arguments of clause literals
(rule premises) of first-order definite clauses and their correspondence is not
applicable here. Intuition 10 is almost exactly the same as the motivation of
reinforcement learning.

On the contrary, intuitions 2 and 11 seem to be incompatible with theories with
high mean course. At first sight, intuition 2 contradicts the property of reinforcement
in which derivations cannot be much too complicated or involve too many rules. In
the subsequent reading of [Sommer 1995b], it is realised that Sommer means
hierarchical and the word ‘deep’ is used in order to make a difference with respect to
flat theories, which, as we know, are usually little reinforced. Thus, this initial
contradiction vanishes. However, there is certainly a problem with highly reinforced
theories but it is found in their modularity, because flat theories are usually avoided

166 José Hernández Orallo - Doctoral Dissertation

 166

by reinforcement. Note that Sommer asserts that flat theories are not modular,
which, in a strict sense, is false. I am inclined then to understand he means they are
not reusable but, in the end, I think that intuition 2 is rather ambiguous. In the end,
the problem, in my opinion, must be studied with respect to the topology structure
of knowledge, because a hierarchical structure can be either a tree, an inverse tree or
any kind of lattice, and these topologies can give very different results of
maintainability and modifiability. An approach for studying this topologies is essayed
in chapter 9, especially in section 9.2, where reinforcement is applied for different
topologies, and the issues about modularity, modification and maintainability are
clarified.

Finally, intuition 11, although Sommer recognises that lacks backward reference in
the literature (i.e., it is just Sommer’s intuition), is indeed contrary to the way
reinforcement is computed, because all the alternative proofs are reckoned in the
measurement of reinforcement.

If we would like to modify reinforcement to comply with Sommer’s latter
intuition, we should modify it to penalise the alternative proofs for each example.
However, we can do it in several ways. A first idea is to penalise this in the definition
of ρρ(r) in the following way:

Definition 5.66 The exclusive pure reinforcement ρρe
(r) of a rule r from a theory T

with respect to some given evidence E = {e1, e2, …, en} is defined as:

ρρe
(r) = Σi=1..n card(Proofr(ei,T)) / card(Proof(ei,T))

In other words, ρρ(r) is computed as the number of proofs of ei where r is used
divided by the number of proofs of ei.

However, I think it would be better to include the penalisation in the definition of
course, because a rule cannot be punished for being useful. For instance, it would be
like penalising the commutativity property because it is used for covering many
different evidences.

Another option is to include the penalisation in a redefinition of the course:

Definition 5.67 The exclusive course χe
T(f) of a given fact f with respect to a

theory T is defined as:

χe
T(f) = max S⊂Proof(f, T) { Πr∈S ρ(r) } / card(Proof(f,T)) = χT(f) / card(Proof(f,T))

Finally, another solution may be the use of a measure called “redundancy index”
[Sommer 1995b], which is defined in the following way:

Definition 5.68 The redundancy index of a theory T with respect to an evidence
E is defined as: [Sommer 1995b]

Red(E,T) = 1 − card(E) / Σr=1..m Σi=1..n nonempty(Proofr(ei,T))

5. Constructive Reinforcement

167

167

where for any set S, nonempty(S) = 0 iff S = ∅ and nonempty(S) =1 otherwise.

In Sommer’s words, this measure gives a value of the redundancy of the theory in
the following sense: “ideally, each instance should be covered by only one rule in the theory; if this
is the case, [...], Red = 0. The more instances are multiply covered, the [more] Red → 1”. By
using this measure as a factor for the course, one could also penalise χT(f).

Although both Definition 5.67 and the use of the redundancy index would
comply with Sommer’s intuitions, they cannot be used in a careless way. In my
opinion, this is a question that is usually addressed heedlessly. One cannot penalise
alternative explanations for a given example in a blind way, because this would ban
the generation of alternative explanations. In other words, one is surer of a theory
when there are not alternative theories for explaining the evidence, but not when she
has been unable to (or has penalised) finding alternative plausible theories.
Obviously, the certainty of a theory is only increased when the intelligence of the
agent is high and he has sought hard for alternative theories. Only in this case, the
agent can approximate the certainty of knowing that there are not alternative
explanations. This notion of unquestionability (and note that it is not only a
methodological but a plausibility issue) will be discussed in following chapter.

5.14 Computing Reinforcement

We have not dealt anywhere about how the theory could be constructed from the
evidence (this will be briefly discussed in chapter 7). On the contrary, this chapter has
presented a setting for constructive reinforcement learning based on a measurement
that allows a detailed study of the relation between the theory and the evidence, for
assisting the evaluation, the selection, and the revision of theories.

However, the measurement needs to be computed. A general method of computing
positive reinforcement is just as it has been used in all the examples which have
appeared throughout the chapter:

General Method:

Consider the theory T, with m rules r1..rm, and the evidence E, with n examples
e1..en, such that T=E. First we must prove all the examples and compute ρρ* and ρ*
for each rule. In a second stage, we prove again the n examples, computing χ* from
the ρ* obtained in the first stage.

The complexity of the previous method seems to be, in the worst case, in O(m·n).
However it is not so, because we have not stated any restriction about the
computational cost of the theory, and each proof has its own cost, and there may be
more than one proof for each example.

Nonetheless, it would be more realistic to consider the reckoning of
reinforcement in an incremental setting:

168 José Hernández Orallo - Doctoral Dissertation

 168

Incremental Method:

We will use four arrays: l1..m, ρρ*
1..m, ρ*

1..m, χ*
1..n for the lengths, the pure and

normalised reinforcements and the courses, respectively. An additional Boolean
bidimensional array U1..m,1.. n assigns true to Uj,i iff ei uses rm in its proof and false
otherwise.

For each new example en+1 that is received we have different possibilities:

1. If it is a hit, we remake ρρ*
1..m, ρ*

1..m, according to the proof of en+1, U is
extended to U·,n+1 and χ*

1..n+1 is updated using U.

2. If it is a novelty and no revision is made to T, only an extension T'= T ∪ {rm+1,

..., rm+k}, the steps are very similar to the previous case, except that the arrays
must be extended to m+k.

3. Finally, if it is a novelty or an anomaly and the theory is revised in some rules {r1,

..., rp} and extended in others {rm+1, ..., rm+k}, only the U·,j which does not use
any rule from {r1, ..., rp} can be preserved. The rest must be remade.

The previous method ignores two exceptional cases: that a hit would trigger a
revision of the theory to readjust reinforcements, and that case 2 may produce
alternative proofs for previous examples.

Further optimisation could come from a deeper study of the static dependences
(i.e. some rule always depends on others) and the topology of dependences that the
theory generates. On the other hand, an appropriate approximation could also be
used. Even more, as we have seen before, part of the past evidence can be ‘forgotten’
if it is covered by very reinforced rules, so avoiding part of the future computations.

However, in the case that an inductive learning method uses reinforcement for
evaluating the theories it is constructing, the complexity of these methods would
surely be very modest compared to the usual huge costs of machine learning
algorithms.

Moreover, reinforcement measures are a very adequate tool to guide a learning
algorithm. For instance, in a learning algorithm for logic functional languages based
on genetic programming [Hernández-Orallo and Ramírez-Quintana 1998], the
examples and rules with low reinforcement are mixed first in order to ‘conciliate’
them and to obtain more compact and reinforced theories.

5.15 Summary and Contributions of This Chapter

We have presented a framework to distribute or propagate reinforcement into a
theory depending on the observation (or evidence). The advantage of this approach
is that it makes no assumptions about the prior distribution. Also in this framework,
knowledge can have alternative descriptions, without reducing the evidence’s
courses. Moreover, “deduction in the knowledge” can affect positively to

5. Constructive Reinforcement

169

169

reinforcement, something that the MDL principle or other syntactic priors avoid
because the theory cannot change its syntax or representation without changing its a
posteriori probability.

These characteristics are related to reinforcement learning and some reinforcement or
credit propagation systems, such as ANN. Section 2 discusses why the idea of
reinforcement has not been applied for constructive languages, i.e., languages with
the ability of redescription. Conscious about these difficulties, in Section 3 a first
adaptation of reinforcement is presented to realise the problems of ‘fantastic’
concepts. Section 4 remakes the approach and introduces the idea of ‘course’ to
measure reinforcement, which is shown to be robust to these problems.

Section 5 applies the use of course for the evaluation of inductive theories, and
the role of induction, abduction are illustrated. Some other relevant criteria of the
inductive literature, such as cross-validation and the MDL principle are shown and
related to reinforcement in this section. Consilience, informally referred since
Whewell introduced it, is also defined in the context of reinforcement.

Analogy is another inference process that can be studied with the help of
reinforcement. Its connection with consilience is established in section 6. Section 7
discusses a more balanced reinforcement criterion which is suitable for explanation,
and tries to exclude those parts of the theories which are exceptions, i.e., poorly
reinforced. This section serves as an introduction and motivation for the following
chapter.

Section 8 discusses the extension of these ideas to wider notions of reinforcement
with the presence of reward and penalties, more accordingly to the traditional use of
reinforcement learning.

The case of negative evidence is analysed and the framework is conveniently
extended in section 9, establishing which properties still hold and which do not.
Deduction is addressed in section 10, showing that a deductive inference cannot
decrease the course of a theory, quite differently from Carnap’s probabilistic calculus.
Furthermore, deduction can increase information. The role of intermediate
information is highlighted and some questions about plausibility must be
reconsidered. Section 11 distinguishes reinforcement as a quantitative (but non-
probabilistic) theory of confirmation, somehow between Hempel’s and Carnap’s.
Section 12 relates and combines information gain with reinforcement. The oblivion
criterion is adapted to be used with mean course as a plausibility criterion and
extended for forgetting the evidence which has been explained, in order to optimise
memory resources. Section 13 discusses the relationship between a methodological
criterion like understandability and reinforcement.

Finally, some issues about how to compute reinforcement in practice and its
complexity are examined in section 14, with the conviction that although it entails an
additional cost for any inductive algorithm, it is then counteracted by the advantage

170 José Hernández Orallo - Doctoral Dissertation

 170

of its use as a guide for theory revision, hypotheses rating, evidence management,
etc.

One of the most important results of this chapter is that the way we distribute
reinforcement into knowledge results in a rated ontology, which allows the evaluation
of the whole theory or any part of it. In this way, one of the most difficult dilemmas
of inductive learning, the choice of a prior distribution, disappears. In other words, it
is not necessary to work with probabilities to know the whole and the detailed
plausibility of each rule of the theory and each fact that is derived from it.

After this summary, among the relevant contributions of this chapter, we
highlight the following:

• Reinforcement allows a more detailed treatment of exceptions and provides
different ratings for different parts of a theory, not the single probability value
given by priors which is assigned to the whole theory.

• Different predictions or assumptions are provided with different reliability
values.

• Reinforcement behaves appropriately for different inference processes such as
induction, abduction, analogy and deduction, which are involved in theory
construction.

• Some vague notions such as consilience and explanatory induction are easily
formalised under this framework.

• Intermediate information is shown to be valuable for increasing the course of
the theory.

• In the case of non-omniscient systems, new deductively established
connections can increase significantly the reinforcement of the whole theory.

• Gain and Reinforcement act as a perfect team to discern which rules should be
left explicitly in the representation of a theory.

• An oblivion criterion is derived and extended to manage past and explained
evidence.

• By the use of reinforcement as a quantitative measure of confirmation, top-
down (deductive) and bottom-up (inductive and abductive) propagation is
possible.

Definitely, it is obvious the relation of this framework with the distribution of
reinforcement in neural networks, and the problems of overfitting and underfitting in
the learning of linear functions (it even resembles some popular algorithms, such as
back-propagation). In my opinion, this use of reinforcement for different processes
such as induction, abduction and deduction for knowledge acquisition, revision and
construction is portable even from expert systems and diagnostic systems to neural
networks (training = induction, recognition = abduction). Some applications will be
outlined in chapter 9.

5. Constructive Reinforcement

171

171

However, although the approach which has been presented in this chapter is
applicable to constructive theories (for the first time for reinforcement), it would be
interesting to extend the results of this chapter to any representational language, not
only rule-based languages. The following chapter addresses this problem.

172 José Hernández Orallo - Doctoral Dissertation

 172

6. Intensionality and Explanation

173

173

6. Intensionality and
Explanation

The great tragedy of Science

 —the slaying of a beautiful hypothesis by an ugly fact

T.H. Huxley, 1825-1895

Abstract: this chapter addresses the problem of formally distinguishing between an extensional
definition (or by extension) and an intensional one (or by comprehension). After some approaches of
formalisations for logical theories as avoidance of exceptions and in the context of reinforcement, the
solution to grasp intensionality for finite concepts is based once again on different concepts based on
descriptional complexity. The notions of projectible descriptions and stable descriptions are introduced
to account more easily for the notion of intensionality in general. The final approach allows the
definition of an explanatory variant of Kolmogorov Complexity, which corresponds to an explanatory
counterpart to the MDL principle. Some connections are also established. First, intensionality is
closely related to information gain, since extensional descriptions are never informative. Secondly,
explanation is also related to the notion of unquestionability, which is given when there are not
alternative explanations, a notion that will be necessary for chapter 8.

Keywords: Extension, Intension, Exceptions, Explanation, Kolmogorov
Complexity, Meaning, Information Gain and Intension, Subprogram, General
Reinforcement, Plato’s Problem.

174 José Hernández Orallo - Doctoral Dissertation

 174

6.1 Introduction

Classically, logic and philosophy of language have distinguished between definitions
by comprehension and extension. Comprehension means the connotation of a term
(opposed to its denotation or extension), i.e. the intension, the set of its characteristic
properties. The correspondence between the words comprehension and intension is
not casual. An extensional description (by enumeration) has no connotation and
consequently entails no comprehension at all. On the contrary, an intensional
description (by comprehension), obtained for a given concept, may have not
discovered the right meaning or real mechanism of the evidence, but still has a
chance of it.

In a similar way, methodology establishes [Bochenski 1965], in general, four laws
of definition:

1. The definition must be clearer than the thing defined.

2. The definition must refer to the defined thing and only to the defined thing.

3. The defined thing cannot appear in the definition.

4. If possible, it must be affirmative, and not negative.

If we denote by x the definition and by y the defined thing, the first property is
accounted by the notion of representational optimality seen in chapters 4 and 5, or,
alternatively, by the measure of explicitness which is represented by G(y|x). The
second and fourth properties are easily fulfilled by the use of minimality and by the
nature of the descriptions that are made by computational systems.

Property 3 has been partially addressed by the theory of reinforcement of the
previous chapter, which avoided rules that are extensional patches of the evidence.
This was specifically accounted by a balanced evaluation criterion, which strongly
penalised extensional rules. However, this measure has only been defined for rule-
based languages and cannot be used for this property in general.

It would then be very appropriate to distinguish formally and generically those
descriptions that follow this comprehension requirement: “the defined thing cannot
appear in the definition”. This slogan is firmly observed in dictionaries and used by
teachers when asking to their pupils, in order to know whether they have
comprehended a concept.

Additionally, traditional use in mathematics distinguishes an extensional definition
from an intensional definition (or by comprehension). However, this distinction is
completely intuitive and a scarce interest has been shown for formalising it, because
for infinite sets, frequent in mathematics, every definition must be intensional (or by

6. Intensionality and Explanation

175

175

comprehension). Nonetheless, for finite sets, there is still no formal difference
between an intensional description and an extensional one. For instance, the set S= {
3, 12, 21, 30, 102, 111, 120, 201, 210, 300 } has infinite many descriptions, e.g. D1 =
S, i.e., the extensional description of S, D2 = “Start with number 3. The following
three numbers are obtained by adding 9 to the preceding one. Continue with number
102. The following two numbers are obtained by adding 9 to the preceding one.
Continue with number 201 and add 9 to the next number. Finally, include number
300” and D3 = “natural numbers of 3 digits or less whose digits in decimal
representation amounts to 3”. Intuitively, D3 seems more intensional than D2 and D2
more intensional than D1.

At first sight, Kolmogorov or Descriptional Complexity seems sufficient to
distinguish extensional descriptions from intensional ones. However, if we consider
the compression ratio, there can be cases where CRφ(px) < 1, i.e., no compression has
taken place, and the description px can still be intensional (in the previous case D3
would usually be larger than D1 if addition has to be coded as well in the definition).
More severely, for cases where CRφ(px) > 1, i.e., compression has taken place, it is
impossible that the description px would be completely extensional (some pattern
must have been discovered in order to compress) but it is still possible that the
description would be partially extensional (such as D2).

As a result, the MDL principle, which chooses the shortest description for a given
concept x, does not ensure that the description is intensional. In the vast majority of
cases, the data is not compressible, and the MDL principle will give the data itself,
which is the most extensional description, providing no hint about the
comprehension of that data. Even in the rare cases where the data is compressible, a
short description does not ensure that all the data is described intensionally; there
could be a part that could be highly compressed and another part that could be
quoted as an exception.

The question is then more conspicuous: is there any way to distinguish pattern
from exceptions, program from data? An answer to this question is necessary for a
theory of intensionality, which then brings light to many related questions, from the
distinction between explanatory induction and descriptional induction to the
problem of meaning.

The solution to this question is closely related to some of the notions presented in
the previous chapters, as we will show. Chapters 3 and 4 dealt with information gain.
In some way, this gain increased when extensionality decreased. It was shown that
compression is a good heuristic to attain reduction of extensionality, but, as we have
just commented, it can leave several parts in an extensional way. In a different way,
chapter 5 introduced a measure of detailed reinforcement or apportionment of credit
for representational languages that are composed of rules. The question is whether
this idea can be extended to any descriptional mechanism (e.g. Turing machines)

176 José Hernández Orallo - Doctoral Dissertation

 176

where rules, components, parts or subprograms are difficult to distinguish. As we will
see, this will require the clarification of the notion of subprogram.

For the rest of this chapter, I will forget the other aspect of intensionality more
related with meaning until Section 6.6 (where some philosophical issues of meaning
and sense will be discussed), and I will deal exclusively about the mathematical
notion of intensional description, which I will try to formalise. Let us begin with the
idea that gives the name to the term.

6.2 Extensional and Intensional Definitions

It is well known that sets can be described extensionally or intensionally. A finite set
A can be described in these two classical ways:

EXTENSIONAL DESCRIPTION: the elements of the set A are enumerated.

 A = { a1, a2, …, an }

INTENSIONAL DESCRIPTION: the elements of A are those elements which follow a
given property (or predicate function) p.

 A = { a | p(a) }

It is obvious that an infinite set can only be described in an intensional way27.

In general mathematical practice the nature of p is left out of discussion, except in
intuitionistic (or constructive) mathematics.

A constructive way of seeing the property p is to assume that it has to be a
computable (or effective) function, i.e., there exists an algorithm that outputs
consecutively all the elements of A, halting after them if A is finite. The set is more
commonly known as recursively enumerable. Also obviously, every finite set is recursively
enumerable because we can construct the algorithm from an extensional description of
all the elements in A.

Once at this point, we pose the central question of this chapter. Is there any way
of distinguishing whether we have a pure intensional description?

First of all, we will have to clarify, at least informally, what we mean with pure
intensional description, an idea that has only been sketched in the introduction. Let see it
with an example.

The set A1 = { 0, 1, 4, 9, 16, 25, 36, 49, 64, 81} can be easily described
intensionally as:

A1 = { a | p1(a) } being p1(a) = “ a ∈ Ν ∧ ∃ x ∈ Ν : a = x2 ∧ a < 100 ”.

27 Note that dots (...) assure that the reader would make a mental intensional model of the series that is
intended.

6. Intensionality and Explanation

177

177

We intuitively say that p1 is intensional because we see no extensional enumeration in
p1.

However, the set A2 = { 0, 1, 3, 4, 5, 9, 16, 19, 25, 36, 49, 64, 81} poses serious
problems for an easy description. A practical description for the preceding set could
be:

A2 = A1 ∪ { 3, 5, 19 }

And now, we clearly see that A2 is not purely intensional, some of its elements are
described extensionally.

Intuitively, we say that some function is not purely intensional iff it has
exceptions, i.e. if we have to “quote” part of the elements extensionally. But this idea
is not sufficient. For instance, if we have the set A3 = { 0, 1, 2, 4, 8, 9, 16, 25, 32, 36,
49, 64, 81} we have alternative descriptions:

A3 = A1 ∪ { 2, 8, 32 }

or:

A3 = A1 ∪ { a | a ∈ Ν ∧ ∃ x ∈ Ν : a = 2x ∧ a < 100 }

In the following we will consider that both descriptions used for A3 are not pure
intensional. However, the detection of the last definition as not intensional will pose
more problems. The idea of separability will have to be taken into account, and it
must be robust to other kinds of representation such as:

A3 = { a | a ∈ Ν ∧ (∃ x ∈ Ν : a = x2 ∨ ∃ y ∈ Ν : a = 2y) ∧ a < 100 }

because it still can be split up without “effort”.

Finally, there are many ways to ‘camouflage’ the extensionality of some function.
Also, it is difficult in this context to take the step to the intensionality or
extensionality degree or characterisation of a set (instead of the description), since there
are many possible functions to describe a set.

At this moment it is very reasonable for the reader to think that the
characterisation that we pretend is so arbitrary, so slippery, that it is not formalisable,
just because it is subjective. In the end, it is broadly believed that there is no objective
way to select a description or mathematical concept over another, i.e. only experience
and applications can judge their utility. We expect that previous chapters have helped
to change that idea, and we will show that descriptional complexity can be used to
make the notion of intensionality more objective.

6.3 Exception-Free Descriptions

If we regard intensionality as avoidance of exceptions, then the question is to
distinguish what an exception is. Let us see how difficult it is.

178 José Hernández Orallo - Doctoral Dissertation

 178

Example 6.10

Given the sequence:

 x = 1,2,3,5,7

we can guess some short hypotheses or descriptions for x, simply "the sequence 1,2,3,5,7",
or "the first four odd numbers and the number two, ordered", or "the first three natural
numbers and the number 5 and 7", or "begin with numbers 1,2. The following two are
the sum of their preceding two, and the last is number 7" or "the first five numbers that
are only dividable by 1 and itself". Almost everybody would select the last hypothesis as
the more explanatory and would predict the number 11 as the next element.

An immediate critique to this example is that the probability of 11 as being the
‘correct answer’ is the same (or less according to the MDL principle) and it is only
the assumption that the concept of prime is well known by most of human beings
what increases the value of the answer 11. However there are objective reasons to
prefer the intensional description. The shortest description “the first four odd
numbers and the number 2” has an exception (the number 2) which “perverts” the
hypothesis. In general, the MDL principle has been used successful because the
strings are long enough or the bias does, intrinsically, not allow exceptions.

Exceptions are useful to memorise, to describe, to learn something in noisy
situations, but they are not suitable for a robust explanation. But how can we eliminate
exceptions? Going back to our initial claim, how can we be sure that we have a pure
intensional description?

The first idea can be stated informally as, “an exception is something we can take apart
from a description, so leaving it much simpler with respect to the magnitude of the evidence removed
or not covered”. More concretely, a description is exception-free if it does not exist a
subdescription that produces almost all the data, i.e., there is not a reduction in the
description that could be greater that the corresponding reduction in the described
data. Let us formalise this.

Definition 6.69 A description px for the data x is c-exception-free (denoted ∆c(px)
= 0) iff there does not exist a subprogram py of px, py being a program for y and y ⊂
x, such that K(px) − K(py) ≥ [K(x) − K(y)] / c. Note that in the case it exists, px − py is
the exception (and py the main rule).

The parameter c can be tuned depending on the deductive framework and the
approximation for computing K, which can be Kt or simply the length function. In
the following, c is assumed to be 1.

Obviously, a formalisation of subprogram is necessary in the deductive
framework that would be chosen. As we will see, in the case of logical theories, this
question is trivial but, in other cases, it can be very arduous. I will introduce the
notion of subprogram in section 6.4.

For the moment, let us see how Definition 6.69 works:

6. Intensionality and Explanation

179

179

Example 6.11

Consider the facts F = { f1, f2, …, f10 } and a theory Ta = { t1, t2 } that covers these facts
in the following way: t1 covers f1 to f9 and, separately, t2 covers f10. Since t1 and t2 are
separable, we can check the condition simply as K(t2) ≥ K(f10). If it is the case, we say that
f10 is an exception with respect to Ta. In contrast, we may find a theory Tb = {t1, t2, t3)
longer than Ta that covers the facts in the following way t1 covers f1 to f4, t2 covers f5, f6, f7
and t3 covers f8, f9, f10. For Definition 6.69, it would be exception-free. It is said that this
theory is ‘balanced’ if K(t1) ≈ K(t2) ≈ K(t3). Finally, we can consider another theory Tc = {
t1 } longer than Tb which is not only balanced, but t1 cannot be split up to cover
separately subsets of F. That is to say, Tc conciliates F. In this case, it would also be
exception-free.

6.3.1 Exception-Free Logic Programs

The preceding definition of exception-free description is general enough to be
adapted to any descriptional language. Nevertheless, this generality renders the
comparison with other related notions difficult and it cannot be made operative
easily without a definition of subprogram.

The advantage of logic programs (and any other rule-based language) is that the
notion of subprogram is direct. We just require a proper notion of partition:

Definition 6.70

Consider a program P as a set of Horn clauses with its minimal Herbrand model
M+(P) equal to the set of ground literals Li such that P = Li.

P is n-separable into the partition of different programs Π = { P1, P2, ... , Pn } iff

 M+(P) = ∪i=1..n M+(Pi) and

∀i=1..n (M+(Pi) ≠ ∅)
Definition 6.71

P is non-subset n-separable into the partition Π = { P1, P2, ... , Pn } iff it is n-
separable into Π and

∀i, j=1..n (Pi ⊆ Pj implies i = j).
The existence of a non-subset 2-separation can be regarded as a condition to detect
exceptions. However, this exception-free condition would be so strict that it would
ban any modularity in programs. Let us introduce three other variants:

180 José Hernández Orallo - Doctoral Dissertation

 180

Definition 6.72

P is disjoint n-separable into the partition Π = { P1, P2, ... , Pn } iff it is n-separable
into Π and

∀i, j=1..n (Pi ∩ Pj = ∅)
Definition 6.73

P is non-subset model n-separable into the partition Π = { P1, P2, ... , Pn } iff it is n-
separable into Π and

∀i, j=1..n (M+(Pi) ⊆ M+(Pj) implies i = j).
Definition 6.74

P is disjoint model n-separable into the partition Π = { P1, P2, ... , Pn } iff it is n-
separable into Π and

∀i, j=1..n (M+(Pi) ∩ M+(Pj) = ∅)
To show how they differ, we give some examples:

Example 6.12

Given the following program P1= { p(a). q(X) :- r(X). r(a). } it is separable for all the
definitions we have given into the partition Π = {{p(a)} , {q(X) :- r(X). r(a)}}.

The program P2= { q(X) :- r(X). r(a). } is not separable for any of the definitions we have
given.

The program P3= { q(X) :- r(X). p(X) :- r(X). r(a). } is non-subset (model) separable into
Π = {{ q(X) :- r(X). r(a)}, {p(X) :- r(X). r(a). }} but it is not disjoint (model) separable.

The program P4= { q(a). p(X) :- q(X). p(a) } is non-subset (model) and disjoint separable
into Π = {{ q(a). p(X) :- q(X). }, {p(a)}} but it is not disjoint model separable.

The program P5= { s(X):- p(X), q(b). p(X) :- q(X). t(X):-p(X),q(a) } is non-subset (model)
and disjoint separable model into Π = {{ s(X) :- p(X), q(b). p(X) :- q(X) }, { p(X) :- q(X),
t(X) :- p(X), q(a) } but it is not disjoint separable.

Moreover, it is trivial to show the following theorems:

Theorem 6.25

If a program P is disjoint separable then it is non-subset separable.

Theorem 6.26

If a program P is disjoint model separable then it is non-subset model separable.

At this point, different notions of exception can be given by using Definition 6.70
(single partition), Definition 6.71 (non-subset partition), Definition 6.72 (disjoint
partition), Definition 6.73 (non-subset model partition), Definition 6.74 (disjoint
model partition) that I will dub modes.

6. Intensionality and Explanation

181

181

Now, the informal definition that was given in general: “an exception is
something we can take apart from a program so leaving the program much simpler
with respect to the magnitude of the length of the elements removed” can be
specialised to Horn logic programs.

Definition 6.75

A program P has e = card(M+(PE)) c-exceptions, denoted ∆c(P) = e, generated
from PE, iff there is a partition P = { PR, PE } such that:

l(P) − l(PR) ≥ [l(M+(P)) − l(M+(PR))] / c

Definition 6.75 means that what is reduced in the length (l) of the program is greater
than what is reduced in the consequences, but it would be slightly different
depending on which of Definition 6.70-Definition 6.74 is used.

The greatest value of c that still makes a program exception-free (i.e., ∆c(P) = 0) is
known as its consilience level. On the other hand, when not indicated it is assumed to
be 1, and, therefore, a program will be exception-free if its consilience level = 1.
Finally, there are many ways to estimate the length of logic programs l(P), but,
customarily, a syntactical measure such as those given in chapter 4 can be used.

Let us illustrate the difference between explanatory induction and descriptional
induction in an example:

Example 6.13

Given the facts F = { even(0). even(s(s(0)). even(s(s(s(s(0)))), ¬even(s(0)) } the following
programs can be induced:

P1 = { even(0). even(s(s(X)) }, which is the shortest one but it is separable in all cases and
even(0) is an exception.

P2 = { even(0). even(s(s(X)) :- even(X) }, which is not separable in any case and logically
it has no exceptions.

P'1 = { even(0) :- fant. even(s(s(X)) :- fant. fant. }, which is non-subset (model) separable,
but it is not disjoint (model) separable. Therefore it has exceptions for the two first
modes.

The last program from Example 6.13 shows that a ‘fantastic’ concept can make a
program non-separable for some modes, hiding exceptions. It is easy to prove that
any separable program in the disjoint modes can be extended to a non-separable
program by using a fantastic concept. We say that the concept is not fantastic (it is
really consilient) when it must reduce the size of the conciliated part, in a similar way
as, in the previous chapter, it should increase reinforcement. This implies that it is
impossible to make every program exception-free, i.e., intensional.

Although the non-subset mode alone is too strict and the disjoint mode easy to
cheat, the non-subset mode combined with the value of c=1 for exceptions are
appropriate to distinguish a consilient program for most applications. Indeed,

182 José Hernández Orallo - Doctoral Dissertation

 182

different modes and values for c can be combined for various degrees of desired
explanatory induction.

The main problem of the definition of exception-free is that it must be computed
with respect to the given data (facts), because all the possible consequences can be
infinite. Consequently, intensionality is defined relatively to the given evidence, and
not in an absolute way.

It is outside of this thesis to take into account the presence of noise, but a degree
or ratio of exceptions could be fitted to the expected ratio ε making ∆c(p) = ε.

6.4 Subprograms and General Reinforcement

The previous approach illustrates the application of the idea of exception to logic
programs. However, it would be interesting to be able to apply it to any descriptional
mechanism. In the same way, the previous chapter gave a measure of reinforcement
for languages where the notion of rule and subprogram was clear, because it was easy
to recognise which parts were responsible for covering each example.

Let us generalise the detailed utility criterion represented by reinforcement and the
idea of partition for general descriptional languages (e.g. Turing machines). For this,
as we will see, we require a notion of subprogram.

6.4.1 Subpart and partitions

Definition 6.76. Subpart

The object y is a subpart of an object x in β, denoted by y ⊆β x, iff:

Kβ(y|x) < log Kβ(y)

It is interesting to compare the definition of subpart with the notion of subset. For
instance, it is easy to show that the empty string is never a subpart of any non-empty
string and that most objects (but not all) are subparts of themselves. It is more
intuitive to see the idea of subpart as a cognitive notion, such a subpicture.

Definition 6.77. Proper Subpart

The object y is a proper subpart of an object x in β, denoted by y ⊂β x, iff y ⊆β x
but x ⊆/ β y.

Finally, we define also a partition from Definition 6.76:

6. Intensionality and Explanation

183

183

Definition 6.78. Partition

A set of objects Y = { y1, y2, ..., ym } is a partition of an object x in β iff

∀yi: 1 ≤ i ≤ m: yi ⊆β x and there exists an ordering oj of Y such that

 x ⊆β yo1 � yo2 � ... � yom, where � represents the composition of objects.

Note that the second condition is that x can be reconstructed from the partition.

Definition 6.79. Reduced Partition

The set of objects Y is a reduced partition of an object x in β iff it is a partition of
x in β and ¬∃Y’ ⊂ Y such that Y’ is a partition of x.

Definition 6.80. Proper Partition

A set of objects Y = {y1, y2, ..., ym} is a proper partition of an object x in β iff

∀yi: 1 ≤ i ≤ m: yi ⊂β x and there exists an ordering oj of Y such that

 x ⊆β yo1 � yo2 � ... � yom , where � represents the composition of objects.

6.4.2 Subprogram

The idea of subprogram is derived from Definition 6.76:

Definition 6.81. Subprogram (or subtheory)

The object y is a subprogram of an object x in β iff

y ⊆β x and φ(y) ⊆β φ(x)

Definition 6.82. Proper Subprogram (or subtheory)

The object y is a proper subprogram of an object x in β iff

y ⊂β x and φ(y) ⊆β φ(x)

Definition 6.83. Proper Program Partition

A set of objects Y = {y1, y2, ..., ym} is a program partition of an object x in β iff Y
is a proper partition of x and Y’ = {φ(y1), φ(y2), ..., φ(ym)} is a proper partition of
φ(x).

From here we could redefine the notion of exception-free by using the notion of
subprogram. In other words, Definition 6.69 is now fully formalised.

6.4.3 General Reinforcement

The theory of reinforcement, as it was presented in the previous chapter, was based
on the notion of rule necessity for the evidence. A program was composed of rules

184 José Hernández Orallo - Doctoral Dissertation

 184

and the evidence was divided into atomic facts. In the general case, however, the
only indivisible part is a bit.

Given a program in any descriptional mechanism (a string p) and the evidence it
covers (a string e), a first idea is to change a bit of p and see how many bits of e are
changed. This may give an approximation of how useful is each bit of p for covering
the evidence, but this solution is not valid for any descriptional mechanism. Apart
from the problem that a bit change in the program may make the program not
computable, the worst problem is that a bit change in the program may make the
program incorrect with respect to the representational mechanism and this could assign
reinforcement to bits that do not deserve it. For instance, a descriptional mechanism
with CRC (Cyclic Redundancy Code) would not allow this kind of measure, because
it would be impossible to assign detailed reinforcement values to the theory.

The solution, once again, must be based on a descriptional notion of necessity. In
a first approach, we could say that the bit i is necessary for E iff K(E|p) ≠ K(E|p¬i),
where p¬i represent the complement of bit i. However, this would usually be the case
for every bit of p if p has no redundant information. A refinement of this idea could
be to compare K(E|p¬i) - K(E|p) with K(E¬j|p¬i) - K(E¬j|p) but this idea gives problem
precisely when the program quotes extensionally the evidence.

The final solution is finally based on the notion of subprogram:

Definition 6.84. Bit Subprogram Independence

Given a program p and a subprogram s of it, the bit i of p is independent to s iff

K(s|p) ≥ K(s|p¬i)

In a similar way,

Definition 6.85. Bit Evidence Independence

Given a program p, its evidence e, and a subprogram s of p, the bit j of e is
independent to s iff

K(e|s) ≥ K(e¬i|s)
These two definitions define two dependence arrays, VPs(1..m) and VEs(1..n), defined
in the following way:

Definition 6.86. Independence Arrays

 VPsi = 0 iff the bit i of p is independent to s.

 = 1 otherwise.

 VEsj = 0 iff the bit j of e is independent to s.

 = 1 otherwise.

From here, we can finally obtain a correspondence matrix between the bits of the
evidence and the bits of the program in the following way:

6. Intensionality and Explanation

185

185

Definition 6.87. Reinforcement Matrix

MPEi,j = ∑s is a subprogram of p[VPsi � VEsj] / ∑s is a subprogram of p 1

The major problem of the preceding definition is that the number of possible
subprograms given by Definition 6.81 may be too high. However, the obtaining of
this matrix allows directly the definition of general notions of reinforcement and
course:

Definition 6.88. General Reinforcement

The reinforcement of each bit i of a program p is obtained as:

ρ(i) = ∑j=1..n MPEi,j / n

Definition 6.89. General Course

The course of each bit j of an evidence e with respect to a program p is obtained
as:

χ(j) = ∑i=1.. m MPEi,j � ρ(i)

For instance, consider an evidence composed of 5 bits and a program of 3 bits with
the following matrix MPEi,j = { { 0.1, 0.4, 0.7 }, { 0.3, 0.2, 0.8 }, { 0.2, 0.3, 0.7 }, {
0.7, 0.2, 0.4 }, { 0.8, 0.1, 0.7 } }. This gives, for instance ρ(i) = { 0.42, 0.24, 0.66 }
and χ(1) = { 0.42 � 0.1 + 0.24 � 0.4 + 0.66 � 0.7 = 0.6 }.

The following definitions are direct adaptations of the notions that were seen in
the previous chapter:

Definition 6.90. Mean General Course

The mean course of an evidence e with respect to a program p is obtained as:

mχ(e) = ∑j=1..n χ(j) / n

Definition 6.91. Intensionality based on General Reinforcement

There cannot be a bit j of e such that χ(j) < c, this value depending on the
descriptional mechanism.

Definition 6.92. Balanced Description based on General Reinforcement

There cannot be a bit j of e such that χ(j) < c � mχ(e), this value c being between 0
and 1 and depending on the descriptional mechanism.

If Kt is used instead of K, the definitions are effective, although, in general, these
definitions are difficult to apply if the descriptional mechanism does not clearly
recognise the notion of subprogram. For the problem of reinforcement for general
descriptional languages not much can be done in an efficient way.

Let us see, though, another more practical and still general approach. However,
this approach is not valid for general reinforcement, only for the idea of
intensionality.

186 José Hernández Orallo - Doctoral Dissertation

 186

6.5 Projectible Descriptions and ‘Pattern’

Fortunately, there is another approach for the notion of exception without requiring
the definition of subprogram. It is based on the recognition of the structure or
projectible part of a description.

First of all, we must formalise what is a projectible description, i.e., a description
that can predict future evidence.

Definition 6.93. k-Projectible Description

A k-projectible description for a string x is a program p on a descriptional
mechanism φ such that:

φ(p) = y, and ∃w l(w) = k : y = xw (i.e. x = y0..l(x))

w is known as the prediction of p.

The compression ratio of an infinite projectible description with respect to its
prediction is always infinite. For this reason we must define the relative compression
ratio of a projectible description p for a string x with respect to this string x as
CRφ(p|x) = l(x) / l(p).

According to the MDL principle, given any sequence x, the optimal model in φ
for it is x*. If x* is projectible, i.e. it allows to predict the subsequent symbols of the
sequence x, then φ(x*)n+1 will be the most plausible prediction according to Occam’s
razor, “the best model of the world x”. However, if x* is not projectible, this
prediction cannot be done. For this reason, we define an ideal MDL principle based
on a projectible variant of Kolmogorov Complexity.

Definition 6.94 k-Projectible Kolmogorov Complexity

The k-Projectible Kolmogorov Complexity of an object x given y on a descriptional
mechanism (or bias) β is defined as:

K’β(x|y) = min { lβ(p) : ∃w l(w) = k such that φβ(<p, y>) = xw) }

where p denotes any “prefix-free” β-program, and φβ(<p, y>) denotes the result of
executing p using input y.

The literature has used Kolmogorov Complexity and not its projectible variant for
prediction due to the following theorem:

Theorem 6.27

For every string x, K’(x) <+ K(x).

PROOF. Every non-projectible program p can be transformed into a
projectible program p’ = “execute p and then print 1 forever. Let us denote by c
the length of this extra coding of “and then print 1 forever”. Hence there exists a

6. Intensionality and Explanation

187

187

constant k=c+1 such that l(p’) < l(p) + k, i.e. l(p’) <+ l(p). This can be extended to
the definitions of K’ and K, thus the theorem is proven. �

The contrary relationship (K(x) <+ K’(x)) does not hold. Consider the string x =
“1,2,3, ..., n”. The projectible program p’ = “print the natural numbers, ordered” has
constant size, say l(p’) = c. On the contrary, the non-projectible program p = “print
the first n natural numbers, ordered” is, in the general case, not smaller than c’ + log
n.

Another question is the projectible extension of Kt complexity. To extend LT-
Complexity to projectible descriptions, we must measure Cost(p) in an asymptotical
way. Consider a machine φ such that the output tape cannot be rectified (or simply it
cannot go back). Cost(p)[..n] is defined as the time or machine steps such that the
first n symbols of the definite output are placed at the beginning of the output tape.
We will also use the following notation: Cost(p)[n..m] = Cost(p)[..m] − Cost(p)[..n].
From here we define LTβ(px)[n..m] = l(px) + log Cost(px)[n..m] and LTβ(px)[..n] = l(px)
+ log Cost(px)[..n]:

Definition 6.95 k-Projectible Length-Time Complexity

The k-Projectible Length-Time Complexity of an object x given y on a descriptional
mechanism β is defined as:

Kt’β(x|y) = min { LTβ(<p,y>)[..l(x)]−l(y) : ∃w l(w) = k such that φβ(<p, y>) = xw) }

Since LT(<p, y>) considers the length of y (the background knowledge which is
given), this must be corrected by the term −l(y).

Before using this definition for formalising the idea of exception, we must first
recall some approaches in the literature. The idea of projectible description was also
addressed by Koppel for a very similar reason to the one of this chapter, the aim of
distinguishing pattern from data. More precisely, Koppel introduced the notion of
sophistication with the goal of distinguish the structural part of an object [Koppel
1988] from its data or non-compressible part of it. Sophistication is measured by the
use of a special kind of Turing Machines φ’, which separate program from data.
Sophistication is then measured as Soph(x) = min{l(p) : ∃d s.t. φ’(p,d) = x} with the
restriction that p must be total, i.e., defined for all d. This last restriction precludes
that the whole description is passed to the part of data, by maintaining an interpreter
i of the data d’ = <p,d>. According to Koppel [Koppel 1987], “the sophistication of an
object is the size of that part of the most concise description of that object which describes its structure,
i.e., the aggregate of its projectible properties. For example, the sophistication of a string which is
random except that each bit is doubled (e.g. 00110000110011....) is the size of the part of the
description which represents the doubling of the bits”. In our opinion, this interpretation is
not exact. In general, for complex objects, sophistication represents the size of too
much general programs. For instance, we could use a functional interpreter with
syntactical verifications of termination, to interpret the data as functional programs.

188 José Hernández Orallo - Doctoral Dissertation

 188

This would make Soph(x) ≤ l(i) for a great majority of complex objects for which
there is a program under this syntactical restrictions, and would leave most of the
structure of these objects in the data. As a result, sophistication does not represent
the idea of pattern or structure of an object.

Similarly logical depth, as defined by Bennett [Bennett 1988] does not represent
the idea of the structure or real complexity of an object. Motivated by the fact that
Kolmogorov Complexity gives high values for random strings, which have no
pattern and structurally are simple, Bennett introduced the notion of depth, which
measures the amount of time required for a string to be generated from its minimal
description. But precisely, Koppel showed [Koppel 1987] that “sophistication” and
“depth” were equivalent up to a constant. Hence, the previous rationale can be
applied to logical depth as well.

Consequently, we need a different approach to distinguish whether any
description has exceptions (partially or totally extensional) or it is composed
exclusively of pattern (it is all structure or totally intensional). The idea is to compare
the part that is used for all the data (to the limit), which is the structure, with the part
that is only used in some portion of the data (the exception).

Definition 6.96 Equivalence in the Limit

A description p’ is (n,k)-equivalent in the limit to a description p iff

∃n ∈ N, n > 0 and ∃k ∈ Z such that φ (p’)n+k.. =φ (p)n..

Informally, two descriptions are equivalent in the limit if there is a point from which
their predictions always match. If both descriptions are k-projectible with k finite
they are always equivalent in the limit, if only one of both is ∞-projectible then they
cannot be equivalent in the limit. Hence, the definition applies when both
descriptions are ∞-projectible descriptions.

Definition 6.97 Fully Projectible Description

A description p is a fully projectible description of x given y iff <p,y> is an ∞-
projectible description of x and ¬∃p’ such that

1. <p’,y> is (n,k)-equivalent in the limit to <p,y>,

2. <p’,y> not extensionally equivalent to <p,y> and,

3. LT(<p’,y>)[n+k..n+k+l(x)] < LT(<p,y>)[n..n+l(x)].

The second condition that p’ is not extensionally equivalent to p is for avoiding that
given two or more equivalent descriptions, only the shortest one would be fully
projectible28. The third condition measures that this p’ is simpler than p. Note that
LT (and only applied to the first chunk of length l(x) where p’ and p begin to be

28 This condition could be removed or bounded (as well as equivalence in the limit) if one wants to
make the definition computable.

6. Intensionality and Explanation

189

189

equivalent) is used instead of l. Let us recall our previous example with the evidence
as “3, 12, 21, 30, 102, 111, 120”, we can consider several projectible descriptions. For
instance, D’1 = “3, 12, 21, 30, 102, 111, 120 and 1 forever” is not fully projectible
because there exists a shorter description “1 forever” which is equivalent in the limit.
In the same way, D’2 = “Start with number 3. The following three numbers are
obtained by adding 9 to the preceding one. Continue with number 102. The
following numbers are obtained by adding 9 to the preceding one” is not fully
projectible because there exists a shorter description “Start with number 3. The
following numbers are obtained by adding 9 to the preceding one” which is
equivalent in the limit. On the contrary, the description D’3 = “numbers whose digits
in decimal representation amounts to 3 ordered” is fully projectible. Similarly, the
description D’4 = “repeat 3, 12, 21, 30, 102, 111, 120 for ever” is fully projectible.
Finally, the following description is also fully projectible D’5 = “the y values of a
polynomial y = P(x) taking for x the natural numbers” where P is a polynomial such
that P(1) = 3, P(2) = 12, ..., P(7) = 120.

The last two descriptions seem counterintuitive but, in some way, this is
something logical, since a fully projectible description formalises the idea of
explanation (and not the comprehension requirement): it describes the evidence, it
accounts for all of it (there are no exceptions because it is fully projectible) and it can
be related to others (because of the use of LT). And D’4, whether we like it or not, is
an explanation for the evidence.

6.6 Intensionality, Informativeness and Explanatory
Induction

Kolmogorov Complexity has been used as “a perfect theory of induction”
[Solomonoff 1968]. However, the problems of the MDL principle for explanation
are notorious, as they were seen in chapter 2.

We could now define variants of Kolmogorov Complexity based on the previous
notion of exception-free description:

Definition 6.98 The Intensional Complexity of a string x on a bias β, denoted Eβ(x),
is defined as follows:

 Eβ(x) = min { lβ(px) : ∆(px)= 0}

i.e., the shortest program for x without intrinsic exceptions. lβ(px) denotes the
length of px in β.

There can be short intensional descriptions whose computational cost would be so
high that they are of little use as theories. In addition, Definition 6.98 turns out to be
non-computable (such as K(x)). An explanatory variant of intensional complexity can
be defined in the following way:

190 José Hernández Orallo - Doctoral Dissertation

 190

Definition 6.99 The Explanatory Complexity of a string x on a bias β, denoted
Etβ(x), is defined as follows:

 Etβ(x) = min { LTβ(p) : ∆(p) = 0}

There are good reasons to choose a time-weighted definition of the best explanation.
The intuitive view of explanation entails that the hypothesis can be explained to
others. At the moment a system has to tell or communicate the explanation to other
system (or internally work with it), there are two important topics: the space of the
discourse and the time the system will need to relate it. Moreover, people and
Science expect that nature has underlying mechanisms that emerge ‘quickly’ in our
observations, simply because nature is not a reliable computer for executing long
programs.

The previous definition has the problem of detecting subprograms (in order to
obtain ∆(p)), a thing which has been shown to be extremely difficult and language
dependent. Fortunately, according to the notion of projectibility we can give an
alternative definition:

Definition 6.100 Explanatory Complexity (Projectible Version)

The Explanatory Complexity of an object x given y on a descriptional mechanism β
is defined as:

Etβ(x|y) = min { LTβ(<p,y>)[..l(x)] − l(y) s.t. <p,y> is fully projectible }

The string y, which we have supposed empty in the previous example, represents the
context or previous knowledge where the explanation must be applied. In the
following, β will be omitted. In the same way it is done with K and the MDL
principle, we can denote with SED(x|y) the Shortest Explanatory Description for x
given y, i.e. the first shortest fully projectible (in lexicographic order) description for
x given y. Logically, l(SED(x|y)) = Et(x|y).

Note that due to the effect of this easy projectibility shown by description D’4 of
the previous example we have that Et(x) <+ l(x) + log l(x), something that also held
for Kt(x). However, in general Et(x) and Kt(x) may differ significantly, because
although there are many ways to hide extensional data by using an intricately coding
(in order to feign an intensional description), this must take some space and/or time.

However, we still have that for most strings, SED(x) will be just the rote
description “repeat x forever” which does not entails any comprehension. A first
idea to avoid this phenomenon is to force the description to be shorter than the data
and to say that the data has no explanation if this is not the case. However, most of
everyday data is not compressible and it is still comprehended.

Another approach is to exclude the descriptions that are generated by rote
learning, i.e. the extensional repetition of part or all the data. This idea is not new and
two evaluation criteria such as reinforcement and cross-validation are inspired in it.

6. Intensionality and Explanation

191

191

For instance, if we remove the last element of the previous series, i.e. “3, 12, 21, 30,
102, 111”, it is not much expectable that D’4 and D’5 would be produced but D’3 can
still be generated. In general29,

Definition 6.101 Stability on the Right

A string x is m-stable on the right in the descriptional system β iff

∀d, 1 ≤ d ≤ m : SEDβ(x-d) is extensionally equivalent to SEDβ(x)

In other words, a string x is m-stable on the right if taking m elements from the right, it
still has the same best explanation. These m elements, if given a posteriori, are
considered reinforcement or confirmation of the explanation, and, if given a priori,
are considered redundancy or hints to help to find the explanation.

Consequently, although rote learning can be trickily used to make an extensional
description fully projectible, reinforcement or cross-validation is shown to be a
methodological criterion to avoid this phenomenon.

There is still another reason to support the previous notion of
comprehension/intensionality as an ontological principle. Why must we avoid rote
learning? Why must we anticipate? Why do children find more complex patterns?
[Marcus et al. 1999] Why are we genetically programmed to open any black box we
are presented? This search for more informative hypotheses instead of the easiest
ones may lead to fantasy, but this is not dangerous as the system can interact with the
world in order to refute the hypotheses.

This informativeness or investment in the hypotheses was advocated by Popper
for the scientific method, and as we have seen, it is equally applicable for cognition.
Even if we make the very strong assumption of Occam’s razor, i.e., things in nature
are not complex unnecessarily, the previous rationale is justified by the fact that, as
well as every incompressible string has compressible substrings, most compressible
strings have incompressible substrings by their own, because the shorter the less
worthy that is to compress. If the evidence is presented incrementally, it is better to
invest in more informative or general hypotheses instead of finding the optimal one
for each chunk that finally will turn out to be not part of the whole description of the
whole evidence. This rationale is further justified by the following theorem:

Theorem 6.28 Anticipation

For every descriptional mechanism β, there exists a constant c which depends
exclusively on β such that for every string x of length n with SED(x) = x* and
l(x*)= m s.t. m < n, then any partition x = yz, l(y) < m − c such that SED(y) is not
equivalent in the limit with x*.

29 This definition is particularised to sequences. Hence, the stability is measured with respect to the last
symbols. In the general case of cross-validation, a subset of elements is removed for obtaining the
hypotheses and then validated with the rest.

192 José Hernández Orallo - Doctoral Dissertation

 192

Proof

Consider any string x and SED(x) = x* with l(x*)= m s.t. m < n. Take ANY prefix
y such that l(y) < m − c. It has a projectible description py = “print y for ever” with
l(py) = l(y) + c’ < m − c + c’, this constant c’ being the space which is required for
coding “print .. for ever”. Since the computational cost of py is linear, say k’ � l(x),
it is sufficient to choose c ≥ c’ + log k’ to ensure that the description py is shorter
than x*, and LTβ(py)[..l(x)] < LTβ(x*)[..l(x)] because log k’ � l(x) = log k’ + log
l(x). Moreover, py and x* cannot be equivalent in the limit because x* is fully
projectible and, by definition, there does not exist a description with less LT
equivalent in the limit. �

It is clear that the idea of stability or cross-validation is supported by the previous
theorem. In fact, it is an innate aesthetic preference in the explanations that human
beings generate. Why is it more pleasant to give the answer 23 to the series
“3,7,11,15,19,...” than to give the answer 3?

The definition of stability and the previous theorem serve as a formalisation and
justification of intensionality, respectively. However, the projective character of
Definition 6.101 and its avoidance of rote learning, make it a first criterion to detect
when comprehension has taken place.

As a result of this section, stable objects give SED descriptions where
comprehension has taken place, i.e., comprehensive descriptions.

6.6.1 Descriptive vs. Explanatory Induction

As it was seen in chapter 2, the principle of simplicity, represented by Occam’s razor,
selects the shortest hypothesis as the most plausible one.

It is remarkable (and often forgotten) than Kolmogorov Complexity just gives
consistency to this theory of induction, but Occam's razor is assumed30 but not
proven. Nonetheless, some justifications have been given in the context of physics,
reliability and entropy, but, in my opinion, it is the notion of reinforcement (or cross
validation) which justifies the MDL principle in a more natural way. As we saw, the
higher the mean compression ratio the higher the mean reinforcement ratio.

The problem of the MDL principle for explanation is that for the sake of
maximum mean compression, some part of the hypothesis cannot be compressed at
all, resulting in a very compressed part plus some additional extensional cases. This
extensional part is not validated, making the whole theory weak.

30 Furthermore, in the case the universal distribution 2−K(x) is assumed, giving a priori predilection of
short programs, the a posteriori optimality of the MDL principle is proven, supposing the randomness of
the hypothesis to the data [Vitányi & Li 1997]. But precisely in explanatory prediction, if the hypothesis is
random to the data, it cannot be the cause!

6. Intensionality and Explanation

193

193

Summing up, the MDL principle says that, in absence of any other knowledge
about the hypotheses distribution, we should select the prior P(h) = 2-K(h). For
explanatory induction I propose to use P(h) = 2-Et(h) instead. This principle has been
dubbed the shortest explanatory description (SED). In this way, priority is given to
the avoidance of extensionality over simplicity. This complies with Chaitin’s view of
the scientific method: “Scientists consider the simplest theory to be the best one, and that if a
theory is too “ad hoc”, it is useless” [Chaitin 1974]. A compromise between both thing is
represented by SED.

There are other approaches to finding intensional theories. Wexler claimed that
the subset principle was an intensional principle [Wexler 1992], for the case of
positive data only. The subset principle (also known as Least General Generalisation
(lgg) by Plotkin [Plotkin 1970]) means that if two theories explain some positive data,
we should select the more specific one, because it is the more informative (and the
more falsifiable). The problem of the subset principle is that it must be combined
with some simplicity criterion, because, if not, the more specific hypothesis is the
data themselves, which is completely extensional.

6.6.2 Unquestionability

It has been frequently argued in philosophy of Science and induction that the
plausibility and unquestionability of a theory or explanation not only depends on the
intrinsic characteristics of the explanation but also to the ability of finding alternative
explanations.

Let us make formal and objective this idea. At first sight it seems that stability
avoids this but, if we restrict to stable descriptions, we can still modify any
explanation p with the addendum “Execute p but print a ‘1’ every hundred symbols
are printed” which would be comprehensive for the data but would differ from p in
the limit, and would be only a little longer.

For this reason, we must extend the previous notion of stability and apply it to
descriptions:

Definition 6.102 Plausibility on the Right

A fully projectible description p for a string x is (c,m)-plausible on the right in the
descriptional system β iff

∀d, 0 ≤ d ≤ m : LTβ(SEDβ(x-d))[..l(x-d)] + c > LTβ(p)[..l(x-d)].

Intuitively, a description is plausible if it is one of the c-best explanations for x and
this holds even if we remove up to m elements from the right of x.

Once the notion of stability has been extended, we can face unquestionability in
the following way:

Definition 6.103 Unquestionability

194 José Hernández Orallo - Doctoral Dissertation

 194

A fully projectible description p for x is (c,m)-unquestionable in the descriptional
system β iff it is (c,m)-plausible and there does not exist another (c,m)-plausible
description p’ for x.

This is a more restrictive condition as c and m are greater. In order to augment these
two parameters and still have some unquestionable descriptions we must make the
strings larger. For instance, if the length of the portion “print a ‘1’ every hundred
symbols are printed” is c’, then, in order to obtain a (c,m)-unquestionable description
with c > c’ we would have to increase the length of x over 100 symbols.

6.7 Information Gain and Intensionality

One may think that informativeness, in the sense of Popper, and intensionality are
quite the same thing because both avoid extensional descriptions. However,
computational information gain is quite different from intensionality. G implies that
the theory is creative or informative. On the contrary, intensionality avoids patches
and extensional exceptions in the theory. As we have said, though, the construction
of the n−1 order polynomial for n points of data is a systematic method, so there is
always an ‘easy’ intensional description for any evidence. The major coincidence
between intensionality and a high value of G(x|y) is that extensional quoting is
avoided, as the next theorem shows:

Theorem 6.29

Given an efficient description x for a long data y, such that x contains a sequential
quoting Q of a random sequence q from y of significant size, namely, l(q)=e > log2
l(y), then x is not intensional and G(x|y) < 1−e/l(x).

For instance, 1,000 bits of data with a description of length 200 bits that contains a
sequential quoting of 120 bits is not intensional and G(x|y) < 0.4.

PROOF. Since Q is a quoting such as “Print yk, yk+1, ..., yk+e−1” then CR(Q) = e /
{mfq � e + afq} ≤ 1. The first assertion, x is not intensional, is obvious by choosing
Q as the exception and the rest of T removing Q as the general rule G.

Then, since n > 1, the compression of the whole theory CR(T) > 1, then
CRφ(T)(G) ≥ CR(T) because CR(Q) ≤ 1, and l(φ(T) − φ(G)) / {mfq � (l(T) − l(G)) +
afq } ≤ 1, because the first term is precisely CR(Q).

For the second assertion, we begin from the definition of gain, Gβ(x | y) = Kt(x | y)
/ Kt(x). Since there is a part of x which is exactly in y, it can be recognised from
the input y by only selecting the beginning of the sequence in y and the length e.
Coding this information Kt(q | y), in any case, cannot be greater in length than
log(l(y)) + cl, because a position can be coded by a usual digital notation and it
cannot be greater in time than l(y) + ct, to traverse the sequence y. Jointly, we have

6. Intensionality and Explanation

195

195

that Kt(q | y) ≤ log(l(y)) + cl + log(l(y) + ct) = 2 � log(l(y)) + clt. Since y is long, clt can
be ignored.

Since q is random, Kt(q) ≥ l(q) + log l(q) = e + log e ≥ e. The term Kt(x) can be
decomposed into the cost of describing q and the code of describing the rest, say
g, namely, Kt(x) ≅ Kt(g) + Kt(q). However, Kt(x | y) is exactly Kt(g | y) + Kt(q | y).
Since Kt(g | y) is always less or equal than Kt(g) and we have stated that Kt(q | y) ≤ 2
� log(l(y)) then Kt(x | y) ≤ Kt(g) + 2 � log(l(y)). From here, G(x | y) = Kt(x | y) / Kt(x)
≤ {Kt(g) + 2 � log(l(y))} / {Kt(g) + Kt(q) } ≤ {Kt(g) + 2 � log(l(y)) } / { Kt(g) + e } =
{Kt(g) + 2 � log(l(y)) + e − e } / { Kt(g) + e } = 1 − { e − 2�log(l(y)) } / { Kt(g) + e }.
Since e > log2(l(y)) and l(y) is long enough we can ignore the term log(l(y)), giving
G(x | y) ≤ 1 − e / { Kt(g) + e }

Since Kt(g) + Kt(q) = Kt(x), by using again the value of Kt(q), then we have that
Kt(g) ≤ Kt(x) − e and we finally have that G(x | y) ≤ 1 − e / { Kt(x) − e + e } = 1 −
e / Kt(x) and since log l(x) ≤ Kt(x) ≤ l(x) + log l(x) ≈ l(x) then G(x | y) ≤ 1 − e / l
(x). �

Apart from these commonalties between gain and intensionality, they express quite
different but compatible notions, which are worth combining. The idea is to obtain
explanatory descriptions and to preserve those which are valuable in terms of
computation gain. In other words, free computational resources (time and space)
should be invested in informative hypotheses.

As a result we are able to counter two assertions from the advocators of the MDL
principle. Their first claim is: “a model that is much too complex is worthless, while a model
that is much too simple can still be useful.” [Grünwald 1999]. My response is that a model
that is evident or extensional is worthless, while a surprising model or intensional can
still be useful. In the same line, Grünwald presents “another way of looking at Occam’s
Razor” as “If your overfit, you think you know a lot but you do not. If you underfit, you do not
know much but you know that you do not know much. In this sense, underfitting is relatively
harmless while overfitting is dangerous”. However, since most of data sequences are
incompressible, the MDL principle gives no knowledge at all, in general. Maybe not
knowing, i.e., ignorance, is relative harmless, but it is also useless.

In conclusion, the MDL principle works well in those environments where the
bias does not allow extensional descriptions or where the data is huge and from
statistical or imperfect sources. But, when faced to a concrete learning problem or in
scientific discovery, we have to tune length, computational time, intensionality and
informativeness of descriptions according to the expectation we have about the
source of knowledge. In our view, Occam’s Razor should be understood in this non-
autistic way.

196 José Hernández Orallo - Doctoral Dissertation

 196

6.8 Intensionality, Learning, and Meaning

Chomsky [Chomsky 1986a] states that grammatical principles are intensional, not
extensional. He says they are part of the I-language, which includes a “universal
grammar” and some other properties acquired by experience. He even argues that
there may not even be a coherent notion of E-language.

The question then was centred in discovering how children acquired these I-
language from an evidence that is mainly extensional. This is just the problem of
learning human language, which it is just like any other learning problem with some
particular traits. Concretely, it is especially troublesome the so-called “Plato’s
problem” or what Chomsky called [Chomsky 1966], following Descartes, the
problem of the “poverty of stimulus”. This is one of the main questions of linguistics
and learning, because it has been long accepted that children receive little negative
evidence [Brown and Hanlon 1970], [Wexler and Culicover 1980], and, it has been
shown that learning from positive data only is much harder than learning from
positive and negative evidence [Angluin 1980]. This led Chomsky to think that
children had innate principles of grammars, a universal grammar, because, if not, it
would be impossible for them to learn human language.

There have been several proposals to address “Plato’s problem” or the case of
learning from positive data only [Muggleton 1984], the MDL principle also being
among them. Another approach has been the subset principle: “every structure that
is grammatical under A is also grammatical under B, then choose option A if it is
consistent with the input”, i.e., one would select the most specific theory in order to
avoid overgeneralisation. In [Wexler 1993] it is even argued that “the subset principle
is an intensional principle”. However, this approach has had many problems when
formalised because the most specific theory is always the data itself.

I propose a solution to this problem as a combination of the notions of
intensionality in this chapter with Wexler’s notion of ‘intensionality’, understood as
avoidance of generality. A good principle for positive evidence only would be to
select the most specific theory that is intensional, i.e., does not have many
exceptions. This solution will be essayed in the next chapter, although not for natural
language problems.

Fortunately, recent results [Marcus et al. 1999] have shown that children are able
to learn virtually any pattern, which discredits the theory of innatism. Moreover, it
shows that children usually overgeneralise, and find more intensional (without
exceptions) descriptions, such as the over-regular formation of past tenses in English.

Although in inductive inference is not fair to select a selection criterion as we
have commented, this could be different for the problem of learning human
language. Quite possibly there is not a universal grammar as Chomsky postulated,

6. Intensionality and Explanation

197

197

but it may exist a concrete and innate selection criterion which is applied by children
in order to learn human language.

In our opinion, this criterion could be closely related to intensionality, to the idea
of comprehending the whole evidence, the whole sentence. As Hofstadter pointed
out [Hofstadter 1979]: “It would be nice if we could define intelligence in some other way than
“that which gets the same meaning out of a sequence of symbols as we do”. [...] This in turn would
support the idea of meaning being an inherent property.”

This, indeed, is not only applicable for the first years of learning human language
but it is necessary for understanding context, sense and intention for the rest of life.
Chapter 8 will inquire on this idea of understanding and the relationship between
intensionality and the notions of explicit and implicit, based on information gain. At
the end of chapter 9 other issues about language and communication will be
discussed.

Finally, there is another use of the terms intension and extension which is more
related with philosophy of language, following classical definitions of these terms
[Cohen and Nagel 1993]: “A term [an element of a proposition] may be viewed in two ways,
either as a class of objects (which may have only one member), or as a set of attributes or
characteristics which determine the objects. The first phase or aspect is called the denotation or
extension of the term, while the second is called the connotation or intension.”

There have been many philosophical approaches (Kripke, Carnap, Montague and
others) to formulate logics that could account for assertions and other expressions
which abound in natural language whose meaning depends on an implicit context or
index, such as time or spatial position. These logics are called intensional (or
indexical logics). One of the most famous formalisms is the (Kripke-style) indexical
semantics, in which context sensitive expressions are interpreted as denoting values
that vary over a space of “possible worlds”.

A concrete approach in this line is the so-called “intensional logic” [van Bentheme
1988] which studies such ‘intensional’ phenomena in human reasoning as modality,
knowledge, or flow of time. These all require richer semantics than standard truth
values in one static environment, including modal logic, tense logic, and conditional
logic, all of which illustrate motivations coming from philosophy and linguistics.

This engages with the important connection between intension and intentionality,
for many semantical systems, such as extensional model theory, which are limited to
extensions, and cannot provide plausible accounts of the language of intentionality.
However, an account of intention falls out the scope of this thesis.

6.9 Summary and Contributions of This Chapter

The notion of intensionality is closely related with that of information gain and
reinforcement. A completely extensional theory has no information gain and it is not

198 José Hernández Orallo - Doctoral Dissertation

 198

reinforced. However, the question is more complicated when it is realised that there
can be partial extensionalities in the theory, i.e., exceptions. How to detect and
measure them has centred the interest of this chapter. The idea of compression is
related to the notion of intensionality but it still allows partial extensionalities, so they
differ significantly in general. Nonetheless, it has been shown that it is impossible to
determine the notion of intensionality without the idea of simplicity or descriptional
complexity.

Section 2 presents in an informal way the distinction between intensional
definitions and extensional ones. Section 3 formalises the notion of exception and
consequently the idea of exception-free description. The notion is particularised for
logical theories (or any model and rule based language).

In section 4, the previous notion is generalised for any descriptional language. In
order to do this, it is necessary to formalise previously some blurred notions such as
subpart and subprogram. This generalisation allows to define a measure of general
reinforcement, too.

Section 5 introduces a different approach for distinguishing between pattern (or
structure) and data, under several refinements over the idea of projectible
descriptions.

From the initial notion of exception-free description and that based on projectible
description, several variants of descriptional complexity are introduced in section 6,
such as intensional complexity and explanatory complexity. The distinction between
descriptive induction and explanatory induction is illustrated and an anticipation
theorem is proved, suggesting the seek for more informative theories instead of the
shortest ones, something that was already advocated in chapter 5.

Section 7 establishes the connection between the notion of information gain of
chapters 4 and 5 with the notion of intensionality.

Section 8 examines the relationship between the notion of intensionality
presented in this chapter and the original sense of the word intension, more related
with language and meaning.

In the end, this chapter does not only contributes with a theory of intensionality
but many other interesting concepts have been introduced along the way:

• The idea of intensionality is formalised in terms of avoidance of exceptions,
these seen as extensional or non-validated parts of a theory.

• The idea is directly applied to logical theories.
• The porting of intensionality and reinforcement to any descriptional language

is essayed, based on a formal and general definition of subprogram.
• Different concepts based on descriptional complexity are introduced, such as

projectible descriptions and stable descriptions, which will be useful to grasp
the implications of the term ‘comprehension’.

6. Intensionality and Explanation

199

199

• The definition of an explanatory variant of Kolmogorov Complexity allows to
define an explanatory counterpart to the MDL principle.

• It is formally shown that intensionality is closely related to information gain,
since extensional descriptions are not intensional nor informative.

• Explanation is also related to the notion of unquestionability, given when there
are not alternative explanations.

This chapter closes the introduction of new measures and notions, as well as their
theoretical comparison, which began in chapter 3. The following chapters apply these
measures for very different purposes and compare them in a more practical way.

Within the specific applications of intensionality, we will see in chapter 9 the
application of intensional / extensional parts of a database.

200 José Hernández Orallo - Doctoral Dissertation

 200

7. Evaluation and Generation of Inductive Hypotheses

201

201

7. Evaluation and
Generation of

Inductive Hypotheses

Proporció és bellesa en l’ordre de les mesures

Ramon Llull, Proverbis, II, CLIX, 1.

Abstract: this chapter shows the application in practice of most of the measures that have been
developed in the previous chapters. The most classical criteria for the evaluation of Logic Programs,
especially two variants of the MDL principle, are compared with reinforcement, intensionality and
gain. In terms of plausibility, reinforcement is shown to be manifestly better than the MDL
principle, either for whole positive evidence, partial positive evidence and partial positive and negative
evidence. Intensionality shows in which degree the data is ‘conciliated’ by the theory, and in some
cases it could be seen as a prerequisite (abduction, explanatory reasoning, etc.). Finally, for the case
of evaluation, gain is used to know when a real learning has taken place, i.e., the theory is original
with respect to the data. Apart from evaluation, the question of how reinforcement and gain can be
combined for guiding a machine learning algorithm is discussed. First, it is shown that both
enumeration algorithms and randomised data-driven approaches are compatible with an increase of
gain. Secondly, a data-driven approach can be constructed with the help of genetic programming,
where the selection criterion (oblivion criterion) is a combination of the optimality of the program (the
individual) and the gain (unusual or rich genotype).

Keywords: Logic Programming, ILP, Machine Learning, Inductive Algorithms,
MDL principle, Genetic Programming, Enumeration Algorithms, Space Limitations,
Generality, Learning from Positive Evidence.

202 José Hernández Orallo - Doctoral Dissertation

 202

7.1 Introduction

The previous chapters have been introducing different concepts and ideas about
informativeness of theories, reinforcement, and intensionality. Many of the
applications have already been presented when these concepts were developed.
Among these applications, we saw the difference between explicit and implicit, the
recognition of what is to discover, the notions of authentic learning and hints about
the problem of creativity, the evaluation of deductive systems, especially logical
theories, a measure of detailed reinforcement, for measurement or ontological
purposes and, finally, a clarification of the notion of explanation and comprehension
based on intensionality. Nonetheless, it would be strange that a work on fundamental
issues of inference processes would not have even more applications, and, desirably,
of more practical character.

This chapter and the following two present a series of instrumentalisations and
applications of the most relevant notions and constructions seen in this work.
Concretely, this chapter centres on evaluation, which, logically, is the first direct
application of every measure. We compare different measures for the evaluation of
inductive theories, expressed in a logical framework. The classical notion of
generality, size complexity, the MDL principle based on model complexity and the
MDL principle based on proof complexity, which have been studied [Conklin and
Witten 1994] [Sommer 1995b] and applied [Muggleton et al. 1992], [Muggleton and
Page 1994]) for ILP, are compared with the measures which have been introduced in
this work: information gain, reinforcement, and, intensionality. We will consider the
case of learning from whole positive evidence, partial positive evidence and partial
positive and negative evidence. The results are quite revealing; reinforcement
(conveniently weighed with generality) is the best criterion by far, and information
gain and intensionality are also interesting measures to evaluate hypotheses.
Moreover, in the case of noisy evidences, where the MDL principle has behaved
more successfully, it will be seen that this is precisely because of its blindness.
Instead, a measure such as reinforcement that can give an error ratio should be used
to obtain more accurate results.

Evaluation criteria can be considered ontological/epistemological or
methodological. Some epistemological criteria are useful as methodical criteria, just
as some methodological criteria turn out to be epistemological as well. For instance,
the MDL principle says that the shorter the more probable but simplicity is also
convenient for methodological purposes. It is precisely the methodological part
which still shows more advantages for our evaluation criteria. In section 3 we discuss
how the search for hypothesis must be tackled by the use of the criteria shown in the
previous section. Informativeness (the effort invested) is used when the theories are

7. Evaluation and Generation of Inductive Hypotheses

203

203

to be pruned because of space necessity. Consilience can be used to join rules in a
learning algorithm. Finally, reinforcement gives a detailed evaluation for each rule of
the theory, and thus allows discerning which rules are to be revised, as we saw in
chapter 5. As it was also seen, some evidence can be forgotten without problems,
depending on how well covered it is.

7.2 Evaluation of Inductive Logical Theories

In chapter 4, when dealing with information gain and deduction, we introduced some
measurements to evaluate a logical theory, such as the proof complexity and the
model complexity. We used them to evaluate the best axiomatic theory. In this
section we will use some of them and others to evaluate inductive logical theories.

In the paper “Complexity-based Induction” [Conklin and Witten 1994], a slanted (in
my opinion) comparison of evaluation criteria is presented, concretely, between the
MDL principle based on model complexity and the MDL principle based on proof
complexity. We will counteract the results of that article with much more evaluation
criteria and the same examples, although we will consider more theories for them,
theories that were not considered by Conklin and Witten because their conclusions
would have been less conspicuous.

In the following, I will illustrate the application of the measures introduced by
Conklin and Witten, some other measures not considered by them (but clearly better)
and the different measures that have been presented in this work.

The measures we are going to consider are: generality degree of the theory, the
length of the theory (or Covering MDL), Descriptional MDL based on Model
Complexity, Descriptional MDL based on Proof Complexity, Reinforcement,
Intensionality and Information Gain. Our distinction between covering MDL and
descriptional MDL is that of Conklin and Witten and it is necessary to clarify when
the theory can cover more facts than those given by the evidence (i.e. the theory
generalises the evidence). This is desirable up to an extent. By Covering MDL it is
meant the shortest theory which covers the evidence. By Descriptional MDL it is
meant the shortest way to code the evidence, i.e. to transmit it, and
overgeneralisations are penalised.

The comparison of all these criteria will be empirical. Although, in the following,
we will consider only one example, the reachability relationship, in [Hernández-
Orallo and García-Varea 1999] a specific theoretical discussion about the non-
informativeness of the MDL principle can be found.

Before making the comparison we must introduce some of the measurements that
have not been presented yet: Generality, Descriptional MDL based on Model
Complexity and Descriptional MDL based on Proof Complexity.

204 José Hernández Orallo - Doctoral Dissertation

 204

7.2.1 Generality Measures: GD(TE) and g(H)

The first method that was used for induction of logic programs was the relative least
general generalisation (rlgg) introduced in the late 1960s by Reynolds and Plotkin
[Plotkin 1970]. The reason for using the most specific generalisation is to avoid
overgeneralisation. As we saw in the previous chapter, the subset principle [Wexler
1992] is simply this avoidance of overgeneralisation, i.e., if two hypotheses cover the
data, we select the most specific one.

The most general hypothesis is represented by ┬ and the most specific hypothesis
is represented by ⊥. Note that the subset principle (without restrictions such as the
rlgg, which only allows one clause per predicate) always give ⊥ + E. However, the
generality measure is useful when combined with other criteria. Let us first introduce
a measure of generality for logic programs:

Definition 7.104. The Generalisation Degree of a logic program P with respect to
a set of ground literals E, denoted GD(PE), is defined as follows:

GD(PE) = card M+(P) / card(E+)

M+(P) being the model of P. If GD(PE) < 1, we have that the program does not
cover all the samples, so some exception should be added. If GD(PE) > 1, which is
the general case, the idea is adjusting to GD(PE) = card(Total Positive Possible
Examples) / card(Presented Positive Examples) but, obviously, the total of positive
possible samples is not known a priori.

The previous measure, however, is not applicable in many situations, since card
M+(P) can be infinite. For this reason, there is better measure for the generality of a
hypothesis:

Definition 7.105. [Muggleton 1995] Let H be a wff (well-formed formula) and
D be a probability distribution over a (possibly infinite) set of wffs X. The
generality g of H is defined as:

g(H) = ∑x∈X, H |= x D(x)

g(H) is just the probability that an instance drawn randomly from D will be entailed
by H. According to the Central Limit Theorem, this measure can be approximated
given a sufficiently large random sample S from D, the proportion of S entailed by H
being an arbitrarily good estimate of g(H):

7.2.2 The MDL principle based on Model Complexity

We saw in chapter 4 a way to compute the model complexity of an evidence with
respect to a program MC(ET). This is based on the length of coding the rules of the
program in the following way [Conklin and Witten 1994].

l(P) = 1 + log (v + 1) + 2 bits per literal + the size of each literal

7. Evaluation and Generation of Inductive Hypotheses

205

205

computing the size of each literal as size(l) = a log (v + c), a being the arity of the
predicate of literal, c the number of constants in the program and v being the number
of variables of the rule with more variables.

The MDL principle for logic programs can be defined in terms of Model
Complexity (MC). If the theory T covers exactly the evidence E, i.e, GD(TE) = 1,
we have that MC(TE) = L(T), and we talk indistinctly about descriptions and
theories.

But in the case that T does not cover all the examples, i.e, GD(TE) < 1, we have
two options, we can augment it with the exceptions or quote them separately. In both
cases the measure should be the same, so we remake the definition accordingly:
MC(TE) = L(T) + L(E − M+(T)).

Finally, in the case that GD(TE) > 1, more elements than the positive evidence
can be deduced, so we need to remove the extra consequences which are not from
the evidence, MC(TE) = L(T) + L(M+(T) − E). This makes the final definition of
MC(TE):

MC(TE) = L(T) + L(M+(T) − E) + L(E − M+(T))

In [Conklin and Witten 1994] the term L(M+(T) − E) is substituted by L(E) when
L(E) < L(M+(T) − E), but, in my opinion, this is not fair, because in that case, T
would be useless to describe the data. Moreover, this would require an extra bit to
distinguish between both situations.

The most efficient way of measuring this L(M+(T) − E) is given by the following
formula:

=

)(

)(
log) (

El

Tl
TEL

And finally the MDL principle (a first version) is defined as (supposing that the
theory is always augmented to cover all the evidence):

+=

)(

)(
log)() (1

El

Tl
TLETMDL

7.2.3 The MDL principle based on Proof Complexity

The proof complexity measure PC(E|T) [Muggleton et al. 1988] [Muggleton et al.
1992] was introduced in chapter 4 (Definition 4.29) as LPC(E|T). We just present the
variant of the MDL principle based on this variant:

 MDL2(TE) = L(T) + PC(E|T)

206 José Hernández Orallo - Doctoral Dissertation

 206

7.2.4 Information Gain revisited: G (TE)

In chapter 4 we estimated G(E|T) for logical theories. The estimation of G(T|E), the
explicitness of a theory with respect to the evidence is more complex, because it
depends on the inductive method which would be used.

However, there are cases that are always the same for every inductive algorithm.
The theory T = E, i.e. T = ⊥ + E, is generally the easiest one to find, the most
explicit one. In the case of logic programs, a rule p(X,Y) when there is a fact in the
evidence p(a,b) is also easy to find and short to describe from the evidence (take
example p(a,b) and generalise it, denoted by cgen(p(a,b))). On the contrary, invented
predicates are difficult to find. According to these ideas, a rough approximation to
the explicitness of a theory can be defined as follows:

Let us consider the background knowledge B jointly with the evidence E and the
theory T. Then we have to consider p= number of predicates of <E,B,T>, px =
number of invented predicates (new predicates of T), n = number of facts of E, c =
number of constants and different variables of <E,B,T>, cx = number of constants
which appear as new in T with respect to <E,B>, and v = number of different
variables of <E,B,T>.

Definition 7.106. Approximation of Gain for Logical Theories:

G(T | <E,B>) = log (v + 1) + log px + log cx +

 for each literal s of T: + 1 +

 if s ∈ E then add: 1 + log n

 if t ∈ E and s = cgen(t) 1 + 1 + log p

 else 1 + 1 + log p + a � log (c+v)

A final bit is reckoned to indicate the case that the theory covers all the
evidence (i.e. GD(TE) > 1), and in this case the extensional facts of
the theory exactly equal to the evidence are not taken into account
(cost = 0), and, therefore, need not be transmitted.

7.2.5 Reinforcement Revisited

For positive evidence, the mean course mχ(E|T) is a very convenient way of evaluate
the theory. However, we must compensate the cases where the theory is much too
general.

On the other hand, we must also consider the negative evidence. We will select
mχ0

 which was seen in chapter 5, because it weighed independently the values of ρ+

and ρ−
.

Another measure that will be used is derived from the generality degree seen
before and this measure of mean course. Namely,

7. Evaluation and Generation of Inductive Hypotheses

207

207

mχ’ = mχ � (1 - 0.5f + f · 2−GD)

where f = (n
+
 − n

−
) / (n

+
 + n

−
), with n+ being the number of positive examples

and n− being the number of negative examples.

It is important to note that this formula can give a value of mχ’ slightly greater than
1. If f > 0 (more positive examples than negative ones) then generality is penalised
because it is easier. Contrariwise, if f < 0 (more negative examples than positive ones)
then generality is favoured because it is more difficult. Logically, if GD = 1 then mχ’
= mχ.

Now, given these new measurements and those seen in the previous chapters we will
compare them in different situations.

7.2.6 Example

First, we are going to use one of the most classical examples in ILP, also revisited by
[Conklin and Witten 1994], which is originally discussed by [Quinlan 1990] and
describes the connection or “reachability” relation in a network. The signature
comprises two binary predicates reach and linked, along with c = 9 constants {0,…,8}.
The background theory B is composed of 10 extensional facts:

B = { linked(0,1), linked(0,3), linked(1,2), linked(3,2), linked(3,4), linked(4,5),
linked(4,6), linked(6,8), linked(7,6), linked(7,8) }

This background is represented in the following figure:

 8 8 8 8

 5 5 5 5

 7 7 7 7

 4 4 4 4

 3 3 3 3

 6 6 6 6

 2 2 2 2

 1 1 1 1

 0 0 0 0

Figure 7.1. Graph of the Reachability Example

208 José Hernández Orallo - Doctoral Dissertation

 208

This background knowledge has the following length:

l(B) = log(0+1) + 1 + 10 � (log 1 + 1)+ 20 log (9) = 11 + 20 log 9 = 74,4

7.2.6.1 Inducing from Complete Evidence: All the Positive Samples

This is the easiest case, because the closed world assumption is right here: we have all
the positive samples and all the rest are negative.

In this case, the evidence E is a complete specification of the predicate reach
composed of 19 facts out of the possible 72 combinations:

E = { reach(0,1). reach(0,2). reach(0,3). reach(0,4). reach(0,5). reach(0,6). reach(0,8).
reach(1,2). reach(3,2). reach(3,4). reach(3,5). reach(3,6). reach(3,8). reach(4,5). reach(4,6).
reach(4,8). reach(6,8). reach(7,6). reach(7,8) }

with l(E) = log(0+1) + 1 + 19 � (log 1 + 2) + 38 log (9) = 39 + 38 log 9 = 159.5

The theories shown in table 1 might be induced [Conklin and Witten 1994]:

Theory Program Comment

T1 reach(X,Y) T1 = ┬

T2 reach(0,1). reach(0,2). reach(0,3). reach(0,4). reach(0,5).
reach(0,6). reach(0,8). reach(1,2). reach(3,2). reach(3,4).
reach(3,5). reach(3,6). reach(3,8). reach(4,5). reach(4,6).
reach(4,8). reach(6,8). reach(7,6). reach(7,8)

T2 = ⊥ + E

T’2 reach(0,X). : ρ= 1 − 2−7 ≈ 0.992

reach(3,X). : ρ= 1 − 2−5 ≈ 0.969

reach(X,8). : ρ= 1 − 2−5 ≈ 0.969

reach(1,2). reach(4,5). reach(4,6). reach(7,6). : ρ= 0.5

T’2 = simple
generalisation when
there are more than 5
facts.

T3 reach(X,Y) :- linked(X,Y).

reach(0,2). reach(0,4). reach(0,5). reach(0,6). reach(0,8).
reach(3,5). reach(3,6). reach(3,8). reach(4,8).

T4 reach(X,Y) :- linked(X,Y).

reach(X,Y) :- linked(X,Z). (T’4)

The second clause
subsumes the first one.

T5 reach(X,Y) :- linked(X,Y).

reach(X,Y) :- linked(X,Z), linked(Z,Y).

reach(0,5). reach(0,6). reach(0,8). reach(3,8).

T6 reach(X,Y) :- linked(X,Y).

reach(X,Y) :- linked(X,Z), reach (Z,Y).

The intended one

Table 7.1. Theories for the “reachability” relation.

With the following lengths:
L(T1) = 1 + 1.58 + 1(0+2) + (2 � log 11) = 11.5 (2 variables)

L(T2) = 1 + 0 + 19(0+2) + 19 � (2 � (log 9)) = 159.5

L(T’2) = 1 + 1 + 7(0+2) + 7 � (2 � (log 9)) = 60.3 (1 variables)

L(T3) = 1 + 1.58 + 11 � (log 2 +2) + 11� (2 � log 11) = 111.7 (2 variables, 2 predicates)

7. Evaluation and Generation of Inductive Hypotheses

209

209

L(T4) = 1 + 2 + 4(log 2 + 2) + 4 � 2 � log 12 = 43.7 (3 variables)

L(T’4) = 1 + 2 + 2(log 2 + 2) + 2 � 2 � log 12 = 23.3 (3 variables)

L(T5) = 1 + 2 + 9(log 2 +2) + 9 � (2 � log 12) = 94.5 (3 variables, 2 predicates)

L(T6) = 1 + 2 + 5(log 2 +2) + 5 � (2 � log 12) = 53.8 (3 variables, 2 predicates)

and the corresponding L(T <E,P>):

L(T1 <E,P>) = 1 + log 3 + 2 + log 2 + 1 = 6.58

 L(T1) = 11.5 G(T1 <E,P>) = 0.57

L(T2 <E,P>) = 1 + log 3 = 2.58

 L(T2) = 159.5 G(T2 <E,P>) = 0.02

L(T’2 <E,P>) = 1 + log 3 + 3 � (2 + log 2 + 2 � log (9 +2) + 1) = 35.3

 L(T’2) = 60.3 G(T2 <E,P>) = 0.59

L(T3 <E,P>) = 1 + log 3 + 2 � (2 + log 2 + 1) = 10.58

 L(T3) = 111.7 G(T3 <E,P>) = 0.09

L(T4 <E,P>) = 1 + log 3 + 3 � (2 + log 2 + 1) + 1 � (2 + log 2 + 2 � log (9 +2) + 1) = 25.5

 L(T4) = 43.7 G(T4 <E,P>) = 0.58

L(T’4 <E,P>) = 1 + log 3 + 1 � (2 + log 2 + 1) + 1 � (2 + log 2 + 2 � log (9 +2) + 1) = 17.5

 L(T’4) = 23.3 G(T’4 <E,P>) = 0.75

L(T5 <E,P>) = 1 + log 3 + 3 � (2 + log 2 + 1) + 2 � (2 + log 2 + 2 � log (9 +2) + 1) = 36.42

 L(T5) = 94.5 G(T5 <E,P>) = 0.39

L(T6 <E,P>) = 1 + log 3 + 3 � (2 + log 2 + 1) + 2 � (2 + log 2 + 2 � log (9 +2) + 1) = 36.42

 L(T6) = 53.8 G(T6 <E,P>) = 0.68

The reinforcements are computed as follows:

210 José Hernández Orallo - Doctoral Dissertation

 210

reinforcements Mean Course

reach(X,Y) : ρ= 1 − 2−19 ≈ 1 mχ ≈ 1

reach(0,1). reach(0,2). reach(0,3). reach(0,4). reach(0,5). reach(0,6).
reach(0,8). reach(1,2). reach(3,2). reach(3,4). reach(3,5). reach(3,6).
reach(3,8). reach(4,5). reach(4,6). reach(4,8). reach(6,8). reach(7,6).
reach(7,8) : ρ= 0.5

mχ = 0.5

reach(0,X). : ρ= 1 − 2−7 ≈ 0.992

reach(3,X). : ρ= 1 − 2−5 ≈ 0.969

reach(X,8). : ρ= 1 − 2−5 ≈ 0.969

reach(1,2). reach(4,5). reach(4,6). reach(7,6). : ρ= 0.5

mχ = 0.88

reach(X,Y) :- linked(X,Y). : ρ= 1 − 2−10 ≈ 0.999

reach(0,2). reach(0,4). reach(0,5). reach(0,6). reach(0,8). reach(3,5).
reach(3,6). reach(3,8). reach(4,8). : ρ= 0.5

mχ ≈ 0.76

reach(X,Y) :- linked(X,Y). : ρ= 1 − 2−10 ≈ 0.999

reach(X,Y) :- linked(X,Z). : ρ= 1 − 2−19 ≈ 1

mχ ≈ 1

reach(X,Y) :- linked(X,Y). : ρ= 1 − 2−10 ≈ 0.999

reach(X,Y) :- linked(X,Z), linked(Z,Y). : ρ= 1 − 2−5 ≈ 0.969

reach(0,5). reach(0,6). reach(0,8). reach(3,8). : ρ= 0.5

mχ ≈ 0.886

reach(X,Y) :- linked(X,Y). : ρ= 1 − 2−19 ≈ 1

reach(X,Y) :- linked(X,Z), reach (Z,Y). : ρ= 1 − 2−9 ≈ 0.998

mχ ≈ (1 · 10 + 0.998 ·
1 · 5 + 0.998 · 0.998 ·
1 · 3 + 0.998 · 0.998 ·
0.998 · 1 · 1) / 19 =
0.9985

From here we can give the values shown in table 2:

T L(T)31 GD Consilient
(no

excepts.)

Gain

Mean
Reinf.
(mχ)

Spec.

(m’χ)

L(ET)

MDL1 PC(ET) MDL2

T1 11.5 3.8 Yes 0.57 ≈ 1 0.57 56.7 68.2 120.5 132.0

T2 159.5 1 No 0.02 = 0.5 0.5 0 159.5 80.7 240.2

T’2 60.3 1.52 No 0.59 0.88 0.75 24.3 84.6 100.9 161.2

T3 111.7 1 No 0.09 0.76 0.76 0 111.7 96.3 208.0

T4 43.7 2,53 No 0.58 ≈ 1 0.67 43.4 87.1 110.6 154.3

T’4 23.3 2,53 Yes 0.75 ≈ 1 0.67 43.4 66.7 123.3 133.9

T5 94.5 1 No 0.39 0.886 0.89 0 94.5 101.9 196.5

T6 53.8 1 Yes 0.68 0.999 0.999 0 53.8 106.1 160.0

Table 7.2. Values for the different criteria studied in this section.

31 In [Conklin & Witten 1994] the complexities are reckoned in a different way, because the predicates
from the background theory B not used in T are taken into account. The results are 12.5, 178.5, 111.7,
43.7, 94.5, 53.8. The differences are not important (l bits, being l the number of literals), however, but
we have preferred to apply the measure strictly as it is defined. Also, if the background knowledge is
great, [Conklin & Witten 1994]’s measurement would differ considerably from ours.

7. Evaluation and Generation of Inductive Hypotheses

211

211

According to the results of Table 2, [Conklin and Witten 1994] concludes that the
MDL1 is the best way to select the right hypothesis (in this case MDL2 does not
select T6). Without considering the new evaluation criteria, we think that this
conclusion is somehow overstated. Note that, from the three theories which are
closer to T6 (which are T’4, T1 and T’2), T’2 and T’4 are not considered by Conklin and
Witten (the difference is reduced to only 13 bits.) and T1 is not computed properly by
them (in their paper log(81 over 19) = 60.4 is computed instead of log(72 over 19) =
56.7).

According to specialised reinforcement (m’χ), however, the optimality of T6 is
manifest (0.999), after taking into account generality and pure mean course (mχ).

Moreover, in this case, it is just sufficient to combine generality (in this finite case
we have used GD(PE)) and exception-free (intensional or consilient) to also select
T6 as the most specific intensional hypothesis.

Gain also provides useful information about the theories. According to the
Oblivion Criterion seen in chapter 4 as the product of gain and a plausibility
criterion, if we are not sure of which hypothesis is the best, and we want to store
some of the theories, but we only have space for 3, we would choose (by using m’χ
as plausibility criterion):

T Gain m’χ OC

T1 0.57 0.57 0.32

T2 0.02 0.5 0.01

T’2 0.59 0.75 0.44

T3 0.09 0.76 0.07

T4 0.58 0.67 0.38

T’4 0.75 0.67 0.50

T5 0.39 0.89 0.35

T6 0.68 0.999 0.68

As we said in chapter 4 this would allow to preserve the effort which has been
invested in the search of plausible and difficult hypotheses while still controlling the
size of memory.

Finally, let us consider the case of T4’ and T4

T4’ and T4 ra: reach(X,Y) :- linked(X,Z). : ρ= 1 − 2−19
 ≈ 1

T4 rb: reach(X,Y) :- linked(X,Y). : ρ= 1 − 2−10
 ≈ 1

Note that rb is a specialisation of ra, i.e., it is a deductive consequence of ra. The
measure of reinforcement is logically not affected by a deductive consequence that is
added to the theory, which in this case does not improve the reinforcement of the

212 José Hernández Orallo - Doctoral Dissertation

 212

whole theory. However, both measurements of the MDL principles are affected,
when T4’ and T4 are, semantically, exactly the same theory. This problem of the MDL
principle to work consistently with deduction has been pointed out several times in
work.

7.2.6.2 Inducing from Partial Evidence: Partial Positive Sample

In this case we are going to study the most usual case when learning from positive
evidence: only a part of the evidence is shown. The example is modified to the same
background knowledge B but a different evidence E, which has 12 examples, instead
of 19:

E = { reach(0,3). reach(0,4). reach(0,5). reach(0,8). reach(3,2). reach(3,4).
reach(3,5). reach(3,8). reach(4,6). reach(4,8). reach(6,8). reach(7,8) }

The theories we are going to consider and their reinforcements are shown in
Table 3:

reinforcements Mean Course

reach(X,Y) : ρ= 1 − 2−12 ≈ 1 mχ ≈ 1

reach(0,3). reach(0,4). reach(0,5). reach(0,8). reach(3,2). reach(3,4).
reach(3,5). reach(3,8). reach(4,6). reach(4,8). reach(6,8). reach(7,8): ρ= 0.5

mχ = 0.5

reach(0,X). : ρ= 1 − 2−4 ≈ 0.9375

reach(3,X). : ρ= 1 − 2−4 ≈ 0.9375

reach(X,8). : ρ= 1 − 2−5 ≈ 0.969

reach(4,6). : ρ= 0.5

mχ = 0.91

reach(X,Y) :- linked(X,Y). : ρ= 1 − 2−6 ≈ 0.984

reach(0,4). reach(0,5). reach(0,8). reach(3,5). reach(3,8). reach(4,8).: ρ=0.5

mχ ≈ 0.742

reach(X,Y) :- linked(X,Y). : ρ= 1 − 2−6 ≈ 0.984

reach(X,Y) :- linked(X,Z). : ρ= 1 − 2−12 ≈ 1

mχ ≈ 1

reach(X,Y) :- linked(X,Y). : ρ= 1 − 2−6 ≈ 0.984

reach(X,Y) :- linked(X,Z), linked(Z,Y). : ρ= 1 − 2−3 ≈ 0.875

reach(0,5). reach(0,8). reach(3,8). : ρ= 0.5

mχ ≈ 0.836

reach(X,Y) :- linked(X,Y). : ρ= 1 − 2−12 ≈ 0.9998

reach(X,Y) :- linked(X,Z), reach (Z,Y). : ρ= 1 − 2−6 ≈ 0.984

mχ ≈ (0.9998 · 6 +
0.9998 · 0.984 · 3
+ 0.9998 · 0.984 ·
0.984 · 2 + 0.9998
· 0.984 · 0.984 ·
0.984 · 1) / 12 =
0.987

Table 7.3. New theories for the “reachability” relation and their corresponding mχ.

The lengths and gains are computed again:
L(T1 <E,P>) = 1 + log 3 + 2 + log 2 + 1 = 6.58

7. Evaluation and Generation of Inductive Hypotheses

213

213

 L(T1) = 11.5 G(T1 <E,P>) = 0.57

L(T2 <E,P>) = 1 + log 3 = 2.58

 L(T2) = 101.1 G(T2 <E,P>) = 0.03

L(T’2 <E,P>) = 1 + log 3 + 3 � (2 + log 2 + 2 � log (9 +2) + 1) = 35.3

 L(T’2) = 35.4 G(T2 <E,P>) = 0.998

L(T3 <E,P>) = 1 + log 3 + 2 � (2 + log 2 + 1) = 10.58

 L(T3) = 81.9 G(T3 <E,P>) = 0.13

L(T4 <E,P>) = 1 + log 3 + 3 � (2 + log 2 + 1) + 1 � (2 + log 2 + 2 � log (9 +2) + 1) = 25.5

 L(T4) = 43.7 G(T4 <E,P>) = 0.58

L(T’4 <E,P>) = 1 + log 3 + 1 � (2 + log 2 + 1) + 1 � (2 + log 2 + 2 � log (9 +2) + 1) = 17.5

 L(T’4) = 23.3 G(T’4 <E,P>) = 0.75

L(T5 <E,P>) = 1 + log 3 + 3 � (2 + log 2 + 1) + 2 � (2 + log 2 + 2 � log (9 +2) + 1) = 36.42

 L(T5) = 84.5 G(T5 <E,P>) = 0.43

L(T6 <E,P>) = 1 + log 3 + 3 � (2 + log 2 + 1) + 2 � (2 + log 2 + 2 � log (9 +2) + 1) = 36.42

 L(T6) = 53.8 G(T6 <E,P>) = 0.68

And finally, we construct again the table with all the measurements:

T L(T) GD Consilient
(no

excepts.)

Gain

Mean
Reinf.
(mχ)

Spec.

(m’χ)

L(ET)

MDL1 PC(ET) MDL2

T1 11.5 6 Yes 0.57 ≈ 1 0.52 43.8 55.3 76.1 87.6

T2 101.1 1 No 0.02 = 0.5 0.5 0 101.1 43.0 144.1

T’2 35.4 2.17 No ≈ 1 0.91 0.66 23.2 58.6 58.9 94.3

T3 81.9 1.33 No 0.13 0.74 0.66 10.8 92.7 94.1 176.0

T4 43.7 4 No 0.58 ≈ 1 0.56 36.0 79.7 70.9 114.6

T’4 23.3 4 Yes 0.75 ≈ 1 0.56 36.0 59.3 77.9 101.2

T5 84.5 1.25 No 0.43 0.836 0.77 8.83 93.3 70.3 154.8

T6 53.8 1.58 Yes 0.68 0.987 0.82 15.6 69.4 81.9 135.7

Table 7.4. Values for the different criteria studied in this section.

We can observe that when the evidence is reduced, both variants of the MDL
principle leave behind the theory T6 and promote other theories. On the contrary,
reinforcement still selects it as the best theory.

7.2.6.3 Inducing from Partial Evidence: Positive and Negative
Evidence

Finally, let us introduce negative evidence. Since learning from positive and negative
evidence is much easier than from positive evidence only, it is expected to obtain
better results than the previous cases.

214 José Hernández Orallo - Doctoral Dissertation

 214

We have the same positive evidence:

E+ = { reach(0,3). reach(0,4). reach(0,5). reach(0,8). reach(3,2). reach(3,4).
reach(3,5). reach(3,8). reach(4,6). reach(4,8). reach(6,8). reach(7,8) }

and a negative evidence

E− = { reach(8,3). reach(5,4). reach(0,7). }

We are going to consider the same theories and, obviously, the lengths and gain will
be the same.

Positive reinforcement is maintained, and there is no negative reinforcement for
T2, T3, T5 and T6. However, for the other theories, reinforcement (the mχ0 version)
must be computed again:

reinforcements Mean Course

reach(X,Y) : ρ+= 1 − 2−12 ≈ 1, ρ−= 1 − 2−3 = 0.875 mχ ≈ 1, mχ0 = (12 · 1 - 3
· 0.875) / 12 = 0.78

reach(0,3). reach(0,4). reach(0,5). reach(0,8). reach(3,2).
reach(3,4). reach(3,5). reach(3,8). reach(4,6). reach(4,8).
reach(6,8). reach(7,8) : ρ= 0.5

mχ = 0.5 = mχ0

reach(0,X). : ρ= 1 − 2−4 ≈ 0.9375, ρ−= 1 − 2−1 = 0.5

reach(3,X). : ρ= 1 − 2−4 ≈ 0.9375

reach(X,8). : ρ= 1 − 2−5 ≈ 0.969

reach(4,6). : ρ= 0.5

mχ = 0.91, mχ0 = (5 ·
0.969 + 6 · 0.9375 + 1 ·
0.5 − 1 · 0.5) / 12 = 0.87

reach(X,Y) :- linked(X,Y). : ρ= 1 − 2−6 ≈ 0.984

reach(0,4). reach(0,5). reach(0,8). reach(3,5). reach(3,8).
reach(4,8). : ρ= 0.5

mχ ≈ 0.742 = mχ0

reach(X,Y) :- linked(X,Y). : ρ= 1 − 2−6 ≈ 0.984

reach(X,Y) :- linked(X,Z). : ρ+= 1 − 2−12 ≈ 1, ρ−= 1 − 2−1 = 0.5

mχ ≈ 1, mχ0 = (12 · 0.984
- 1 · 0. 5) / 12 = 0.94

reach(X,Y) :- linked(X,Y). : ρ= 1 − 2−6 ≈ 0.984

reach(X,Y) :- linked(X,Z), linked(Z,Y). : ρ= 1 − 2−3 ≈ 0.875

reach(0,5). reach(0,8). reach(3,8). : ρ= 0.5

mχ ≈ 0.836

reach(X,Y) :- linked(X,Y). : ρ= 1 − 2−12 ≈ 0.9998

reach(X,Y) :- linked(X,Z), reach (Z,Y). : ρ= 1 − 2−6 ≈ 0.984

mχ ≈ 0.987 = mχ0

In this case m’χ is computed in the following way:
f = (12 − 3) / 12 = 0.75

m’χ = mχ0 � (1 − 0.5 � 0.75 + 0.75 � 2−GD) = mχ0 � (0.625 + 0.75 � 2−GD)

And from here, we have the new results in table 7.5:

7. Evaluation and Generation of Inductive Hypotheses

215

215

T L(T) GD Consilient
(no

excepts.)

Gain

Mean
Reinf.

(mχ0)

Spec.

(m’χ0)

L(ET) MDL1 PC(ET) MDL2

T1 11.5 6 Yes 0.57 0.78 0.50 43.8 55.3 76.1 87.6

T2 101.1 1 No 0.02 = 0.5 0.5 0 101.1 43.0 144.1

T’2 35.4 2.17 No ≈ 1 0.87 0.79 23.2 58.6 58.9 94.3

T3 81.9 1.33 No 0.13 0.74 0.68 10.8 92.7 94.1 176.0

T4 43.7 4 No 0.58 0.94 0.63 36.0 79.7 70.9 114.6

T’4 23.3 4 Yes 0.75 0.94 0.63 36.0 59.3 77.9 101.2

T5 84.5 1.25 No 0.43 0.836 0.79 8.83 93.3 70.3 154.8

T6 53.8 1.58 Yes 0.68 0.987 0.86 15.6 69.4 81.9 135.7

Table 7.5. Values for the different criteria for positive and negative evidence.

Note that both MDL1 and MDL2 do not change because both ignore errors. This is
because L(ET) must say which facts of M(T) are really in E+. Since the aim of MDL
principle is descriptional, it is not relevant whether part of the information is required
for telling that an evidence has not still appeared (e in M(T) but e not in E+ and not in
E−) or whether the information is required for the cases where (e in M(T) and e in
E−).

A partisan of the MDL principle could say that T6 is the shortest one without
errors. This is true in this case but this criterion would turn the MDL principle
useless mainly for the cases which has been more successful, learning from noisy
data. A better idea is to rectify the MDL principle by the proportion of errors:

This gives a MDL1 as:

 MDL
+,−

1 = MDL1 · 2
α · e(T)

with e(T) being the error ratio (negative examples covered / positive examples
covered). The positive and negative examples covered by each of them are:

216 José Hernández Orallo - Doctoral Dissertation

 216

T e(T) MDL1 MDL+,−
1

(α = 1)

MDL+,−
1

(α = 5)

T1 0.25 55.3 65.8 131.5

T2 0 101.1 101.1 101.1

T’2 0.083 58.6 62.1 104.4

T3 0 92.7 92.7 92.7

T4 0.083 79.7 84.4 106.4

T’4 0.083 59.3 62,8 79.2

T5 0 93.3 93.3 93.3

T6 0 69.4 69.4 69.4

Naturally, as greater the value of α, the less robust to errors that the measure would
be.

Finally, let us consider the contrary case, 3 positive examples and 12 negative ones
(f = -0.75). In this case, the extensional theory T2 with mean reinforcement = 0.5 and
GD = 1 and the same theory T6 which still gives:
 reach(X,Y) :- linked(X,Y). : ρ= 1 − 2−3 = 0. 875

 reach(X,Y) :- linked(X,Z), reach (Z,Y). : ρ= 1 − 2−2 = 0.75

a mean reinforcement mχ = (0. 875 · 2 + 0.875 · 0.75 · 1) / 3 = 0.8.
With a GD = 19 / 3 = 6.33 we have:

m’χ(ET2) = mχ(ET2) � (1 + 0.5 � 0.75 − 0.75 � 2-GD) =

= 0.5 � (1.375 − 0.75 � 0.5) = 0.5

m’χ(ET6) = mχ(ET6) � (1 + 0.5 � 0.75 − 0.75 � 2-GD) =

= 0.8 � (1.375 − 0.75 � 0.01) = 1.09

Reasonably, m’χ(T6) is increased by the fact that it is deserving that a general theory
‘survives’ to a mostly negative evidence.

7.2.6.4 Inducing from Noisy Evidence

The MDL principle, as it has been commented, has been successfully applied to
noisy data. Since the goal is to compress, some extensional patches can still be added
to the theory whereas the whole compression ratio keeps high. However, the MDL
principle is blind to the degree of errors in the evidence. The usual solution in a
universal description mechanism is to quote the exceptions separately, be they
positive or negative, and, consequently, there are no extrinsic exceptions, and they
are penalised by the increment of size of the theory. However, in Horn theories, we
cannot remove a consequence to patch a theory, we cannot say M(T) − f. This
represents a non-uniform way of considering excluded positive evidence (just patch

7. Evaluation and Generation of Inductive Hypotheses

217

217

them) and included negative evidence. A solution can be a weighing such as
MDL+,−1.

However, the MDL principle is blind in another sense. It gives a single value, and
one cannot finally know which percentage of the data is covered extensionally, thus it
is difficult to know whether they may be a lot of errors in the theory or not.

On the contrary, reinforcement or intensionality are useful to distinguish the error
ratio of the theory, and compare it with the expected error ratio of the evidence. This
is precisely the most practical result of explanatory complexity. Given an evidence x, if
we have an expectancy of noise of about 3%, we must only search for descriptions
whose extensional part is ∆(px) ≈ l(x) � 0.03. It is important to realise that the MDL
principle gives an uncontrollable and unpredictable exception ratio, which only depends
on the data and usually will underfit (for explanation) or overfit.

7.2.6.5 Conclusions

In the framework of incremental learning, an intensional criterion is less conservative
than the MDL principle, and consequently it usually minimises the whole number of
‘mind changes’ (although these changes are usually more radical) when the data is
perfect. Loosely, we should say that the MDL principle complies with Kuhn’s
philosophy of changing paradigms; when the number of exceptions is too great, the
paradigm must be changed. In contrast, an intensional criterion anticipates this
necessity since any exception forces the revision of the model. It is more eager in the
sense of chapter 4.

Reinforcement is somehow between the two extremes. This compromise has
been shown to be a much more reliable criterion that the MDL principle. Although
the comparison made here should be applied to much more examples, the results
shown here are expected to hold in general, due to the theoretical justifications given
in chapter 6.

7.3 Generation of Inductive Hypotheses

The great advantage of reinforcement (or a detailed exception detection) over the
MDL principle is not only that is a measure which is more adjustable to the
expectations of the source. The great advantage of a detailed measure is that it allows
to guide the inductive search, because it detects which parts of the theory are weak
and must be revised in order to obtain better theories.

First of all, however, we will show that it is possible to obtain informative
hypothesis with efficient methods. This may seem paradoxical at first sight because
the information gain of a hypothesis with respect to the data depends on the
difficulty of a concrete inductive algorithm to find them. We will show that this is
possible in two different ways: non-data driven approaches and randomised

218 José Hernández Orallo - Doctoral Dissertation

 218

approaches. Of the first kind, enumeration approaches can find informative
hypotheses because they are not guided by the data.

However, to avoid the computational cost, the common approach is to construct
the theory from the examples (either top-down or bottom-up). In this case, creativity
is more difficult to obtain, but a theory that covers the evidence is found in less time.
In order to allow this informativeness, randomised techniques such as genetic
programming can be used. We will use the measurement of reinforcement and the
concepts of intensionality and consilience to outline algorithms for finding
comprehensive hypotheses.

7.3.1 Information Gain and the Enumeration Approach

There is a well-known powerful and complete algorithm for the induction problem
called the enumeration algorithm. The algorithm is the simplest one: Select an
ordering P1, P2, ... of all possible programs in a given representation mechanism.
Once settled this ordering (the most critical question), the algorithm is just:

DOVETAIL ALGORITHM

Input: the positive and negative evidence E+ and E−. A background theory B. These
must ensure B ∧ E− ≠ � (prior satisfiability) and also, it is supposed that B ≠ E+ (prior
necessity)

Output: a program P, such that B ∧ P = E+ (posterior sufficiency) and B ∧ P ∧ E− ≠ �
(posterior satisfiability).

Let n = 1.

while n + log exectime(p) < k

Select program Pn and check E+ and E− on B ∧ Pn up to a time-bound 2(k - n).

if B ∧ Pn = E+ (posterior sufficiency) and B ∧ Pn ∧ E− ≠ � (posterior satisfiability)
and Eval(Pn) = true then stop.

else let n:= n +1.

endwhile

If the evaluation criteria Eval(�) gives always true, it is clear that this algorithm
founds the shortest program whose Levin's Kt(p) = min (l(p) + log cost(p)) < k if the
enumeration n is selected according to the length (l(p)).

Imagine an intended program has length 17. Just in this simple case, a dovetail
style algorithm would require the evaluation of 217 (approximate 100,000) programs,
which will require less than (log t) � 217 time.

In the view of this example, it must seem fool to even consider this option, but it
is important to recall that we are interested in short solutions (theories) even when
large amounts of data are given. Suppose we are given np = 20 positive examples and
nn = 30 negative ones, being the solution of 20 bits. An O(np

3 � nn
2) algorithm would

7. Evaluation and Generation of Inductive Hypotheses

219

219

be much worse (24,300,000 against 220 = 1,048,576). In this line, we can include
many works that claim polynomial-time learnability (with respect to the size of the
evidence) for certain restrictions of regular logic programs. For instance, [Krishna-
Rao 1997] presents an algorithm that makes polynomial-time learnable some
concepts by using regular background knowledge. In the case of deriving
multiplication from addition as background knowledge and positive evidence, the
polynomial is greater than 16n8. Obviously, no hints of being implemented or
expected execution times are presented. Finally, and more curiously, these
polynomial limits are obtained by using length bounds to enumeration algorithms.

The ‘folly’ idea of enumeration is supported by some additional considerations: a
dovetail style algorithm is complete if an effective and short program exists, it can be
pruned syntactically and semantically (regarding the data), schemata or priors can be
used to change the ordering of programs and, finally, there is no other algorithm
more given to parallelisation.

Another relevant feature of this algorithm is that it can find informative and
creative hypotheses. Note that since G(T E) = Kt(T E)/Kt(T), it is important to
keep Kt(T) small in order to have a chance of making G(T E) close to 1. This was
formally shown in chapter 4. But note that a complexity-ordered algorithm does not
mean that the selection principle should be the MDL principle, which in this case
would be equal to Eval = true, which stops with the first hypothesis that would be
found. On the contrary, the algorithm could be run up to a limited space and select a
set of optimal hypotheses according to some criterion, e.g. the mean course or an
intensional criterion.

Although this complexity driven induction is computationally very hard, some
learning systems are beginning to use it profitably, such as some ILP systems such as
Progol [Muggleton 1995], other more direct approaches [Giordano 1994], [Minton
1994], [Riddle et al. 1994], [Schmidhuber et al. 1997] or evolutionary variants [Olson
1994] [Wyard 1994] [Conte et al. 1997].

7.3.2 Randomised example-driven Induction, Reinforcement and Gain

As we have said in the introduction of this section, the common approach to
induction is to begin from the evidence, and refine the hypothesis according to some
evaluation criterion. In ILP it is possible to construct a search space based on
subsumption or some other semantic relationship. The algorithms can then begin
with the most general theory and refine it by negative evidence or by some
specialisation criterion with respect to the positive evidence, or they can grow from
the most specific hypothesis. Most ILP systems order their search space by semantic
relations. Other approaches, however, are beginning to be explored in ILP, such as
genetic programming [Olson 1994] [Charif 1994] [Varsek 1995] [Ichise 1998.

220 José Hernández Orallo - Doctoral Dissertation

 220

As we have discussed before, genetic programming is a randomised technique and
therefore the informativeness of the results can be high since the inductive method is
not deterministic.

Another advantage of a genetic programming approach is that the evaluation
criterion is flexible and can be changed without remaking the whole structure of the
algorithm. In [Hernández-Orallo and Ramírez-Quintana 1998a, 1998b, 1999a] , this
approach is considered, but applied to functional logic programs instead of logic
programs, by using a narrowing operator instead of resolution.

Roughly, the algorithm generates a population of generalisations of the instances
given in the evidences. This constitutes a set EH, which is composed of equation.
These equations are rated according to some specific criteria (accordingly to the
positive and negative facts they cover), which is closely related to the measurement
of reinforcement seen in chapter 5. A set PH, composed of programs, is initially
constructed from all the unary sets that can be constructed from the set EH.

The selection criterion of the algorithm is a variant of the intensional or consilient
criterion seen in chapter 6, and this is responsible for promoting the combination of
rules in order to make final programs not separable, i.e., to cover comprehensively
the evidence. Moreover, this combination has the advantage that reinforcement does
not need to be recomputed from scratch but the separate reinforcements of each
part can be profited to compute the new reinforcement.

One of the characteristics of this method is that every combination of rules that
generates a new rule by inverse narrowing (an analogous process to inverse
resolution for functional logic programs) adds this new rule to EH, so this set is
enlarged by new rules which can compose the programs. To maintain all the rules
which are being generated is not a real problem with the memory resources and
power of current computers. However, the set PH is composed of combinations of
elements of EH, which can be extremely large. The problem is well-known in genetic
algorithms and genetic programming: many of the individuals must die to leave place
for better individuals. However, must only the criterion of the best individual rule
this selection?

In practice, there are two better possibilities. The first one is to recall which
programs have been essayed. This, however, has the problem that, in many cases, it
also takes a great amount of space. The second option is to take into account the
oblivion criterion: easy programs that can be easily generated from PH by
combinations can be forgotten without hesitation, because they will soon appear
again.

The maintenance of this population of hypotheses is even more important for the
case of incremental learning, because some earlier hypotheses could be revived by
new evidences. In other words, an incremental algorithm cannot only keep the best
hypothesis, because any future change would make that all the process starts again.

7. Evaluation and Generation of Inductive Hypotheses

221

221

Moreover, in real situations, the past evidence can change, and this is something that
is not usually contemplated by any inductive algorithm, because in this case, it should
start again from scratch.

On the contrary, with the use of a set of hypotheses, in case of a change of the
evidence, only the reinforcements are to be computed again but not all the inductive
process. Just if none of these hypotheses gives now a good optimality value, the
inductive process is re-started.

7.4 Summary and Contributions of This Chapter

This chapter has shown the first practical applications of most of the measures seen
in this work: evaluation of (logical) theories and guiding of learning algorithms.

In Section 2 we have reviewed some of the most classical criteria for the
evaluation of Logic Programs used in ILP, especially two variants of the MDL
principle. We have compared them with reinforcement, intensionality and gain. In
terms of plausibility, reinforcement is manifestly better than the MDL principle,
either for whole positive evidence, partial positive evidence and partial positive and
negative evidence. Intensionality can be computed to know in which degree the data
is ‘conciliated’ by the theory, and in some cases it can be a prerequisite (abduction,
explanatory reasoning, etc.). Finally, for the case of evaluation, gain has only some
auxiliary use, mainly for ascertaining when a real learning has taken place, i.e., the
theory is original with respect to the data.

The section also shows the importance of combining the generality criterion with
reinforcement and the relevance of considering the negative evidence in more detail.

Section 3 shows how reinforcement and intensionality can be combined for
guiding a machine learning algorithm. First, it is shown that the enumeration
algorithm is compatible with a search for gain, because the data is only used to check
the hypotheses. Secondly, a data-driven approach is constructed with the help of
genetic programming, where the selection criterion (oblivion criterion) is a
combination of the optimality of the program (the individual) and the gain (unusual
or rich genotype). Moreover, the randomised character of genetic programming
allows the generation of informative hypotheses.

The contributions of this chapter are:
• The comparison of the evaluation measures of this thesis and other classical

criteria of logical theories with respect to whole or partial positive evidence,
and positive and negative evidence.

• The outstanding results of reinforcement are shown for all these cases.
• A variant of reinforcement that is weighed with the generality degree measure

is introduced.

222 José Hernández Orallo - Doctoral Dissertation

 222

• A variant of the MDL which measures the generality of the positive and
negative evidence.

• In the presence of noise, reinforcement and consilience measures allow to
obtain the percentage of errors in the theory, which can be compared with the
expected noise ratio.

• Hints about hypotheses generation and how this generations should be done in
order to obtain informative hypotheses.

In our opinion, the evaluation and generation of hypotheses must be highly
interlaced, although if the inductive system is wanted to be applicable to different
situations, it must allow the change of the evaluation criterion, because there is not a
best criterion for all the situations. Only some paradigms, such as genetic
programming, allow the change of this criterion without also forcing the change of
the algorithm.

8. Measuring Intellectual Abilities

223

223

8. Measuring
Intellectual Abilities

Encara us dic que port una Art general

que novament és dada per do espiritual,

per qui hom pot saber tota re natural,

segons que enteniment ateny lo sensual.

A Dret e a Medicina e a tot saber val

e a Teologia, la qual m’és mais coral,

e a soure qüestions nul�la art tant no val,

e a destruir errors per raó natural;

tenc-la per perduda car quaix a hom no cal.

Ramon Llull, Lo desconhort, VIII.

Abstract: in this chapter, the ability to comprehend is identified with the main factor of intelligence,
derived from the notion of comprehension introduced in chapter 6. However, some technical problems
arise when this factor is to be measured, especially unquestionability, and to define an absolute scale
of difficulty of comprehension. Both problems are solved in this chapter and the result is a
comprehension test, or C-test, exclusively defined in terms of universal descriptional machines.
Despite the absolute and non-anthropomorphic character of the test it is equally applicable to both
humans and machines. Moreover, it correlates with classical psychometric tests, thus establishing the
first firm connection between information theoretic notions and traditional IQ tests. From here, a
factorisation is outlined, considering other inductive and deductive factors, thus allowing a theoretical
study of their inter-dependence, something that has only been possible to do in an experimental way,
as the statistical correlations which have been studied by psychometrics.

Keywords: Measurement of Intelligence, Psychometrics, IQ tests, Turing Test,
Unquestionability, Series Prediction, Comprehension Ability, Deductive Ability.

224 José Hernández Orallo - Doctoral Dissertation

 224

8.1 Introduction

In the previous chapter, the measurements were applied to hypothesis evaluation and
generation. However, a measure for inference processes can also be applied to
systems. For instance, in the case of deduction, we measured in chapter 5 the
complexity and gain of a given conclusion from its premises. If we devise a test to
measure the time that a certain system takes to find the solution, we know that it is
able to solve problems of a given complexity. In a more intricate way, we can find
induction problems whose answer is unquestionable (we will see that this is possible
to some extent) and devise a set of questions to evaluate the inductive ability of a
given system.

Although the measurement of inductive abilities is more difficult than the
measurement of deductive abilities, we will centre mainly on the measurement of
inductive abilities. The reason-why is that any process of induction needs deductive
abilities to check the hypotheses with respect to the evidence. This explains why the
measurement of induction abilities correlates with g, the main factor of intelligence.

This will allow identifying the main factor of intelligence as the ability to
comprehend, derived from the notion of comprehension introduced in chapter 6.
The result is a comprehension test, or C-test, exclusively defined in terms of
universal descriptional machines (e.g. universal Turing machines). Despite the
absolute and non-anthropomorphic character of the test it is equally applicable to
both humans and machines. Moreover, we will see that it correlates with classical
psychometric tests, thus establishing the first firm connection between information
theoretic notions and traditional IQ tests.

8.2 Requirements and Technical Problems

AI has striven to imitate human behaviour in many tasks, under the slogan “Artificial
intelligence is that thing that if made by humans would require intelligence”, which has
frequently promoted the view that “human intelligence subsumes machine
intelligence” [Bradford and Wollowski 1995] instead of the open and more realistic
view that “robots will be more intelligent than we humans are” [Moravec 1998].
Finally, the Turing Test (TT) has usually been understood also as an effective test
(and not only as a philosophical exercise). This misinterpretation, jointly with his
celebrity, has motivated that there has not been the necessary effort for designing
new alternative intelligence tests. The TT has even eclipsed such well-reputed
proposals as Simon’s early works on the relation between IQ tests and AI [Simon
and Kotovsky 1963], on some heuristic approaches to solve analogy problems from

8. Measuring Intellectual Abilities

225

225

IQ tests [Evans 1963] and Chaitin’s suggestion “develop formal definitions of intelligence
and measures of its various components” [Chaitin 1982]. Even Johnson’s call “Needed: A
New Test of Intelligence” [Johnson 1992] has been responded by formalisations of the
TT [Bradford and Wollowski 1995] instead of devising new proposals.

As any other discipline, AI requires an effective measure of its major issue, a
gradual and detailed measure of intelligence. A scientific measure of intelligence
should follow these requirements:

• Non-Boolean: intelligence is not an absolute attribute. From Darwin’s “mental
continuity” to infant psychology, there is an unquestionable certainty that
intelligence is a gradual aptitude. Any discretisation of the TT as a function of
the time of the test or the score of the judges shows the inappropriateness of
the TT to measure intelligence in a gradual way, i.e., to give a continuous value
of intelligence. The reason is obvious: the TT is a test of humanity [Fostel
1993], and the idea of being more or less human makes no sense.

• Factorial: intelligence is multi-dimensional. It is quite unbelievable that there is
a concrete ability that would be optimal for every context or world.
Nonetheless, it is conceivable that a concrete ability would be almost optimal
for most contexts, and intelligence has sometimes been defined as “second-
best in everything”. This may justify that a wide context as everyday life, which
includes many other contexts, can distinguish a special kind of ability: “human
beings rank animals [and people] using a distinctively human concept of intelligence, the
primitive concept found in everyday life, and these rankings correlate with g” [Flynn 1987].

• Non-anthropomorphic: Maybe the major problem of AI is that the only
reference of intelligent behaviour is human intelligence. Only recently, AI
researchers have paid attention to other ‘intelligences’: ants, rats, etc. in order
to scale up the problem towards human intelligence. However, the reference or
the goal is always human intelligence. Nowadays the reason is not only pride
and anthropocentrism but also necessity, because “there is not yet a solid definition
of intelligence that doesn’t depend on relating it to human intelligence” [McCarthy 1998].

• Computationally based: According to the Church-Turing thesis, there is no
reason to think that intelligent systems cannot be implemented in current
computers. The only question is whether they have the necessary speed and
memory for it. I share the opinion that “computers of 30 years ago were fast enough if
only we knew how to program them” [McCarthy 1998], and the AI problem is just to
discover what makes a program intelligent, or, in other words “What kind of
Information Processing is Intelligence?” [Chandrasekaran 1990]. Consequently, it is
extremely significant to be able to state the problem computationally, in other
words, to give the specification of the problem in computational terms, in
order to solve the problem with AI means, which are exclusively machines and
programs.

226 José Hernández Orallo - Doctoral Dissertation

 226

• Meaningful: intelligence is not an ethereal ability. It cannot be exclusively
defined as “intelligence is what is measured by intelligence tests”. Intelligence must be
expressed from its original meaning, the ability to comprehend, and this ability
is what should be measured: “the only way to know if our machines, or people, are
intelligent, is to make them explain how they did what they did... people can attempt to give
rational explanations, and ultimately that is how we must measure intelligence" [Schank
1986].

Psychometrics has developed measurements of intelligence according to the first two
requirements. Since Spearman founded the field [Spearman 1904], psychometrics has
been more and more characterised by the scientific method: systematic
experimentation and statistical rigour. “Despite the many shortcomings of an IQ score, no
other measure has been found to be related to so many other behaviors of theoretical or practical
significance” [Zigler and Seitz 1982]. However, psychometrics has neglected, or failed,
to incorporate the three last requirements, which, in fact, are highly related.
Psychometrics is anthropomorphic by definition since it is the science of measuring
human intelligence, although there have been adaptations and essays with
chimpanzees, dolphins and other animals. Psychometrics is an experimental science
that has used the Homo Sapiens Sapiens as both target and reference. The frequently
demanded theoretical foundation of psychometrics depends on the change of the
point of reference, closely connected to the last three requirements.

On the contrary, Computational Learning Theory is non-anthropomorphic and
computational. The question “What is to learn?” has been assimilated to the formal
notion of identification in the limit [Gold 1967], which can be sketched as follows:
given a pattern or concept C to learn, and an evidence e1, e2, ..., as a sample from C, a
learner L identifies C if there exists a finite number k such that for every example en,
n > k, the learner predicts all of them correctly.

After some discouraging results on the learnability of very simple languages, the
complexity of learning has been studied for other paradigms, mainly PAC learning
[Valiant 1984] and Query Learning [Angluin 1988].

However, these theoretical results have not been used to develop rigorous
measurements of learning ability. Contrarily, some contests and comparisons have
been held for practical systems, but as collections of arbitrary examples extracted
from the literature, without many justifications of the theoretical complexity of each
of them.

The reason is that it is difficult to establish the complexity of an instance, when
the results of computational learning theory apply to classes of concepts, and most
results are asymptotical. Moreover, the paradigm of identification in the limit is not
applicable for finite instances, because they can be identified by themselves. The
philosophical problem of any measurement of learning ability is the same as the
philosophical problem of series prediction: given any finite set of examples, there are
infinite many concepts that are consistent with them and diverge in their predictions.

8. Measuring Intellectual Abilities

227

227

This is exactly the ‘subjectivity objection’ of IQ tests: there may be controversy about
the correct answer.

With these requirements in mind, let us start with Chaitin’s proposal “develop formal
definitions of intelligence and measures of its various components” [Chaitin 1982] by using
descriptional complexity and the ideas of learning as compression. At first sight it
seems to be easily applicable. However, there are many technical reasons that explain
that such an intriguing proposal (and made from such an eminent source) has not
been addressed yet32.

For instance, the following “compression test” can be recklessly defined:

Definition 8.107 Compression Test. Give an arbitrary string x of size n to a
subject and ask for the following symbol s according to the shortest projective
description. Mark the subject’s answer as a hit if φ(x*)n+1 = s.

This test, however, has many technical and fundamental riddles:
• K(x) is not computable, so there is no effective way to know which is the

‘correct’ answer and, consequently, to know whether the subject’s answer is a
hit.

• There are different equally alternative plausible descriptions: x* is just the first
one in lexicographic order of all the shortest descriptions.

• Despite the invariance theorem that states that x* depends on φ only up to a
constant, this constant is relevant if n is small, and there is no reason to prefer
one descriptional system over another. The test suffers the subjectivity
objection.

• The test intends to measure the ability of compression, but this does not match
exactly33 with the ability of comprehension, i.e., intelligence.

The first problem has a practical solution. K(�|�) does not reflect a cognitive view of
information nor a cognitive view of simplicity, because for some strings the shortest
description could be extremely time consuming and, consequently, not valid as an
explanation because it cannot be related to others (“if you want to understand a concept,
try explaining it to someone else” [Winston 1982]).

In the previous chapter we defined a fully projectible version of Kolmogorov
Complexity based on the Levin variant LT. We have defined explanatory complexity
from it, and the shortest explanatory description (SED) has also been defined.
Finally, stable (on the right) objects give SED descriptions where comprehension has
taken place, i.e., comprehensive descriptions.

32 At least to the author’s knowledge and as Chaitin himself has recognised (Chaitin 1998, personal
communication).
33 “I just see how Kolmogorov Complexity and Intelligence could be well related but I don't think it would be 'exactly'
so”. (Hofstadter 1997, personal communication)

228 José Hernández Orallo - Doctoral Dissertation

 228

Theoretically, there are two ways to know whether a system’s operation is
compliant with some requirements: by inspecting its code (or program) or by testing
its behaviour. In software engineering it has been finally accepted that the
verification of a specification with respect to a program (formal verification) is only
feasible for small systems. In general, for complex systems, verification is
experimental, made by means of sets of tests. It is an open and extremely hard
problem to devise a complete specification of intelligence, mainly because it depends
on a consensus on the functionalities that an intelligent system must be able to
perform. However, and this is precisely what I claim in this chapter, it is possible to
distinguish some functionalities that are fundamental for intelligence. A verification
of intelligence behaviour should begin with these fundamental traits, and gradually
add more diverse test cases in order to make the test set more robust.

Comprehending is the most important trait of intelligence, and we have
formalised it in a computational framework. This would be the major difference
between psychometrics and the intended measurement of this chapter. The test’s
exercises are not selected experimentally but theoretically, so, finally, we will know
what is to be measured.

However, if we intend to measure comprehensibility there are still two questions
to solve. First, we must design unquestionable exercises, in order to avoid the
‘subjectivity objection’ of IQ tests. Secondly, we require an absolute referent of
comprehension difficulty in order to give a non-Boolean score independent to the
mean ability of the subjects or society who have made the test before.

The following sections are devoted to ensure that the descriptions would give the
same meaning out of a sequence of symbols as we do [Hofstadter 1985], and only
other intelligent beings would do (because the sequence is unquestionable) and how
to measure their complexity.

8.3 Unquestionability

Psychometrics has striven to show that it is not absurd to measure the ‘correct’
solution. Its answer is that if the great majority matches with some solution is because
there are not alternative solutions of similar complexity, and, consequently, it is the most
plausible. However, this assertion is made from a very subjective and informal point
of view.

As we saw in chapter 6, we introduced the notion of stability to avoid rote or
repetitive descriptions. However, there was a need to avoid extra patterns that could
be invented to make the prediction differ.

For this reason, we extended the notion of stability and applied it to descriptions.
Let us recall Definition 6.102:

8. Measuring Intellectual Abilities

229

229

Definition 8.108 Plausibility on the Right. A fully projectible description p for
a string x is (c,m)-plausible on the right in the descriptional system β iff

∀d, 0 ≤ d ≤ m : LTβ(SEDβ(x-d))[..l(x-d)] + c > LTβ(p)[..l(x-d)].

Intuitively, a description is plausible if it is one of the c-best explanations for x and
this holds even if we remove up to m elements from the right of x.

From here, in chapter 6, we also introduced unquestionability in the following
way (Definition 6.103):

Definition 8.109 Unquestionability. A fully projectible description p for x is
(c,m)-unquestionable in the descriptional system β iff it is (c,m)-plausible and there
does not exist another (c,m)-plausible description p’ for x.

As we will see later, if c and m are tuned conveniently for a concrete descriptional
mechanism, the tests can still be composed of short strings x as exercises such that
its SEDβ(x) is (c,m)-unquestionable.

This restriction to unquestionable descriptions not only preserves the goal of the
test but even strengthens it, in ontological terms. As we saw the plausibility and
unquestionability of a theory or explanation not only depends on the intrinsic
characteristics of the explanation but also on the ability of finding alternative
explanations. In this sense we can see intelligence as the most important means to
augment the plausibility and confidence of explanations, and, consequently, the
ontology of an ‘intelligent’ system.

8.4 Establishing Absolute Difficulty

Once we are able to obtain strings whose SEDβ(x) is (c,m)-unquestionable for the
test, we should ascertain the complexity or difficulty of each problem, in order to be
able to give a test set of exercises of different complexity. The first idea is to relate
this complexity with explanatory complexity (Et):

Definition 8.110 Comprehensibility (first approach). A string x is k-hard (or k-
incomprehensible) given y in a descriptional system β iff k is the least positive integer
number such that:

Etβ(x|y) ≤ k � log l(x)

The use of the factor log l(x) is to compensate the fact that x must be printed and,
therefore, for all x Et(x) ≥ log l(x). Consequently, for all x, k ≥ 1. As an example,
consider a string x of length 256, with Et(x)= 50. The comprehensibility of x is k=7.

230 José Hernández Orallo - Doctoral Dissertation

 230

If Et is substituted by Kt we would have the definition of potential which
measures “the time that needs to be pumped into a number by a computation that finds it” [Li
and Vitányi 1997]. Accordingly, the preceding definition does not measure exactly
the complexity of finding an explanation for a string x. Consider for instance the
string x = “wwwwww...” where w is a string with l(w) = m, it has as SED the stable
description r = “repeat w for ever” with Et = m + c + log c’�l(x), which gives k = (m
+ c) / log c’�l(x). Consider just m = 80 and l(x) = 256, and we have that the string can
be more than 10-hard, which is quite high for a string whose SED is extremely
simple!

To correct this problem we must first realise the reason why we consider a string
like r simple. The rationale is that it is easy to give the description if we have the data,
i.e., it is obvious or explicit in it. Enquiring this line leads to the definition of
information gain we gave in chapter 4.

From here, we can give a definite and corrected version of comprehensibility in
the following way:

Definition 8.111 Comprehensibility (Corrected Version). A string x is k-hard
(or k-incomprehensible) given y, denoted by incomp(x|y), in a descriptional system β
iff k is the least positive integer number such that:

Etβ(x|y) � G(SED(x|y) | <x,y>) ≤ k � log l(x)

This weighing finally measures the real complexity of finding SED(x) from x,
because descriptions of the form “repeat x for ever” which have Kt high (to quote x)
are corrected by G, but the length of x is still important.

8.5 The Test

Now we are prepared to construct a generic test of ability of comprehension by
generating a series of strings of gradual comprehensibility. However, as it has been
said, it is important that the answer is unquestionable, because if not, the answer
would be an arbitrary choice from the examiner. An easy way is to give redundant
information to make the answer unquestionable. However, we cannot exceed this
redundancy too much, because if not, the problems would be much too long. For
instance, given the series “a, c, c, a, c, c, c, a, c, c, c, c, a, ...” it seems logical to expect
that it would follow “c, c, c, c, c, a, c, ...”, so it looks redundant to present more than
the necessary symbols.

The measurement that is to be presented below requires the collaboration of the
subject, which must employ all its resources to perform the test. It is not relevant
whether the subject understands the aim of the test or whether it is programmed to
do it. It is even more impartial if the subject does not know that it is an intelligence
test. The subject must only know the language and questions the test is composed of.

8. Measuring Intellectual Abilities

231

231

With these clarifications about the nature of the test, we can define the
intelligence of a given system S as the value that results from applying the following
test to it:

Definition 8.112 C-Test. Let us select a descriptional system β sufficiently
expressive and impartial, composed of an alphabet of symbols Ωβ and a set of
operations Θβ to manipulate these symbols, and their corresponding cost (or
length). We provide (or programme) to S the alphabet, operations and cost.

Depending on the expected intelligence of a system we select a sufficiently wide
range 1..K of difficulty. For each k = 1..K we choose randomly p sequences xk,p,
being k-incomprehensible, c-plausible, c-m-unquestionable and d-stable with d ≥ r, r being
the number of redundant symbols (or hints) of each exercise.

We measure the intelligence of a pretended intelligent system S in the following
way:

The questions are the K�p sequences without their d − r elements (xk,p
−(d+r)). We

give them to S and we ask for the following element according to the best
explanation that is able to construct with Ωβ and Θβ. We leave S a fixed time t
and we record its answers: guess(S, xk

−d+r+1).

The result of this test of comprehensibility (or C-test) is measured as:

[]I S k hit x guess S xe

d r

k i

d r

k i

i pk K

() , (,), ,

....

= ⋅ − + + − + +
==
∑∑ 1 1

11

the function hit is usually measured as hit(a,b) = 1 if a = b and 0 otherwise
(negative values can be used to penalise errors). The value e is simply for weighing
the difficult questions (if we choose e = 0 all the questions have the same value).

In an informal way, “the test measures the ability of finding the best explanation (a
fully-projectible description with no alternative fully-projectible descriptions of
comparable complexity) for sequences of increasing comprehensibility in a fixed
time”.

One relevant feature of the test is that, although the subject is supposed to be a
particular universal descriptional system φs with a particular background knowledge
(life experience) Bs, it is given a descriptional system β over it, which highly
minimises the influence of the difference between the computations performed by φs
and other subject φt, i.e. the difference between Ets(x|<Bs, β>) and Ett(x|<Bt, β>).
This makes it possible for the notions of plausibility and unquestionability to be
similar for both subjects. Nonetheless, we will see in section 7 how this test can be
extended to measure this influence.

232 José Hernández Orallo - Doctoral Dissertation

 232

8.6 Measurement of Pretended Intelligent Systems

The preceding test is applicable to any system whose degree of intelligence is
questioned. Appropriately selecting the descriptional system and the rest of
parameters of the test, it can be used for humans, animals, computer systems,
extraterrestrial beings and any collection of the preceding working jointly.

Although Definition 8.112 evaluates a single ability, there are still many ways to
realise a specific test from the definition. In [Hernández-Orallo and Minaya-Collado
1998] the test was implemented by using an abstract machine quite similar to a state
machine, a simplified version of a Reduced Instruction Set Computer (RISC). From here, a
variety of strings of different comprehensibility in that machine were generated.
Although the set of k-potent numbers of length at most n can be computed in
polynomial time in n (see a proof in [Li and Vitányi 1997]), the cost of O(nk) forces to
use some heuristics for this. In the same way, G was approximated. Finally, a sieve
was applied for obtaining only c-plausible, c-m-unquestionable and d-stable sequences.
More details are shown in the appendix.

The same work presents the results of applying the test to 65 subjects from
species Homo Sapiens Sapiens aged between 14 and 32 years, jointly with a classic
test of intelligence, the European IQ Test. The correlation between both tests was 0.77.
This value only justifies a further more exhaustive study over greater groups and
several variations derived from Definition 8.112. For the moment, this psychometric
evidence is of vital relevance for a formal theory of measurement of intelligence,
since, according to Brand [Brand 1996], the correlation with IQ tests is a necessary
condition (but not sufficient) for a good measurement of intelligence.

Another remarkable experimental result shown in the figure below is that the
relation between hit ratio and k-incomprehensibility is straight, which suggests that
comprehensibility really estimates the difficulty of each string:

Hit
Ratio

Difficulty (k)

Logically, it is little interesting to know that the average Homo Sapiens is able to
‘understand’ sequences of incomprehensibility = 10 in a reasonable time. Similarly, it
is not expectable (for the moment) that contrasted and widely used IQ tests were

8. Measuring Intellectual Abilities

233

233

substituted by these C-tests. Nonetheless, this could entail a milestone in the
theoretical foundation of psychometrics because it is the first measurement of an
intelligence factor that is based theoretically and not using the Homo Sapiens as a
reference.

However, it is not human intelligence but non-human what is urgent to measure.
A formal declaration of what is expected from an intelligent system should allow two
important things: to derive more intelligent systems from a more concrete
specification and, secondly, to evaluate them. Definition 8.112 provides a first step
for both things, a detailed scale for measuring the progress (in one intelligence factor)
of generic systems in AI. As any other field of science, a great advance in a discipline
happens when one of its fundamental topics can be measured in an effective and
justified way. Artificial Intelligence, as a science, requires measurements of
intelligence, or at least, measurements of their different factors.

Modern AI systems are much more functional than systems from the sixties or
the seventies. They solve problems in an automated way that before required human
intervention. However, these complex problems are solved because a methodical
solution is found by the system’s designers, not because current systems are more
intelligent than preceding ones. No one cares about measuring how functional these
systems are for other kinds of problems, since “it’s easier to evaluate systems that do specific
things than it is to evaluate systems whose tasks are more general” [Nilsson 1995]. The current
oblivion of general problem solvers may be technologically correct with an
applications demanding discipline but not fair with A.I. foundational name. “It is time
to begin to distinguish between general, intelligent programs and the special performance systems”
[Nilsson 1995].

This initial aim of being more general is nowadays still represented by two
subfields of artificial intelligence: automated reasoning and machine learning.
Automated theorem provers are able to solve complex problems from different
fields of mathematics. The great advance of the last two decades is mainly caused by
the existence of sets of problems to compare different systems. Even these sets have
evolved and grown to huge and complete libraries of theorem proving problems,
such as TPTP [Suttner and Sutcliffe 1996]. Machine learning is also taking a more
experimental character and different systems (from different paradigms) are
evaluated according to classical problems in the literature.

However, as we discussed in the introduction, there is no theoretical (nor
empirical) measurement about the complexity of the problems that compose the sets
of problems. By selecting a proper representational language we could compute this
complexity. For instance, if we select first-order logic as a universal descriptional
mechanism, we can measure the complexity of the evidence, hypothesis (explanation)
and background knowledge in the same way by using, for instance, a measure of the
length of a logic program, like those seen in the previous chapter. This would allow,

234 José Hernández Orallo - Doctoral Dissertation

 234

for instance, to give the theoretical complexity of the problems that are usually
passed to ILP systems and discover how intelligent they are.

8.7 Factorisation

The previous test measures one factor, which could empirically be identified with the
g factor or liquid intelligence. During the XXth century, psychometrics and zoology
have striven for differentiating between evolutionary-acquired knowledge, life-
acquired-knowledge and 'liquid intelligence' (or individual adaptability). While the first
one is the most important one in the great majority of lower animals, the latter two
characteristics distinguish the animals with the ability to learn from dull animals.
However, the higher the animal scale the more difficult to distinguish life-acquired-
knowledge from ‘liquid intelligence’. The case is extreme for human intelligence.
Accordingly, exercises from IQ tests are strictly selected to avoid the influence of
background knowledge. As a result, the scores obtained in the tests of liquid
intelligence (g) are almost constant from the age of 14 until 60, independently from
the education and knowledge that can be acquired during all this time.

A complete test of intelligence should only measure these knowledge-independent
abilities to still reflect the possibility of “idiots savants”, i.e., systems with little
intelligence but a lot of embedded knowledge. Even with liquid intelligence, there are
many knowledge-independent abilities (or factors) to measure. For instance, memory
or ‘memo-isation ability’ is a factor that is knowledge-independent that can be easily
measured. However, this factor is not very interesting for AI nowadays, because it is
not a technical problem to make systems with large memories (and it is not
correlated much with g either).

Let us review which inductive and deductive factors are feasible and interesting to
measure:

8.7.1 Inductive Factors

There are partially independent factors that could be measured by using extensions
of the framework presented in the previous section. For instance, knowledge
applicability, contextualisation and knowledge construction ability can be measured
in the following way:

• Knowledge Applicability: we provide a background knowledge B and we give a
set of sequences xi such that incomp(xi|B) = incomp(xi) − u but still SED(xi|B) =
SED(xi) and are unquestionable with or without B. We can compare the
difference of performance between cases with B and without B. This test
would actually measure the application of the background knowledge
depending on two parameters: the complexity of B (i.e. Kt(B)) and the necessity

8. Measuring Intellectual Abilities

235

235

or usefulness of B, measured by u. Cattell called this crystallized intelligence (gc)
which correlated with fluid intelligence (gf).

• Contextualisation: it is measured in a similar way as knowledge applicability but
providing different contexts B1, B2, ..., BT with different sequences xi,t such that
incomp(xi,t|Bt) = incomp(xi,t) − u. This multiplicity of background knowledge (a
new parameter T) differentiates this factor from the previous one. Analogy
tests generally resemble this type of exercises, as it was shown in [Hernández-
Orallo and Minaya-Collado 1998].

• Knowledge Construction: we provide a set of sequences xi such that exists a
common knowledge or context B and a constant u such that for incomp(xi|B) ≤
incomp(xi) − u. A significant increase of performance must take place between
the first sequence and the later sequences. The parameters are the same as the
first case, the complexity of B and the constant u. This learning from
precedents has also been studied in AI (see e.g. [Winston 1982]).

Other factors are more related with intentionality than general intelligence (and
intensionality). These are reactivity, pro-activity, interactivity and the recently elsewhere
vindicated emotional abilities. Most of them can be measured adopting notions from
Query Learning paradigms [Angluin and Smith 1983] [Angluin 1988] formalised
using interactive Turing machines. Others are much more related with the idea of
congruence or coherence and could be measured as constraint satisfaction [Thagard
1989].

8.7.2 Deductive Abilities

Deductive abilities are much easier to measure, because there is no question about
selection criterion and, consequently, there is no possible subjectivity in the correct
answer; given the premises and the way to operate with them, only one plausible
answer is possible. We must adapt the measurement of gain introduced in chapter 4
for different deductive systems to give a version of difficulty of deduction (similar to
comprehensibility for inductive problems).

To avoid the subjectivity objection, we must just give a set of premises x, and only
a possible conclusion. This in fact, represents a deductive problem or calculation.
Note that any deductive system can be converted in this form if we add to the
premises the needed restrictions in order to allow just one possible conclusion. The
exercise must evaluate the ability of the subject to find this unique conclusion c.

Consequently, it is only needed to ascertain the difficulty of each instance in a
similar way as we did with comprehensibility.

With x |−p c we denote that p is a proof for c in x. First of all, we must evaluate the
complexity of this p as:

236 José Hernández Orallo - Doctoral Dissertation

 236

Definition 8.113 Deductive Effort. The effort of the deductive inference of the
proof p over the system x is given by:

LTded(p) = l(p) + log Cost(apply p to x)

Logically, we can define the best proof as the proof with less effort:

Definition 8.114 Best Proof. The best proof of a conclusion c with respect to a
set of premises x is:

BestProof(c |x) = argminp { LT
ded(p) s.t. x |−p c }

A first approximation of the deductive complexity can be given by:

Definition 8.115 Deductive Complexity. The deductive complexity of a
problem x whose only solution is c is given by:

Etded(x) = LTded(BestProof(c|x))

Analogously as we did with comprehensibility we can define:

Definition 8.116 Solvability (First Version). A deductive problem x is k-solvable
iff k is the least positive integer number such that:

Etded(x) � G(BestProof(c|x) | x) ≤ k � log l(x)

Note that G is computed in the classical way: Kt (p|x) / Kt (p).

However, in this case we have not eliminated the possibility of finding alternative
proofs, and this can affect the difficulty to find the answer. For instance, consider a
problem with just one proof (way) to the solution with solvability 10, and another
problem with many proofs (ways) to the solution with solvability 11. Which one is
easier?

To correct this problem we must consider all the alternative proofs.

Definition 8.117 Proof Distribution. The proof distribution of a deductive
problem x with respect to a conclusion c is given by:

δ(x,c) = log ∑x |−p c 2
−(LTded’(p) � G(p|x))

From here we can introduce a final version of solvability:

Definition 8.118 Solvability (Corrected Version). A deductive problem x with
solution c is k-solvable iff k is the least positive integer number such that:

δ(x,c) ≤ k � log l(x)

Once again, there are partially independent factors that can be measured from here.
In this case, however, they turn to be closely related and they turn to be different
presentations of the same problem:

• Calculus Ability: Given an x, only one c is possible (a problem). The subject
must obtain c. However, the rules can only be applied in a few ways, so it is
only a mechanical application of them. That is to say, there are few ways to act,

8. Measuring Intellectual Abilities

237

237

and only it is required that the subject applies correctly the rules, but they are
quite clearly determined. Obviously, the difference between δ(x,c) and Etded(x) �
G(BestProof(c|x) | x) is small.

• Problem Solving Ability: The problem is similar to the previous case but, in
this cases, there are many possible ways to apply the rule which do not lead to
any solution.

• Accepter Ability: Given an x, some c’s are provided. Only some of them are
consequences of x. The subject must discern which ones (this is a
generalisation of the calculus ability).

• Derivational Ability: Given an x, the subject must obtain the greater number of
correct derivations as it can in a limited time. For this case we should extend
the previous definition for multiple conclusions.

It is not expected that these deductive abilities would be independent to the previous
inductive abilities (as it has been shown by psychometrics for the Homo Sapiens).
The reason, however, has theoretical roots. As we commented, any inductive process
requires deduction to check the hypotheses, thus, obviously, inductive ability is
influenced by deductive ability.

Nonetheless, deductive ability is also influenced by inductive ability as long as the
problems get harder. Some lemmata or rules can be generated by an intelligent
subject in order to help to shorten an ease the proof from the premises to the
conclusion. This may explain why artificial problem solvers without inductive
abilities have not been able to solve complex problems, and this is especially clear in
Automatic Theorem Proving.

8.7.3 Other factors

Other factors usually found in psychological tests are ‘verbal ability’, ‘visual ability’,
‘calculation / deductive ability’, etc. Some of them depend on background
knowledge and are difficult to measure if the system does not have a base or some
important perception abilities.

Many other factors could be measured justifiably by information-theoretic means
to different kind of systems: animals, A.I. systems, machine learners, etc. However,
not every factor is meaningful for intelligence. Factors such as “playing chess well”
are much too specific to be robust to background knowledge. Other factors will
result in being highly correlated to other more distinct factors. This correlation
cannot only be established experimentally like in psychometrics but theoretically, as
deduction ability can be shown to be correlated with knowledge applicability, or
some learners have been shown to be formally equivalent to interactive proof
systems.

The influence of the descriptional mechanism should also be studied for each
factor. In the same way, some variants in the test could be made by using middle

238 José Hernández Orallo - Doctoral Dissertation

 238

gaps instead of sequence predictions. For the comprehensibility factor, this change of
presentation (such as an abduction problem) was studied also in [Hernández-Orallo
and Minaya-Collado 1998] and no significant difference was perceived with respect
to to the (inductive) previous presentation.

In the end, the question is to refine and extend all the previous ideas in order to
make different and founded tests of intelligence, knowing exactly what is measured. I
think that this is an urgent and fascinating task for artificial intelligence.

8.8 The C-test and The Turing Test

The imitation game was conceived by Turing to dissipate the doubts about possibly
non-human intelligent beings. He left no place for human’s exclusivity: intelligence
can be evaluated by an exclusively behavioural test; the rest of details (nature,
introspection, ...) are irrelevant. Unfortunately, instead of recognising this his most
important contribution, the test was and is still understood as ‘a goal’ in AI.
Nonetheless, this view has been responded by many authors, which criticise that the
TT does provide little information about what intelligence is; it is just a test of
humanity [Fostel 1993], that, in fact, if applied to human beings, gives many
paradoxes. The result of applying it to ourselves is a recursive trap (for self-
evaluation) which is unable to answer the question of whether we are intelligent or
not, or more precisely, how intelligent the Homo Sapiens is.

Some authors have tried unsuccessfully to correct the two main problems of the
Turing Test for measuring intelligence: its informal character and its
anthropocentrism. In some cases, this has led to disparate proposals, as the so-called
formalisation of the Turing Test [Bradford and Wollowski 1995], sustained from the,
in my opinion folly, assumption that we are non-deterministic machines able to solve
NP-complete problems in polynomial time. As [McCarthy 1998] clarifies: “humans
often solve problems in NP-complete domains in times much shorter than is guaranteed by the
general algorithms, but can’t solve them quickly in general”.

There is still a third problem, which is the necessity of several intelligent ‘judges’
and a ‘referent’ to make the test. The self-reference question arises again: Who is the
first intelligent being to start the game? These and other problems are incarnated in
the Loebner Prize, which usually awards the participant who has devised the system
more able to cheat the judges, because “humans are surprisingly bad at distinguishing
humans from computers” [Johnson 1992]. In the end, there is no way of knowing who is
cheating, the system or its designer.

However, if fairly played, the imitation game is a hard examination for any
pretended intelligent system. It is extremely difficult to behave like an average human
being of this epoch (it is even difficult for some human beings). For a non-human-
contextualised being, it would be required to comprehend the complex behaviour of

8. Measuring Intellectual Abilities

239

239

human beings of these times, their evolution-acquired traits, their language, their
culture, their limitations, etc. It is much easier then to try to cheat the judges. In fact,
the judges “are especially fooled into reading structure into chaos, reading meaning into nonsense.
(...) Sensitivity to subtle patterns in our environment is extremely important to our ability to perceive,
learn and communicate” [Shieber 1994].

Curiously, it is precisely this ‘lack’ of the judges, reading structure everywhere,
what the C-tests measure. In fact, the C-tests are difficult to cheat, they are not
anthropomorphic, do not require any judge which must previously be determined as
intelligent and give an independent and possibly multi-dimensional value (and not a
Boolean answer). However, the C-tests, as they have been presented, are necessary
(at least to obtain a minimum value of I(S)) but not sufficient (other important
factors should be measured as well). It has been already suggested that both kind of
tests (TT and factorial) could be combined in order to give a more accurate test of
intelligence: “it is this posing of puzzles in arbitrary domains that is the hardest part of the
Turing Test, and a part that no program has yet passed” [Shapiro 1992]. This idea, however,
would ultimately turn the TT into a lightweight and less rigorous version of the C-
Test.

In my opinion the TT should be celebrated as an extremely valuable philosophical
exercise about the behavioural character of intelligence. However, in practice, it
should be substituted by progressively more accurate computational and factorial
tests of different cognitive abilities.

8.9 Summary and Contributions of This Chapter

We have taken an important step for the formal measurement of intellectual abilities.
Different measures of cognitive abilities are presented, in special a measure of
comprehension ability, which finally correlates with the classical g factor.

Section 2 has presented the requirements that are needed for a proper
measurement of intelligence, and, in general, of any intellectual ability: non-Boolean,
factorial, non-anthropomorphic, computational and meaningful. Some technical
difficulties are immediately found when this is tried to made directly from
descriptional complexity. Once the notion of comprehensibility is recovered from
chapter 6, section 3 is devoted to solve the ‘subjectivity objection’ under the notion
of unquestionability, also presented in chapter 6. Another important question is to
order reasonably the difficulty of instances, which is solved in section 4.
Consequently, the construction of a comprehension test (C-test) is then presented in
section 5. Section 6 presents the results of applying it to humans and compares it
with psychometrical tests. The applicability to artificial intelligence is discussed.
Section 7 studies the measurement of other factors, inductive (knowledge
applicability, contextualisation, knowledge construction) or deductive (calculus

240 José Hernández Orallo - Doctoral Dissertation

 240

ability, problem solving ability, derivation ability) under the same conditions that the
C-test has been devised with.

After the previous results and auspices, the Turing Test is re-examined in section
8 and reduced to its original philosophical and even metaphorical character.
Compared with the C-Test, the significance of the TT is recognised, as well as the
acute deficiencies of its misinterpretation and incarnations, such as the Loebner
Prize.

As a result, the main contributions of this chapter are:
• A non-anthropomorphic test of intelligence, which is based on computational

and information-theoretic notions, which can make an important advance in
the evaluation of AI progress.

• Different fields of AI can adapt these measures to evaluate automated
induction / deduction / reasoning systems. For instance, the difficulty of
problems that are classically used by the ML community can be classified by
their comprehensibility in order to know which ML algorithms are better. In
the same way, automated theorem provers can be evaluated in a less
experimental and arbitrary way than by using large collections of test sets (such
as the TPTP library [Suttner and Sutcliffe 1996]) whose intrinsical difficulty is
not known.

• Psychometrics finds its long-awaited theoretical foundation in information
theory and computation, and opens the door for more experimental and
theoretical research.

• In special, factor independence can be studied theoretically and not only
experimentally, as psychometrics has been doing during the last fifty years. If
these inter-dependences are clarified, shorter and more precise tests could be
devised in the future.

The idea of the Turing Test as a practical test of intelligence should be left behind,
and substituted by computational and factorial tests of different cognitive abilities, a
much more useful approach for artificial intelligence progress and for many other
intriguing questions that are presented and that now it is feasible to answer.

8.10 Appendix. An Example of C-Test

This appendix appeared just as it is in [Hernández-Orallo and Minaya-Collado 1998]
and it is included here to show how a test can be implemented and some of its
results:

The problem of selecting a good bias for generating k-hard strings depends on
many factors. The objective is to maintain expressiveness, to ease the problem of
finding explanatory descriptions and to limit the combinatorial explosion. The final

8. Measuring Intellectual Abilities

241

241

choice we present is an oversimplified abstract machine that is easily extensible to
work as a Turing machine.

8.10.1 A Toy Memory-less Abstract Machine

Due to the current technology of the computers we can use, we have chosen an
extremely abridged emulation of the machine that will effectively run the programs,
instead of more proper languages, such as λ-calculus (or LISP). We have adapted the
“toy RISC” machine of [Hernández-Orallo and Hernández-Orallo 1993] with two
remarkable features inherited from its object-oriented coding in C++: it is easily
tunable for our needs, and it is efficient. We have made it even more reduced,
removing any operand in the instruction set, even for the loop operations. We have
only three registers, which are AX (the accumulator), BX and CX. The operations Θβ
we have used for our experiment are in Table 1:

LOOPTOP Decrements CX. If it is not equal to the first
element jump to the program top.

LOOPS Same as LOOPTOP but it jumps n (for the tests
n=4) instructions backward.

LOOPM Same as LOOPTOP but it jumps m (for the tests
m=7) instructions backward.

SUCC Increments the accumulator.

PRED Decrements the accumulator.

WRITE Writes into the output and moves fwd.

BREAD2 Moves back and reads from the output.

FREAD2 Moves fwd and reads from the output.

MOV A,B1 Copy register BX into AX

MOV B,A1 Copy register AX into BX

MOV A,C Copy register CX into AX

MOV C,A Copy register AX into CX

ROTR3 Rotates 45° to the right.

ROTL3 Rotates 45° to the left.

Table 1. Instruction Set

The operations with no superscript are present in all the subsets. Operations marked
with (1) are present in the ‘professional’ version of the machine, the operations with
(2) are present in the Turing-like version and those with (3) are present in the Logo
version where the output is bidimensional. This sparseness of only 10 operations will
be clearly justified later. We have essayed with many different alphabets but for this
test we will use the professional version and a circular alphabet Ωβ = {a,b,c,d,...,z},
i.e., incrementing ‘z’ yields ‘a’ and decrementing ‘a’ yields ‘z’. Since the first element is
an inflexion point for the loops, it is presented to the subjects as “a critical element”.

242 José Hernández Orallo - Doctoral Dissertation

 242

This configuration still produces many programs that are not robust (intensional)
because programs can be often split into subprograms. The solution for these cases
comes from another restriction: the programs must be comprised wholly inside a
loop. This leaves a good approximation to explanatory programs. The rest to do is to
avoid repetitions of patterns such as “abcabcabcabc” (for sake of gain and
plausibility) and take apart the strings where an important part is explained by a
shorter program (for sake of intensionality). We think that the bias is not all the
expressible we would like but it allows the generation of strings of certain
complexity. Also we think it is fair because it does not relate on arithmetic (such as
cryptarithmetic tests) or any other preceding knowledge, except the order of the
alphabet.

8.10.2 The Generation of k-Hard Strings

The algorithm we have used to generate a set of different k-incomprehensible strings
is very similar to the one we presented in section 5.4 (of [Hernández-Orallo and
Minaya-Collado 1998]). Having 10 operations, we have that usually only about a 20%
of the programs of any size are explanatory. This means that trying to know whether
a randomly generated program of, say, size 15, is valid, will need the checking of
more than 2,222,222,222,222 programs. And this is the case if the computational cost
of x* is slow, contrariwise (if x* is a costly program) we will have to check longer
programs.

We have used some optimisations and heuristics in order to make the great
amount of programs to check more tractable. Some examples of questions are:

Prediction style:
k9: a, d, g, j, … Answer: ‘m’

k12 a, a, z, c, y, e, x, … Answer: ‘g’

k14: c, a, b, d, b, c, c, e, c, d, … Answer: ‘d’

Abduction style:
k8: a, _, a, z, a, y, a, … Answer: ‘a’

k10: a, x, _, v, w, t, u, … Answer: ‘y’

k13: a, y, w, _, w, u, w, u, s, … Answer: ‘y’

8.10.3 The Tests

Four tests were devised to measure prediction, abduction, g-factor and similarity. The
prediction test is composed of 19 exercises generated with the following k-hardness
distribution (2 k7, 1 k8, 2 k9, 3 k10, 3 k11, 3 k12, 2 k13 and 1 k14), redundancy r =
2 and the less ‘akin’ as possible. The abduction test is composed of 15 exercises using
the same generator and redundancy. The distribution was (2 k7, 2 k8, 1 k9, 2 k10, 1
k11, 3 k12 and 4 k13). In these two tests, the incorrect options were generated
randomly but relative near to the solution and the letters appearing in the string. The

8. Measuring Intellectual Abilities

243

243

IQ test we used was the European IQ test simply because it is a culture-fair test,
devised for 20 minutes, ensuring a reasonable range (75-174) of values and available
on the Internet. The similarity test is composed of 8 exercises generated with binary
strings of different length and different levels of edit errors (insertion, deletion or
change). The strings were generated and checked by dynamic programming to ensure
that they did not have a better correction path. The purpose of this test was to
measure the ability of compression by trivial pattern matching.

8.10.4 Subjects and Administration

Subjects were selected from two different groups: the first group was composed by
48 high-school students with ages comprised between 14 and 18 years. The second
group was composed by 17 subjects of a mixed sample of undergraduate and
postgraduate university students with ages comprised between 22 and 32 years.

All the tests were passed in the same session. The times were, without including
instructions, 10 min. for the prediction test, 5 min. for the abduction test, 5 min. of
break, 20 min. for the IQ test and 3 min. for the similarity test.

8.10.5 Results

We evaluated the test without penalising the errors, i.e., the function hit evaluated the
same for blanks than for mistakes. We chose e=0, i.e. all questions with the same
value. IQ-correlations are illustrated in Table 2.

 Pred. Abd. Induct. Simil.

High-School 0.31 0.38 0.42 0.39

University 0.51 0.42 0.56 0.35

Both Groups 0.73 0.68 0.77 0.50

Table 2. Correlations with EIQ test

The correlation for induction (prediction + abduction) is of the same order as the
usual correlation for induction tests made by psychologists. The correlation between
the abduction and prediction tests was 0.61, less than expected, which suggests that
even problems constructed by the same generator can be more or less difficult
depending on its presentation (abductive or predictive). The correlation between
induction and similarity was 0.51, which supports the thesis that “the ability of
compression” is different from “the ability of comprehension”. Finally, we think that
an analogy test based on our theory would surely round off the study.

With these data and our amateur methods we are not in conditions to assert more
things about the relation between C-tests and IQ-tests. There is only a thing that has
no discussion in the light of the results, the k-hardness matches fairly well with the
difficulty people found on them, as it is seen in Figure 1:

244 José Hernández Orallo - Doctoral Dissertation

 244

0

0,2

0,4

0,6

0,8

1

K7 K8 K9 K10 K11 K12 K13 K14

Difficulty (K)

Hit
Rate

Prediction

Both

Abduction

Figure 1. Hit Rate per Difficulty

9. Prospective Applications

245

245

9. Prospective
Applications

I never waste memory on things that can easily be stored and

retrieved from elsewhere

Albert Einstein (1879-1955)

Abstract: this chapter includes some proposals in different fields. The first application discusses the
optimal representation for deductive databases, according to the optimal representation seen in
chapters 3 and 4, in order to improve the performance of a database depending on which operations
are more frequent and the degree of regularity of the data. Another application is the study of
validation and maintenance characteristics of software systems under the analogy between software
science and philosophy of science or, more precisely, between software construction and machine
learning. Reinforcement measures from chapter 5 are adapted to define a measure of software
‘predictiveness’, which is identified with software validation, to represent the stability of a system. An
inversely related measure, the probability of modification, is also obtained for each component and for
the whole system. Some models of maintenance are considered, and different software arrangement
topologies are studied theoretically under them. Finally, some other applications are outlined,
especially related with meaning and language, and their applications to agents communication.

Keywords: Databases, Data Mining, Data Quality, Software Engineering and
Maintenance, Software Topologies, Knowledge-Based Systems, Meaning and
Language.

246 José Hernández Orallo - Doctoral Dissertation

 246

9.1 Introduction

In this chapter some other prospective applications are presented. This includes new
theoretical tools and adaptations of the concepts that have been presented in this
work to quite different fields. Thus the term ‘prospective’ indicates that there is not a
second stage of experimentation of the theoretical items and models which are
advocated here, which will judge the goodness of these proposals in the end.

In Section 2, we will study the applications of information gain for information
systems. After a brief description of predictive data mining, which is an application of
machine learning (ML) techniques for obtaining knowledge from databases, we study
the possibility and usefulness of non-predictive data mining. More concretely,
according to the optimal representation measure seen in chapters 3 and 4, we will
discuss which would be the optimal representation for deductive databases, in order
to improve the performance of database operations depending on which operations
are more frequent and the degree of regularity of the data. Once the physical level is
separated from the logical question, the intensional relationships which are found in
a database on a higher level are much more important for the data quality of a
system, in order to control consistency and redundancy of the data. Finally, both
deductive and inductive processes (and their integration) will be increasingly more
important in future databases, which will be better known as knowledge bases or
knowledge systems.

In Section 3, validation and maintenance characteristics of software systems are
reconsidered under the analogy between software science and philosophy of science
or, more precisely, between software construction and machine learning (ML). From
this outset, many classical techniques from ML can be used. In particular, the
reinforcement measures from chapter 5 are adapted to define a measure of software
‘predictiveness’, which is identified with software validation, to represent the stability
of a system. An inversely related measure, the probability of modification, is also
obtained for each component and for the whole system. The application in practice
of these measurements is discussed. From here, some models of maintenance cost
are presented, based on a detailed combination of predictiveness and modifiability.
Different software arrangement topologies are studied theoretically. Hierarchical
topologies, especially downward confluent ones such as trees and lattices involve less
maintenance costs. Moreover, some intuitive expectations are confirmed, namely that
compressed systems and coherent models (without patches or exceptions) are
manifestly more maintainable.

9. Prospective Applications

247

247

In Section 4 some other applications are outlined, especially related with
interaction and mutual understanding, some questions related with meaning and
language, and their applications to agents communication.

9.2 Representational Data-Mining and Data Quality

It is usually said that traditional databases are extensional. This assertion is
increasingly less true as long as database technology has been advancing. In a
relational database, constraints are intensional definitions, which can be expressed as
first-order formulae. More importantly, views are derived relations expressed from
the base relations and other derived relations.

It is not strange that, from a theoretical point of view, databases have been seen as
deductive systems where a great proportion of the data is in an extensional way.
Concretely, the most widely used model, the relational model, understands a database
as a first-order theory, where each relation is seen as a predicate.

Recently, there is an interest for using other database models that allow expressing
more intensional properties intrinsically. For instance, object-oriented databases can
include any inclusion property of the world as a concrete inheritance relationship in
the database. The result, however, is the same; an intensional definition is taking
place in the database. A classical example of this is a relation such as “person(X) :-
employee(X)”.

Almost any modern data model allows intensional definitions (in the worst case, a
model must allow the definition of views, which are intensional definitions). In the
end, it is necessary an elicitation of which parts must be left in an intensional way and
which parts must be left in an extensional way. In fact, this is one of the most
problematic questions in database design. As [Blockeel and De Raedt 1995] point out
“When designing databases, the designer has to determine the structure of the database by
determining the extensional and intensional predicates, and by providing definitions for each of the
intensional predicates. (...). The design ultimately determines the quality of the database”.

I completely share this view, however, I do not share their criterion: “the better (sic)
database is the more (sic) compact one, i.e., the one that requires less memory”. In my opinion,
things are much more complex. The best database should be measured according to
the representational optimality seen in chapter 4, namely:

Definition 9.119 The representational optimality of a database is given by:

Opt(db| E) = α � l(db) + β � Cost(E| db)

with db being the database and E the evidence or the whole of data that the database
must accumulate.

However, a database is not a stored picture, which is static and has only a view.
There are many operations and partial recovers (queries) that are to be performed

248 José Hernández Orallo - Doctoral Dissertation

 248

over it. Consequently, Cost(E| db) must measure the cost of the most typical queries,
the cost of updates, the access to partial information, etc.

It is clear that traditional compression techniques such as Lempel-Ziv algorithm
[Lempel and Ziv 1977], require uncompressing a large portion of the file even if only
a small part of that file is required. Consequently, there have been some proposals of
compressing algorithms specifically design for databases [Moffat and Zobel 1992]
[Goldstein et al. 1998].

A Database Management System (DBMS) tries to obtain the compromise that is
represented by Definition 9.119. However, this depends on many factors which are
independent from the data itself, well-known in database literature: secondary
memory is slower than primary memory, the size of buffer blocks and buffer pool,
the primary memory which is available [Elmasri and Navathe 1994]. In other words,
Definition 9.119. is only of theoretical interest. In practice, well-studied structures
have been implemented: indexes, B-trees, R-trees, snapshots... [Date 1995][Elmasri
and Navathe 1994]

The discussion about the degree of intensionality of a database is then more
centred at a higher level, namely, at the conceptual level, as it has been studied by
Hull’s paper on the information in a relational database schema [Hull 1984]. The
main question is avoidance of redundancy, but it is important to realise that the
degree of compression at the physical level is independent to the degree of
redundancy at the logical and conceptual levels. A DBMS, which compresses the
tables of a database, can still suffer from redundancy if functional dependences exist
in the schema of the database or derived information is maintained explicitly in the
database.

Let us see first of all how this redundant information can be detected in databases
and then let us study in which cases it is convenient to eliminate this redundancy.

9.2.1 Knowledge Discovery in Databases (KDD)

Theoretically, the design of a small schema can be done in order to minimise the
redundancy of the data that it may hold. However, as long as more data is available
and it is automatically added to existing databases, the control of this redundancy
must also be partially automated. A new emerging field is tackling this problem: data
mining, or, more generically, knowledge discovery in databases (KDD).

More precisely, data mining is just a part of this complex process as it is shown in
Figure 9.1; KDD includes Data Preparation, Data Mining itself,
Interpretation/Evaluation and sophisticated Visualisation tools. The whole process
transforms data into knowledge, because the input of the process is extensional
information from databases and the output is intensional information in a
comprehensible language.

9. Prospective Applications

249

249

Information

System

KDD

Knowledge
Evaluation /

Interpretation
Data

Preparation

Data

Mining

Figure 9.1. KDD process

Note that the formalisation of the transformation from “data into knowledge” must
depend on an evaluation of the knowledge (or theory) with respect to the data (or
evidence) in a similar way as it has been done throughout this work. Nonetheless,
KDD can be informally defined as: “the nontrivial process of identifying valid, novel,
potentially useful, and ultimately understandable patterns in data” [Fayyad et al. 1996b].

Let us examine the properties that these patterns which are discovered in the data
must follow and let us relate them with important concepts that have been
introduced in this work:

• valid: it is the most important issue. A pattern or property holds when an
important part of the data is compliant with it. This is directly related to the
notions of plausibility. An ideal measurement for validity can be reinforcement,
especially, as it has been applied in chapter 7 to logic programs.

• novel: it is not a prerequisite but a desirable property. As we said in chapter 4, to
talk about a real discovery, the pattern cannot be explicitly in the data. The
more a KDD discovers, the more implicit the patterns and properties were in
the data.

• useful: this is logically measured a posteriori. If a valid and novel pattern has
been discovered, it may or may not be used for other/future data to detect
inconsistencies or predict new information. As we saw in chapter 5,
reinforcement could be used as well to now the usefulness of a concept, by
measuring to how many other cases it is applicable.

• understandable: this is not a strict requirement, either. A difficult pattern can be
discovered by a KDD system and used internally. However, if a human expert
wants to apply the knowledge that has been obtained to make a decision, to
explain some fact, etc., the concept cannot be a hard numerical formula but a
comprehensive concept. In this case, a measure of comprehensibility, as
introduced in chapter 6 and used in 8 can be used profitably.

After these desirable properties for a discovered pattern, let us see which kinds of
patterns can be identified from a database. Theoretically, any complex property can
be discovered. However, there are specific patterns which are more useful (and
common) to obtain from a database. Concretely, functional dependences [Mannila
and Räihä 1994], are properties, relational in nature, which do not accept exceptions.
An example of these could be the relation of surname between father and child.
Other systems are based on association rules [Agrawal and Srikant 1994] [Mannila et
al. 1994] that are probabilistic and hence allow exceptions. Associations are
propositional, such as the relation between foggy weather and flight delays. Other

250 José Hernández Orallo - Doctoral Dissertation

 250

systems allow exceptions in relational dependences, under the name of partial
determinations [Pfahringer and Kramer 1995] or probabilistic functional
dependences [Akutsu and Takasu 1994].

More expressive approaches are represented by ILP application to data mining
[Brockhausen and Morik 1997] [Dzeroski 1996] [Morik 1997] [De Raedt and
Dehaspe 1997]. ILP allows the generation of richer concepts (more comprehensive).
Theoretically, any first-order property or constraint can be expressed and hence
obtained by ILP.

The final question is whether these findings of relationships, properties or
patterns should affect the schema of the database or they should only be used as
knowledge to be interpreted by an expert. The following section claims that this
decision must be taken according to ‘data quality’ criteria.

9.2.2 Relationship between Intensionality and Data Quality

Data Quality is defined as the accuracy to which an information system reflects the
reality. All the features that are relevant are reflected by the database (completeness)
and all the data of the database is true in reality (correctness).

The first relation between data quality and data mining has been established in the
cleansing phase of a KDD system. Namely, if the information system does not
reflect accurately the reality, this verification would surely fail, independently of how
good the KDD system could be. In [Cortés et al. 1995], it is formally shown how
“random errors and insufficiencies in databases limit the performance of any classifier trained from
and applied to the database”.

Since it is impossible in general to validate completely an information system with
reality, an effective and accurate measurement of the data quality of the database
could be extremely profitable for KDD. However, this measurement is more useful
all along the KDD process, before, during and after the data mining process. This
approach is taken in [Hernandez-Orallo and Alamagnac 1999].

For the case of data quality, it is more important to see also the other way: data
mining can improve data quality. The relation between the environment and the
database is bidirectional, i.e., there is a lot of acquisition from the reality to the
database system and there are many outputs (or answered queries) from the database
which are returned to reality. This process can detect acquisition (or operation)
errors, which provoke an important feedback from reality to the database, as it is
shown in the left-hand side figure 2.

9. Prospective Applications

251

251

In fo rm a tio n

S y s te m

R e a li ty
u se r s , o th e r

sys tem s

A c q u is it io n

K D D K n o w le d g e

E x p e r ts ’

A p p lic a tio n

Q u e r y in g C o r r e c t io n U n d e r s ta n d in g

V e r if ic a t io n

?

?

Figure 9.2. KDD and validation with reality

However, if a KDD produces knowledge, this knowledge can be used to contrast
with reality or to correct some other parts of the information system, in a similar way
as cognitive or scientific experimentation, validation and refutation.

In this way, information system should be increasingly smarter, in the way that
both induction and deduction should be used to maintain the data consistent,
internally and externally.

Let us see an example where a data-mining algorithm can find new constraints
that can be useful to correct errors in a database, i.e., to increase its quality.

Example 9.14

Consider a small hospital database with 20,000 case histories. A data-mining system
discovers the following functional dependency:

P1: patient(X, _, ..., _, male) :- illness(X, _, ..., _, colour-blindness)

With 150 cases of colour-blindness in the hospital, from which 144 were men, 1 women
and the other 5 do not have any value for the ‘sex’ attribute. The generality degree, as it
was introduced in chapter 7, would be GD= 149/144 = 1.03.

Due to one error, this is considered a partial dependency. However, if a user or an expert
is informed of this property, she may know that colour-blindness only affects men and
she concludes that there is an error in a database, since colour-blindness cannot affect
women. Moreover, the rule can help to complete the record of the other 5 people, which,
necessarily, should be men.

Another question that suggests the previous example is whether this property should
affect the schema of the database. In this case, the most reasonable change is the
addition of P1 as a restriction, but the frequencies of men, women and colour-
blindness do not suggest a change in the definition of the tables.

Example 9.15

In the same database as Example 9.14 consider the following table:

252 José Hernández Orallo - Doctoral Dissertation

 252

 Patient

SSN Penicillin_Allergic

52677328 false

... ...

... ...

67616274 false

where only 4 patients from 20,000 are allergic to penicillin. A data-mining system
discovers this situations and suggests the following change to the database:

Base_Patient

SSN

52677328

...

...

67616274

Penicillin_Allergic

SSN

24254151

76327675

5254151
61616166

and Patient is defined as a view, namely:
CREATE VIEW patient’ AS

SELECT base_patient.*, false FROM base_patient

WHERE SSN not in (SELECT * FROM penicillin_allergic)

UNION

SELECT base_patient.*, true FROM base_patient B, pe nicillin_allergic P

WHERE B.SSN= P.SSN;

This would save space in the database, (theoretically, 20,000 bits - 32 � 4 = 19,872 bits).
However, the schema would be more complicated and there could appear some
problems of updates or integrity with the view that could finally advise against the
change.

Only in some special cases, where classical design rules of relational databases are not
observed (normal forms, many-to-many relationships, etc), the schema should be
changed.

9. Prospective Applications

253

253

Many other factors even justify the existence of redundancy in a database. For
instance, derived attributes (such as the number of surgical operations) may be useful
for obtaining frequent information which must be looked up in other tables, mainly
historical tables. Derived attributes do not affect information quality if they are
congruently and automatically maintained.

This is especially useful in modern data-warehouses [Chaudhuri and Dayal 1997],
where there is a trend to de-normalise the relations in order to have a much quicker
access to relevant information. This is possible in these systems because data-
warehouses have always derived and historical information which is used to obtain
statistics, knowledge, trends that would be very difficult to see in the normalised
databases.

As a result, there are many important applications and open questions for non-
predictive uses of data mining in order to improve the data quality of an information
system. There would be more tasks that an information system should do in the
future. In Wagner’s words:

“The evolution of information system concepts can be roughly described by the sequence of
hierarchical and network databases, relational databases, object-oriented, deductive and active
databases, their resp. Enhancements by special-purpose features, e.g. for temporal, spatial, or
uncertain, resp. Fuzzy information, and their ‘globalization’ for distributed, mobile and cooperative
information processing. This ongoing evolution will lead to knowledge systems capable of processing
various kinds of higher-level information, such as uncertain, disjunctive, and negative information,
and in addition various kinds of knowledge, such as (deductive and active) rule knowledge, and
‘social’ knowledge on how to cooperate with global networks” [Wagner 1998].

In this context, the consistent conjunction of different reasoning systems and the
evaluation of the inference they perform must be essential in order to maintain the
quality and integrity of the information and knowledge which will be maintained by
this knowledge systems.

9.3 Software Topologies and Reinforcement

The analogy between programs and scientific theories outlined in [Fetzer 1991], and
the modern view of software as an experimental science [Basili et al. 1986] [Basili
1993] has left behind the previous unsuccessful analogue between software entities
such as specification, program and verification, and mathematical entities such as
problem, theorem and proof.

Philosophy of science provides a much more enlightening paradigm for software
construction, by explicitly recognising that software engineering is an experimental
science but also that the development of an actual software system requires more
inductive techniques [Partridge 1997] than deductive ones.

254 José Hernández Orallo - Doctoral Dissertation

 254

More concretely, machine learning (ML) is a more precise and practical
framework for this new paradigm for software engineering. A software system is
then regarded as a learning system. More concretely, traditional software systems are
viewed as eager learning systems, where the system is an intensional and operative
expression of the requirements, which behaves correctly in a certain environment. By
using the ML terminology, requirements can be identified with the training data, the
software system is just a working hypothesis and correction is more properly viewed
as predictive accuracy.

The new wave of software paradigms, under very different banners such as
intelligent software [Maes 1995], smart software and software agents [Genesereth and
Katchpel 1994] [Nwana 1996], interactive software [Wegner 1996] or adaptive
software [Lieberherr 1996] rounds off the analogy with ML, because they can be seen
as more reactive or interactive learning systems, and many results and techniques,
especially from lazy methods [Aha 1997], can be applied to them from the sub-fields
of query learning, case-based reasoning, knowledge acquisition and revision, etc.

In our opinion, it is somehow short-sighted to try to develop intelligent, smart,
interactive or adaptive software from scratch, without regarding more than thirty
years of theoretical and experimental results from ML. Even in the case of
‘traditional’ software, it is worthy adapting some constructions, techniques, methods
and theoretical results to better understand the development and nature of software
systems.

In this way, this section ‘reuses’ for software development the theory introduced
in chapter 5. Thus, the use of reinforcement as a tool for the study of the validation
and revision of an inductive theory is translated into its use for the validation and
maintainability issues of software systems.

9.3.1 Adapting the ML framework

First, the sample data for constructing a software system is composed of experience
from other software systems, software repositories and requirements information.
The experience and software repositories can be well formalised under the usual
“background knowledge” in ML, which can be expressed in an intensional way and is
supposed to be validated. However, the information that is usually gathered up for
requirement elicitation is not composed mostly of extensional data such as input-
output pairs or positive and negative examples. On the contrary, this information
provided for the construction of a software system is composed of base cases,
scenarios, interviews and a great amount of intensional knowledge.

Secondly, once the system is in operation or in the implantation stage, the
validation cannot come exclusively from its use, it necessarily must be combined with
the user’s satisfaction about the product, by extending reinforcement with rewards
and penalties.

9. Prospective Applications

255

255

Thirdly, to study maintainability, we must study two different things: the
predictiveness of software, i.e., the expectancy of future modifications, which directly
depends on the reinforcement which has been distributed upwards, and the
consequences that each change may have in other components, which determines a
downward flow. However, the first topology is dynamic while the second one is
usually static.

9.3.2 Sample data. Training set

It is essential to discern what will constitute the examples or sample data from which
reinforcement originates. In ML, these cases are usually facts, correspondences, pairs
of input-outputs, etc. Classically, it is said that the behaviour of any system can be
described in terms of input-output pairs, i.e. a function, expressed under a proper
codification. However, theoretically, it has been proved that most complex systems
cannot be identified by a finite data set of input-outputs [Gold 1967]. Part of the data
must be given in an intensional way or there is a need of interaction. Finally, even if
this important fact is ignored, in practice, the effort to convert a software system in
terms of binary input-output is not sensible nowadays.

Contrarily, it is more practical to extend the notion of example. Apart from input-
output pairs, we can identify many sorts of examples in the training phase (or
requirements elicitation). They may be extensional, such as a use case, a scenario, a
row in a correspondence table, a query and answer, etc., or an intensional concept.
Even each sentence from the specification in natural language can be used as an
example.

As we will see, any of these sorts of examples can be used for reckoning
reinforcement. The only requirement is the definition of a proper notion of
‘accordance’, i.e., that a system is in accordance with some example. For instance, in
the case of input-output pairs, the idea of accordance is extremely simple; if the
system receives the input and returns the output as a result, the system is in
accordance with the example. However, it may be more difficult to define
‘accordance’ for other kind of examples. In any case, it is important not to measure
the different kinds of examples with the same value, because some of them are
incomparable. Hence, the idea is to study reinforcement in a separate way for each
sort and then try to put all that information together.

9.3.3 Granularity of propagation

One of the objectives of this study is the detection of which parts are being more
reinforced than others, in order to know which are more predictive to future
situations, or in other words, are less expectable to be modified in the future.

The first thing to do is to recognise the entities or components where we are
going to centre the reinforcement measure. Although in the following the focus will

256 José Hernández Orallo - Doctoral Dissertation

 256

lay on software components, the idea of component that will be used in the
following will always be broader than that “component software” [Szyperski 1998]
and easily extensible to any other system component, either physical (hardware) or
logical (software).

The most minute choices, such as an instruction, show that reinforcement must
not be distributed by the execution trace. For instance, some instruction can appear
in a loop, being unfairly reinforced. On the other hand, the choice of large
components provides wider views of how the software is being used. However, this
higher level presents some other problems. For example, a module A can make use
of another module B for just one functionality whereas it can use a module C for
many functionalities. In some way, C should be more reinforced than B, but this
granularity does not allow this appreciation. Although some of these problems are
solved later on, once again, the idea is to measure reinforcement for the greater
number of granularities as possible and then try to understand all the information
jointly.

9.3.4 Validation data. User’s accordance

The idea of accordance for the training set is clear. All the examples are usually
labelled with positive and negative tags such as “the system should behave as the
following scenario describes” or “the following situation should not happen”.

However, when the system is in use, most of the situations are not like the
training set, so they must be accompanied by the tag “this behaviour has been
correct” or “this has been a system error”. This feedback can be given by the
environment, an external system or, more consciously, the user. In the case the
behaviour is ‘correct’, the system is reinforced, as when a new example is predicted
by a theory. On the other hand, when the behaviour is detected as ‘incorrect’, we
have a prediction error of the system. A simpler assumption could be that things are
going well until some feedback states the contrary. In this way, software is being
reinforced as time passes by and no modification has been necessary. However, it has
been shown in most ML paradigms that learning from positive data only is much
harder, so the feedback from the user is also essential for software quality.

For semantic-based representational languages, there is usually a notion of proof
or positive covering, i.e., a theory covers an example iff the example can be derived
from the theory. This results in a Boolean notion of accordance. Examples of these
languages are propositional languages, Horn theories, full logical theories, functional
languages, some kind of grammars, and even higher-order languages. However, with
our generalisation of example and with general software systems, one cannot assign a
true or false label to the behaviour of a system with respect to some case. It is more
accurate to talk about a degree of correctness, from absolute correctness to full
malfunctioning.

9. Prospective Applications

257

257

Definition 9.120 We denote the accordance of a given example e with respect to
a system S by S ⊃α

 e:

For convenience, −1 ≤ α ≤ 1. In the following, we will refer to e as a positive
example of S when α is l and a negative example if α is −l.

In the simplest case, when a system can be specified by a function F ⊂ I × O, a
positive example is just any element of e ∈ F. If we define Fneg = { (i,o) ∈ I × O such
that ∃e' = (i,o') ∈ F and e' ≠ e } then we have that a negative example is just any
element from Fneg. If F is complete, there are only three situations: positive hits, not
covered cases and errors. Hence, α ∈ {1, 0, −1}. Positive and negative samples are
just subsets of F and Fneg. respectively. In concept learning or ILP, we have that O= {

false, true } and it is said that the theory or system S covers the examples iff F⊂S. In
more complex cases, the user or other client systems are responsible for providing
the value of α for each example.

9.3.5 Software and reinforcement

In the case of software, reinforcement could be applied at almost any granularity. For
instance, a component can be a rule, a procedure or a function, a class, a method, a
variable, a module or any other higher division. A system will be just a set of
components.

For a correct apportionment of credit, we need to discern which parts are
justifiably responsible for the system to behave correctly for a particular example. In
other words, if a component can be removed without affecting the functionality of
the system with respect to some example, it is clear that this example should not be
reinforced. The following definitions try to formalise and extend this idea:

Definition 9.121 A component ri is said to be β-necessary with respect to S for an
example e iff:

S ⊃α
 e and S − {ri} ⊃α' e and β = α−α'

In general, if β = 0 we say that ri is not necessary. On the contrary, if β = 1 we
simply say that ri is necessary. For instance, if we consider a system S composed of
modules, we can have that the system covers an example e and without a module mi,
the system does not cover the example, so S ⊃1

 e, S−{mi} ⊃0 e and β=1.

Definition 9.122 A system S is reduced for an example e iff:

S ⊃α
 e and ¬∃ ri ∈ S such that ri is not necessary for e

Definition 9.123 Reduced Set: RS(e, S) = { Si ⊂ S, Si is reduced for e }

This excludes subsystems with components that are not useful for increasing the
accordance of the system with respect to the example.

258 José Hernández Orallo - Doctoral Dissertation

 258

However, it is not clear how to assign a credit to each component, as the
following example shows:

Example 9.16

Suppose a system S with four components { r1, r2, r3, r4 } with S = { r1, r2, r3, r4 } ⊃1
 e,

S1= { r1, r2, r3 } ⊃1
 e, S2= { r1, r2 } ⊃0.5

 e, S3= { r2, r3 } ⊃0.9
 e and for any other subset of

S we have α = 0.

We have that RS(e, S) = { S1, S2, S3 }.

We can particularise a different set for each component.

Definition 9.124 RSr(e,S) = { Si : Si ⊂ RS(e,S) and r ∈ Si }

And from here we compute the credit of each rule in the following way:

Definition 9.125 credit (r, e) = { ΣS' ∈ RSr(e, S)
 α
 | S' ⊃α

 e } / card(RS(e, S))

For the previous example, Definition 9.125 gives these reasonable values: credit(r1, e)

= 0.5, credit(r2, e) = 0.8, credit(r3, e) = 0.63, and credit(r4, e) = 0.

However, in the case of software, the influence of the different components is not
additive. Very important modules, classes or functions do not perform anything
valuable on their own, whereas interface components are much more visible to the
user. Hence, we will only consider the ‘saturated’ subsystems:

Definition 9.126 A subsystem S' of S is saturated for an example e iff ¬∃ ri ∈ S

such that:

S' ⊃α
 e and S' ∪ {ri} ⊃α' e and α'−α > 0

Theorem 9.30 A subsystem S' of S is saturated for an example e iff ¬∃ ri ∈ S such

that S'' = S' ∪ {ri} and ri is β-necessary with respect to S'' for e with β > 0.

PROOF. If ri is β-necessary with respect to S'' for an example e, we have by
Definition 9.121 that S'' ⊃α'' e and S'' − {ri} ⊃α''' e and β = α''−α'''. Since S'' = S' ∪

{ri} then α''=α' and α=α'''. Since β > 0, we have that α''−α''' > 0 and α' − α > 0. �

Definition 9.127 SS(e,S) = { Si ⊂ S, Si is both reduced and saturated with respect
to S for e }.

We will refer to the elements of SS as alternative subsystems. For the previous
example we have that SS(e, S) = { S1 }. Finally, we can define the set of alternative
subsystems that contain r as,

Definition 9.128 SSr(e,S) = { Si : Si ⊂ SS(e,S) and r ∈ Si }.

One of the first results of these definitions is that a subsystem is a set of
components. That is to say, it is independent of the trace, of how many times a
component is used for a given example. This ultimately allows the following
definitions, more similar to those of chapter 5.

9. Prospective Applications

259

259

Definition 9.129 The pure reinforcement ρρ(r) of a component r from a system S
with respect to some example e is defined as: ρρ(r, e) = ΣS' ∈ SSr(e, S)

 {α : S' ⊃α
 e }.

In other words, ρρ(r) is computed as the sum of ‘accordances’ from the alternative
subsystems for e where r is used. If there are more than one alternative subsystem
for a given e, all of them are reckoned, but, as we have said, for the same subsystem,
a component is computed only once.

The proportion of examples from a given evidence E where r is used, can be
computed as

Definition 9.130 The probability of r being used for a given example from
evidence E= {e1, e2, …, en} can be approximated by: Puse(r) =Σe ∈ E {if ρρ(r, e) > 0
then 1 else 0 } / card(E).

For a set of examples, i.e., an evidence E, we extend Definition 9.129 in the obvious
way:

Definition 9.131 The pure reinforcement ρρ(r, E) of a component r from a
system S with respect to some given evidence E = {e1, e2, …, en} is defined as:
ρρ(r, E) = Σi=1..n ρρ(r, ei).

Definition 9.132 The (normalised) reinforcement is defined as: ρ(r, E) = 1 − 2−ρρ(r,

E)
.

In the following, we will omit E when there is no possible confusion. Definition
9.132 is justified by the convenience of maintaining reinforcement between 0 and 1,
as it was shown in chapter 5, while rendering easy the computation of reinforcement
because each time a new example is covered by a system, the reinforcement of the
components that have been used are incremented by ρ'(r) = (ρ(r) + 1) /2.

Definition 9.133 The mean reinforced ratio mρ(S) of a system S with m
components is defined as:

mρ(S) = Σr∈S ρ(r)/m

Finally, the validation with respect to the evidence is measured in the following way.

Definition 9.134 The course χS(e) of a given example e with respect to a system S
is defined as:

χS(e) = max S'⊂SS(e, S) { Πr∈S' ρ(r) }

More constructively, χS(e) is computed as the product of all the reinforcements ρ(r)
of all the components r of S used in an alternative subsystem of e. If a component is
used more than once, it is computed once. If f has more than one alternative
subsystem, the greatest course is selected.

260 José Hernández Orallo - Doctoral Dissertation

 260

9.3.6 Validation propagation by reinforcement

As it was discussed in chapter 2, in the ML and philosophy of Science literature,
there is a variety of evaluation criteria to select the most plausible hypothesis, i.e., the
one with less prediction errors [Merhav and Feder 1998]. From this variety, the MDL
(Minimum Description Length) principle [Rissanen 1978, 1996] [Barron et al. 1998]
and the MLE (Maximum Likelihood Estimator) method have been thoroughly
studied and inter-related [Kearns et al. 1999]. Associated with them are some popular
validation methods such as cross-validation, which is also connected with different
notions of hypothesis stability and reinforcement.

Intuitively, a theory that has been reinforced by the past evidence is more likely to
behave properly for the future evidence. Differently from other evaluation criteria,
the previous subsections have presented measures of reinforcement for each
component, and not a unique value for the whole system. In order to estimate the
predictive accuracy (or predictiveness) of a system, a single value is used instead. The
most natural idea is the mean of all the courses of all the examples in the evidence:

Definition 9.135 The mean course mχ(S, E) of a system S with respect to an
evidence E, with n = card(E), is defined as: mχ(S, E) = Σe∈E χS(e)/n.

In chapter 5, the maximisation of mχ(S, E) and the MDL principle have been
theoretically related. Logically, the shorter the theory the more probability that
reinforcement would be more concentrated. In the same paper there are some
examples that show that mχ(S, E) is a more compensated criterion than the MDL
principle. Finally, it is possible to formalise the concept of intensionality by using
reinforcement. A system is intensional if there are not examples covered by some
component with low reinforcement value. Intensionality was shown to be closely
related to cross-validation. In other words, systems with components added to the
system to cover some exceptional examples, i.e. patches, have less stability. These
extensional parts are not validated and it is highly unlikely that new examples will not
be covered by these parts, so the system will probably be revised.

In the same way, we can translate these rationales to software systems. Hypothesis
stability in ML is converted into system stability, i.e., the system endurance to
requirement changes.

Predictiveness is thus distinguished as an actual software quality factor, inversely
related to the number of modifications for evolving requirements in the same
context. Reinforcement can be used as a very appropriate measure to estimate the
probability of modification. More concretely, the probability of modification of a
component can be directly specified from the reinforcement value.

Definition 9.136 The isolated probability of modification is: Pmod(r) = 1 − ρ(r) =
2

−ρρ(r).

9. Prospective Applications

261

261

It is obvious that this defines a probability, since 0 ≤ Pmod(r) ≤ 1. The term 'isolated'
is motivated by the aim that Definition 9.136 should only measure the probability of
modification that originates from each component r, not that other components
could occasion the modification of r.

From here, it is straightforward to obtain the probability of modification of the
whole system:

Theorem 9.31 If we consider independent the isolated modification of each rule
of a system S, the isolated probability of modification of a system S is: Pmod(S) = 1
− Πr ∈ S ρ(r).

PROOF. Since the modification of each component is an independent fact, and S
is defined as the set of rules, the probability of modification of one or more

element of this set is obtained in the classical way: Pmod(S) = 1 − Πr ∈ S (
−Pmod(r))

= 1 − Πr ∈ S (1 − Pmod(r)) = 1 − Πr ∈ S ρ(r). �

The absolute stability of a system can be defined as σ(S) = 1 − Pmod(S) = Πr ∈ S ρ(r),
i.e., the probability that a system is not to be modified at all. This stability of the whole
theory is a very strict requirement, so we will define another notion of stability later.

Up to here, we have been given probabilities of modification throughout the
whole life cycle of the system. However, it would be interesting to measure the
probability of modification just for the following k examples. Let us consider the
probability of use of one component for one example Puse(r), given by Definition
9.130. By a simple combinatorial analysis, the probability that one or more of the

following k examples would use r is 1 − (−Puse(r))k. Then

Definition 9.137 The isolated probability of modification of component r before
example k is:

Pmod(r, k) = Pmod(r) � { 1 − (−Puse(r))k }

Theorem 9.32 Given a component r from system S and an evidence E= {e1, e2,

…, en}, such that ∃e∈E ρρ(r, e) > 0 (i.e., it is a useful component), then, as k
grows, we have that Pmod(r, k) approximates Pmod(r).

PROOF. From Definition 9.137, we have that limk→∞ { Pmod(r, k) } = limk→∞ {

Pmod(r) � { 1 − (−Puse(r))k }} = Pmod(r) � { 1 − limk→∞ (−Puse(r))k }. Since there exists an
example e such that ρρ(r, e) > 0, then, by Definition 9.130, we have that Puse(r) >

0, or consequently −Puse(r) < 1. Hence, limk→∞ (−Puse(r))k = 0, and this yields: limk→∞
{ Pmod(r, k) } = Pmod(r) � { 1 − 0 } = Pmod(r). �

In the following, we will suppose there are no useless components, and we will use
Definition 9.136 and Theorem 9.31 to work with long-term life cycles. However,

262 José Hernández Orallo - Doctoral Dissertation

 262

Definition 9.137 would be useful to compute short-term modification probabilities
and maintenance costs. It even can be modified to consider the last n' examples
instead of the whole evidence. For instance, if a module has not been used in the last
4 months, it is not likely that a modification would affect this module.

9.3.7 Measurement in practice

Definition 9.136 and Theorem 9.31 provide a means to evaluate the predictiveness of
a system or, in some way, how much validated it is. However, as we said, there are
still some details to resolve in order to make these measurements applicable for
software systems: (1) one cannot measure the different examples with the same
value, and (2) reinforcement can be measured for different granularities of
components.

Weighing the evidence

In ML, examples are usually regularised to the same significance. However, in
software, it is difficult to balance some kinds of examples, such as an input-output
pair with a scenario. In addition, some examples are used to describe exceptional
behaviours, with low frequency of use whereas other examples are introduced to
represent the main part of a system or frequent operation. The following extension is
useful if one can assign a significance degree de. to the examples which conform the
evidence E, and it is exactly the same as Definition 5.50.

Definition 9.138 The ‘grounded’ course χ'(e) of a given example e with respect to a
system is computed as the normal course χ(e) multiplied by the significance
degree of e. More formally, χ'(e)=χ(e)·de.

Another approach is the repetition of the examples that are more significant. This
is exactly equivalent to the use of the previous definition, by repeating each example
e in the evidence de. times.

Weighing components

The same approach is not valid with components. We cannot compare the
reinforcement of a module with the reinforcement of a function. However, if one
uses modules as components for obtaining a mean course mχ(S,E) and an absolute
stability 1−Pmod(S), it is possible to make the same thing for another granularity, e.g.
functions, to obtain a different mean course mχ'(S, E) and absolute stability
1−P'mod(S). If one wants to combine both measurements, a major problem arises. In
general, the grosser the granularity the greater the mean course and absolute stability.
The reason is quite simple. For the same system, the finer the granularity the greater
the number of components and reinforcement must be scattered. In the extreme
case, if we consider only a component, the system itself, we have the maximum value

9. Prospective Applications

263

263

for mχ(S, E) = Σe∈E χS(e)/n = Σe∈E ρ(S)/n = Σe∈E (1 − 2−n
) /n, which converges quickly

to 1 if n = card(E) increases.

To equilibrate the matter there are two options: (1) the introduction of a factor
directly related to the number of components, and (2) the introduction of a factor
inversely related to the size of each component. The first one may propitiate the
pseudo-repetition of components, i.e., components that are always needed in
conjunction. Hence, we will choose this second option, which is also the same as
Definition 5.48.

With size(r) we will denote the size of a component r, with the only restriction for
size that for all r, size(r) ≥ 1. We extend the definitions in the following way:

Definition 9.139 The extended pure reinforcement is defined as: ρρ*
(r) = ρρ(r) /

size(r).

Likewise we could define the extended normalised reinforcement ρ*
(r) and the

extended course χ*
(r).

Finally, with this modification, reinforcement can be associated with the idea of
reusability. Inside a single system, a module or component is reinforced if it is used
for many cases or examples. Moreover, the last modification favours granularity,
which also eases reusability. At the level of different applications, and by considering
the evidence as the set of all the examples for these different applications, a highly
reinforced module is reused to cover many groups of examples.

9.3.8 Modification propagation

We have dealt about predictiveness, as the ability of a system to behave correctly for
evolving requirements. This gives an isolated probability of modification Pmod(S)
whatever the part of the system. However, to estimate maintenance costs it is
important to know the consequence of each change, i.e., how many components are
to be modified and how difficult these modifications are.

The following figure shows the two main factors that affect maintenance: the
probability of modification which is inversely related to the validation or
predictiveness characteristic, and the modifiability of the components which are
more likely to be revised.

However, in the literature of software modifiability, there is usually no detailed
relationship between the probability of modification of each component and the
modifiability of each component. In general, the relation is between the validation of
the whole system and the modifiability of the whole system. Figure 9.3. shows the
difference of accuracy between the classical approach and the detailed approach.

264 José Hernández Orallo - Doctoral Dissertation

 264

Classical

 Approach

Detailed

 Approach

Costmaint(S)

Costmod(S)

S

Pmod(S)

r1

r2

r3 rm Pmod(r1) Costmod(r1)

Pmod(r2) Costmod(r2)

Pmod(rm) Costmod(rm)

Costmaint(S)

. . .

. . .

. . .

Fig 9.3. Two different ways to estimate the Maintenance Cost

In what follows, different particularised models for approximating this maintenance
cost are presented, that we denote by Costmaint(S).

Model 0

The easiest (but less realistic) model for modifiability is the assumption that every
component modification is independent to the rest of components. In this case, it is
only necessary to know that each component has a modification cost, a real number
that we denote by Costmod(r):

Definition 9.140 The isolated cost of maintenance is defined as:

Cost0maint(S) = Σr ∈ S Pmod(r) � Costmod(r)

Although more detailed than the classical Pmod(S) � Costmod(S), this last definition has
been computed according to the isolated probability of modification.

S
Pmod = 0.5
Costmod = 4

r2

r1

r4

r3

r5

Pmod = 0.7
Costmod = 5

Pmod = 0.4
Costmod = 2

Pmod = 0.5
Costmod = 4

Pmod = 0.2
Costmod = 6

Pmod = 0.3
Costmod = 7

Model 0:

Cost0
maint(S) = 9.6

Fig 9.4. Example of estimation using Model 0

For instance, given the system illustrated in figure 9.4, the classical approach takes
Pmod(S) = 0.9496 to obtain Costmaint(S). For instance, if it is estimated that each
modification would affect 1.5 components on the average, we can compute
Costmod(S)=1.5�Σr∈S Costmod(r)/ card(S) =1.5�24/5= 7.2. Finally, Costmaint(S)
=Pmod(S) � Costmod(S) =0.9496�7.2= 6.84, which is different from the one given by
Definition 9.140.

9. Prospective Applications

265

265

In this example, both values, Costmaint(S) and Cost0maint(S) are not too despair, but,
in general, they can differ a great deal. Despite the fact that model 0 is more detailed
that the classical one, it is still very simple because it ignores the relationships
between components where modification propagation flows.

9.3.9 Modification dependences

Given a representation language, there are different notions of dependence. There
are functional dependences, where execution (and semantics) propagates (usually
bottom-up) and static dependences, where modification propagates (usually top-
down).

It is difficult to establish exactly which are the modification dependences of a
given system. It depends on the degree of encapsulation of the components, their
coupling and other semantic or syntactical considerations. Moreover, these factors
are highly reliant on the granularity of components. For instance, if a module or class
is modified in its declaration, then it is easier to detect the modules or classes that are
expected to be modified than if a single line of a program is modified.

Once these questions are solved for a particular system, the modification
dependences can be formalised by the term “r depends on ti” that we write r ↵ ti. For
all the dependences of a single component we will also use the following notation r ↵
t1, t2, .. tn. This dependence relation does not need to be reflexive or transitive.

Definition 9.141 The direct ascendant set of a component r is defined as:

DAsc(r)={r' : r ↵r'}

Definition 9.142 The direct descendant set of a component r is:

DDes(r) = { r' : r'↵r }

We define the relation ↵* as the transitive and reflexive closure of the dependency relation ↵.
Formally,

Definition 9.143 For any two components ra , rb, we have that ra ↵* rb holds iff ra
= rb or ra ↵ rb or there exists another rc such that ra ↵* rc and rc ↵* rb.

Definition 9.144 The ascendant set of a component r is defined as:

Asc(r) = { r' : r ↵* r' }.

Definition 9.145 The descendant set of a component r is:

Des(r) = { r': r' ↵* r }.

These dependences are more or less difficult to establish depending on the
granularity chosen for the examples. For instance, in a procedural language, suppose
that a function f uses functions g and h in its definition, h uses function i in its
definition, and function i uses g. The resulting components and dependences are: f ↵

266 José Hernández Orallo - Doctoral Dissertation

 266

g, f ↵ h, h ↵ i, and i ↵ g. By the transitivity closure, ↵* extends ↵ to h ↵* g, f ↵* i , f
↵* g and all the reflexive relations.

In the same way, one can extend dependences to sets of functions, or modules. In
this case, the ‘uses’ or ‘includes’ directives are a good overestimation to modification
dependences. How much these dependences overestimate modification dependences
relies on the kind of modification (in behaviour or declaration) and the encapsulation
of each module.

Finally, to give a much more present and realistic view, in some modelling stages
or languages, dependences are very heterogeneous, as the following simple object
model illustrates:

Practice
Subject

Theory
Subject

Subject

Examination

Professor

prepares
teaches

tutors

attends

Course

Student

makes

Fig 9.5. Example of heterogeneous dependences

If we identify classes with components, in many cases we could identify modelling
relationships (associations, aggregations and inheritance) in one or both ways,
according to external information to the model (or design model information). In any
case, the dependences that can be extracted are barely representative of the
modification dependences between classes. A better approximation can be made by
studying the methods and other relationships between classes.

In short, it is possible to define ↵ for any granularity and any representational
language, but the accuracy to which ↵ represents modification dependences is heavily
contingent on this granularity and any other experience or information which may be
used to refine the estimate.

Besides, not any relation ↵ can be used. There is an important property that this
relation must hold, acyclicness, i.e., ↵* must be a partial order relation. This
limitation is not very restrictive because, although static functional dependences are
frequently cyclic and static modelling dependences are sometimes cyclic (like figure
9.3), the instantiated dependences of an effective program are acyclic.

This hierarchisation was advocated long ago by [Dijkstra 1968] and [Parnas 1972]:
“We have a hierarchical structure if a certain relation may be defined between the
modules or programs and that relation is a partial ordering. The relation we are
concerned is “uses” or “depends upon””.

9. Prospective Applications

267

267

However, if the dependency relation is cyclic, with two components r1 and r2 such
that r1↵*r2 and r2↵*r1, then a fictitious component rf must be inserted to make r1↵*rf
and r2↵*rf and the cycle is removed. Obviously, the costs and probabilities of
modification should be readjusted among r1, r2, rf and other components involved.

Model 1

Once relation ↵ is approximated, we can remake the effective probability of
modification introduced in the previous section. We can define a new measure that
weighs the isolated probability of modification and the scope of each modification
(its propagation), assuming Pmod(r) independent.

Definition 9.146 Given the acyclic relation ↵ for modification dependences, the
related probability of modification P*mod of a single component is defined as:

P*mod(r) = 1 −
−
Pmod(r) · Π ai ∈ Dasc(r) (−−

P*mod (ai))

where Π is defined to be 1 if it has no factors.

Finally, model 1 can be introduced accordingly:

Definition 9.147 Cost1maint(S) = Σr ∈ S P*mod(r) � Costmod(r)

Let us extend the example of figure 9.4 with some dependences. The new model
applied in fig. 9.6 shows that the cost of maintenance increases, due to the
consideration of these modification propagations that were not taken into account in
model 0.

S Pmod = 0.5
Costmod = 4

r1

r5

Pmod = 0.7
Costmod = 5

Pmod = 0.4
Costmod = 2

Pmod = 0.5
Costmod = 4

Pmod = 0.2
Costmod = 6

Pmod = 0.3
Costmod = 7

Model 1:

Cost1
maint(S) = 18.63

P*mod(r1)= 0.5

P*mod(r2)=
0.85
P*mod(r3)= 0.65

P*mod(r4)= 0.955

P*mod(r2)= 0.85

P*mod(r5)= 0.9874

× Costmod(ri)

r2

r4

r3

Fig 9.6. Example of Estimation using Model 1

However, this model presents some problems. It over-propagates modification,
because it modifies the probabilities through all the paths that dependences draw.
For instance, in Fig. 9.6, we can observe that P*mod(r4) takes into account P*mod(r1)
twice: from the path r1→ r2 → r4 and from the path r1→ r4 directly. The same
happens with P*mod(r5).

268 José Hernández Orallo - Doctoral Dissertation

 268

Model 1b

The correction must only consider each dependency once by using the set of
ascendants instead of a recursive reckoning of the dependences.

Definition 9.148 Given the acyclic relation ↵ for modification dependences, the
corrected related probability of modification P*b

mod of a single component is
defined:

P*b
mod(r) = 1 − Π a ∈Asc(r) (

−Pmod(a))

and we redefine the cost of maintenance

Definition 9.149 Cost1b
maint(S) = Σr ∈ S P*b

mod(r) � Costmod(r).

The previous example is corrected to P*b(r1)=0.5, P*b(r2)=0.85, P*b(r3)=0.65,
P*b(r4)=0.91, P*b(r5)=0.9496, which gives Cost1b

maint(S) = 18.32.

Finally, we could use this model to define the detailed stability of a system.

Definition 9.150 The stability of a system S is defined as σ(S) = 1 − Π r ∈ S
P*b

mod(r).

Model 2

Although model 1b is useful to define stability, it does not proceed in an additive way
with the modification costs. For instance, it is more intuitive to proceed bottom-up
as follows: if we have a modification at component r, we have to add the cost of all
the components that depend on it, as follows:

Definition 9.151 The accumulate cost of a component r is defined as:

AcCostmod(r) = Σ a ∈ Desc(r) Costmod(a)

And once again, the cost of maintenance of a system S could be defined as:

Definition 9.152 Cost2maint(S) = Σr ∈ S Pmod(r) � AcCostmod(r)

And the results are quite different in this case: AcCostmod(r1)=24, AcCostmod(r2)=13,
AcCostmod(r3)=13, AcCostmod(r4)=8, AcCostmod(r5)=6, that gives Cost2maint(S) = 29.4.

9.3.10 System topologies and maintenance cost

A validation (or predictiveness) measure for a software system can be obtained by
using reinforcement propagation. This is inversely related to the modification
probability. We have also introduced a dependency relation where modification
propagates. As it has been said, the major problem of this dependency relation is that
it is difficult to obtain. In general, when a component r is modified, the set of
components that are to be modified depends mostly on the utilisation rate from the

9. Prospective Applications

269

269

other components. This use rate is precisely what determines reinforcement. This
insight motivates the following assignment:

Assumption 9.1. The modification dependency graph, determined by relation ↵,
usually top-down, matches reversely with the validation reinforcement graph,
usually bottom-up.

Although this assumption is controvertible, it has many advantages as a working
approximation,

• modification dependences can be determined by the course of reinforcement.
• conversely, the course of reinforcement, which is extremely variable and

uncertain for static models, can be approximated by the graph of modification
dependences.

On the other hand, this approximation has also some inconveniences. Not all
granularities admit this matching. Moreover if one tries to mix up different
granularity in both ways, for instance, using a procedural granularity to assign
reinforcement and using an object-oriented granularity for modification
dependences, the results may be useless.

The final justification of this assignment is that it allows a theoretical study of the
trade-off between validation (or predictiveness) and modifiability. More concretely,
in order to obtain a validated (reinforced) system, a component should be used in the
greater number of cases (and other modules) as possible. However, this would
compromise modifiability, because any simple modification would propagate to an
enormous number of other components.

There is a long debate about the convenience of high fan-in and slow fan-out and
vice-versa. The slogan of reusability is keep fan-out high and keep fan-in low. The
slogan of modification in inheritance is to avoid a great number of children. This
discussion is somehow paradoxical because for every dependency that goes out from
a component, there is another component where it arrives to. In other words, mean
fan-in is always equal to mean fan-out. So, it is more sensible to talk about high or
low connectivity or, more meaningfully, to talk about topologies.

Intuitively, a hierarchical arrangement of dependences eases the modification of
the leaves situated at the bottom without the modification of the leaves at the top.
This was recognised by [Parnas 1972] long ago: “The partial ordering gives us two
additional benefits. First, parts of the system are benefited (simplified) because they
use the service of [upper] levels. Second, we are able to cut off the [lower] levels and
still have a usable and useful product. [...]. The existence of the hierarchical structure
assures us that we can “prune” off the [lower] levels of the tree and start a new
[reversed] tree on the old trunk. If we had designed a system in with the “[high]
level” modules made some use of the “[low] level” modules, we would not have the
hierarchy, we would find it much harder to remove portions of the systems.”.
However, one can wonder if the shape of this graph should be tree-like or root-like,

270 José Hernández Orallo - Doctoral Dissertation

 270

the latter implicitly advocated by Parnas. This motivates a more detailed analysis of
configurations of a given program P.

Definition 9.153 The Bottom or Minimal Set of a program P, denoted BotP, is
composed of every component b ∈ P such that ¬∃c ∈ P, c ≠ b, such that c ↵ b. In
other words, BotP = { b : Des(b) = { b }}.

Definition 9.154 The Top or Maximal Set of a program P, denoted TopP, is
composed of every component t ∈ P such that ¬∃c ∈ P, c ≠ t, such that t ↵ c. In
other words, TopP = { t : Asc(t) = { t }}.

According to the previous characteristics, we are going to study five different
topologies:

• Topology 1: “Horizontal”: No dependences at all. Obviously, P = BotP = TopP.
We will consider the following extreme cases:

 a) Compensated. ∀i ρρ(ci) = n / m.

 b) With exceptions. ∃j ρρ(cj) = n−m+1 and the rest are exceptions (or
patches) ρρ(ci) = 1, i ≠ j.

• Topology 2: “Vertical”: The dependency relation ↵ obeys a full order relation <,
∀ c1, c2 ∈ P, c1 ≠ c2, then ¬(c2 < c1) ↔ c1 < c2. There is a unique top component t ∈
TopP, i.e., card(TopP) = 1. There is a unique bottom component b ∈ BotP, i.e.,
card(BotP) = 1. From here, the following properties hold, ∀ c ∈ P, c ≠ t, then c < t
and ∀ c ∈ P, c ≠ b, then b < c.

• Topology 3: Lattice: The dependency relation ↵ obeys a partial order relation <.
There is a unique top component t such that ∀ c ∈ P, c ≠ t, then c < t and a unique
bottom component b such that ∀ c ∈ P, c ≠ b, then b < c. We will consider three
extreme cases:

 a) A unary lattice which corresponds to topology 2.

 b) Wide lattice with depth = 3, where the middle level has m−2 components.

 c) Binary lattice. We assume m = 2k − 1 + 2k−1 − 1 = 3 � (2k−1) − 2, being k a
natural number.

• Topology 4: Tree: The dependency relation obeys a partial order relation < with
no unique top element (card(TopP) ≥ 1) and ∀ a,b : a ∉ Des(b) ∧ b ∉ Des(a) →
Asc(a) ∩ Asc(b) = ∅. There is a unique bottom component b such that ∀ c ∈ P, c
≠ b, then b < c. We will consider three prototypical cases:

 a) One vertical branch (i.e. card(TopP) = 1). Equivalent to topology 2.

 b) Wide tree with depth = 2, where the top level has m−1 components.

 c) Binary tree. We assume m = 2k − 1, being k a natural number.

9. Prospective Applications

271

271

• Topology 5: Root (inverse tree): The dependency relation obeys a partial order
relation < with no unique bottom component (card(BotP) ≥ 1) and ∀ a,b : a ∉
Asc(b) ∧ b ∉ Asc(a) → Des(a) ∩ Des(b) = ∅. There is a top component t such
that ∀ c ∈ P, c ≠ t, then c < t. We will consider three prototypical cases:

 a) One vertical branch (i.e. card(BotP) = 1). Equivalent to topology 2.

b) Wide root with depth = 2, where the bottom level has m−1 components..

c) Inverse binary tree. We assume m = 2k − 1, being k a natural number.

Cases b) and c) will be studied in two ways: compensated and with exceptions.

We will assume that all components have the same size and that all examples have
the same significance. From here,

Theorem 9.33 Given n examples e1, e2, ..., en, a program of m components
arranged under topologies 2, 3 or 4 has the following properties:

• For every component c from P, the pure reinforcement ρρ(c) is n, and the
normalised reinforcement ρ(c) = 1 − 2−n.

• For every example ei the course χ(ei) = (1−2−n)m. Hence, the mean course is
mχ(E) = (1−2−n)m

.

• For every component c, the isolated probability of modification Pmod(c) is 2−n
and Pmod(P) = 1 − (1−2−n)m = 1 − mχ(E).

PROOF. Topologies 2, 3 and 4 have a unique bottom b, and obviously, all the
examples are covered by this bottom component b. Hence, ρρ(b) = n, and ρ(b) =
1. Since we consider static dependences, and all the components are required by b,
because ∀c∈P, c ≠ b, then b ↵ c, they all have the same pure reinforcement ρρ(c) =
n. The rest of properties follow from here by applying previous definitions. �

Topologies 1 and 5 may have an overlap in the coverings of the bottom set, i.e., ∀
bi ∈ BotP, Σρρ(bi) > n. This kind of redundancy is usually eliminated in software
systems (except when a voting method is used to increase reliability), so we will
consider ∀ bi ∈ BotP,Σ ρρ(bi) = n.

As a result, given n examples, it is shown in the appendix of this chapter that a
program P of m components with n >> m such that ∀r∈P, Costmod(r)= Ucost, it brings
forward the following maintenance costs (under model 2):

272 José Hernández Orallo - Doctoral Dissertation

 272

Topology Maintenance cost

1a) Horizontal compensated O(2−−−−n/m · m)

1b) Horizontal with Exceptions O(m)

2) Vertical O(2−−−−n � m2)

3b) Lattice with depth = 3 O(2−−−−n � m)

3c) Binary Lattice O(2−−−−n � m � log2m)

4b) Tree with depth = 2 O(2−−−−n � m)

4c) Binary Tree O(2−−−−n � m � log2m)

5b-i) Inverse Tree with depth = 2 and compensated O(2−−−−n/m � m)

5c-i) Binary Inverse Tree and compensated O(2−−−−n/m � m · log2m)

5b-ii) Inverse Tree with depth = 2 with exceptions O(m)

5c-ii) Binary Inverse Tree with exceptions O(m · log2m)

Fig 9.7. Results of Maintenance Costs for Different Topologies

Having in mind the assumptions and approximations that have led us to use
Cost2maint(S) for approximating the maintainability of a software system, we can
extract some conclusions:

First of all, when the software system has exceptions or patches, which are used
for few examples (topologies 1b, 5b-ii and 5c-ii), they have not been validated and
the maintenance cost depends almost exclusively on them, in the way that the cost is
asymptotically independent from n, the factor that reduces the cost.

From all the rest of compensated topologies, where reinforcement is distributed
uniformly, the results are not so despair. However there is a great asymptotic
difference between a wide tree or a lattice and a binary inverse tree. This remarks that
topologies should be confluent or ‘conciliated’ at the bottom, much more like a tree
than like a root. In other words, components at the bottom should behave in a broad
way and not in a specialised way, something that may be interpreted very differently
depending on what one could think of a component. Finally, other more intuitive
consequence is that wide topologies are better than thin ones, because of
modification propagation.

The strongest result derivable from figure 9.7 is that compression, i.e. increasing n
over m, is an excellent way to reduce maintenance cost. In relation to the same
sample, simple systems are more reinforced because the ratio of examples by piece of
software is greater, so validation is higher. In the other way, modification is much
easier. Although this is well known since long ago, recently, however, there have
been claims about considering software engineering as compression [Wolff 1994],
supported by the idea of learning as compression. However, a very compressed
model can be spoilt by some patches, something that it is plainly seen in topologies
1b, 5b-ii and 5c-ii.

9. Prospective Applications

273

273

Finally, as we have said, more things can be inferred from this study if the
components are particularised to real objects: classes, functions, modules, etc. For
instance, if the components are classes, one can identify these results with four OO
software quality metrics such as “lack of cohesion of methods” (increase granularity
when possible) , “coupling between objects” (decrease granularity when possible),
“depth of inheritance tree” and “number of children”. Other interpretations are at
first sight less intuitive or even contradictory. Inheritance, which is widely accepted,
determines a topology of type 5c-i). However, the dependency relation is not only
conditioned by inheritance relationship but also by associations, aggregations, etc.
Moreover, multiple inheritance helps to change the topology to types 3c) or 4c).
Ultimately, polymorphism represents the previous idea of confluence or avoidance of
specialisation at the bottom. In some way, polymorphism tries to ‘pump up’
reinforcement.

9.4 Other Applications

Here I include some other areas where some other concepts of this work may be
useful, although a deeper examinations would be necessary to know up to which
degree and success.

9.4.1 Meaning and Language Understanding

In chapter 6 we dealt about some questions of the learnability of natural language
that were related with the notion of intensionality. In the same way we pointed out
the close relationship between intention and intension, although they are different
terms. However, there are many other traits of the act of comprehending that are
related to other notions seen in chapters 4 and 7.

For instance, the distinction between explicit and implicit, as seen in chapters 3
and 4, is essential for the communication between two or more individuals. in the
case of anaphora or ellipsis, natural language usually uses ellipsis of what is clearly
implicit. An example of ellipsis is “Mary eats and savours an apple”, known as the
“shallow structure” which is made explicit into its “deep structure”: “Mary eats an
apple and Mary savours that apple”. An example of anaphora is “It is the kind of
apples that she likes” which has as deep structure “The apple is the kind of apples
that Mary likes”. It is impossible to devise rules to account for all cases, as some
natural language processing systems have implemented with partial success. It is
necessary that the systems would have explanatory reasoning and ability to
understand to address these problems in general, to face ambiguity, etc. In all these
cases, apart from the intention of the speaker, the explicitness and plausibility of the
different interpretations should be evaluated.

274 José Hernández Orallo - Doctoral Dissertation

 274

Another question where the measures introduced in this work may be useful is the
measurement of understandability. This problem has been usually addressed by
linguistics and psychology [Hörmann 1981][Just and Carpenter 1987] [Rayner and
Pollatsek 1989], but never formalised. Some representative results can be found in
[Sommer 1995b].

These results have been translated into formal languages like logic theories but,
since understandability (or comprehensibility) has never been defined in a formal
way, the translation has never been made in the other way. The notion of
comprehensibility introduced in chapter 6 has been applied to symbolic problems
like those that appear in IQ tests. However, the same measures could be applied to
logical programs and then generate equivalent (although maybe inelegant) sentences
from them, in order to measure understandability in a verbal context.

Nonetheless, the measures could also be used in Natural Language Processing
(NLP). The combination of existing techniques in NLP, mainly based on an ad-hoc
coding of grammars and rules through Lisp or Prolog programs should be
accompanied by inductive methods, and, in this case, inductive logic programming
seems the most appropriate one, in what has been called the triple L, namely,
“language, learning and logic” (LLL), as it has been advocated by [Muggleton 1998].

Natural language learning based on statistical approaches (e.g. n-gram language
modelling) has been successful, but it is well known that such linguistically
impoverished approaches have severe limitations. In contrast, the flexibility and
expressivity of logical representations make them highly suitable for natural language
analysis. Consequently there is a growing interest in applying Inductive Logic
Programming techniques to linguistic learning problems.

From the NLP point of view the promise of ILP is that it will be able to steer a
mid-course between the two alternatives of large scale, but shallow levels of analysis,
and small scale, but deep and precise analyses, and produce a better ratio between
breadth of coverage and depth of analysis. Many measures introduced by this thesis
could be useful in this endeavour.

However, the adaptation of the different measures seen in chapter 7 for logic
programs (especially for ILP) to address different interpretations of a given sentence
and other problems of NLP could surely be the topic of another thesis.

9.4.2 Agents Communication

There has been a recent interest in defining standard languages for the
communication between agents in a virtual environment. This can be a solution (or a
necessity) for compatible agents, but this finally turns to be a restriction. Any language
extends, changes and particularises as long as one knows the knowledge and
intelligence of the other peer, which progressively becomes more ambiguous and less
understandable for other persons.

9. Prospective Applications

275

275

The communication between two intelligent beings that do not share a single
word of their languages has always been a relevant question in philosophy of
language. The evidence is that they finally find a compromise (a dominant, mixed or
invented language) to communicate each other. The question is harder in the case of
virtual world or textual worlds, mainly because there are few external references and
analogies, such as the person who can point a tree to another person and say “árbol”
where the other sees an “arbre”.

These contacts will be precisely given by communication between agents in
different multiagent systems, like any computer network and, especially, the Internet.
Imagine the following situation. An agent establishes communication with other
agent, both being stranger to each other. In the case that each agent could essay with
different languages to find one in common, this would be the best solution, but, in
general, if both say that they speak English, there are still different levels up to they
can speak English. Even one or two of them can be humans with few knowledge
about English and the communication has to take this into account. This is a classical
law of communication: both peers must synchronise their code in order to
communicate effectively. As long as the agents are more intelligent and the languages
richer, this is more difficult because exact protocols are difficult or impossible to
implement. It is necessary that both peers use their common sense in order to adapt to
the peer’s limitations.

It is important to note that such a role has been assumed by humans and
computers since the beginning of computer science and, nowadays, it is a crucial
aspect of computer-human interaction. Currently, human beings degrade their
language to be able to communicate with computers, because, nowadays, computers
do not understand analogies, or jokes, and they do not solve most of the ambiguities
of human communication and, consequently, the expressivity and flexibility of the
language which is finally used must be reduced to a lower level.

It is then necessary to evaluate these abilities in order to improve the
communication between peers that do not share the same language and the same
level of intelligence and knowledge. Different protocols and tests should be devised
in the future for this task, more or less akin to that of chapter 8.

9.5 Summary

Very different applications have been presented, each of them more or less related to
one or more of the previous chapters. As expected, prospective applications and
combinations raise more questions than they settle, but this is precisely what is
intended by a prospect, to open new fields.

Section 2 discusses optimal representation of databases (understood as extremely
lazy knowledge systems) for optimising accesses. Soon it is realised that this question

276 José Hernández Orallo - Doctoral Dissertation

 276

has been addressed at the physical level and it is independent from the degree of
intensionality of the model or logical schema of the database. However, it is also
recognised that intensional properties are useful in this level, due to different reasons.
Apart from the fact that data quality and data cleansing can affect positively to a
data-mining process, it is realised that the other way it is also very significant to
detect redundancies, inconsistencies and other properties which can help to improve
the data quality of an information system. This will be more important for future
information systems that will adopt more reasoning power, both inductive and
deductive, in what is beginning to be called knowledge systems.

Section 3 applies reinforcement to study maintainability issues for programs (seen
as eager knowledge systems). From the results, we can highlight that a great number
of characteristics of software can be theoretically studied using ML analogies and
techniques. In our case, reinforcement is used to obtain a probability of modification,
where many other measures are derived from, such as system stability and
maintainability measures for different topologies.

Section 4 presents other applications, mainly related with language and
communication. Fixed languages have limited expressiveness and it would be rather
surprising that a standard language could be used by most of the systems that may
interrelate in a real world or in a virtual world. Different languages and changing
languages must be used to communicate with different agents with divergent
intelligence and knowledge, and the communication must adapt to these situations. The
difference between explicit and implicit, formalised and clarified in this work could
have fruitful applications in the area of natural language processing. The formal
notion of comprehensibility introduced in chapter 6 has also been highlighted as an
important trait to be exploited for language understanding.

This latter issue, comprehensibility, may also be applicable to knowledge systems,
because understandability is one of the factors that affect the acceptance and
popularisation of these systems, since many of them are completely cryptic for the
user [Kodratoff 1994].

Databases and software systems are both extremes of knowledge systems. The
classical knowledge-based systems, the natural language processing systems and the
new trend of information agents or software agents are tracing an increasingly more
diverse spectrum of use of inductive, deductive, analogical and abductive reasoning
methods. Moreover, eager and lazy techniques are also beginning to be combined. In
this panorama, the applications of the measures and other different notions
presented in this work seem even more promising in the near future.

9. Prospective Applications

277

277

9.6 Appendix

This appendix includes the results of maintainability for the different topologies
presented in section 3.

Topology 1. card(BotP) = card(P). So Σi=1..m ρρ(ci) = n.

• For the case a) we have that ρ(c) = 1 − 2−n/m
 and for every example ei the course

χ(ei) = (1−2−n/m
). The isolated and related probabilities of modification are the

same, exactly, Pmod(c) = P*
b
mod(c) = 2

−n/m
. From here, Pmod(P) = 1 − (1 − 2−n/m

)
m
.

 ∀i AcCostmod(ci) = Σ a ∈ Des(r) Costmod(a) = Costmod(a) = Umod and Cost
2
maint(P) = Σr ∈

S Pmod(r) · AcCostmod(r) = m · 2
−n/m

 · Umod ∈ O(m · 2−−−−n/m
).

• For the case b) we have that ρ(cj) = 1 − 2−(n−m+1)
 and ρ(ci) = 0.5 iff i ≠ j. We have

the course χ(ej) = (1−2−(n−m+1)
) and χ(ei) = 0.5 iff i ≠ j. The mean course is [(m −

1)/2 + (n−m+1) · (1−2−(n−m+1)
)] / n= [(1−m)/2 + n + (m−n−1) · (2−(n−m+1)

)] / n. If n

>> m this is approximately (1−2−n
). The isolated probability of modification is,

Pmod(cj) = 2
−(n−m+1)

 and Pmod(ci) = 0.5 iff i ≠ j. From here, Pmod(P) = 1 − (1 −
2

−(n−m+1)
)
 n−m+1

 · (1/2)
m−1

 = 1 − (1 − 2−(n−m+1)
)
 n−m+1

 · 2
 1−m

. Again, since n >> m and n

is great then Pmod(P) ≅ 1 − 2 1−m
.

∀i AcCostmod(ci) = Σ a ∈ Desc(r) Costmod(a) = Costmod(a) = Umod and Cost
2
maint(P) = Σr ∈

S Pmod(r) · AcCostmod(r) = ((n−m+1) · 2
−(n−m+1)

 + (m−1) · 1/2) · Umod. Since the first

term (n−m+1) · 2
−(n−m+1)

is always ≤ 1 if n > m, then Cost2maint(P) ∈ O(m)
Topology 2. From Theorem 9.33, ρρ(c) = n, and ρ(c) = 1 − 2−n

 , the course χ(ei) =

(1−2−n
)
m
 for all ei. For all ci, the isolated probability of modification Pmod(ci) is 2

−n
and

Pmod(P) = 1 − (1 − 2−n
)
m
.

• Without loss of generality in this topology, c1 = b and cm = t, with ci < ci+1 ∀i 1 ≤ i
< m.

∀i AcCostmod(ci) = Σ a ∈ Des (ci)
 Costmod(a) = i · Umod and Cost

2
maint(P) = Σr ∈ S Pmod(r) ·

AcCostmod(r) = 2
−n
 · Σi = 1 .. m i · Umod = 2

−n
 · m · (m+1)/2 · Umod ∈ O(2−n

 · m
2
)

Topology 3. From Theorem 9.33, ρρ(c) = n, and ρ(c) = 1 − 2−n
 , the course χ(ei) =

(1−2−n
)
m
 for all ei. For all ci, the isolated probability of modification Pmod(ci) is 2

−n
and

Pmod(P) = 1 − (1 − 2−n
)
m
.

• For the case b) AcCostmod(b) = Umod and AcCostmod(t) = m·Umod and AcCostmod(r) =

2·Umod iff r ≠ t and r ≠ b. So, Cost2maint(P) = Σr ∈ S Pmod(r) · AcCostmod(r) = 2
−n
 · (1 +

m + (m−2)·2) ·Umod ≅ 2−n
 · 3m · Umod ∈ O(2−−−−n

· m)

• For the case c) it is obvious that AcCostmod(t) = m·Umod. Since m = 2
k
 − 1 + 2

k−1
 −

1, we have 2k−1 levels: k levels with increasing width and k−1 levels with
decreasing width. For the first k levels, j-numbered top-down from 1 to k, we have

2
j−1
 components on each level, and AcCostmod(r

 j
) = (2

k−j+1
 − 1 + 2

k−1−j+1
 − 1 +

(j−1)) ·Umod = (3 · 2
k−1−j+1

 − 3 + j) ·Umod

For the next k−1 levels, i-numbered top-down from k−1 to 1, we have 2i−1

components on each level, and AcCostmod(r
i
) = i ·Umod

278 José Hernández Orallo - Doctoral Dissertation

 278

Finally, Cost
2
maint(P) = Σr ∈ S Pmod(r) · AcCostmod(r) = 2

−n
· (Σj=1..k 2

j−1
·[3 · 2

k−1−j+1
 − 3

+ j] + Σi=1..k−1 2
i−1
· i) ·Umod = 2

−n
· (Σj=1..k [3·2

k−1
 − 3· 2j−1

 + j·2
j−1
)] + Σi=1..k−1 2

i−1
· i)

·Umod = 2
−n
· ([k·3·2

k−1
 − 3· 2k

 + 2 + Σi=1..k−1 j·2
j−1
)] + Σi=1..k−1 2

i−1
· i) ·Umod

By using the approximation Σl=1..p 2
l-1
· l ≅ p · 2p

., we have: Cost
2
maint(P) ≅ 2−n

·

([k·3·2
k−1
 − 6· 2k−1

 + 2 + (k−1) ·2k−1
)] + (k−1) ·2k−1

) ·Umod = 2
−n
· ((k·3 + 2k − 2 −

6)·2
k−1
 + 2) ·Umod= 2

−n
· ((5k − 8)·2k−1

 + 2) ·Umod

Since m = 2
k
 − 1 + 2

k−1
 − 1, then 2k−1

=(m+2)/3 and k = log2 [(m+2)/3 + 1] then,

Cost
2
maint(P) ≅ 2−n

· ((5 log2 [(m+2)/3 + 1] − 8) · (m+2)/3 + 2) ·Umod ≅ 2−n
· 5/3 · m ·

log2 (m/3) ·Umod ∈ O(2−−−−n
· m · log2 m)

Topology 4. From Theorem 9.33, ρρ(c) = n, and ρ(c) = 1 − 2−n
 , the course χ(ei) =

(1−2−n
)
m
 for all ei. For all ci, the isolated probability of modification Pmod(ci) is 2

−n
and

Pmod(P) = 1 − (1 − 2−n
)
m
.

• For the case b) AcCostmod(b) = Umod and AcCostmod(t) = 2·Umod for all t ∈ TopP. So,

Cost
2
maint(P) = Σr ∈ S Pmod(r) · AcCostmod(r) = 2

−n
 · (1 + (m−1) · 2) ·Umod ≅ 2−n

 · 2m ·

Umod ∈ O(2−−−−n
· m).

• For the case c) we directly have that AcCostmod(t) = k·Umod. Since m=2
k −1, there

are k levels with decreasing width, i-numbered top-down from k to 1, and 2
i−1

components on each level, so AcCostmod(r
i
) = i ·Umod

Finally, Cost
2
maint(P) = Σr ∈ S Pmod(r) · AcCostmod(r) = 2

−n
· (Σi=1..k 2

i−1
· i) ·Umod

By using again the approximation Σl=1..p 2
l-1
· l ≅ p · 2p

., we have: Cost
2
maint(P) ≅ 2−n

· (k ·2
k
) ·Umod

Since m = 2
k
 − 1, then 2

k
=m+1 and k= log2 [m+1] then,

Cost
2
maint(P) ≅ 2−n

· log2 [m+1] · (m+1) ·Umod ∈ O(2−−−−n
· m · log2m)

Topology 5. Cases b) and c) will be studied with these two extreme conditions:

 i) Compensated:∀ci∈BotP then ρρ(ci) = n / Card(BotP).

 ii) With exceptions: ∃j ∈BotP ρρ(cj) = n − Card(BotP) + 1 and the rest ci∈BotP
have ρρ(ci) = 1, i ≠ j.

• For the case b)-i) we have that Card(BotP) = m-1, so ρ(t) = 1 − 2−n
 for t and ρ(r) =

1 − 2−n/(m−1)
 iff r ≠ t. For every example ei the course χ(ei) = (1−2−n/(m−1)

) · (1 − 2−n
).

The isolated probabilities are Pmod(t) = 2
−n

 and Pmod(r) = 2
−n/(m−1)

 iff r ≠ t. Pmod(P) =

1 − (1 − 2−n
)
m−1

 · (1 − 2−n/(m−1)
).

 On the other hand, AcCostmod(t) = 2·Umod and AcCostmod(b) = Umod iff r ≠ t
 So, Cost

2
maint(P) = Σr ∈ S Pmod(r) · AcCostmod(r) = (2

−n
 · 2 + (m−2)· 2−n/(m−1)

) ·Umod ∈
O(m· 2

−−−−n/m
)

• For the case c)-i) we have that Card(BotP) = (m + 1) / 2. We have ρ(t) = 1 − 2−n
 for

t and for the k levels of the inverse tree, numbered top-down from 1 to k, we have

ρ(rj
) = 1 − 2−n/(2^(j−1))

. For every example ei the course χ(ei) = Πj=1..k (1 − 2−n/(2^(j−1))
)

≤ 1 − 2−n/(2^(k−1))
= 1 − 2−2n/(m−1)

.

 We have that the probabilities of modification are Pmod(t) = 2
−n
. Since m = 2

k
 − 1,

we have k levels with increasing width, numbered top-down from 1 to k, we have

9. Prospective Applications

279

279

2
j−1
 components on each level, and Pmod(r

j
) = 2

−n/(2^(j−1))
. We have Pmod(P) = (1 −

Πj=1..k · (1 − 2−n/(2^(j−1))
)
 2^(j−1)

).

 It is obvious that AcCostmod(t) = m·Umod. Since m = 2
k
 − 1, we have 2k−1 levels: k

levels with increasing width, j-numbered top-down from 1 to k, we have 2
j−1

components on each level, and AcCostmod(r
 j
) = (2

k−j+1
 − 1 + 2

k−1−j+1
 − 1 + (j−1))

·Umod = (3 · 2
k−1−j+1

 − 3 + j) ·Umod

 Finally, Cost
2
maint(P) = Σr ∈ S Pmod(r) · AcCostmod(r) = Σj=1..k 2

j−1
· 2

−n/(2^(j−1))
·[3 ·

2
k−1−j+1

 − 3 + j] ·Umod = Σj=1..k 2
−n/(2^(j−1))

·[3·2
k−1
 − 3· 2j−1

 + j·2
j−1
] ·Umod

 Since both factors increase very quickly with j, and using the approximation Σl=1..p

2
l-1
· l ≅ p · 2

p
, we have that we can roughly approximate to: Cost

2
maint(P) ≅ 2−n/(2^k)

·k·2
k
 ·Umod

 Since m=2
k−1, then 2k

=m+1 and k=log2(m+1), so Cost
2
maint(P) ≅ 2−n/m

· m·log2m ·

Umod∈O(2−−−−n/m
·m · log2m)

• For the case b)-ii) we have that Card(BotP) = m−1, so ρ(t) = 1−2−n
 for t and

∃j∈BotP ρρ(cj) = n−Card(BotP)+1 = n−m+2 and the rest m−2 components ci∈BotP
have ρρ(ci)=1, i≠j. There are m−2 examples with course χ(e) = (1−2−1

)·(1 − 2−n
).

The rest n−m+2 examples have χ(e) = (1−2−(n−m+2)
) · (1−2−n

).

 The isolated probabilities are Pmod(t) = 2
−n

 and ∃j ∈BotP Pmod(r) = 2
−(n − m + 2)

 and the

rest m − 2 components ci∈BotP have Pmod(r) = 0.5. We have Pmod(P) = (1 − (1−2−n
)

· (1−2−(n − m + 2)
) · (1−0.5) (m−2)

).

 On the other hand, AcCostmod(t) = 2·Umod and AcCostmod(b) = Umod iff r ≠ t
 So, Cost

2
maint(P) = Σr ∈ S Pmod(r) · AcCostmod(r) = (2

−n
 · 2 + 2

−(n − m + 2)
+ (m−2)· 0.5 ·

2) ·Umod. Since the first two terms are always ≤ 1 if n > m and n great, then

Cost
2
maint(P) ∈ O(m).

• Case c)-ii) would be lengthy to study directly. However, the results are very

similar to the case of considering a vertical propagation like topology 2 on one side

and the biggest subtree of topology c)- i) on the other side. This latter part,

composed of ((m+1) / 2) −1 nodes, will dominate the whole result because it is
reinforced by (m+1)/4 examples only, one for each component of BotP. (The

former part is O(2
−n
 · m

2
)).

Using the results of topology c)- i) and changing n by (m+1)/4 we have:

Cost
2
maint(P) ≅ 2− (m+1)/4m

·m · log2m ·Umod∈ O(m · log2m).

280 José Hernández Orallo - Doctoral Dissertation

 280

10. Conclusions

281

281

10. Conclusions

Learning without thinking is useless.

Thinking without learning, dangerous.

Confucius, 551-479 BC

Abstract: this chapter discusses the results that have been fulfilled in relation to the expectations
and possibilities that were initially aroused from the ideas and methodological tools that motivated
the goals of this thesis. Their accomplishment is shown by the main contributions of this work, as
well as the open questions and the future work. The chapter ends with a broader view of the overall
results and an appraisal of the practical possibilities and philosophical implications of this work.

Keywords: Evaluation Measures, Inference Processes, Induction, Deduction,
Semantic Information, Kolmogorov Complexity, Utility, Reasoning, Inference
Paradox, Information Gain, Reinforcement, Intensionality, Measurement of
Cognitive Abilities, Evaluation of Logical Theories.

282 José Hernández Orallo - Doctoral Dissertation

 282

10.1 Introduction

The determination of approaching inference processes from a non-strictly semantical
point of view seemed risky at first sight. How much and how well could be addressed
with measures constructed on descriptional, computational and numerical tools was a
question at the beginning of this work. However, some semantic or logical
approaches had unsuccessfully essayed to understand different inference processes in
a joint and consistent way, under some kind of unified logical framework.
Nonetheless, there were no valid attempts for ascertaining the result of the different
inference processes. Hence, in my opinion, an approach based on evaluation (in this
case syntactical approaches also deserved to be studied.

The results have been, fortunately, quite satisfactory, according to the
expectations at the beginning of this work. Such important traits of inference
processes such as explicitness, implicitness, novelty, intermediate information,
representational optimality, informativeness, extensionality, intensionality, plausibility
and confirmation have been accounted by these measures. Moreover, the main tools
have been basic definitions and properties of descriptional (Kolmogorov) complexity
on one hand, and a quite simple theory of reinforcement on the other. In other
words, the measures which have been presented (except from the difficult account of
the concept of intensionality) have been kept without entering in intricate
mathematics. The reason may be found in my conviction of keeping the things as
simple as possible and, of course, my declared inability to use some powerful and
sophisticated mathematical techniques that possibly could have been useful in some
occasions. In particular, some results of descriptive set theory, topology, model
theory, and complex probability distributions should also be applied for accounting,
in a joint way, for different inference processes. The use of some of them would
have given the thesis another scope and perhaps would have given some interesting
results at a higher level. Be it a voluntary outcome or not, I think that the fact that
most of the measures have been kept quite intuitive and comprehensible must be
seen as a positive payoff rather than a negative feature.

Furthermore, in my opinion, the methodology and tools must follow the needs
that are generated by the goals of any work. Obviously, these goals can only remain if
some ideas are found that supports in advance the subsequent research. In my case,
these have been the following:

• The idea of re-connecting the intuitive notion of information with resource
consumption or computational/reasoning effort. In particular, the weighing of
space and time as given by the function LT seemed to me an appropriate
measure of effort.

10. Conclusions

283

283

• The idea of a non-probabilistic but quantitative account for confirmation
under the following simple assumption: the value of confirmation that a
deductive connection provides must be much greater than the one a
hypothetical connection provides.

• The idea that hypotheses and theories must not be accompanied by a single
value of plausibility. Any useful account of confirmation must be detailed for
any part of the theory. In particular, most of the differences between
consilient/intensional theories and descriptional/(partially extensional) theories
are originated by the degree of uniformity of the distribution of this
confirmation, a question that has been neglected in the machine learning
literature.

• The idea that reasoning abilities can be evaluated by the use of formally and
computationally derived measures. Moreover, the conviction that there is no
need of an external and initially predetermined reference in order to scale the
intelligence of an agent, a person, an animal or any cognitive system.

Let us see in which extent the preceding methodology and ideas have been fruitful:

10.2 Main Contributions

The main contributions of this thesis are:

1. A measure of time-ignoring information gain V(x|y) which represents the
degree of information of x which is implicitly in y. A new effective measure
of computational information gain G(x|y) which depends on the
computational effort (time and space) and can be used to measure the
proportion of x which can be easily obtained on the help of y. In other
words, the degree of information of x that is explicitly in y is given exactly by
1 − G(x|y).

2. Representation Gain and Representational Optimality Measures are
also defined from computational information gain. A general notion of
simplification and the definition of a representational optimality criterion are
introduced, as well as general measures of System Optimisation and
Systematic Power.

3. Uniform account for induction and deduction. In induction, Popper’s
idea of informativeness is perfectly grasped by the use of G. Deduction can
also be informative and different measures are introduced for several
deductive paradigms, especially first-order theories. A new notion of
authentic learning is introduced, ensuring that learning has taken place,
independently of how compressible the evidence is. Moreover, this notion is
applicable to deduction, showing that learning deals not only with induction

284 José Hernández Orallo - Doctoral Dissertation

 284

but also with deduction. A comparison with Hintikka’s ideas is performed,
establishing the relationship between G and Surface Information, and
between V and Depth Information.

4. A new measure of reinforcement that quantifies confirmation
propagation inside a theory. Reinforcement allows a more detailed
treatment of exceptions and provides different ratings for different parts of a
theory, not the single probability value for the whole theory usually given by
prior distributions.

5. Reinforcement behaves appropriately as a measure of confirmation for
different inference processes such as induction, abduction, analogy and
deduction, which are involved in theory construction. Some previously vague
notions such as Whewell’s ‘consilience’ and explanatory induction are easily
formalised under this framework.

6. Gain and Reinforcement act as a perfect team to discern which rules should
be left explicitly in the representation of a theory. From here, the need of
intermediate information is formally realised and an oblivion criterion
is derived and extended to manage past and explained evidence. In this
context, the difference between eager and lazy methods is clarified and a
degree of laziness is defined.

7. The idea of intensionality is formalised in terms of avoidance of
exceptions, these seen as extensional or non-validated parts of a theory. It is
directly applied to logical theories and then extended to any descriptional
language, based on a formal and general definition of subprogram. This idea
is also connected with ‘consilience’.

8. Motivated by the problems of the MDL principle, different concepts based
on descriptional complexity are introduced, such as projectible descriptions
and stable descriptions. The definition of an explanatory variant of
Kolmogorov Complexity allows to define an explanatory counterpart to
the MDL principle.

9. A non-anthropomorphic test of intelligence, which is based on
computational and information-theoretic notions, that can make an
important advance in the evaluation of AI progress. Several particularisations
for different inductive and deductive factors are also introduced. Moreover,
psychometrics finds its long-awaited theoretical foundation in information
theory and computation.

10. Application of the measurements to different kinds of logical and
knowledge-based systems, such as Horn theories, databases and software
systems. Some issues of novel knowledge discovering in databases and the

10. Conclusions

285

285

need of intermediate information can be better understood in terms of
information gain. In the case of software systems, maintainability can be
studied under the theory of reinforcement, since the more reinforced (used) a
software component is, the less probable it should be modified in the future.

Although the main measurements, computational information gain, reinforcement
and intensionality, are defined independently, they (alone or combined) are useful to
formalise or better comprehend different concepts which have been traditionally
rather ambiguous: novelty, explicitness/implicitness, informativeness, surprise,
interestingness, aesthetics, comprehensibility, consilience, utility, unquestionability, ...

Naturally, the relationships between these measures and other classical evaluation
measures are analysed. Information gain is analogous to Quinlan’s gain ratio for
induction and to Hintikka’s surface and depth information for deduction.
Intensionality is closely related to information gain, since extensional descriptions are
never informative. Comprehension is also related to the notion of unquestionability,
given when there are not alternative explanations. Reinforcement and the MDL
principle are also positively related but reinforcement is more robust to random
evidences, giving more informative hypotheses. Some of these results are obtained in
general and others are particularised for first-order logical theories.

Part of these contributions have appeared in some journals and conferences, with
the aim of disseminating this work. Concretely, contributions 1 and 3 appeared in
Kurt Gödel Colloquium / Barcelona Logic Meeting (KGS’99), contribution 4 will
appear in the International Journal of Intelligent Systems (IJIS), contributions 7 and 9
were partially included (joint work with N. Minaya) in the International Symposium
of Engineering of Intelligent Systems (EIS’98) and an article version of them is
submitted for a special issue on “Alan Turing and Artificial Intelligence” of the
Journal of Language, Logic and Information (JoLLI), contribution 7 appeared in
Model-Based Reasoning in Scientific Discovery (MBR’98) and will be published in
Philosophica, contribution 8 was presented in MBR’98 and is accepted for Foundations
of Science (in collaboration with I. García); finally, part of the ideas of contribution 10
on databases are used in a paper to be presented in European congress on Systems
Science (ESS’99, joint work with F. Alamagnac).

As we will see in the next section this research has also opened many other
questions to investigate, and I hope that they will show in much more extent the
usefulness of the preceding contributions.

10.3 Open Questions and Future Work

There are two kinds of questions raised by this thesis: technical ones, which in some
sense highlight the limitations or unsolved problems left by this thesis, and new

286 José Hernández Orallo - Doctoral Dissertation

 286

theoretical ones, which are, in the end, expected and desired at the end of any
scientific task which also looks for new fertile fields to explore.

Among the technical open questions, one main source of uneasiness is found
about the computational cost of the measures that have been introduced. As it has
been shown, the gain function G is computable but intractable. We have argued,
however, that it is not strange to be this way, because, if it were efficient, it could be
used for guiding inductive and deductive processes, precisely impairing what is
measured, the effort of a process of inference.

Nonetheless, some lower approximations can be obtained from some other
measures that have been shown to be partially and positive related with it, such as
intensionality. I say lower approximations because they are useful to discard many
non-informative hypotheses, but not all. For instance, the avoidance of
extensionalities (or explicitness) can be a good heuristic to obtain informative results.
Nonetheless, reinforcement must always be used in order to avoid informative but
fantastic outcomes.

Fortunately, reinforcement is computationally feasible, since the algorithm that
has been presented can be adapted to re-calculate only the parts of the theory that
change after a revision takes place. Moreover, the oblivion criterion can be used to
optimise the use of space resources, since the evidence is usually so huge that part of
it must be forgotten. The theory of reinforcement allows to know which are to be
forgotten. Nonetheless, a study of other validation propagation algorithms that have
been introduced in the last decades in the area of artificial neural networks (e.g.
backpropagation) could inspire some improvements or new algorithms for
computing reinforcement.

There are still, of course, many old problems to solve (or to accept), such as the
intractability of induction. This intractability (well-known since Gold’s results) is even
backed by some results of this thesis, since it has been shown that polynomial
algorithms that work exclusively from the data cannot find informative hypotheses in
general. This justifies the avoidance of data-driven inductive methods and the use of
more ‘randomised’ techniques, such as genetical algorithms, which may be good
inducers on the average. The use of detailed evaluation measures such as reinforcement
may be a perfect optimality criterion to guide the selection mechanism of this kind of
algorithms. This is beginning to be essayed in [Hernández-Orallo and Ramírez-
Quintana, 1998a, 1998b, 1999a]. In the future, it is envisaged the combination of
deduction and induction for incomplete and inefficient deductive systems, especially
present in higher-order logic. A deductive strategy could be largely benefited from
inductive techniques.

Among the new open questions, I would expressly highlight the implications of
the theoretically-based measurement of cognitive abilities which have been
introduced in chapter 8. Many fascinating questions are open from the correlation of
classical psychometrics tests (IQ tests) and a C-test which is exclusively generated

10. Conclusions

287

287

from the information theoretic notions of comprehensibility and unquestionability. I
think the most transcendental question that could be solved in the future would be
“How intelligent are we?” from a non-anthropomorphic point of view. Moreover,
psychometrics could start a theoretical study (helped by theoretically computer
science) in order to study formally (and not only experimentally) the independence or
dependence of several cognitive factors. The fact that deductive abilities correlate
with inductive ones supports the position that induction and deduction are not
inverse processes in any way.

In the mid term it seems to me that the idea of the Turing Test as a practical test
of intelligence should be left behind, and substituted by computational and factorial
tests of different cognitive abilities, a much more useful approach for artificial
intelligence progress.

Finally, an issue that has only partially been addressed in this thesis is the
implications of the measures that have been introduced in philosophy of Science.
Although some notions originally introduced in this context have been formalised,
such as Whewell’s consilience, Popper’s informativeness, a notion of discovery, and
the distinction between explanatory and descriptive induction, the results could be
further exploited into a more comprehensive account of informativeness and
confirmation in the context of philosophy of Science. The same applies, in more or
less extent, to philosophy of mathematics, as has also been sketched in chapter 4.

In the end, there is a lot of theoretical work to be done in the previous technical
and theoretical questions. For instance, the connection of information gain with
cryptography could unveil further insights about the behaviour of G. Its relationship
with PAC-learning may suggest the definition of a probabilistic version of
information gain, although KT partially accounts for this because it does weight
space and time by taking all the possible combinations. Another line of future
theoretical research would be the relationship and combination of the theory of
reinforcement learning with fuzzy logic, or even with neuro-fuzzy approaches,
which, in my opinion, may be the closest approach to the way reinforcement
propagation has been defined.

Moreover, there is even more experimental work to do for exploiting the possible
applications of the measures that have been introduced in this thesis. The recent
overwhelming popularity of field of rational agents has not been accompanied by
successful and general combinations of different inference processes, partially due to
the lack of measures that could be consistently applied for all of them.

The most immediate applications can appear from the use of the measurements
for first-order logic in chapter 7, which can be used directly for the ILP community.
The previous chapter is also a suggestion of more or less prospective applications for
databases, software systems and natural language, where the ideas of informativeness
and intensionality can be crucial for communication and understanding.

288 José Hernández Orallo - Doctoral Dissertation

 288

As long as more fields dealing with information or knowledge systems, artificial
intelligence, natural language processing and machine learning would be integrating
more inference techniques, much more applications are envisaged of the
measurements and other concepts which have been presented by this thesis.

10.4 Concluding Remarks

According to the results and open questions that have been discussed in the previous
sections, it seems to me that the main goal of the thesis as discussed in chapter 1: “the
formal study of concept synthesis usefulness and aftermath in terms of information gain and
reinforcement inside inference systems, consistently and equally applicable for both deductive and
inductive inference” has substantially been met. The set of measures which have been
introduced allow a detailed analysis of the value of the output of any inference
process with respect to the input and the context (background knowledge or
axiomatic system), both in terms of informativeness and confirmation.

Appendix A. A Brief Review of Kolmogorov Complexity

289

289

Appendix

A. A Brief Review of
Kolmogorov
Complexity

Dila —dijo don Quijote—, y sé breve en tus razonamientos; que

ninguno hay gustoso si es largo.

Miguel de Cervantes Saavedra, 1547-1616, Don Quijote de La Mancha

Abstract: this chapter is devoted to give a quick and comprehensive review on
Kolmogorov Complexity and some of the properties and related concepts which are
used from chapter 3 to chapter 8.

Keywords: Information, Entropy, Turing Machines, Compression, Randomness,
Inductive Inference, MDL Principle, Occam’s Razor, Universal Distribution,
Information Distance, Logical Depth.

290 José Hernández Orallo - Doctoral Dissertation

 290

A.1 Introduction
Descriptional Complexity or Intrinsic Information (also referred as Kolmogorov
Complexity or Algorithmic Complexity) was independently introduced (with initial
different reasons and directions too) by R.J. Solomonoff, A.N. Kolmogorov and G.J.
Chaitin. The theory underlying Descriptional Complexity contains deep and
sophisticated mathematics. Fortunately we only need some of its definitions and
results. In this appendix we include definitions and properties that may be used or
may be useful in some way for the rest of this dissertation. We refer to [Chaitin 1974]
[Chaitin 1992] [Li and Vitányi 1997] (some extracts have been directly taken from
them) for a much formal and precise extended treatment of the matter.

The departure of this fascinating theory is incredibly simple:

The Minimal Length Encoding MLE(x) of a finite string x is simply the length of the shortest
program, in a Turing machine without any output, which prints x. The choice of another

programming language instead a Turing machine would result in another value with an irrelevant
constant difference. Therefore the complexity is defined independently of the algorithmic language

or machine that may be used.

For instance, the MLE(s) of a string s= “11111....” with infinite length is a constant k
because in any universal descriptional mechanism there is a program of the form
“REPEAT FOREVER PRINT ‘1’”. The MLE(s’) of a string s'= “101010....10” of
length n would be, in general, (log n/2 + k') because we have to express the length in
the program in order to make it stop. Then the program would be something like
“REPEAT n/2 TIMES PRINT '10'”.

A.2 Mathematical Definition and Properties
The term Algorithmic Complexity is generally associated with its ‘purest’ variant,
based on the MLE or the Minimal Description Length (MDL), i.e., the shortest
string that, taken as an algorithm, produces the original string. Formally,

Definition A.155. Plain Complexity

Cf(x) = min { l(p) : f(p) = x }

In computer science terminology, p would be the program, f would be the computer.
We will often refer to p as the compressed string and x to the original or plain string.

The following invariance theorem is proved elsewhere [Li and Vitányi 1997]:

Theorem A.34 Descriptional Complexity is an invariant, universal and objective property of each
string (upto a constant value) independently of the computer, function or whatever descriptional
method may be used.

Appendix A. A Brief Review of Kolmogorov Complexity

291

291

Since any descriptional method can be simulated by a Universal Turing Machine,
a machine M (or a universal partial recursive function) is selected arbitrarily as
reference. For this reason, plain complexity will be referred simply as C(x).

There is a conditional version of descriptional complexity which is defined as
follows:

Definition A.156. Conditional Plain Complexity

Cf(x|y) = min { l(p) : f(p, y) = x }

where f(p,y) means the execution of program p in f with input y.

It is easy to see that34 C(x) = C(x|ε), C(x|x) = O(1) and C(x|y) ≤ C(x) + O(1).
This definition will be of great importance to clarify some intrinsic features of
interdependence between some concepts or parts of a given theory.

The importance of the invariance theorem is crucial for the recent popularity and
wide use of Kolmogorov Complexity. Regarded as a measure of information that
contains a string x, it differs from the other classical views of information (Shannon,
Hintikka, ...) where the information of an object depends on the number of objects
of the alphabet or world under consideration. [Li and Vitányi 1997] show clearly this
distinction:

We are interested in a measure of information content of an
individual finite object, and in the information conveyed about an
individual finite object by another individual finite object. Here,
we want the information content of an object x to be an attribute
of x alone, and not to depend on, for instance, the means chosen
to describe this information content. Making the natural
restriction that the description method should be effective, the
information content of an object should be a recursively invariant
property among the different description systems. Pursuing this
thought leads straightforwardly to Kolmogorov complexity.

Another fundamental (and trivial) property is the following one:

Theorem A.35. Upper limits

C(x) ≤ l(x) + O(1).

since we can always describe a string x as a program more or less similar to “PRINT
x” depending to the descriptional scheme used. We will refer this program as the
trivial mention description.

However, as [Chaitin 1974] points out:

34 O(1) represents any constant that is independent of x and y. In the introduction the notation a <+ b
iff a ≤ b + O(1) was given which is commonly used in the rest of this thesis. In this appendix it will
only eventually used.

292 José Hernández Orallo - Doctoral Dissertation

 292

the complexity of the great majority of strings of length n is
approximately n, and very few strings of length n are of
complexity much less than n. The reason is simply that there are
much fewer programs of length appreciably less than n than
strings of length n. More exactly, there are 2n strings of length n,
and less than 2n-k programs of length less than n - k. Thus the
number of strings of length n and complexity less than n - k
decreases exponentially as k increases.

Moreover, the incompressibility theorem says that “every finite set A of cardinality m has
at least m(1-2-c) + 1 elements x with C(x) ≥ log m - c”.

It is precisely for those strings that are so irregular and cannot be compressed,
that the shortest description is the trivial mention description. These strings are
called incompressible. A formal generalisation of this is given by the following
definition:

Definition A.157 A string x is c-incompressible if C(x) ≥ l(x) − c.

Incompressible strings have an important feature, they pass all tests of statistical
randomness (the contrary is not the case). As Chaitin states again [Chaitin 1974]:

These considerations have revealed the basic fact that the great
majority of strings of length n are of complexity very close to n.
Therefore, if one generates a binary string of length n by tossing a
fair coin n times and noting whether each toss gives head or tail, it
is highly probable that the complexity of this string will be very
close to n. In 1965 Kolmogorov proposed calling random those
strings of length n whose complexity is approximately n.

A non-intuitive property of incompressible strings is that it may have compressible
substrings, corresponding to the known fact that a random sequence must contain
long runs of zeros.

Another non-intuitive property is that C(x) is nonmonotonic on prefixes, i.e. the
complexity of a part can turn out to be bigger than the complexity of the whole35.

Another important property is expressed as the non-additive character of plain
descriptional complexity:

C(x,y) ≤ C(x) + C(y) + O(log(min(C(x), C(y))))

The complexity of two strings (the length of the shortest program that can print
them separatedly) is less (or equal) than the sum of the complexities of both string plus
a term that is necessary, in the worst case, to separate one from another.

35 For instance, we may have a very short program p to print the first 65536 (216) primes. Modifying
that program to print the first 65530 (216-6) primes will probably be a little larger (to express the −6
difference).

Appendix A. A Brief Review of Kolmogorov Complexity

293

293

This ugly term can be eliminated by using the Algorithmic Prefix Complexity,
defined in a similar way:

Definition A.158. Prefix-free Complexity

K(x) = min { l(p) : φ(p) = x }

but forcing φ to be a partial recursive prefix function36, i.e., if φ(x) < ∞ and φ(y) < ∞, then
x is not a proper prefix of y. This makes K additive:

K(x,y) ≤ K(x) + K(y) + O(1)

K(x) has some additional advantages over C(x), and therefore is often considered the
standard algorithmic complexity or Kolmogorov Complexity.

There are several properties that are useful when working with Kolmogorov
Complexity:

Some Properties:

 K(x*|x) ≤ log l(x) + O(1)

 K(x|x*) ≤ O(1)

 C(C(x)) ≤ log l(x) + 1

 C(x*) = C(x) + O(1)

The proofs can be found in [Li and Vitányi 1997].

A.3 Mutual Information and Information Distance
The algorithmic information about y contained in x is defined as:

Definition A.159. Common Information

Ic(x : y) = K(y) −−−− K(y|x)

and the mutual information:

Definition A.160. Mutual Information

I(x : y) = K(x) + K(y) −−−− K(x, y)

Although both definitions can differ by a great constant, there is an important
asymptotical result which states:

Theorem A.36.

Ic(x : y) =
+ Ic(y : x) =

+ I(x : y)

The notions of common and mutual information allow the definition of a very
interesting concept: universal distance [Bennett et al. 1997]:

36 This kind of coding is well-known in the theory of communication. One message can be separated
from the following one without any information of the position or the length.

294 José Hernández Orallo - Doctoral Dissertation

 294

While Kolmogorov Complexity is the accepted absolute measure
of information content in an individual object, a similarly absolute
notion is needed for the information distance between two
individual objects, for example, two pictures.

However, several definitions of Information Distance have been presented.

Definition A.161. Variants of Information Distance

Universal Effective Information Distance:

E0(x,y) = min(l(p) : U(p,x) = y, U(p,y) = x

 where U is a universal machine.

The Max Distance:

E1(x,y) = max(K(x|y), K(y|x))

Reversible Distance:

 E2(x,y) = KR(y|x) = min{l(p) : UR(p,x) = y}

 where UR is a universal reversible machine.

Sum Distance:

E3(x,y) = K(x|y) + K(y|x) + O(log K(x,y))

From these definitions, and in order to select the most appropriate one, [Bennett et
al. 1997] show the following relations:

Theorem A.37. Relation between Distances

E1(x,y) = max{K(y|x), K(x|y)} =log

E2(x,y) = KR(y|x) =+

E0(x,y) = min{l(p): U(p,x) = y, U(p,y)=x} <log

K(x|y) + K(y|x) =log E3(x,y) <log

2E1(x,y)

Finally, E1 is selected as the cognitive distance between two objects, by using the
following trivial modification:

Definition A.162. Universal Information Distance

 E(x,y) = E1(x,y) + c iff x ≠ y, and

 E(x,y)= 0 iff x = y

and it satisfies the triangle inequality, it is 0 if and only if x = y, it is symmetric and it
is upper semicomputable and normalised, i.e., it is an admissible distance. Moreover
it is a universal distance, because for every admissible distance D’(x,y) we have E(x,y)
<+ D’(x,y). [Bennett et al. 1997]

Appendix A. A Brief Review of Kolmogorov Complexity

295

295

A.4 Algorithmic Probability and Inductive Reasoning
If we are talking about K(x) as a complexity measure is because it provides an
objective value of the complexity of a string x. This first correspondence shows both
counter-intuitive and intuitive results: incompressible (random) strings are “complex”
and very regular strings are simple.

The other correspondence is more accurate and it is established between K(x) and
the information content of a string. Information and complexity get connected
through the notion of probability [Li and Vitányi 1997]:

This gives an objective and absolute definition of ‘simplicity’ as
‘low Kolmogorov complexity’. Consequently, one obtains an
objective and absolute version of the classic maxim of William of
Ockham (1290?-1349?), known as Occam's razor: “if there are
alternative explanations for a phenomenon, then , all other things being equal,
we should select the simplest one”. One identifies ‘simplicity of an
object’ with ‘an object having a short effective description. In
other words, a priori we consider objects with short descriptions
more likely than objects with only long descriptions. That is,
objects with low complexity have high probability while objects
with high complexity have low probability. Pursuing this idea
leads to the remarkable probability distribution 2-K(x) below.

Thus we can formally define the probability that a string x was algorithmically
produced by a random sequence taken as a program:

R(x) = 2-K(x)

Occam's razor has always been a recurrent theme in philosophy of science and
induction, but now it assumes a main role. Although Karl Popper said that there is
no such a objective criterion, K(x) is indeed an objective criterion for simplicity. This
is precisely what R.J. Solomonoff and G. Chaitin proposed as a 'perfect' theory of
induction, in [Li and Vitányi 1997] words. The same [Chaitin 1974] explains:

Solomonoff and the author proposed that the concept of
complexity might make it possible to precisely formulate the
situation that a scientist faces when he has made observations and
wishes to understand them and make predictions. In order to do
this the scientist searches for a theory that is in agreement with all
his observations. We consider his observations to be represented
by a binary string, and a theory to be a program that calculates this
string. Scientists consider the simplest theory to be the best one,
and that if a theory is too “ad hoc”, it is useless. How can we
formulate these intuitions about the scientific method in a precise
fashion? The simplicity of a theory is inversely proportional to the
length of the program that constitutes it. That is to say, the best
program for understanding or predicting observations is the

296 José Hernández Orallo - Doctoral Dissertation

 296

shortest one that reproduces what the scientist has observed up to
that moment.

If we regard theories as descriptional sequences of some facts, by using Occam's
Razor Principle we will choose the one that is shorter. In other words, Occam’s
Razor is just the assumption of the probability distribution 2-K(x). This leads to the
definition of the Minimum Description Length (MDL) principle, which is discussed
in chapter 2. Note that Chaitin’s claim “Scientists consider the simplest theory to be the best
one, and that if a theory is too “ad hoc”, it is useless” is only partially fulfilled by the MDL
principle, since for random evidences, the MDL principle gives the most “ad hoc”
theory, the evidence itself.

Although the MDL principle can be seen as a plausibility criterion, it can also be
used as a methodological one. In other words, a selection criteria is always directly
applicable to the sifting of theories. But most of the times, we do not have a ‘given’
range of theories to select. Precisely, we would like the contrary: to obtain a good
(read shorter) theory from facts.

Given a sequence of facts, say x, we may essay the following algorithm.

Universal Enumeration Algorithm (UEA): From i=1 upto l(x) take the 2i possible programs
of length i and run them to check if one of them produces x. If it does, then stop. If found, this is

the shortest description. If not, "PRINT x" is the shortest description.

We have presented a universal algorithm to find the simplest theory to explain some
facts! Unfortunately, this algorithm is uncomputable, because some programs never
end (the undecidability of the halting problem). There are some ways of facing this
problem (such as executing the programs up to a limit number of steps), but even if
we make it computable, there are some drawbacks:

• The UEA will be still O(2l(x)+1) in the worst case.
• Due to the nonmonotonicity on prefixes of K(x), if we are given a new

example, the minimum descriptional theory may be shorter. Obviously, only
one example does not justify a re-execution of the algorithm, because the
theory may be shorter only up to a laconic constant. It is better to patch the
new example.

A.5 Resource-bounded Complexity and Universal
Search

The problem with K(x) and the MDL principle is that they are not computable unless
the description mechanism is restricted drastically. Instead of this undesired
restriction, there is a way of maintaining the description mechanism powerful (such
as Turing Machines, grammar and general-purpose computers, i.e. universal partial
recursive functions) without falling in incomputability. This can be accomplished by

Appendix A. A Brief Review of Kolmogorov Complexity

297

297

limiting a resource, e.g. time, of the strings that we would be used as description. As
we will see below this is sufficient to ensure that the universal enumeration algorithm
(UEA) ends.

The other reason to introduce resource bounds is more intuitive. We are
considering the shortest description as the best one. But “decompressing” the
description may consume so many resources (e.g. time) that we would prefer a
description that is a little bit longer but easier to decompress. [Chaitin 1974] puts it
this way:

There are less than 2n strings of complexity less than n, but some
of them are incredibly long. If one wishes to communicate all of
them to someone else, there are two alternatives. The first is to
directly show all of them to him. In this case one will have to send
him an incredibly long message because some of these strings are
incredibly long. The other alternative is to send him a very short
message consisting of n bits of axioms from which he can deduce
which strings are of complexity less than n. Although the message
is very short in this case, he will have to spend and incredibly long
time to deduce form these axioms the strings of complexity less
than n.

The usual resource-bounded variant of descriptional complexity takes into account
both the time and the working space used to decompress the description. Since the
required space is generally smaller than the time, we directly introduce the following
definition:

Definition A.163. Time-Bounded Kolmogorov Complexity

C t(x) = min { l(p) : φ t(p) = x ∧ cost (p) ≤ t }

where φ is a universal computer which does the computation of translating p into x
in at most t steps. Obviously t > l(x) if we want C t(x) to exist, because printing x just
takes l(x) steps. Also obviously, for t = l(x) + c, Ct(x) must exist (by using the
program "PRINT x"). There is another interesting property:

C c�t�log(t)(x) ≤ C t(x) + c

i.e., a rise of the time limit allows obtaining shorter descriptions. Although C t(x) is
monotonically decreasing with respect to t, each x will determine a different relation
between t and Ct(x).

We have dealt about a bound but we are more interested in finding a compromise
between length and time.

There are many ways to weigh the length of the description p and the time to
decompress it to the original string x, e.g. the product l(p)�cost(p,x), a normalised

298 José Hernández Orallo - Doctoral Dissertation

 298

product l(p)�cost(p,x)/l(x) and others. The expression that has been shown to be the
most appropriate37 one is due to [Levin 1973] and is referred as Kt complexity38:

Definition A.164. Levin-Solomonoff Complexity

Kt(x) = min { LT(p) : φ (p) = x }

where LT(p) = l(p) + log cost(p).

It is straightforward to obtain the limits of Kt:

log l(x) + c ≤ Kt(x) ≤ l(x) + log l(x) + c

The left-hand side is justified because x must be printed and this takes at least l(x)
steps. The right hand side is obtained by using the mention trivial description
“PRINT x”.

The great advantage of Kt is that it is computable. From here it is easy to see that:

K(x* LT |x) ≤ O(1) where x*LT is the program for x where LT(x* LT) = Kt(x)

Since we have that Kt(x) is effectively computable, we can reformulate our Universal
Enumeration Algorithm (UEA):

Time Bounded Enumeration Algorithm (TBEA): Begin with the upper limit L= l(x)
+ log l(x). From i=1 to l(x) take the 2i possible programs p of length i and run them
(upto a limited number of computation steps 2L- i) to check if φ(p)=x. If it does, then
modify L to (l(p) + log cost(p)). If finally found, this is the shortest description. If not,

"PRINT x" is the shortest description.

The worst case of this algorithm is still O(2l(x)+1) but for compressible strings it is
likely that L will be reduced and therefore the average cost of the algorithm.
Furthermore, if we know a good initial description we can start with its
corresponding L, using TBEA as a theory refinement algorithm. Moreover, TBEA is fully
parallelisable. Also, a slight restriction of the descriptional language may turn the
algorithm almost tractable.

The TBEA is a variant of the SEARCH algorithm presented in [Li and Vitányi
1997] which is also a variant of the universal optimal search procedure of Levin which
shows a worst-case cost of only O(2K(x)+1) in [Levin 1973].

37 Levin showed its optimality for universal search problems. That is to say, an enumeration algorithm,
ordered by LT, was optimal in the sense that there is no other search algorithm that can be better for
all the possible search problems.
38 Using the logarithm of the cost instead of the cost or the product of l(p) � cost(p) would allow the
consideration of shorter programs that are NP-hard (or exponential), that otherwise would be replaced
by the program "PRINT x" that would have less complexity.

Appendix A. A Brief Review of Kolmogorov Complexity

299

299

A.6 Algorithmic Potential
Before, we have seen that the more time cost we allow the shorter descriptions we
expect to obtain. This means that for each x, the length of the description and the
time to compute it are inversely related. This relation between length and time
suggests the introduction of two borrowed concept from physics. Following [Li and
Vitányi 1997], time is a resource identified with ‘energy’ and:

Intuitively, we would like to define potential as the amount of time
that needs to be pumped into a number by a computation that
finds it.

Computing a large composite number from two primes costs only
a small amount of time. To recover the primes is likely to be
difficult and time-consuming. This suggests a notion of potential
numbers such that high-potential primes have relatively low-
potential products. Such products would be hard to factor,
because all methods must take the time to pump the potential
back. We will show that if factoring is not in P, then this indeed is
the reason why.

Formally, a string x is k-potent if k is the least positive integer such that Kt(x) ≤ k log
l(x). For instance, the string 1n is 1-potent because Kt(x) ≈ 1�log(n) whereas an
incompressible string s is (l(s)/log l(s) +1)-potent since Kt(s) = l(s) + log l(s). There is a
direct correspondence with potential and some computational complexity theorems.
For more details see [Li and Vitányi 1997].

If we regard set of concepts as sequences, a potent sequence can be the formal
correspondent to the notion of a hard-to-learn concept.

A.7 Algorithmic (or Logical) Depth and
Sophistication

Another intuitive notion of sequences that seems to be formalisable by variants of
Kolmogorov Complexity, is depth [Li and Vitányi 1997]:

From the point of view of an investigator, a sequence is deep if it
yields its secrets only slowly: one will be able to discover all
significant regularities in it only if one analyzes it long enough.

Taking Kt(x) (the potential) directly results in incompressible strings as being the
deepest, which is not intuitively accurate. A better approach can be considered if we
recall that a binary string x is b-compressible if K(x) ≤ l(x) - b. From here we can
introduce the notion of logical depth as it was introduced by [Bennett 1988]:

Definition A.165 A string x is (d,b)-deep if and only if d is the least time required by
any b-incompressible program to print x.

300 José Hernández Orallo - Doctoral Dissertation

 300

We also call ε = 2-b the significance level. We say a string x is d-deep iff x is (d,∞)-
deep.

Definition A.166 At any significance level, x is d-shallow if its depth does not exceed
d. Any string x must take at least n= l(x) steps to be printed. If x is n±O(1)-shallow (at
all significance levels), then we will simply call x shallow.

From both definitions we get intuitive consequences. A random (incompressible)
string x of length n is always shallow, because it can be printed by its shortest
program (PRINT ‘x’) of length n ±O (1), in n steps. But simple strings such as 1n are
also shallow. So we have that logical depth is different from both algorithmic
information and algorithmic potential.

An interesting property (for biology) is the following one [Li and Vitányi 1997]:

Depth is stable. That is, deep strings cannot be quickly computed
from shallow ones. In the genetical sense, organisms evolve
relatively slowly. This may be called the Slow Growth Law. There
is a mathematical version of such a law. Consider any string x and
two significance parameters s2 > s1. A random program generated
by coin tossing has probability less than 2-(s2-s1)+O(1) of
transforming x into an excessively deep output, one whose s2-
significance depth exceeds the s1-significance depth of x plus the
run time of the transforming program plus O(1).

Koppel introduced the notion of sophistication with the goal of distinguish the
structural part of an object [Koppel 1988] from its data or non-compressible part of
it. Sophistication is measured by the use of a special kind of Turing Machines φ’,
which separate program from data. Sophistication is then measured as Soph(x) =
min{l(p) : ∃d such that φ’(p,d) = x} with the restriction that p must be total, i.e.,
defined for all d. This last restriction precludes that the whole description is passed to
the part of data, by maintaining an interpreter i of the data d’ = <p,d>. According to
Koppel [Koppel 1987], “the sophistication of an object is the size of that part of the most concise
description of that object which describes its structure, i.e., the aggregate of its projectible properties.
For example, the sophistication of a string that is random except that each bit is doubled (e.g.
00110000110011....) is the size of the part of the description that represents the doubling of the
bits”.

Koppel showed [Koppel 1987] that “sophistication” and “depth” were equivalent
up to a constant. Some problems of both sophistication and depth are discussed in
the chapter 6 of this dissertation.

Appendix B. Publications Generated from this Thesis

301

301

Appendix

B. Publications
Generated from this

Thesis

Ich habe nichts dagegen wenn Sie langsam denken, Herr Doktor, aber

ich habe etwas dagegen wenn Sie rascher publizieren als denken.39

Wolfgang Pauli (1900-1958)

Many chapters of this thesis dissertation have been reflected more or less completely
in several publications. Their references are included in this appendix. For a
complete version of them, please visit the web page:
“http://www.dsic.upv.es/~jorallo/escrits/escritsa.ht m”.

Other publications by the author (which can be found at appendix C) are also
indirectly related with this work. Most of them can also be found at the same
address.

Finally, an electronic version of this dissertation can be found at
“http://www.dsic.upv.es/~jorallo/tesi/tesi.htm ”.

39 I’m not scared when you think slowly, Doctor; I’m really afraid when you publish quicker than
think.

302 José Hernández Orallo - Doctoral Dissertation

 302

Journal Papers:

• Hernández-Orallo, J. “Constructive Reinforcement Learning” International Journal
of Intelligent Systems, Wiley, to appear.

• Hernández-Orallo, J.; García-Varea, I. “Explanatory and Creative Alternatives to
the MDL Principle”, Foundations of Science, Kluwer, to appear.

• Hernández-Orallo, J.; “A Computational Definition of 'Consilience'”, Philosophica,
to appear.

• Hernández-Orallo, J. “Beyond the Turing Test”, Journal of Logic, Language and
Information, Kluwer, submitted.

Appendix B. Publications Generated from this Thesis

303

303

Conference Papers:

• Hernandez-Orallo, J. “Unified Information Gain Measures for Inference
Processes”, 5th Barcelona Logic Meeting and 6th Kurt Gödel Colloquium, pp. 39-43,
Barcelona 1999.

• Hernández-Orallo, J.; Minaya-Collado, N.: “A Formal Definition of Intelligence
Based on an Intensional Variant of Kolmogorov Complexity”, Proceedings of the Intl.
Symposium of Engineering of Intelligent Systems (EIS'98), ICSC Press, pp. 146-163,
1998.

• Hernández-Orallo, J.; Garcia-Varea, I. “Distinguishing Abduction and Induction
under Intensional Complexity” in Flach, P.; Kakas, A. (eds.) European Conference of
Artificial Intelligence (ECAI'98), Workshop on Abduction and Induction in AI, pp. 41-48,
Brighton 1998.

• Hernández-Orallo, J. “Consilience as Basis for Theory Formation”, in S.Rini,
G.Poletti (eds.) Proceedings of the 1998 International Conference on Model Based Reasoning
(MBR'98), pp. 25-27, Pavia 1998.

• Hernández-Orallo, J.; Garcia-Varea, I. “On Autistic Interpretations of Occam's
Razor”, in S.Rini, G.Poletti (eds.) Proceedings of the 1998 International Conference on
Model Based Reasoning (MBR'98), pp. 25-27, Pavia 1998.

304 José Hernández Orallo - Doctoral Dissertation

 304

Appendix C. References

305

305

Appendix

C. References

Ordenar bibliotecas es ejercer, de un modo silencioso y modesto,

el arte de la crítica

Jorge Luis Borges (1899-1986), Elogio de la sombra, Junio 1968

[A.S. 1992] Artificial Stupidity, The Economist, vol. 324, no. 7770, August 1, p. 14, Editorial, 1992.

[Abe 1997] Abe, N. "Towards Realistic Theories of Learning" New Generation Computing, 15, 1997

[Adé and Denecker 1995] Ade, H.; Denecker, M. "Abductive Inductive Logic Programming"
International Joint Conference of Artificial Intelligence, IJCAI-95, 1995.

[Agrawal and Srikant, 1994] Agrawal R. and Srikant R. “Fast Algorithms for Mining Association
Rules” Proc. of the 20th VLDB Conference, Santiago de Chile, 1994.

[Aha 1997] D.W. Aha, “Lazy Learning. Editorial” Special Issue about “Lazy Learning” AI Review,
v.11, 1-5, Feb. (1997).

[Aisbet and Gibbon 1998] Aisbett, J. and Gibbon, G. “Epistemic utility in commonsense reasoning”,
3rd Conference in Information-Theoretic Approaches to Logic, Language and Computation,
ITALLC’98, Taiwan, 1998.

[Aisbet and Gibbon 1999] Aisbett, J. and Gibbon, G. “A practical definition of the information in a
logical theory”, J. Experimental and Theoretical Artificial Intelligence 11, 201-217, 1999.

[Aisbet et al. 1997] Aisbett J.; Gibbon, G. And Lear, F. “On the quality of data and its effect on
information usage” Pacific Asia Conference on Information Syst PACIS’97, 703-711, 1997.

[Akama 1992] Akama, K. "A Theory of Predicate Invention" Inductive Logic Programming’92,
Muggleton, S. (ed.), Report {ICOT-TM}-1182, 1992

306 José Hernández Orallo - Doctoral Dissertation

 306

[Akutsu and Takasu 1994] Akutsu, T.; Takasu, A. “On PAC Learnability of Functional
Dependencies” New Generation Computing, 12, 359-374, 1994.

[Alchouron et al. 1985] Alchouron, G.; Gardenfors, O.; Makinson, D. “On the logic of theory change”
J. Symbolic Logic, 50, 510-530, 1985.

[Aliseda-Llera 1996] Aliseda-Llera, A. “A Unified Framework for Abductive and Inductive Reasoning
in Philosophy and AI” in M. Denecker, L. De Raedt, P. Flach and T. Kakas (eds) Working
Notes of the ECAI’96 Workshop on Abductive and Inductive Reasoning, pp. 7-9, 1996.

[Aliseda-Llera 1997] Aliseda-Llera, A. “Seeking Explanations: Abduction in Logic, Philosophy of
Science and Artificial Intelligence” Department of Philosophy, Stanford Univerisity, 1997.

[Alpuente et al. 1998] Alpuente, M.; Falaschi, M.; Vidal, G. “Partial Evaluation of Functional Logic
Programs” ACM Transactions on Programming Languages and Systems, 20(4):768-844,
1998.

[Anderson 1990] Anderson, J.R. "The adaptative character of thought" Hillsdale: Erlbaum 1990.

[Angluin 1980] Angluin, D. “Inductive Inference of Formal Languages from Positive Data”
Information and Control 45, 117-135, 1980.

[Angluin 1988] Angluin, D., Queries and concept learning, Machine Learning 2, 4:319-342, 1988.

[Angluin and Smith 1983] Angluin, D.; Smith C.H. “Inductive inference: theory and methods, ACM
Comput. Surveys 15 (3) (1983) 237-269, 1983.

[Anthony and Frisch 1997] Anthony, Simon; Frisch, Alan M. "Cautious Induction in Inductive Logic
Programming" in Lavrac, Nada; Dzeroski, Saso (eds.) "Inductive Logic Programming. 7th
International Workshop, ILP-97" Lecture Notes in Artificial Intelligence, Springer 1997.

[Antoniou 1997] Antoniou, G. “Nonmonotonic Reasoning: The Classical Approaches. Cambridge,
MA. MIT Press, 1997.

[Arcos and Plaza 1996] Arcos, J.L. and Plaza, E. “Reflection in Noos: An object-centered
representation language for knowledge modelling” Future Generation Computer Systems, 1996.

[Armengol and Plaza 1994] Armengol, E.; Plaza, E. “Integrateing induction in a case-based reasoner”
in J.P. Haton, M. Keane, and M. Manago (eds.) Advances in Case-Based Reasoning, number 984
in Lecture Notes in Artificial Intelligence, pp. 3-17, Springer-Verlag, 1994.

[Baader et al. 1992] Baader, F.; Bürckert, H.J.; Heinsohn, J.; Hollunder, B.; Müller, J.; Nebel, B.; Nutt,
W.; Profitlich, H. “Terminological knowledge representation: a proposal for a terminological
logic”, DFKI Report, DFKI, Saarbrücken 1992.

[Balasubramanian 1997] Balasubramanian, V. "Statistical Inference, Occam’s Razor, and Statical
Mechanics on the Space of Probability Distributions’ Neural Computation 9, 349-368, 1997.

[Banerji 1984] Banerji, R.B.: Some insights into automatic programming using a pattern recognition
viewpoint in Biermann, A.W.; Guiho, G.; and Kodratoff, Y. (Eds.): Automatic program
construction techniques, Macmillan, (1984).

[Barendregt 1984] Barendregt, H.P. “The Lambda Calculus. Its syntax and semantics”, North Holland,
Elsevier Science Publishers B.V. 1984.

[Bar-Hillel and Carnap 1953] Bar-Hillel, Y.; Carnap, R. "Semantic Information" British Journal for the
Philosophy of Science 4, 1953, 147-157.

[Barker 1957] Barker, S.F. Induction and Hypothesis Ithaca, 1957.

Appendix C. References

307

307

[Barron et al. 1998] Barron, A.; Rissanen, J.; Yu, B.: The Minimum Description Length Principle in
Coding and Modeling, IEEE Transactions on Information Theory, Vol. 44, No. 6, 2743-2760,
October (1998).

[Barto et al. 1995] Barto, A.G.; Bradtke, S.J. and Singh, P. “Learning to act using real-time dynamic
programming” Artificial Intelligence, 72 (1-2): 81-138, 1995.

[Basili 1993] Basili, V.R.: The Experimental Paradigm in Software Engineering, in Rombach, H.D.;
Basili, V.R; Selby, R. Experimental Software Engineering Issues: Critical Assessment and Future
Directives, LNCS 706, Springer-Verlag, August (1993).

[Basili et al. 1986] Basili, V.R.; Selby, W.; Hutchens, D.H.: Experimentation in Software Engineering,
IEEE Transactions on Software Engineering, vol. SE-12, no.7, pp. 733-743, July (1986).

[Bayes 1764] “Essay towards solving a problem in the doctrine of chances published” Philosophical
Transactions of the Royal Society of London, 1764.

[Bennett 1982] Bennett, C.H. “Logical reversibility of computation” IBM J. Res. Develop., 17:525-531,
1973.

[Bennett 1988] Bennett, C.H. “Logical depth and physical complexity”, in Herken, R. “The universal
Turing machine: a half-century survey” Oxford University Press, 1988, 227-258, 2nd Edition
1994.

[Bennett and Gardner 1979] Bennett, C.H.; Gardner, M., The random number omega bids fair to hold
the mysteries of the universe. Scientific American, 241:20-34, May 1979.

[Bentehtm et al. 1983] van Benthem, Johan; Doets, Kees ‘High-order logic’ in D.Gabbay and
F.Guenthner (eds.) Handbook of Philosophical Logic, ch. 4, pages 275-329. Reidel, Dordrecht,
1983.

[Berry et al. 1998] Berry, D. M.; Lawrence, B.: Requirements Engineering, IEEE Software, March/April
1998, pp. 26-29.

[Bertalanffy 1971] Bertalanffy, L.V.: Teoria generale dei sistemi, Instituto Librario Internationales, Milano
1971.

[Bibel 1982] Bibel, Wolfgang “A Comparative Study of Several Proof Procedures. Artificial
Intelligence 12, 269-293, 1982.

[Bibel 1987] Bibel, Wolfgang “Automated Theorem Proving” Vieweg Verlag, Vraunschweig, 2nd
Edition 1987.

[Bibel 1988] Bibel, Wolfgang “Advanced Topics in Automated Deduction' in Nosum, R. (ed.)
Advanced Topics in Artificial Intelligence, LNCS 345, 41-59. Berlin, Springer 1988.

[Bibel 1991] Bibel, Wolfgang 'Perspectives on Automated Deduction’ in Robert S. Boyer (ed.)
‘Automated Reasoning. Essays in Honor of Woody Bledsoe’, Kluwer Academic Publishers
1991.

[Bibel 1993] Bibel, Wofgang "Deduction: Automated Logic" Academic Press Limited 1993.

[Biela and Borowczyk 1996] Biela, A.; Borowczyk, J. "A system that looks for axioms", Acta Inf., 33,
759-780, 1996.

[Biermann 1984] Biermann, A.W.; Guiho, G.; and Kodratoff, Y. (Eds.): Automatic program construction
technique, Macmillan, 1984.

[Bledsoe 1977] Bledsoe, Woodrow W. "Non-resolution Theorem Proving" Artificial Intelligence 9 (1),
1977 1-35.

308 José Hernández Orallo - Doctoral Dissertation

 308

[Bledsoe 1979] Bledsoe, Woodrow W. "A maximal method for set variables in automatic theorem
proving” in Machine Intelligence 9, pp 53-100, Ellis Horwood, Chichester 1979.

[Bledsoe 1983] Bledsoe, Woodrow W. "Using examples to generate instantiations of set variable” in
proceedings of IJCAI-83, pp 892-901, Los Altos CA, Kaufmann 1983.

[Blockeel and De Raedt 1995] Blockeel, Hendrik and De Raedt, Luc “Inductive Database Design” TR.
Dep. of Computer Science, Katholicke Universiteit Leuven, 1995.

[Blum 1967] Blum, M. “A machine-independent theory of the complexity of recursive functions” J.
ACM 14, 4, 322-6, 1967.

[Blum and Blum 1975] Blum, L.; Blum, M. “Towards a mathematical theory of inductive inference”
Inform. and Control 28, 125-155, 1975.

[Blumer et al. 1987] Blumer, A.; Ehrenfeucht, A.; Haussler, D.; Warmuth, M. K. "Occam’s razor"
Inf.Proc.Lett. 24, 377-380, 1987.

[Blumer et al. 1989] Blumer, A.; Ehrenfeucht, A.; Haussler, D.; Warmuth, M. "Learnability and the
Vapnik-Chervonenkis Dimension" Journal of ACM, 36, pp. 929-965, 1989.

[Board and Pitt 1990] Board, R.; Pitt, L. "On the necessity of Occam algorithms" in Proceedings, 22nd
ACM Symposium on Theory of Computing, pp. 54-63, 1990.

[Bochenski 1965] Bochenski, J.M. “The methods of contemporary thought”, Dordrecht, D. Reidel
1965, Spanish Translation, “Los métodos actuales del pensamiento”, Rialp, Madrid, 1968.

[Boehm 1981] Boehm, B.W.: Software Engineering Economics, Prentice Hall, 1981.

[Booch 1994] Booch, G., Object-oriented Analysis and Design with Applications, The Benjamin/Cummings
Publishing Co., Inc., 1994.

[Boolos and Jeffrey 1989] Boolos, G.S.; Jeffrey, R.S. “Computability and Logic” 3rd Edition,
Cambridge University Press, Cambridge 1989.

[Borgida 1996] Borgida, A. “On the relative expressiveness of description logics and predicate logics”
Artificial Intelligence 82, 353-367, 1996.

[Bosch 1994] Bosch, van den, Simplicity and Prediction, Master Thesis, dep. of Science, Logic and
Epistemology of the Faculty of Philosophy at the Univ. of Groningen, 1994.

[Botilier and Becher 1995] C. Botilier and V. Becher, “Abduction as belief revision” Artificial Intelligence
77, 43-94, (1995).

[Bouhoula et al. 1995] Bouhoula, A.; Kounalis, E.; Rusinowitch, M. "Automated Mathematical
Induction" J. Logic Computation, Vol. 5, pp. 631-668, 1995.

[Bowers et al. 1997] Bowers, A.F.; Giraud-Carrier, C.; Kennedy, C.; Lloyd, J.W.; MacKinney-Romero
"A Framework for High-Order Inductive Machine Learning" in "Representation issues in
reasoning and learning" Area Meeting of CompulogNet Area "Computional Logic and
Machine Learning" Prague, September 20, 1997.

[Brachman 1977] Brachman, R.J. “A structural paradigm for representing knowledge” Ph.D. Thesis,
Division of Engineering and Applied Physics, Harvard University, Cambridge, MA, 1977.

[Brachman and Levesque 1985] Brachman, R.J.; Levesque, H.J. “Readings in Knowledge
Representation” Morgan Kaufmann, Los Altos, 1985..

[Bradford and Wollowski 1995] Bradford, P.G.; Wollowski, M., A Formalization of the Turing Test
(The Turing Test as an Interactive Proof System), SIGART Bulletin, Vol. 6, No. 4, p. 10,
1995.

[Brand 1996] Brand, C. “The g Factor: General Intelligence and its implications” Wiley 1996

Appendix C. References

309

309

[Bratko and Dzeroski 1995] Bratko, I.; Dzeroski, S. "Engineering Applications of ILP" New
Generation Computing, 13, 313-333, 1995.

[Brent 1993] Brent, J. "Charles Sanders Pierce: A life" Indianapolis: Indiana University Press 1993.

[Brockhausen and Morik 1997] Brockhausen, P. and Morik, K. “A multistrategy approach to relational
knowledge discovery in databases. Machine Learning Journal, Vol. 27 (3), Kluwer, 1997

[Brooks 1995] Brooks, F.P.: No Silver Bullet, in The Mythical Man-Month: Essays on Software Engineering
(2nd ed.) Addison Wesley Longman, Reading, Mass. 1995, pp. 179-203.

[Brouwer 1907] Brouwer, L.E.J., Over de Grondslagen der Wiskunde, Doctoral Thesis, University of
Amsterdam, 1907. Reprinted with additional material (D. van Dalen, ed.) by Matematisch
Centrum, Amsterdam, 1981.

[Brown and Hanlon 1970] Brown, R.; Hanlon, C “Derivation Complexity and the Order of
Acquisition of Child Speech” in J.R. Hayes (ed.), Cognition and the Development of
Language, Wiley, New York, 11-53, 1970.

[Bundy 1983] Bundy, Alan “The Computer Modelling of Mathematical Reasoning” Academic Press,
London, 1983.

[Bundy 1990] Bundy, Alan; van Harmelen, F.; Horn, C.; Smaill, A. “The Oyster-Clam system” in
M.E.Stickel (ed.), 10th International Conference on Automated Deduction, pages 647-648. Springer-
Verlag, 1990. Lectures Notes in Artificial Intelligence No. 449. Also availible from Edinburgh
as DAI Research Paper 507.

[Bundy 1991] Bundy, Alan “A Science of Reasoning” in Lassez, Jean-Louis; Plotkin, Gordon
'Computational Logic' THE MIT Press 1991.

[Bylander et al. 1991] Bylander, T.; Allemang, M.C.; Tanner, M.C.; Josephson, J.R. “The computational
complexity of abduction” Artificial Intelligence, 49:25-60, 1991

[Carbonell 1989] Carbonell, Jaime G. “Paradigms for Machine Learning” Artificial Intelligence, 40: 1-9,
1989.

[Carnap 1947] Carnap, R. ``Meaning and necessity: A study in semantics and modal logic" Chicago,
University of Chicago Press, 1947.

[Carnap 1950] Carnap, R. “Logical Foundations of Probability”, Routledge & Kegan Paul, London,
1950.

[Carnap 1952] Carnap, R. “The Continuum of Inductive Methods” The University of Chicago Press,
1952.

[Case and Smith 1983] Case J.; Smith, C. “Comparison of identification criteria for machine inductive
inference”, Theoret. Comput. Sci. 25, 193-220, 1983.

[Chaitin 1969] Chaitin, G.J. "On the length of programs for computing finite binary sequences:
statistical considerations" Journal of the ACM, 16:145-159, 1969.

[Chaitin 1974a] Chaitin, G.J., Information-Theoretic Computational Complexity, IEEE Transactions
on Information Theory, vol. IT-20, no.1, pp. 10-15, january 1974.

[Chaitin 1974b] Chaitin, G.J. "Information-theoretic limitations of formal systems", Journal of the
ACM, 21, 403-424., 1974.

[Chaitin 1982] Chaitin, G.J. “Gödel’s Theorem and Information” Int. J. of Theoretical Physics, vol.21,
no.12, pp. 941-954, 1982.

[Chaitin 1992] Chaitin, G.J. "Algorithmic Information Theory", fourth printing, Cambridge University
Press, 1992.

310 José Hernández Orallo - Doctoral Dissertation

 310

[Chaitin 1998] Chaitin, G.J. “The limits of mathematics : A course on information theory and the
limits of formal reasoning”, Singapore, Springer, 1998.

[Chandrasekaran 1990] Chandrasekaran, B. “What kind of Information Processing is Intelligence?” in
Partridge,D.; Wilks, Y., Foundations of AI: A Source Book Cambridge Univ. Press, 1990.

[Chang 1973] Chang, C.L.; Lee, R.C.T. "Symbolic Logic and Mechanical Theorem Proving" Academic
Press, New York, 1973.

[Charif 1994] Charif, A. “Genetic Logic Programming for Natural Language Understanding”, MSc
thesis, University of Technology, Sydney, 1994.

[Charniak 1978] Charniak, E. "On the use of framed knowledge in language comprehension" Artificial
Intelligence, 11 (3), 225-265, 1978.

[Charniak and Shomony 1994] Charniak, E. ; Shomony, S. "Cost-based abduction and MAP
explanation" Artificial Intelligence, 66, 345-374, 1994.

[Chaudhuri and Dayal 1997] Chaudhuri, S.; Dayal, U. “An Overview of Data Warehousing and OLAP
Technology” in ACM SIGMOD Record, vol. 26, pp. 65-74, 1997.

[Cheeseman 1990] Cheeseman, P. "On finding the most probable model" in Shrager, J. and Langley,
P. "Computational models of scientific discovery and theory formation", chapter 3, Morgan
Kaufmann.

[Chen 1983] Chen, K. “Tradeoffs in inductive inference of nearly minimal sized programs” Inform. and
Control 52, 68-86, 1982.

[Chidamber 1994] Chidamber, S.; Kemerer, C.: A Metrics Suite for Object-Oriented Design, IEEE T.
Software Eng., June, pp.476-492 (1994).

[Chomsky 1966] Chomsky, N. “Cartesian Linguistics: A Chapter in the History of Rationalist
Thought” Harper and Row, New York, 1966.

[Chomsky 1986a] Chomsky, N. “Knowledge of Language: its Nature, Origin, and Use” Praeger, New
York, 1986a.

[Chomsky 1986b] Chomsky, N. “Barriers” MIT Press, Cambridge, Massachusetts, 1986b.

[Church 1940] Church, A. "A formulation of the simple theory of types" Journal of Symbolic Logic,
5:56-68, 1940.

[Clark 1991] Clark, K. "Logic Programming Schemes and Their Implementations" in Lassez, J.L. and
Plotkin, G. Computational Logic The MIT Press 1991.

[Clark and Toribio 1998] Clark, A. and Toribio, J. (eds.) Cognitive Architectures in Artificial Intelligence. The
Evolution of Reserach Programs, Garland Publishing, Inc., 1998.

[Cohen 1992] Cohen, W.W. "Abductive Explanation-Based Learning. A Solution to the Multiple
Inconsistent Explanation Problem" Machine Learning, Vol. 8, pp. 167-219, 1992.

[Cohen 1994] Cohen, W.W. "Incremental Abductive EBL" Machine Learning, 15, pp. 5-24, 1994.

[Cohen and Nagel 1935] Cohen, M.R.; Nagel, E. “Introduction to logic and scientific method” in
Spanish translation Cohen, M; Nagel, E. “Introducción a la lógica y al método científico”
Amorrortu, Buenos Aires, 1968. Recent Re-edition: An Introduction to Logic. Indianapolis,
Indiana: Hackett Publishing Company, 1993.

[Colburn 1991] Colburn, T.R.: Program Verification, Defeasible Reasoning, and Two Views of
Computer Science, Minds & Machines 1, 97-116, 1991.

[Conklin and Witten 1994] Conklin, D.; Witten, I. H. “Complexity-Based Induction” Machine Learning,
16, 203-225, 1994.

Appendix C. References

311

311

[Conte 1986] Conte, S.D.; Dunsmore, H.E.; Shen, V.Y.: Software Engineering Metrics Models, The
Benjamin/Cummings Pub. Co., 1986.

[Cox 1987] Cox, B.: Object Oriented Programming, An Evolutionary Approach, Addison Wesley 1987.

[Cullingford 1978] CullingFord, R. "Script Application: Computer Understanding of Newspaper
Stories" Ph. D. thesis, Yale University. Computer Science Department Technical Report 116,
1978.

[Cummins 1986] Cummins, Rob “Inexplicit Information” in The Representation of Knowledge and Belief,
eds. M.Brand and R.M. Harnish (Tuscon: University of Arizona Press 1986).

[Cussens 1998] Cussens, James "Deduction, Induction and Probabilistic Support" Synthese Journal,
1998.

[Date 1995] Date, C.J. “An Introduction to Database Systems” Addison-Wesley, 6th Edition, 1995.

[De Millo et al. 1979] De Millo, R.; Lipton, R.J, Perlis, A.J.: Social Processes and Proofs of Theorems
and Programs, Communications of the ACM 22 (5), 271-280, (1979).

[De Raedt 1996] De Raedt, L. (ed.) "Advances in Inductive Logic Programming" IOS Press, 192-205,
1996.

[De Raedt and Bruynooghe 1993] De Raedt, L. and Bruynooghe, M. “A theory of clausal discovery”
in Proc. of the Thirteenth International Joint Conference on Artificial Intelligence (IJCAI-
93), Morgan and Kaufmann, 1993, pp. 1058-1063, 1993.

[De Raedt and Dehaspe 1997] De Raedt, L.; Dehaspe, L. “Clausal Discovery”, Machine Learning ,
26:99-146, 1997.

[De Raedt and Dzeroski 1994] De Raedt, L.; Dzeroski, S. “First order jk-clausal theories are PAC-
learnable” Artificial Intelligence, 70:375-392, 1994

[DeJong 1979] DeJong, G. "Skimming Stories in Real Time: An Experiment in Integrated
Understanding" Ph.D. thesis, Yale University. Computer Science Department, Technical
Report 158, 1979.

[DeJong and Mooney 1986] DeJong, G.; Mooney, R. "Explanation-based learning: an alternative view"
Machine Learning, 1(1), 145-176, 1986.

[DeMillo et al 1979] DeMillo, Richard A.; Lipton, Richard J.; Perlis, Alan J. “Social Processes and
Proofs of Theorems and Programs” Communications of the ACM 22 (5) 1979, pp. 271-280.

[Dershowitz and Reddy 1992] Dershowitz,N.;Reddy, U.S."Deductive and Inductive Synthesis of
Equat. Programs" 1992

[Derthick 1990] Derthick, M. "The Minimum Description Length Principle Applied to Feature
Learning and Analogical Mapping" MCC Technical Report Number ACT-CYC-234-90,
1990.

[Deville and Kung-Kiu 1994] Deville, Y.; Kung-kiu, L. "Logic Program Synthesis" J. Logic
Programming, 19,20:321-350, 1994.

[Devlin 1992] Devlin, K. Information and Logic, Cambridge University Press, 1992.

[Devroye 1979] L.P. Devroye and T.J. Wagner, “Distribution-free performance bounds for potential
function rules” IEEE Transactions on Information Theory, IT-25(5):601-604, 1979.

[Dietrich 1990] Dietrich, E. “Programs in the Search for Intelligent Machines: The Mistaken
Foundations of AI” in Partridge & Yorick, Foundations of AI: A Source Book, Cambridge Univ.
Press, 1990.

312 José Hernández Orallo - Doctoral Dissertation

 312

[Dietterich and Flann 1997] Dietterich, T.G. and Flann, N.S. “Explanation-Based Learning and
Reinforcement Learning: A Unified View” Machine Learning, 28, 169-210, (1997).

[Dijkstra 1972] Dijkstra, E.W.: Notes on Structured Programming, in O.Dahl et al. (eds.) Structured
Programming, Academic Press 1972.

[Dimopoulous and Kakas 1995a] Dimopoulos, Yannis; Kakas, Antoni Kakas "Abduction and
Learning" Departament of Computer Science, University of Cyprus, 1995.

[Dimopoulous and Kakas 1995b] Dimopoulos, Yannis; Kakas, Antoni Kakas "Learning Non-
Monotonic Logic Programs: Learning Exceptions" Machine Learning: ECML-95, Proc.
European Conf. on Machine Learning, 1995, N. Lavrac and S. Wrobel (eds.), LNCS 911, pp.
107-121, Springer Verlag 1995.

[Dimopoulous and Kakas 1996] Dimopoulos, Yannis; Kakas, Antoni Kakas “Learning Abductive
Theories” W. Wahlster (ed.) ECAI 96, 12th European Conference on AI., John Wiley & Sons Ltd.
1996.

[Donini et al. 1997] Donini, F.M.; Lenzerini, M.; Nardi, D.; Schaerf, A. “Reasoning in Description
Logics” in U.Gnowho and U.Gnowho-Else (eds) “A Great Collection” CSLI Publications,
1997.

[Dowty et al. 1981] Dowty, D. R.; Wall, R. E.; Peters, S. “Introduction to Montague Semantics”,
Reidel, Dordrecht, 1981.

[Duc 1997] Duc, H.N. Reasoning about rational, but not logically omniscient, agents, Journal of Logic
and Computation, Vol. 7, nº5, pp. 633-648, 1997.

[Duda and Hart 1973] Duda, R.; Hart, Peter “Pattern Classification and Scene Analysis” John Wiley
and Sons, New York, 1973.

[Dummett 1973] Dummett, M.A.E. “The Justification of Deduction” in Proceedings of the British
Academy, LIX (1973), reprinted in Truth and Other Enigmas, London, Duckworth, pp. 290-
318, 1978.

[Dzeroski 1996] Dzeroski, S. “Inductive logic programming and knowledge discovery in databases” in
Fayyad, U.; Piatetsky-Shapiro, G., Smith, P. and Uthurusamy, R. (eds.) Advances in Knowledge
Discovery and Data Mining, AAAI/MIT Press, Cambridge Mass., 1996.

[Eberle 1974] Eberle, R. “A Logic of Believing, Knowing and Inferring” Synthese, 26, 356-382, 1974.

[Edmonds 1993] Edmonds, J.E.: Interview, FAUW Forum, University of Waterloo, January 1993.

[Eiter et al. 1997] Eiter, T.; Gottlob, G.; Leone, N. "Abduction from logic programs: Semantics and
Complexity" Theoretical Computer Science, 189, 129-177, 1997.

[Elmasri and Navathe 1994] Elmasri, R.; Navathe, S. “Fundamentals of Database Systems” Addison-
Wesley, 2nd Ed., 1994.

[Emde 1989] Emde, W. “An Inference Engine for Representing Multiple Theories” in K. Morik (ed.),
“Knowledge Representation and Organization in Machine Learning”, pp. 148-176, Springer,
New York, Berlin, Tokyo, 1989.

[Epstein 1992] Epstein, R., Can Machines Think? AI Magazine, Vol. 12, No.2, 80-95, 1992.

[Ernis 1968] Ernis, R. “Enumerative Induction and Best Explanation” The Journal of Philosophy, LXV
(18), 523-529, (1968).

[Etchemendy 1990] Etchemendy, J. The Concept of Logical Consequence, Harvard University Press, 1990.

Appendix C. References

313

313

[Evans 1963] Evans, Thomas G. “A Heuristic Program to Solve Geometric Analogy Problems” in
Semantic Information Processing, edited by Marvin Minsky, MIT Press, Cambridge, MA, 1968,
Based on a PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, 1963.

[Eysenck 1979] Eysenck, H.J. “The Structure and Measurement of Intelligence”, Springer-Verlag
1979.

[Fagin et al. 1995] Fagin, R.; Halpern, J.Y. “Belief, awareness and limited reasoning” Artificial
Intelligence, 34, 39-76, 1988.

[Falkenhainer 1990] Falkenhainer, B. "Abduction as similarity-driven explanation" in O’Rorke, P.
(De.) Working Notes of the 1990 Spring Symposium on Anotated Abduction, pp. 135-139.
AAAI. Technical Report 90-32. Department of Information and Computer Science,
University of California, Irvine, 1990.

[Fallis 1996] Fallis, Don "The Source of Chaitin’s Incorrectness" Philosophia Mathematica, 4, 1996.

[Fayyad et al. 1996a] Fayyad, U.; Piatetsky-Shapiro, G., Smith, P. and Uthurusamy, R. (eds.) Advances in
Knowledge Discovery and Data Mining, AAAI/MIT Press, Cambridge Mass., 1996.

[Fayyad et al. 1996b] Fayyad, U.; Piatetsky-Shapiro, G., and Smith, P. “From data mining to
knowledge discovery: An overview” in Fayyad, U.; Piatetsky-Shapiro, G., Smith, P. and
Uthurusamy, R. (eds.) Advances in Knowledge Discovery and Data Mining, AAAI/MIT Press,
Cambridge Mass., 1996.

[Fayyad et al. 1996c] Fayyad, U.; Piatetsky-Shapiro, G., and Smith, P. “The KDD Process for
Extracting Useful Knowledge from Volumes of Data” Communications of the ACM, Vol.
39, No. 11, 27-34, November 1996.

[Feldman 1972] Feldman, J. Some decidability results on grammatical inference and complexity.
Information and Control, 20:244-262, 1972.

[Fetzer 1988] Fetzer, J.H. “Program Verification: The Very Idea”, Communication of the ACM 31(9),
1048-1063, (1988).

[Fetzer 1991] Fetzer, J.H.: Philosophical Aspect of Program Verification, Minds and Machines 1, 197-
216, (1991).

[Finkelstein 1988] Finkelstein, A.: Re-use of formatted requirements specifications, Software Engineering
J. 3, 3, 186-197, Sept. (1988).

[Flach 1993] Flach, P.A. “Predicate Invention in Inductive Data Engineering” in Pavel B. Brazdil
(eds.) Machine Learning: European Conference on Machine Learning (ECML-93), pages 83-94,
Lecture Notes in Artificial Intelligence 667, Springer-Verlag 1993.

[Flach 1995a] Flach, Peter “Conjectures. An inquiry concerning the logic of induction”, Thesis
Dissertation, Proefschrift Katholieke Universiteit Brabant, Tilburg,
http://www.cs.bris.ac.uk/~flach/Conjectures/

[Flach 1995b] Flach, Peter "Abduction and Induction: Syllogistic and Inferential Perspectives"
INFOLAB, Tilburg University 1995.

[Flach 1996] P. Flach, “Abduction and Induction: Syllogistic and Inferential Perspectives” in M.
Denecker, L. De Raedt, P. Flach and T. Kakas (eds) Working Notes of the ECAI’96 Workshop on
Abductive and Inductive Reasoning, pp. 7-9, 1996.

[Flach and Kakas 1999] Flach, P. and Kakas, A. (eds.), Abduction and Induction. Essays on their relation and
integration, in press, Kluwer.

[Flann and Dietterich 1989] Flann, N.S.; Dietterich, T.G. "A Study of Explanation-Based Methods for
Inductive Learning" Machine Learning, Vol. 4., pp. 187-266, 1989.

314 José Hernández Orallo - Doctoral Dissertation

 314

[Flynn 1987] James Robert Flynn, “The ontology of intelligence” Routledge and Paul Kegan, 1987.

[Forsyth 1992] Forsyth, R.S. "Ockham's Razor as a Gardening Tool: Simplifying Discrimination Trees
by Entropy Min-Max" in M. A. Bramer and R. W. Milne (eds.) Research and Development in
Expert Systems, X Cambridge: Cambridge University Press, pp. 183-195, 1992.

[Fostel 1993] Fostel, G., The Turing Test is For the Birds, SIGART Bulletin, Vol. 4, No. 1, 7-8, 1993.

[Fouqué and Matwin 1993] Fouqué, G.; Matwin, S.: A case-based approach to software reuse, J.
Intelligent Inform. Systems, 2 (2): 165-197, (1993).

[Frege 1884] Frege, G. "Die Grundlagen der Arithmetik" Wilhelm Koebner, Breslau 1884.

[Freivalds 1990] Freivalds, R. "Inductive inference of minimal size programs", in M. Fulk and J. Case
(eds) "Proceedings of the third Annual Workshop on Computational Learning Theory", pp.
1-20, Morgran Kaufman, San Mateo, CA, 1990.

[Freivalds et al. 1995] Freivalds, R.; Kinber, E.; Smith, C.H. “On the Intrinsic Complexity of
Learning” Inf. and Control 123, 64-71, 1995.

[Freksa 1997] Freksa, C. (de) "Foundations of Computer Science: Potential-Theory-Cognition"
Lecture Notes in Computer Science, Springer, 1997.

[Fu and Buchanan 1985] Fu, L.M.; Buchanan, B. “Learning Intermediate Concepts in Constructing a
Hierarchical Knowledge Base” in Proc. 9th International Joint Conference on Artificial Intelligence, pp.
659-666, San mateo, CA, 1985.

[Furukawa et al. 1997] Furukawa, Koichi; Murakami, Tomoko; Ueno, Ken; Ozaki, Tomonobu;
Shimazu, Keiko "On a Sufficient Condition for the Existence of Most Specific Hypothesis in
Progol" in Lavrac, Nada; Dzeroski, Saso (eds.) "Inductive Logic Programming. 7th
International Workshop, ILP-97" Lecture Notes in Artificial Intelligence, Springer 1997.

[Gabbay et al. 1992] Gabbay, D.M., C. J. Hogger and J. A. Robinson (eds.), Handbook of Logic in
Artificial Intelligence and Logic Programming. Vol. 3, Oxford: Clarendon Press, 1992.

[Garrido 1995] Garrido, Manuel “Lógica simbólica” 3rd Edition, Tecnos, 1995.

[Genesereth and Ketchpel 1994] Genesereth, M.; Ketchpel, S.P.: Software Agents. Communications of the
ACM, 37(7):48-53, (1994).

[Gentner 1983] Gentner, D. "Structure-mapping: A theoretical framework for analogy" Cognitive
Science. 7 (2), 1983.

[Gentzen 1935] Gentzen, Gerhard "Untersuchungen über das logische Schileben" Mathematische
Zeitschrift, 39: 176-210 and 405-531, 1935.

[Gibbon and Aisbet 1998] Gibbon, G.; Aisbett, J. “Switching between reasoning and search” Lecture
Notes in Artificial Intelligence; Springer-Verlag 1441, 94-108, 1998.

[Gigerenzer and Goldstein 1996] Gigerenzer, G; Goldstein, J.; “Reasoning the fast and frugal way:
Models of bounded Rationality” Psychological Review, 103, 4, 650-669, 1996.

[Gilmore 1986] Gilmore, Paul C. ‘Natural Deduction based set theories: A new resolution of old
paradoxes’ Journal of Symbolic Logic, 51:393-411, 1986.

[Girard 1995] Girard, Jean-Yves “Advances in Linear Logic” London Mathematical Society Lecture
Note Series, No. 222, 1995.

[Girard et al. 1989] Girard, Jean-Yves; Taylor, Paul; Lafont, Yves "Proofs and Types" Cambridge
Univ. Press, 1989.

[Globig et al. 1997] Globig, C.; Jantke, K.P.; Lange, Steffen; Sakakibara, Y. "On Case-Based
Learnability of Languages" New Generation Computing, 15, 59-83, 1997.

Appendix C. References

315

315

[Godin and Missaoui 1994] Godin, R.; Missaoui, R. “An Incremental Concept Formation Approach
for Learning From Databases”, Theoretical Computer Science 133, 387-419, 1994.

[Goebel 1997] Goebel, R.G. “Abduction and its relation to constrained induction” in Peter Flach and
Antonis Kakas (eds), Proceedings of the IJCAI’97 Workshop on Abduction and Induction in
AI, Nagoya, Japan 1997.

[Gold 1967] Gold, E.M. “Language Identification in the Limit” Inform. and Control., 10, pp. 447-474,
1967.

[Goldblatt 1987] Goldblatt, R. “Logic of Time and Computation” CSLI, Stanford, 1987.

[Goldreich 1997] Goldreich, O. “Probabilistic Proof Systems —A survey” in R. Reischuk and M.
Morvan (eds.) 14th Annual Symposium on Theoretical Aspects of Computer Science (STACS’97) in
LNCS vol. 1200, pp. 595-611, Springer-Verlag, 1997.

[Goldstein et al. 1998] Goldstein, J.; Ramakrishnan, R.; Shaft, U. “Compressing Relations and
Indexes” in International Conference on Data Engineering, ICDE 1998, 370-379.

[Good 1971] Good, I.J. “Twenty-seven principles of rationality” in Foundations of Statistical Inference,
V.P. Godambe and D.A. Sprott (eds.), Toronto: Holt, Rinehart and Winston 1971.

[Goodman 1965] Goodman, N. Fact, fiction and forecast (2nd Edition), Indianapolis, Bobbs-Merrill, 1965.

[Green 1969] Green, C. "The Application of Theorem-Proving to Question Answering Systems" Ph.
D. Thesis. Department of Electrical Engineering, Stanford University 1969

[Grégoire and Saïs 1996] Grégoire, E. and Saïs, L., Inductive reasoning is sometimes deductive, in M.
Denecker, L. De Raedt, P. Flach and T. Kakas (eds) Working Notes of the ECAI’96
Workshop on Abductive and Inductive Reasoning, , 1996.

[Groth 1998] Groth, R., Data Mining. A Hands-On Approach for Business Professionals, Prentice Hall 1998.

[Grünwald 1997] P. Grünwald, “The Minimum Description Length Principle and Non-Deductive
Inference” in P. Flach and A. Kakas (eds.), Proceedings of the IJCAI’97 Workshop on
Abduction and Induction in AI, Nagoya, Japan 1997.

[Gull 1988] Gull, S.F. “Bayesian inductive inference and maximum entropy” in Maximum Entropy and
Bayesian Methods in Science and Engineering, Vol. 1: Foundations, de. by G.J. Erickson & C.R.
Smith, 53-74. Dordrecht: Kluwer 1988.

[Gunetti and Trinchero 1994] Gunetti, D.; Trinchero, U. “Intensional Learning of Logic Programs” in
Franceso Bergadano and Luc de Raedt (eds) Machine Learning, Proceedings of the European
Conference on Machine Learning (ECML-94), pp. 359-362, Lecture Notes in AI 784,
Springer-Verlag 1994.

[Haack 1978] Haack, S., Philosophy of Logics, Cambridge, Cambridge University Press 1978.

[Habbermas 1972] Habbermas, J. Knowledge and Human Interests, London 1972.

[Hall 1989] Hall, R.P. "Computational approaches to analogical reasoning: A comparative analysis"
Artificial Intelligence, 39, 39-120, 1989.

[Halpern 1997] Halpern, JY. A theoy of knowledge and ignorance for many agents, Journal of Logic
and Computation, Vol. 7, nº1, pp. 79-108, 1997.

[Harel 1984] Harel, D. “Dynamic Logic” in Gabbay, D. and Guenthner, F. (eds.) “Handbook of
Philosophical Logic”, Vol. II., 497-604, Reidel, Dordrecht, 1984.

[Harman 1965] Harman, G. “The inference to the best explanation” Philosophical Review, 74, 88-95,
1965.

316 José Hernández Orallo - Doctoral Dissertation

 316

[Harnad 1992] Harnad, S., The Turing Test Is Not a Trick: Turing Indistinguishability Is A Scientific
Criterion, , SIGART Bulletin, Vol. 3, No. 4, 9-10, October 1992,

[Harrison 1992] Harrison W.: An Entropy-Based Measure of Software Complexity, IEEE T. Software
Eng. 18, No.11, 1025-34, Nov (1992)

[Harrison et. al. 1982] Harrison, W.; Magel, K.; Kluczney, R.; DeKock, A.: Software Complexity
Metrics and their application to maintenance, IEEE Computer, pp. 65-79, Sept. 1982.

[Haussler et al. 1994] Haussler, D.; Kearns, M.; Schapire, R. "Bounds on the Sample Complexity of
Bayesian Learning Using Information Theory and VC Dimension" Machine Learning 14, 1, pp.
88-113, January 1994.

[Heijenoort 1967] Heijenoort, J.V. (de) ‘From Frege to Gödel’ Harvard University Press, Cambridge
Mass., 1967.

[Helft, 1989] Helft, N. "Induction as nonmonotonic inference" in Proceedings of the 1st International
Conference on Principles of Knowledge Representation and Reasoning, pp. 149-156, 1989.

[Helmer and Oppenheim 1945] Helmer, O.; Oppeheim, P. “A syntactical definition of probability and
of degree of confirmation”, Journal of Symbolic Logic 10, 25-60, 1945.

[Hempel 1943] Hempel, C.G. “A purely syntactical definition of confirmation” J. Symbolic Logic 6
(4): 122-143; 1943.

[Hempel 1945] Hempel, C.G. “Studies in the logic of confirmation” Mind 54 (213): 1-25; 54(214): 97-
121, 1945.

[Hempel 1965] Hempel, C.G. Aspects of Scientific Explanation, The Free Press, New York, N.Y. 1965.

[Hendricks and Faye 1998] Hendricks, V. F. and Faye, J., 1998, Abducting explanation, extended
abstract in: MBR’98 Abstracts, S. Rini and G. Poletti, eds., complete paper, Department of
Philosophy, Univ. of Copenhagen.

[Hendrix 1982] G.G.Hendrix "Computational Models of Belief and the Semantics of Belief Sentences"
in S. Peters and E.Saarinen (eds.) "Processes, Beliefs, and Questions". D.Reidel Publishing
Company, 1982.

[Herken 1988] Herken, R. “The universal Turing machine: a half-century survey” Oxford University
Press, 1988, 2nd Edition 1994.

[Hernández-Orallo 1998a] Hernández-Orallo, J. “Reinforcement Learning in Constructive
Languages”, Proceedings of CCIA'98 , pp. 264-272, Tarragona, 21 - 23 october de 1998

[Hernández-Orallo 1998b] Hernández-Orallo, J. “Formalising Consilience”, in S.Rini, G.Poletti (eds.)
Proceedings of the 1998 International Conference on Model Based Reasoning (MBR'98), pp.
25-27, Pavia 1998.

[Hernández-Orallo 1999a] Hernández-Orallo, J. “A Computational Definition of 'Consilience'”,
Philosophica, to appear.

[Hernandez-Orallo 1999b] Hernandez-Orallo, J. “Unified Information Gain Measures for Inference
Processes”, 5th Barcelona Logic Meeting and 6th Kurt Gödel Colloquium, Barcelona, pp. 39-42, 1999.

[Hernández-Orallo 1999c] Hernandez-Orallo, J., “Universal and Cognitive Notions of ‘Part’”, to be
presented at the 4th European Congress on Systems Science (ESS’99), 1999.

[Hernández-Orallo 1999d] Hernández-Orallo, J.: Constructive Reinforcement Learning, Intl. J. of
Intelligent Systems, to appear. URL: http://www.dsic.upv.es/~jorallo/escritsa/IJISHern.ps.gz

Appendix C. References

317

317

[Hernández-Orallo 1999e] Hernández-Orallo, J, Unified Information Measures for Inference
Processes, Collegium Logicum - Annals of the Kurt-Gödel-Society Vol. 4, Springer Verlag Wien,
to appear.

[Hernández-Orallo 1999f] Hernández-Orallo, J. “Beyond the Turing Test”, Journal of Logic, Language
and Information, submitted.

[Hernández-Orallo and Alamagnac 1999] Hernández-Orallo, J.; Alamagnac, F. “Data Quality for
Data-Mining” to be presented at the 4th European Congress on Systems Science (ESS’99), 1999.

[Hernández-Orallo and García Varea 1998b] J. Hernández-Orallo and I. García-Varea, “On Autistic
Interpretations of Occam’s Razor”, in S.Rini, G.Poletti (eds.) Proceedings of the 1998
International Conference on Model Based Reasoning (MBR'98), pp. 25-27, Pavia 1998.

[Hernández-Orallo and García-Varea 1998a] J. Hernández-Orallo, J. and García-Varea, I.
“Distinguishing Abduction and Induction under Intensional Complexity” in P. Flach and A.
Kakas (eds.) Proc. of the European Conference of Artificial Intelligence (ECAI'98) Ws. on Abduction and
Induction in AI, pp. 41-48, Brighton 1998.

[Hernández-Orallo and García-Varea 1999] Hernández-Orallo, J.; García-Varea, I. “Explanatory and
Creative Alternatives to the MDL Principle”, Foundations of Science, Kluwer, to appear,

[Hernández-Orallo and Hernández-Orallo 1993] Hernández-Orallo, J.; Hernández-Orallo, E.:
Programación en C++, Paraninfo 1993, 2nd Ed., Intl. Thompson Publishers, 1995.

[Hernández-Orallo and Minaya-Collado 1998] Hernández-Orallo, J. “A Formal Definition of
Intelligence based on an Intensional Variant of Algorithmic Complexity” Proceedings of
Engineering of Intelligent Systems (EIS98), ICSC Academic Press 1998 .

[Hernández-Orallo and Pinto 1996a] Hernandez-Orallo, J.; Pinto, J. “Viabilidad de un Modelo de
Conocimiento Falible en Cálculo de Situaciones” Departamento de Computación, Pontificia
Universidad Católica de Chile, August 1996.

[Hernández-Orallo and Pinto 1996b] Hernandez-Orallo, J.; Pinto, J. “Especificación Formal de
Protocolos Criptográficos en Cálculo de Situaciones” Departamento de Computación,
Pontificia Universidad Católica de Chile, August 1996, to be published in Novatica, to appear
1999.

[Hernández-Orallo and Ramírez-Quintana 1998a] Hernández-Orallo, J. and Ramírez-Quintana, M.J.
“Inductive Inference of Functional Logic Programs by Inverse Narrowing” J. Lloyd (ed) Proc.
JICSLP'98 CompulogNet Meeting on Comp. Logic & Machine Learning, pp. 49-55, 1998.

[Hernández-Orallo and Ramírez-Quintana 1998b] Hernández-Orallo, J.; Ramírez-Quintana, M.J.:
Inverse Narrowing for the Inductive Inference of Functional Logic Programs, in Freire-
Nistal, J.L.; Falaschi, M.; Vilares-Ferro, M. (eds) Proc. 1998 Joint Conference of Declarative
Programming., pp.379-392, 1998.

[Hernández-Orallo and Ramírez-Quintana 1999a] Hernández-Orallo, J. and Ramírez-Quintana, M.J.
“A Strong Complete Schema for Inductive Functional Logic Programming”, in Flach, P.; and
Dzeroski, S. Inductive Logic Programming’99 (ILP'99), in the Volume 1634 of the Lecture Notes
in Artificial Intelligence (LNAI) series, Springer-Verlag 1999.

[Hernández-Orallo and Ramírez-Quintana 1999b] Hernández-Orallo, J. and Ramírez-Quintana, M.J.
“Inductive Functional Logic Programming”, 8th International Workshop on Functional and
Logic Programming (WFLP'99), Grenoble, France, 28-30, June 1999.

[Hesse 1974] Hesse, M., The Structure of Scientific Inference, MacMillan, London, 1974.

[Heyting 1930] Heyting, A., “Die formalen Regeln der intuitionistischen Logik”, Sitzungsber. Preuss.
Akad. Wiss. Berlin, 42-56, 1930.

318 José Hernández Orallo - Doctoral Dissertation

 318

[Hintikka 1962] Hintikka, J. Knowledge and Belief. Cornell University Press, Ithaca, NY, 1962.

[Hintikka 1964] Hintikka, J. Towards a theory of inductive generalization, in Proceedings of the 1964
International Congress for Logic, Methodology and Philosophy of Science, pp. 274-288,
1964.

[Hintikka 1970a] Hintikka, J. "On Semantic Information" in Hintikka, J.; Suppes, P. (eds.) D.Reidel
Publishing Company, pp. 3-27, 1970.

[Hintikka 1970b] Hintikka, J. "Surface Information and Depth Information" in Hintikka, J.; Suppes, P.
(eds.) D.Reidel Publishing Company, pp. 263-297, 1970.

[Hintikka 1973] Hintikka,J. "Logic, Language-Games and Information" The Calrendon Press, Oxford
Univ. 1973.

[Hintikka 1988] Hintikka, J. “Model Minimization - An Alternative to Circumscription” Journal of
Automated Reasoning 4(1): 1-13, 1988.

[Hintikka 1996] Hintikka, J. "What is abduction? The fundamental problem about ampliative
inference", International Congress on Discovery and Creativity, Ghent (Belgium), May 1998,
http://allserv.rug.ac.be/ ~jmeheus/

[Hintikka 1996] Hintikka, J. “Principles Of Mathematics Revisited” Cambridge University Press, 1996.

[Hintikka and Suppes 1970] Hintikka, Jaakko; Suppes, Patrick "Surface Information and Depth
Information" in Hintikka, Jaakko; Suppes, Patrick "Information and Inference", D. Reidel
Publishing Company 1970.

[Hintikka and Tuomela 1970] Hintikka, J.; Tuomela, R. "Towards a General Theory of Auxiliary
Concepts and Definability in First-Order Theories" in Hintikka, J.; Suppes, P. (eds.) D.Reidel
Publishing Company, pp. 298-330, 1970.

[Hinton and Zemel 1994] Hinton, G.; Zemel, R. “Autoencoders, minimum description length, and
Helmholtz free energy” in Cowan, J., Tesauro, G., and Alspector, J. (eds.) Advances in Neural
Information Processing Systems 6, Morgan Kaufmann Publishers, San Francisco, CA., 1994.

[Hoaglin et al. 1983] Hoaglin, D., Mosteller, F., and Tukey, J. Understanding Robust and Exploratory Data
Analysis, Wiley, New York, 1983.

[Hoare 1969] Hoare, C.A.R.: An Axiomatic Basis for Computer Programming, Communications of the
ACM 12, 576-580, 583, (1969).

[Hobbs et al. 1993] Hobbs, J.; Stickel, M.; Appelt, D.; Martin, P. "Interpretation as abduction"
Artificial Intelligence, 63 81-2), 69-143.

[Hofstadter 1979] Hofstadter, D.R. “Gödel, Escher, Bach: An eternal golden braid” New York: Basic
Books, 1979.

[Hofstadter 1985] Hoftadter, D.R. “Metamagical Themas. Questing for the Essence of Mind and
Pattern” Basic Books, Inc., 1985.

[Hofstadter et al. 1995] Hofstadter, D.R.; Fluid Analogies Research Group “Fluid Concepts and
Creative Analogies: Computer Models of the Fundamental Mechanisms of Thought” Basic
Books, 1995.

[Holland et al. 1989] Holland, J.H.; Holyoak, K.J.; Nisbett, R.E.; Thagard, P.R. "Induction. Processes
of Inference, Learning, and Discovery" The MIT Press 1989.

[Hörmann 1981] Hörmann, H. To Mean — To Understand: Problems of Psycho-logical Semantics, Springer-
Verlag, 1981.

Appendix C. References

319

319

[Horvitz 1990] Horvitz, E. “Computation and Action Under Bounded Resources” PhD Dissertation,
Stanford University, 1990.

[Howard 1966] Howard, R.A. “Information value theory” IEEE Transactions on Systems Science and
Cybernetics, SSC-2 (1): 22-26, 1966.

[Ichise 1998] Ichise, R. “Synthesizing Inductive Logic Programming and Genetic Programming”, in H.
Prade (ed.) 13th European Conference on Artificial Intelligence, John Wiley & Sons, pp. 465-468,
1998.

[Ifrah 1994] Ifrah, G. “Histoire Universelle des Chiffres” Editions Robert Laffont, S.A., Paris, 1994.

[Indurkhya 1991] Indurkhya, B. "On the role of Interpretative Analogy in Learning" New Generation
Computing, 8, 385-402, 1991.

[Ireland et al. 1996] Ireland, Andrew; Bundy, Alan 'Productive Use of Failure in Inductive Proof'
Journal of Automated Reasoning 16: 79-111, 1996.

[Jacobson 1995] Jacobson, I.: The Use-Case Construct in Object-Oriented Software Engineering,
Scenario-Based Design: Envisioning Work and Technology in System Development, J.Carroll, ed., John
Wiley & Sons, New York, 1995, pp. 309-336.

[Jaeger 1998] Jaeger, M. “Probability Logics” course notes for “Formal Systems for Probabilistic
Inference, Part 1”, ESSLLI-98, Saarbrücken, 1998.

[Jain 1995] Jain, Sanjay “On a question about learning minimal programs” Information Processing
Letters 53, 1-4, 1995.

[Jeffrey 1984] Jeffrey, R.C. "The Impossibility of Inductive Probability" Nature 310, 434, 1984.

[Jevons 1874] Jevons, W.S. "The Principles of Science: A Treatise on Logic and Scientific Method"
Macmillian, London, 1874.

[Johnson 1992] Johnson, W.L., Needed: A New Test of Intelligence, SIGART Bulletin, Vol. 3, No. 4,
7-9, October 1992, Editorial and Commentary.

[Josephson and Josephson 1994] Josephson, John R.; Josephson, Susan G. "Abductive Inference.
Computation, Philosophy, Technology" Cambridge University Press, New York 1994.

[Juedes et. al 1993] Juedess, D.W.; Lathrop; J.I.; Lutz, J.H. "Computational depth and reducibility"
Proc. 20th Int. Colloq. Automata, Languagess, Prog., LNCS, Springer-Verlag, 1993.

[Just and Carpenter 1987] Just, M.A.; Carpenter, P.A. The psychology of reading and language comprehension,
Allyn & Bacon, Boston, 1987.

[Kaelbling et al. 1996] Kaelbling, L.; Littman, M.; Moore, A.: Reinforcement Learning: A survey, J. of
AI Research, 4, 237-285, (1996).

[Kakas and Mancarella 1990] A.C. Kakas and P. Mancarella "On the relation between truth
maintenance and abduction" In Proceedings of the "nd Pacific Rim International
Conference on Artificial Intelligence, 1990.

[Kakas et al. 1993] Kakas, A.C.; Kowalski, A.; Toni, F. “Abductive Logic Programming” J. of Logic and
Comp., 2 (6): 719-770, 1993.

[Kantola et al. 1992]Kantola, M.; Mannila, H.; Räihä, K.J.; and Siirtola, H. “Discovering Functional
and Inclusion Dependencies in Relational Databases” International Journal of Intelligent Systems,
7, pp. 591-607, 1992

[Karmiloff-Smith 1992] Karmiloff-Smith, A., Beyond Modularity: A Developmental Prespective on
Cognitive Science, The MIT Press 1992.

320 José Hernández Orallo - Doctoral Dissertation

 320

[Kass 1986] Kass, A. "Modifying explanations to understand stories" in Proceedings of the Eighth
Annual Conference of the Cognitive Science Society, pp. 691-696, Amherst, MA. Cognitive
Science Society.1986.

[Kass 1990] Kass, A. "Developing Creative Hypotheses in Adapting Explanations" Ph. D. thesis, Yale
University, Northwestern University Institute for the Learning Sciences, Technical Report 6,
1990.

[Kearns 1990] Kearns, Michael J. "The Computational Complexity of Machine Learning". The MIT
Press 1990.

[Kearns 1992] Kearns "Oblivious PAC Learning of Concept Hierarchies" AAAI 1992 nº10.

[Kearns and Singh 1999?] M. Kearns and S. Singh, “Near-Optimal Performance for Reinforcement
Learning in Polynomial Time” URL: http://www.research.att.com/~mkearns/

[Kearns et al. 1999] Kearns, M.; Mansour, Y.; Ng, A.Y.; Ron, D.: An experimental and theoretical
comparison of model selection methods, Machine Learning, to appear. URL:
http://www.research.att.com/~mkearns/

[Kemeny 1953] Kemeny, J., “A logical measure function” Journal of Symbolic Logic, 18, 289-308, 1953.

[Keynes 1921] Keynes, J.M., A Treatise on Probability, Macmillan, London 1921.

[Kieffer and Yang 1996] Kieffer, J.C.; Yang, E. “Sequential Codes, Lossless Compression of Individual
Sequences, and Kolmogorov Complexity” IEEE Trans. on Inf. Theory, vol. 42, no. 1, Jan.
1996.

[King et al. 1995] King, R.D.; Sternberg, J.F.; Srinivasan, A. "Relating Chemical Activity to Structure:
An Examination of ILP Successes" New Generation Computing, 13, 411-433, 1995.

[Kintsch and Keenan 1973] Kintsch, W.; Keenan, J. “Reading rate and retention as a function of the
number of propositions in the base structure of sentences” Cognitive Psychology, 5:257-274,
1973.

[Kirsh 1990] Kirsh, David “When Is Information Explicitly Represented?” in Information, Language, and
Cognition, edited by Philip P. Hanson, Vancouver, University of British Columbia Press, 1990,
340-65.

[Kline 1980] Kline, M "Mathematics. The loss of certainty" New York, Oxford University Press 1980.

[Kling 1971] Kling, R.E "A paradigm for reasoning by analogy" Artificial Intelligence, 2:147-178, 1971.

[Kneale and Kneale 1984] Kneale, W. and Kneale, M. “The Development of Logic” Clarendon Press,
Oxford, 1984.

[Kodratoff 1994] Kodratoff, Y. Guest Editor’s Introduction “The Comprehensibility Manifesto” AI
Communications, 7(2): 83-85, 1994.

[Kolmogorov 1965] Kolmogorov, A.N. “Three Approaches to the Quantitative Definition of
Information” Problems Inform. Transmission, 1(1):1-7, 1965.

[Kolmogorov 1968] Kolmogorov, A.N., Logical basis for information theory and probability theory,
IEEE Trans. Inform. Theory, vol. IT-14, pp. 662-664, sept. 1968.

[Konolige 1986] Konolige, K. “A Deduction Model of Belief” Pitman Publishing, London, 1986.

[Konolige 1991] Konolige, K. “Abduction versus closure in causal theories” Artificial Intelligence,
52:255-72, 1991.

[Konolige 1992] Konolige, K “Autoepistemic Logic” in [Gabbay et. al. 1992], pp. 217-295.

[Koppel 1987] Koppel, M., Complexity, Depth, and Sophistication, Complex Systems 1, 1087-1091,
1987.

Appendix C. References

321

321

[Koppel 1988] Koppel, M. “Structure”, in Herken, R. “The universal Turing machine: a half-century
survey” Oxford University Press, 1988, pp. 435-452, 2nd Edition 1994.

[Kotovsky and Simon 1990] Kotovsky, K.; Simon, H.A. “Why are some problems really hard:
explorations in the problem space of difficulty”. Cognitive Psychology, 22, 143-183 1990.

[Kowalski 1974] Kowalski, R.A. ‘Predicate Logic as a Programming Language’, Proc. of the 6th IFIP
Congress, 569-574, North-Holland, 1974.

[Kowalski 1975] Kowalski, R.A. ‘A Proof Procedure using Connection Graphs’, Journal of ACM 22, 4,
572-595, 1975.

[Kowalski 1979] Kowalski, Robert A. ‘Logic for Problem Solving’, North-Holland, New York, 1979.

[Kowalski and Sachi 1997] R. Kowalski and F. Sachi “Reconciling the Event Calculus with the
Situation Calculus” J.Logic Prog. 31(1-3), 39-58, (1997).

[Kowalski et al 1971] Kowalski, R.A., Kuehner, D. ‘Linear resolution with selection function’ Artificial
Intelligence 2, 227-260, 1971.

[Koza 1993] Koza, J.R. “Genetic Programming on the programming of computers by means of
natural selection” The MIT Press, Cambridge MA, 1993.

[Kramer 1995] Kramer, S. "Predicate Invention: A Comprehensive View". Report TR-95-32, Austrian
Research Institute for Artificial Intelligence, Vienna, 1995.

[Kripke 1963] Kripke, S. "A Semantical Analysis of Modal Logic I: nomral modal prop. calculi"
Zeitschrift für Math, Logik und Grundlagen Mathematik 9, pp. 67-96, 1963.

[Kuhn 1970] Kuhn, T.S.: The Structure of Scientific Revolution, University of Chicago 1970.

[Lakatos 1976] Lakatos,I. "Proofs and Refutations. The Logic of Mathematical Discovery" Cambridge.
Univ. Prs., 1976.

[Lakatos 1979] Lakatos, I. “What Does a Mathematical Proof Prove?” in “Mathematics, Science and
Epistemology" Cambridge University Press, 1979, pp.540-551.

[Lange and Zeugmann 1995] Lange, S.; Zeugmann, Thomas “Refined Incremental Learning” 1995.

[Langley and Simon 1995] Langley, P., and Simon, H.A. “Applications of machine learning and rule
induction” Commun. ACM 38, 11 (Nov. 1995), 55-64, 1995.

[Larsson 1993] Larsson, J.E., The Turing Test Misunderstood, SIGART Bulletin, Vol. 4, No. 4, p. 10,
1993.

[Lavrac and Dzeroski 1994] Lavrac, N.; Dzeroski, S. “Inductive Logic Programming: Techniques and
Applications” Ellis Horwood, 1994.

[Lavrac and Dzeroski 1997] Lavrac, Nada; Dzeroski, Saso (eds.) Inductive Logic Programming. 7th
International Workshop, ILP-97” Lecture Notes in Artificial Intelligence, Springer 1997

[Leake 1992] Leake, David B. “Evaluating Explanation: A Content Theory” Lawrence Erlbaum
Associates, Hillsdale, NJ, 1992.

[Leake 1993] Leake, David B. “Focusing construction and selection of abductive hypotheses” in
Proceedings of the Eleventh International Joint Conference on Artificial Intelligence, pp. 24-
29, Chambery, France, IJCAI, 1993.

[Leake 1994a] Leake, David B. “ACCEPTER: evaluating explanations” in Schank, R.; Riesbeck, C.;
Kass, A. "Inside Case-Based Explanation" chap. 6, pp. 167-207. Lawrence Erlbaum
Associates 1994.

322 José Hernández Orallo - Doctoral Dissertation

 322

[Leake 1995] Leake, David B "Abduction, Experience, and Goals: A Model of Everyday Abductive
Explanation" The Journal of Experimental and Theoretical Artificial Intelligence 1995.

[Leake and Owens 1986] Leake, David B.; Owens, C. "Organizing Memory for Explanations" in
Proceedings of the Eighth Annual Conference of the Cognitive Science Society, pp. 710-715,
Amherst, M.A. Cognitive Science Society, 1986.

[Lebowitz 1980] Lebowitz, M. "Generalisation and Memory in an Integrated Understanding System"
Ph. D. thesis, Yale University. Computer Science Department. Technical Report 186, 1980.

[Leivant 1994] Leivant, Daniel 'Higher Order Logic' in Gabbay, Hogger & Robinson (eds.) Handbook
of Logic in AI and LP, Volume 2, Deduction Methodologies, Clarendon Press, Oxford 1994.

[Lempel and Ziv 1977] Lempel, A.; Ziv, J. “A Universal Algorithm for Sequential Data Compression”
in IEEE Transactions on Information Theory, Vol. 31, No. 3, pp. 337-343, 1977.

[Lesgold 1972] Lesgold, A.M. “Pronominalization: a Device for Unifying Sentences in Memory”
Jouranl of Verbal Learning and Verbal Behavior, 11:316-323, 1972.

[Levesque 1984] Levesque, Hector J. “A logic of implicit and explicit belief” in Proceedings AAAI-84,
pp. 198-202, Austin, TX, 1984.

[Levesque 1996] Levesque, Hector J. "What is planning in the presence of sensing" American
Association for Artificial Intelligence 1996.

[Levi 1973] Levi, I. Gambling with truth MIT Press Paperback Edition, 1973.

[Levi 1980] Levi, I. The Enterprise of Knowledge MIT Press, 1980.

[Levin 1973] Levin, L.A. “Universal search problems” Problems Information Transmission, 9:265-266,
1973.

[Levinson 1973] R. Levinson “General game-playing and reinforcement learning” Computational
Intelligence, 12(1): 155-176, (1996).

[Li and Vitányi 1996] Li, M. and Vitányi, P. “Reversibility and adiabatic computation: trading time and
space for energy” Proc. Royal Society of London, Series A, 452 (1996), 760-789.

[Li and Vitányi 1997] Li, M.; Vitányi, P. "An Introduction to Kolmogorov Complexity and its
Applications" 2nd Ed. Springer-Verlag 1997.

[Lieberherr 1996] Lieberherr K.J.: Adaptive Object-Oriented Software: The Demeter Method with Propagation
Patterns, PWS Pub. Co, 1996.

[Ling 1991] Ling, Charles. "Inventing Necessary Theoretical Terms in Scientific Discovery and
Inductive Logic Programming" TR 302, Department of Computer Science, University of
Western Ontario, 1991.

[Ling and Narayan 91] Ling, Charles; Narayan M.A. "A Critical Comparison of Various Methods
Based on Inverse Resolution, in Birnbaum L.A. & Collins G.C. (eds.), Machine Learning:
Proceedings of the Eighth International Workshop (ML91), Morgan Kaufmann, San Mateo,
CA, pp. 168-172, 1991.

[Lloyd 1987] Lloyd, J. “Foundations of logic programming” Springer-Verlag, 2nd edition, 1987.

[Lloyd 1995] Lloyd, J.W. "Declarative programming in Escher" Technical REport CSTR-95-013,
Department of Computer Science, University of Bristol, 1995. Also available at
http://www.cs.bris.ac.uk/

[López de Mántaras and Armengol 1998] R. López de Mántaras and E. Armengol, “Machine Learning
from examples: Inductive and Lazy Methods” Data and Knowledge Engineering 25, 99-123,
(1998).

Appendix C. References

323

323

[Lorenz and Kidd 1994] Lorenz, M.; Kidd, J.: Object-Oriented Software Metrics, Prentice Hall Publishing,
1994.

[Loucopoulos and Karakostas 1995] Loucopoulos, P.; Karakostas, V.: System Requirements Engineering,
McGraw-Hill, New York, 1995.

[Loveland 1978] Loveland Donald W. ‘Automated Theorem Proving: A Logical Basis, North-Holland,
Amsterdam, 1978, 405 pp.

[Loveland 1984] Loveland, D.W. ‘Automated Theorem Proving: A Quarter Century Review’
Contemporary Mathematics, Vol. 29, 1984, pp. 1-45.

[Lozinskii 1994] Lozinskii, E. “Information and Evidence in Logic Systems” Journal of Experimental and
Theoretical Artificial Intelligence 6, 163-193, 1994.

[Lucas 1962] Lucas, J.R. “Minds, Machines, and Gödel” Reprinted in Anderson, A. (ed) “Minds and
Machines”, Prentice Hall, 1962.

[Lukasiewicz 1970] L. Borowski, editor. Selected Works of Jan Lukasiewicz. North-Holland Publishing
Co., Warsaw, 1970.

[Mackay 1969] Mackay, D. Information, mechanism and meaning (MIT Press), 1969.

[MacKenzie 1995] MacKenzie, Donald ‘The Automation of Proof: A Historical and Sociological
Exploration’ IEEE Annals of the History of Computing 1995.

[Maddox 1993] Maddox, H. Theory of knowledge, Cambridge University Press 1993.

[Maes 1995] Maes, P.: Intelligent Software, Scientific American 273 (3), September, (1995).

[Mandler 1967] Mandler, G. “Organisation and Memory” in K.W. Spence and J.T. Spence (eds.) The
Psychology of Learning and Motivation, vol. 2, pp. 189-196, Academic Press, New York, 1967.

[Mannila and Räihä 1994] Mannila H.; Räihä, K.J. “Algorithms for Inferring Functional Dependencies
From Relations” Data & Knowledge Engineering, 12, 83-99, 1994.

[Mannila et al. 1994] Mannila H.; Toivonen H., and Verkamo A.I. “Efficient Algorithms for
Discovering Association Rules” Proceedings of the AAAI-94 Workshop on Knowledge
Discovery in Databases, 1994.

[Marcus et al. 1999] Marcus, G.F.; Vijayan, S.; Bandi Rao, S.; Vishton, P.M. “Rule Learning by Seven-
Month-Old Infants” Science, January 1999, pp. 77-80

[Marek and Truszczynski 1993] Marek, V.; Truszczynski, M. “Nonmonotonic Logic”, Springer-Verlag,
1993.

[Martin 1977] Martin, D.A. “Descriptive Set Theory: Projective Sets” in J.Barwise (ed.) Handbook of
mathematical logic, Elsevier Science Publishers, 1977.

[Martín 1998] Martín, M. “Reinforcement learning for embedded agents facing complex tasks” Thesis
Dissertation, Universitat Politècnica de Catalunya.

[Martinich 1985] Martinich, A.P. “The philosophy of language”, Oxford University Press, New York
and London, 1985.

[Martin-Löf 1982] Martin-Löf, Per ‘Constructive mathematics and computer programming’ in Logtic,
Methodology and Philoshophy of Scinece, vol. IV, pages 153-175. North-Holland, Amsterdam,
1982.

[Martin-Löf 1984] Martin-Löf, Per ‘Intuitionistic Type Theory’ Studies in Proof Theory Lecture Notes.
Bibliopolis, Napoli, 1984.

[Maslov 1987] Maslov, S. Yu "Theory of Deductive System and Its Applications" The MIT Press 1987

324 José Hernández Orallo - Doctoral Dissertation

 324

[Matheus and Rendell 1989] Matheus C.J., Rendell L.A.: "Constructive Induction On Decision Trees"
in Proceedings of the Eleventh International Joint Conference on Artificial Intelligence
(IJCAI-89), Morgan Kaufmann; Los Altos, CA, 645-650, 1989.

[McCarthy 1968] J. McCarthy "Situations, actions and causal laws" TR, Stanford University 1963.
Reprinted in Semantic Information Processing (M. Minsky ed.), MIT Press, Cambridge,
Mass., 1968, pp. 410-417.

[Merhav and Feder 1998] Merhav, N.; Feder, M.: Universal Prediction, IEEE Transactions on Information
Theory, Vol. 44, No. 6, 2124-2147, October (1998).

[Michalski 1987] Michalski, R.S. “Concept Learning” in S.C. Shapiro (ed). “Encyclopedia of Artificial
Intelligence” 185-194, John Wiley, Chicester, 1987.

[Michalski 1993] Michalski, R.S. "Inferential Theory of Learning as a Conceptual Basis for
Multistrategy Learning" Machine Learning, 11, 111-151, 1993.

[Mill 1843] Mill, J.S. A System of Logic, 1843.

[Millican and Clark 1996] Millican, P.J.R. and Clark, A. (eds.) Machines and Thought. The Legacy of Alan
Turing, Vol. I, Clarendon Press, Oxford, 1996.

[Minsky 1975] Minsky, M. "A framework for representing knowledge" in Winston P. (ed) The
Psychology of Computer Vision, chap. 6, pp. 211-277. McGraw-Hill, New York, 1975.

[Mitchell 1997] Mitchell, T.M.: Machine Learning, McGraw-Hill Series in Computer Science, 1997.

[Mitchell and Kedar-Cabelli 1986] Mitchell, T. & Kedar-Cabelli, S. "Explanation-based Learning. A
Unifying View" Machine Learning, Vol. 1., pp. 47-80, 1986.

[Mitchell et al. 1991] Mitchell, T.M.; Allen, J, Chalasani, P.; Cheng, J. Etzioni, O.; Ringuette, M;
Schlimmer, J. “THEO: A framework for self-improving systems” in Kurt VanLehn, editor,
Architectures for Intelligence, pages 323-356, Lawrence Erlaum Associates, 1991.

[Mizoguchi and Ohwada 1995] Mizoguchi, F.; Ohwada, H. "Constrained Relative Least General
Generalization for Inducing Constraint Logic Programs" New Generation Computing, 13,
335-368, 1995.

[Moffat and Zobel 1992] Moffat, A.; Zobel, J. “Compression and Fast Indexing for Multi-Gigabyte
Text Databases” First Australian Workshop on Information Retrieval, Monash University,
November 1992.

[Moody 1993] Moody, T.C., Philosophy and Artificial Intelligence, Englewood Cliffs, NJ, Prentice Hall,
1993.

[Mooney 1990] Mooney, R. "A General Explanation-based Learning Mechanism and its Application to
Narrative Understanding" Morgan Kaufmann Publishers, Inc., San Mateo. 1990

[Mooney 1997] Mooney, R.J. “Integrating Abduction and Induction in Machine Learning” in Peter
Flach and Antonis Kakas (eds), Proceedings of the IJCAI’97 Workshop on Abduction and Induction in
AI, Nagoya, Japan 1997.

[Moore 1984] Moore, Robert C. "Possible-World Semantics for Autoepistemic Logic" Proceedings
Non-Monotoning Reasoning Workshop, New Paltz, New York, 1984.

[Moore 1985a] Moore, Robert C. "A formal theory of knowledge and action" in Hobbs, J.R. and
Moore, R.C. editors 1985, Formal Theories of the Commonsense World Ablex, Norwood, NJ. 319-
358.

[Moore 1985b] Moore, Robert C. "Semantical Considerations on Nonmonotonic Logic" Artificial
Intelligence, vol. 25, no.1, 1985.

Appendix C. References

325

325

[Moore 1993] Moore, Robert C. "Autoepistemic Logic Revisited" Artificial Intelligence, vol. 59, nos.1-
2, 1993.

[Moravec 1998] Moravec, H., ROBOT: Mere Machine to Transcendent Mind, Oxford Univ. Press, 1998.

[Moreno 1998] Moreno, A. “Avoiding logical omniscience and perfect reasoning: a survey” AI
Communications 2, 1998.

[Moreno and Sales 1997] Moreno, A., Sales, T. "Dynamic belief analysis" in Intelligent Agents III:
Agent theories, architectures and languages, LNAI 1193, Springer Verlag, 87-102, 1997.

[Morik 1997] Morik, K. “Knowledge Discovery in Databases – An Inductive Logic Programming
Approach” in C. Freksa, M. Jantzen, R. Valk (eds.) Foundations of Computer Science: Potential-
Theory-Cognition, LNCS 1337, Springer, 1997.

[Morik et al. 1993] Morik, K.; Wrobel, S.; Kietz, J.; Emde, W. Knowledge Acquisition and Machine Learning:
Theory, Methods and Applications, Academic Press, 1993.

[Muggleton and Buntime 1988] Muggleton, S. and Buntime, W. “Machine invention of first-order
predicates by inverting resolution” Fifth International Conference on Machine Learning. Morgan
Kaufmann, 1988.

[Muggleton 1984] Muggleton, S. "Induction of Regular Languages from Positive Examples" Tech.
Rep, Turing Institute Research Memoranda, Glasgow, 1984.

[Muggleton 1991] Muggleton, S. “Inductive Logic Programming” New Generation Computing, 8, 4, pp. 295-
318, 1991.

[Muggleton 1992] Muggleton, S. “A Theoretical Framework for predicate invention”, The Turing
Institute 1992.

[Muggleton 1994a] Muggleton, S. “Predicate Invention and Utility” Journal of Experimental and theoretical
Artificial Intelligence 6 (1): 127-130, 1994.

[Muggleton 1994b] Muggleton, S. "Bayesian Inductive Logic Programming" in Cohen, W; Hirsh, H.
(eds.) Proceedings of the Eleventh International Machine Learning Conference , San Mateo, CA,
Morgan-Kaufmann, 371-379, 1994.

[Muggleton 1995a] Muggleton, S. "Inverse Entailment and Progol" New Generation Computing
Journal 13:245:286, 1995.

[Muggleton 1995b] Muggleton, S. "Mode-Directed Inverse Resolution" in Kurukawa, K.; Michie, D.;
Muggleton, S. (eds.) Machine Intelligence 14, Oxford University Press, 1995.

[Muggleton 1998] Muggleton, S., “Inductive logic programming: issues, results and the LLL challenge”
in H. Prade, editor, Proceedings of ECAI98, page 697. John Wiley, 1998.

[Muggleton and De Raedt 1994] Muggleton, S. & De Raedt L. "Inductive Logic Programming —
theory and methods" Journal of Logic Programming, 19-20:629-679, 1994.

[Muggleton and Feng 1990] Muggleton, S.; Feng, C. "Efficient Induction of Logic Programs" in
Arikawa, S.; Goto, S.; Ohsuga, S.; Yokmori, T. (eds.) Proc. 1st Conf. on Algorithmic Learning
Theory, Japanese Society for Artificial Intelligence, Tokyo, 1990.

[Muggleton and Page 1994] Muggleton, S.; Page, D. "A Learnability Model for Universal
Representations" Technical Report, PRG-TR-3-94, Oxford University Computing Laboratory,
Oxford 1994. URL: http://www.cs.york.ac.uk/~stephen/jnl.html

[Muggleton et al. 1992] Muggleton, S.; Srinivasan, A.; Bain, M. “Compression, significance and
accuracy” in D. Sleeman and P. Edwards (eds.) Machine Learning: Proceedings of the Ninth
International Conference (ML92], pages 523-527, Wiley 1992.

326 José Hernández Orallo - Doctoral Dissertation

 326

[Muggleton et al. 1995] Muggleton, S.; Mizoguchi, F.; Furukawa, K. "Special Issue on Inductive Logic
Programming" New Generation Computing, 13, 243-244, 1995.

[Mura 1990] Mura, A. "When Probabilistic Support is Inductive" Philosophy of Science 57, 278-289,
1990.

[Myhill 1958] Myhill, J. “Problems arising in the formalization of intensional logic” Logique et Analyse,
vol. 1, pp.75-83, 1958..

[Nake 1974] Nake F. “Ästhetik als Informationsverarbeitung” Springer 1974.

[Neisser et al. 1996] Neisser, U.; Boodoo, G.; Bouchard, T.J., Jr., Boykin, A.W., Brody, N., Ceci, S.J.
Halpem, D.F., Lochlin, J.C., Perloff, R., Sternberg, R.J., Urbina, S. “Intelligence: Knowns and
unknowns” American Psychologist, 51, 77-101, 1996.

[Newell 1990] Newell, A. Unified Theories of Cognition, Cambridge, Mass.: Harvard University Press,
1990.

[Ng and Mooney 1990] Ng.H.; Mooney, R. “On the role of coherence in abductive explanation” in
Proceedings of the Eighth National Conference on Artificial Intelligence, pp. 337-342 Boston, MA.
AAAI, 1990.

[Niblett 1988] Niblett, T. “A study of generalisation in logic programs”, In Proc. European Working
Sessions on Learning EWSL’88, d. Sleeman (ED), Pitman, 131-138, 1988.

[Niblett 1993] Niblett, T “A Note on Refinement Operators” in Pavel B. Brazdil (Ed.): Machine
Learning: ECML-93, European Conference on Machine Learning, Vienna, Austria, April 5-7,
1993, Proceedings. Lecture Notes in Computer Science, Vol. 667, Springer, 1993, pp. 329-
335

[Nienhuys-Cheng and de Wolf 1997] Nienhuys-Cheng, S.H.; de Wolf, R. "Foundations of Inductive
Logic Programming" Springer-Verlag 1997.

[Nienhuys-Cheng and Polman 1993] Nienhuys-Cheng & Polman, M. "Complexity Dimensions and
Learnabiity" in Brazdil, P.B. European Conference on Machine Learning, Lecture Notes in Artificial
Intelligence 667, pp. 348-353, 1993.

[Nilsson 1986] Nilsson, N. “Probabilistic logic” Artificial Intelligence, 28, 71-88, 1986.

[Nilsson 1995] Nilsson, Nils J. “Eye on the Prize” AI Magazine, July 1995, also at
http://robotics.stanford.edu/~nilsson/

[Nishida et al. 1991] Nishida, F.; Takamatsu, S.; Fujita, Y.; and Tani, T.: Semi-automatic program
construction from specifications using library modules, IEEE Trans. on Software Eng., 17, (9),
pp. 853-871, (1991).

[Núñez et al. 1995] Núñez, G.; Cortés, U.; Larrosa, J., Non-Monotonic Characterization of Induction
and Its Application to Inductive Learning, International Journal of Intelligent Systems, Vol.
10, 895-927, 1995.

[Nute 1988] Nute, D. "Defeasible reasoning: a philosophical analysis in Prolog." In James Fetzer (ed.),
Aspects of Artificial Intelligence, Studies in Cognitive Systems, Kluwer Academic Publishers,
Boston, 251-288, 1988.

[Nute 1992] Nute, D. “Basic Defeasible Logic” in L. Farinas_del Cerro and M. Penttonen (eds)
“Intensional Logics for Programming”, Clarendon Press, Oxford, 125-154, 1992.

[Nute 1994] Nute, D. "Defeasible logic." In D. Gabbay and C. Hogger (eds.), Handbook of Logic for
Artificial Intelligence and Logic Programming, Vol. III, Oxford University Press, 1994:353-
395.

Appendix C. References

327

327

[Nwana 1996] Nwana, H.: Software Agents: an overview, Knowledge Engineering Review, 11(3), pp.1-40,
Sept. (1996).

[O’Rorke 1989] O’Rorke, P. “Coherence and abduction” The Behavioural and Brain Sciences, 12 (3), 484,
1989.

[Olson 1994] Olson, R. “Inductive Functional Programming Using Incremantal Program
Transformation” Thesis Dissertation, University of Oslo, Dep. of Computer Science, 1994.

[Olson 1995] Olson, R. “Inductive functional programming using incremental program
transformation", Artificial Intelligence, v. 74, n. 1, 1995.

[O'Rorke 1994] O'Rorke, P. "Abduction and Explanation-Based Learning: Case Studies in Diverse
Domains" Computational Intelligence, Vol. 10, pp. 295-330, 1994.

[Page and Cohen 1995] Page, C.D.; Cohen, W.W. "Polynomial Learnability and Inductive Logic
Programming: Methods and Results " New Generation Computing, 13, 369-409, 1995.

[Paris 1994] Paris, J.B. “The Uncertain Reasoner’s Companion” Cambridge University Press, 1994.

[Parnas 1971] Parnas, D.L.: Information distribution of design methodology, Tech. Rept., Depart.
Computer Science, Carnegie Mellon U., Pittsburgh, Pa., 1971. Also presented at the IFIP
Congress 1971, Ljubljana, Yugoslavia.

[Parnas 1972] Parnas, D.L.: On the Criteria To Be Used in Decomposing Systems into Modules,
Communication of the ACM, Vol. 15, no. 12, December 1972, pp. 1053-1058.
http://www.acm.org/classics/may96.html

[Parsons 1982] Parsons, C. “Intensional logic in extensional language” Journal of Symbolic Logic, vol. 47,
pp. 289-328, 1982.

[Partridge 1997] Partridge, D.: The Case for Inductive Programming: IEEE Computer, January, pp.
36-41, (1997).

[Patel-Schneider and Swartout 1994] Patel-Schneider, P.F.; Swartout, B. “Description logic knowledge
representation system specification from the KRSS group of the ARPA knowledge sharing
effort”, AT&T Bell Laboratories Report, Murray Hill, NJ, 1994.

[Paul 1993] Paul, G. "Approaches to abductive reasoning: an overview" Artificial Intelligence Review,
7, 109-152, 1993.

[Paulson, L. 1987] Paulson, Lawrence C. ‘Logic and Computation: Interactive Proof with Cambridge
LCF’ Cambridge Tracts in Theoretical Computer Science 2, Cambridge University Press, 1987.

[Paulson, L. 1994] Paulson, Lawrence C. ‘Isabelle: A Generic Theorem Prover’ with contributions by
Tobias Nipkow. Springer Lecture Notes in Computer Science 828. XVII+321 pages, 1994.

[Pazzani and Kibler 1992] Pazzani, M.; Kibler, D. "The Utility of Knowlege in Inductive Learning"
Machine Learning, Vol. 9., pp. 57-94, 1992.

[Pearl 1988] Pearl, J. "Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference"
Morgan Kaufmann, San Mateo, 1988.

[Pearl 1993] Pearl, J. “Belief Networks Revisited” Artificial Intelligence (59), 45-56, 1993.

[Pednault 1991] Pednault, E.P.D. "Minimal Length Encoding and Inductive Inference" in B.
Piatetsky-Shapiro and W.J. Frawley (eds.) Knowledge Discovery in Databases, Cambridge,
Mass.: MIT Press, pp. 71-92, 1991.

[Peirce 1867/1960] Peirce, C.S. "Collected papers of Charles Sanders Peirce" Cambridge. Harvard
University Press 1960.

328 José Hernández Orallo - Doctoral Dissertation

 328

[Peng 1990] Peng, Y. and Reggia, J. "Abductive Inference Models for Diagnostic Problem Solving"
Springer Verlag, New York, 1990.

[Peng and Reggia 1987] Peng, Y.; Reggia, J.A. “Abductive Inference Models for Diagnostic Problem-
Solving, Symbolic Computation Series. Springer-Verlag, 1987.

[Pettorossi and Proietti 1990] Proietti, M.; Pettorossi, A. “Synthesis of eureka predicates for
developing logic programs” in Proceedings of ESOP ’90 (Copenhagen), Lecture Notes in Computer
Science 432, Springer Verlag, 306-325, 1990.

[Pettorossi and Proietti 1996a] Pettorossi, A.; Proietti, Maurizio “Rules and Strategies for
Transforming Functional and Logic Programs” ACM Computing Surveys, Vol. 28, no. 2, June
1996.

[Pettorossi and Proietti 1996b] Pettorossi, A.; Proietti, Maurizio “Developing Correct and Efficient
Logic Programs by Transformation” Knowledge Engineering Review, Vol. 11, No. 4, December
1996.

[Pfahringer 1994] Pfahringer, Bernhard "Controlling Constructive Induction in CiPF: An MDL
Approach" in F. Bergadano and L. de Raedt (eds) Machine Learning, Proceedings of the
European Conference on Machine Learning (ECML-94), pp. 242-256, Lecture Notes in AI
784, Springer-Verlag 1994.

[Pfahringer and Kramer 1995] Pfahringer, B. and Kramer, S. “Compression-Based Evaluation of
Partial Determinations” Austrian Research Institute for AI, ai.univie.ac.at, 1995.

[Piatetsky-Shapiro and Frawley 1991] Piatetsky-Shapiro, G.; Frawley, J. “Knowledge Discovery in
Databases” The AAAI Press, Menlo Park, 1991.

[Plaisted 1980] Plaisted, David A. ‘Abstractions mappings in mechanical theorem proving’ in W.Bibel
and R. Kowalsi, (eds.) 5th International Conference on Automated Deduction, pages 264-280, Lecture
Notes in Computer Science, Vol. 87. Berlin, Springer, 1980.

[Plaza 1992] Plaza, E. “Reflection for analogy: Inference-level reflection in an architecture for
analogical reasoning” in Proc. IMSA’92 Workshop on Reflection and Metalevel Architectures; pp.
166-171, 1992.

[Plaza and Arcos 1993] Plaza, E. and Arcos, J.L. “Flexible Integration of Multiple Learning Methods
into a Problem Solving Architecture” Report de Recerca IIIA 93/16 Octubre 1993, also
appeared in Proceedings of the European Workshop on Knowledge Acquisition in 1994.

[Plaza and Arcos 1996] Plaza, E. and Arcos, J.L. “Overview of Noos v.1.0. Draft” IIIA,
“http://www.iiia.csic.es/ Project/Noos.html” 1996.

[Plotkin 1970] Plotkin G. "A note on inductive generalization" Machine Intelligence, Vol. 6,
Edinburgh University Press, Edinburgh 1970.

[Polya 1968a] Polya, G. Patterns of Plausible Inference, Princeton University Press, Princeton, NJ.
1968.

[Polya 1968b] Polya, G. Induction and Analogy in Mathematics: Mathematics and Plausible Reasoning;
Vol. I, Oxford University Press, London, 1968.

[Polya 1968c] Polya, G. Patterns of Plausible Inference, Mathematics and Plausible Reasoning; Vol. II,
Oxford University Press, London, 1968.

[Polya 1969] Polya, G. Mathematical Discovery, Vols. I and II, Wiley, New York, 1969.

[Poole 1985] Poole, D. “On the Comparison of Theories: Preferring the Most Specific Explanation”
in IJCAI’85, pages 144-147, 1985.

Appendix C. References

329

329

[Poole 1989] Poole, D. “Explanation and Prediction: An Architecutre for Default and Abductive
Reasoning” Computational Intelligence 5(2), 97-110, 1989.

[Poole 1997] Poole, D. “Who chooses the assumptions?” in P. O’Rorke (ed) Abduction, AAAI/MIT
Press, 1997.

[Popper 1935] Popper, K.R. "Logik der Forschung" Julius Springer, Wien. Engl. Transl. "The Logic of
Scientifica Discovery" Hutchinson, London, 1959.

[Popper 1962] Popper, K.R. Conjectures and Refutations: The Growth of Scientific Knowledge, Basic Books,
1962.

[Popper 1963] Popper, K.R. Conjectures and Refutations: The Growth of Scientific Knowledge, Routledge and
Kegan Paul, London, 1963.

[Popper 1969] Popper, K.R. "Conjectures and Refutations", London 1969.

[Popper and Miller 1983] Popper, K.R.; Miller, D. "A Proof of the Impossibility of Inductive
Probability" Nature 302, 687-688.

[Popper and Miller 1987] Popper, K.R.; Miller, D. "Why Probabilistic Support is not Inductive"
Philosophical Transactions of the Royal Society of London, A, 321, 569-591, 1987.

[Prawitz 1960] Prawitz, Dag “An improved proof procedure’ Theoria, 26:102-139, 1960.

[Prawitz 1965] Prawitz, Dag "Natural Deduction" Alinquist and Wiksell, Stockholm 1965.

[Pressman 1992] Pressman, R.S.: Software Engineering: A practitioner’s Approach, McGraw-Hill, 1992.

[Preston 1991] Preston, B. 1991. AI, anthropocentrism, and the evolution of "intelligence.". Minds and
Machines 1:259-277.

[Quine 1953] Quine, W.V.O. “Two Dogmas of empiricism. From a Logical Point of View”, Harvard
University Press, Cambridge, Massachusetts, 1953.

[Quinlan 1986] Quinlan, J.R. "Induction of Decision Trees" Machine Learning, 1:81-206, 1986.

[Quinlan 1990] Quinlan, J.R. “Learning Logical Definitions from Relations” Machine Learning, 5 (3):
239-266, 1990.

[Quinlan and Cameron-Jones 1995] Quinlan, J.R.; Cameron-Jones, R.M. "Induction of Logic
Programs: FOIL and Related Systems" New Generation Computing, 13, 287-312, 1995.

[Quinlan and Rivest 1989] Quinlan, J.; Rivest. R. "Inferring decision trees using the minimum
description length principle" Information and Computation, vol. 80, 227-248., 1989.

[Quinlan, 1993] Quinlan, J.R. "C4.5: Programs for Machine Learning, Morgan Kaufmann, San Mateo,
C.A., 1993.

[Rayner and Pollatsek 1989] Rayner, K.; Pollatsek, A. The psychology of reading, Prentice-Hall, Englewood
Cliffs, NJ, 1989.

[Reddy 1990] Reddy, U.S. 'Term rewriting induction' in Proceedings of the Tenth International Conference on
Automated Deduction, Kaiserslautern, PAGES 162-177. Springer LNAI vol 449, 1990,

[Reggia 1983] Reggia, J. "Diagnostic expert systems based on a set-covering model" International
Journal of Man-Machine Studies, 19(5), 437-460, 1989.

[Reichenbach 1956] Reichenbach, H. “The Direction of Time” University of California Press,
Berkeley and Los Angeles, 1956.

[Reuland and Abraham 1993] Reuland, E. and Abraham, W. (eds.) “Knowledge and Language”, Vol. I,
From Orwell’s Problem to Plato’s Problem, Kluwer Academic Publishers, 1993.

330 José Hernández Orallo - Doctoral Dissertation

 330

[Rissanen 1978] Rissanen, J.: Modelling by the shortest data description, Automatica-J.IFAC, 14, 465-
471, 1978.

[Rissanen 1986] Rissanen, J., Stochastic complexity and modeling, Annals Statist. 14:1080-1100, 1986.

[Rissanen 1996] Rissanen, J.: Fisher Information and Stochastic Complexity, IEEE Trans. Inf. Theory,
1(42): 40-47, (1996).

[Rivest and Sloan 1994] Rivest, R.L.; Sloan, R. “A Formal Model of Hierarchical Concept Learning”
Inf. and Comp. 114, 88-114, 1994.

[Robinson 65a] Robinson, J.A. ‘A machine-oriented logic based on Resolution Principle’, Journal of
ACM 12, 23-41, 1965.

[Robinson 65b] Robinson, J.A. ‘Automated Deduction with Hyper-resolution’, Int. J. Comp. Math. 1,
227-234, 1965.

[Rumbaugh 1994] Rumbaugh, J.: Getting Started: Using Use Cases to Capture Requirements, J. Object-
Oriented Prog.., Sept. p.8, (1994).

[Russell and Norvig 1995] Russell, S.; Norvig, P. “Artificial Intelligence: A Modern Approach”
Prentice Hall 1995.

[Russell and Subramian 1993] Russell, S.J.; Subramanian, D. "Probably bounded optimal agents" in
Proc. of IJCAI-93, Chanbery, France, Morgan Kaufmann 1993

[Russell and Wefald 1991] Russell, S.J. and Wefald, E.H. “Do the Right Thing: Studies in limited
rationality” Cambridge, Massachusetts, MIT Press, 1991.

[Russell et al. 1993] Russell, S.J., Subramanian, D.; Parr, R. “Provably bounded optimal agents”
Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence, pp. 338-344,
Chambery, France, 1993.

[Sagan 1973] Sagan, C. (ed). “Communication with Extraterrestrial Intelligence” Cambridge, Mass.:
MIT Press, 1973.

[Sagan and Shklovskii 1971] Sagan, C. and Shklovskii, Intelligent Life in the Universe, 1971.

[Sakakibara 1997] Sakakibara, Y. Recent advances of grammatical inference, Theoretical Computer Science
185, pp. 15-45, 1997.

[Schaffer 1994] Schaffer, C. “A conservation law for generalization performance” in Proceedings of the
Eleventh International Conference on Machine Learning, pages 259-265, Morgan Kaufmann, 1994.

[Schank 1982] Schank, R. "Dynamic Memory. A Theory of Learning in Computerss and People"
Cambridge University Press, Cambridge, England 1982.

[Schank 1986a] Schank R.C., ``What is AI, Anyway?'' in AI Magazine, 8, 59-65, 1987 and in R.J.
Sternberg & D.K. Detterman, What is Intelligence? contemporary viewpoints on its nature
and definition Norwood, NJ. : Ablex, 1986.

[Schank 1986b] Schank, R. "Explanation Patterns. Understanding Mechanically and Creatively"
Lawrence Erlbaum Associatess, Hillsdale, NJ. 1986.

[Schank and Abelson 1977] Schank, R.; Abelson, R. "Scripts, Plans, Goals and Understanding"
Lawrence Erlbaum Associates, Hillsdale, NJ, 1977.

[Schank et al. 1994] Schank, R.; Riesbeck, C.; Kass, A. (Eds.) "Inside Case-Based Explanation"
Lawrence Erlbaum Associates, Hillsdale, NJ., 1994.

[Schlechta 1995] Schlechta, Karl "Logic, Topology and Integration" J. of Automated Reasoning,
14:353-381, 1995.

Appendix C. References

331

331

[Schmidhuber 1997] Schmidhuber, Jürgen “What’s Interesting?” In Abstract Collection of
SNOWBIRD: Machines That Learn. Utah, April 1998 based on TR IDSIA-35-97, Lugano,
Switzerland 1997.

[Schmidhuber et al. 1997a] J. Schmidhuber, J. Zhao and M. Wiering, “Shifting Inductive Bias with
Success-Story Algorithm, Adaptive Levin Search, and Incremental Self-Improvement”
Machine Learning, 28, 105-132, (1997).

[Schmidhuber et al. 1997b] J. Schmidhuber, J. Zhao, N. Schraudolph. Reinforcement learning with
self-modifying policies. In S. Thrun and L. Pratt, eds., Learning to learn, Kluwer, pages 293-
309, 1997.

[Sebag and Rouveirol 1997] Sebag, M.; Rouveirol, C. “Tractable induction and classification in FOL”
in Proceedings of IJCAI-97, 888-892, Morgan Kaufmann.

[Seidenfeld 1986] Seidenfeld, T. “Entropy and uncertainty” Philosophy of Science, 53, 467-491, 1986.

[Selman and Levesque 1990] Selman, B.; Levesque, H.J. "Abductive and default reasoning: a
computational core" In Proceeding of the Eighth National Conference on Artificial
Intelligence, pp. 343-348 Boston, MA. AAAI. 1990.

[Sempere 1998] Sempere, José M. “Some Learning Systems are Interactive Proof Systems” Learning
98, Getafe, September 1998.

[Shanahan 1989] Shanahan, M. “Prediction is Deduction but Explanation is Abduction” in Proc.
IJCAI’89, p.1055-1060, 1989.

[Shanahan 1993] Shanahan, M. “Explanation in the Situation Calculus” Proceedings of IJCAI’93, pp.
160-165, 1993.

[Shanahan 1997] Shanahan, M. "Solving the Frame Problem: A Mathematical Investigation of the
Common Sense Law of Inertia", The MIT Press 1997.

[Shannon 1948] Shannon, C.E. “The mathematical theory of communication” Bell System Tech. J.,
27:379-423, 623-656, 1948.

[Shapiro 1981] Shapiro, E. "Inductive Inference of Theories form Facts" RR 192, D. Comp. Science,
Yale Univ., 1981, reprinted in Lassez, J.; Plotking, G. (eds.) "Computational Logic" The MIT
Press 1991.

[Shapiro 1981] Shapiro, E. “Inductive Inference of Theories form Facts” RR 192, D. Comp. Science,
Yale Univ., 1981, in Lassez, J.; Plotking, G. (eds.) “Computational Logic” The MIT Press
1991.

[Shapiro 1984] Shapiro, E.Y. "Alternation and the computational complexity of logic programs" J.
Logic Programming, 1, 19-33, 1984.

[Shapiro 1992] Shapiro, S.C., The Turing Test and The Economist, SIGART Bulletin, Vol. 3, No. 4,
10-11, October 1992.

[Sharger and Langley 1990] Sharger, J. and Langley, P., 1990, Computational Models of Scientific
Discovery and Theory Formation, Morgan Kaufmman, 1990.

[Shieber 1994] Shieber, S.M. “Lessons from a Restricted Turing Test” Communications of the ACM,
June 1994, Vol. 37, No. 6.

[Shinohara 1991] Shinohara, T. "Inductive Inference of Monotonic Formal Systems from Positive
Data" New Generation Computing 8, 371-384, 1991.

[Simon 1982] Simon, H. “Models of Bounded Rationality” Cambridge, MIT Press 1982.

332 José Hernández Orallo - Doctoral Dissertation

 332

[Simon and Kotovsky 1963] Simon, H.; Kotovsky, K. “Human acquisition of concepts for sequential
patterns” Psych. Review 70, 534-46, 1963.

[Solomonoff 1964] Solomonoff, R.J. "A formal theory of inductive inference" Inform. Contr. vol. 7,
pp. 1-22, Mar. 1964; also, pp. 224-254, June 1964.

[Solomonoff 1978] Solomonoff, R.J. “Complexity-based induction systems: comparisons and
convegence theorems” IEEE Trans. Inform. Theory, IT-24:422-432, 1978.

[Solomonoff 1986] Solomonoff, R.J. “The Application of Algorithmic Probability to Problems in AI”
in L.N. Karnal; J.F. Lemmer(eds) Uncertainty in AI, Elsevier Science, pp.473-91, 1986.

[Sommer 1995a] Sommer, E.: “Fender: An approach to theory restructuring” in Proc of the European
Conference on Machine Learning (ECML-95), 1995.

[Sommer 1995b] Sommer, E.: “An Approach to Quantifying the Quality of Induced Theories” in C.
Nedellec (ed.), Proc. IJCAI’95 Workshop on Machine Learning and Comprehensibility, 1995.

[Sommer et al. 1995] Sommer, E.; Emde, W.; Kietz, J.U.; Wrobel, S. “Mobal 3 User Guide”
Arbeitspapiere der gmd, GMD, 1995. Also at
http://natham.gmd.de/projects/ml/home.html”

[Sommerville 1992] Sommerville, I.: Software Engineering. Fourth Edition, Addison-Wesley, 1992.

[Spearman 1904] Spearman, C. “‘General Intelligence’ objectively determined and measured” Amer. J.
of Psych-, 15, 201-293, 1904.

[Spirtes et al. 1993] Spirtes, P., Glymour, C., and Scheines, R. Causation, Prediction, and Search, Springer-
Verlag, New York, 1993.

[Srinivasan and Camacho 1997] A. Srinivasan and R.C. Camacho "Experiments in numerical reasoning
with ILP" Journal of LP (accepted), >=1997.

[Srinivasan et al. 1994] Srinivasan, A.; Muggleton, S.H.; King, R.D.; Sternberg, M.J.E. "Mutagenesis;
ILP Experiments in a Non-Determinate Biological Domain" in Wrobel, S. (ed.) Proceedings
of the Fourth International Inductive Logic Programming Workshop, Gesellschaft für
Mathematik und Datenverarbeitung MBH, 1994, GMD-Studien Nr 237, 1994.

[Stahl 1994] Stahl, I. “On the utility of Predicate Invention in Inductive Logic Programming” in
Franceso Bergadano and Luc de Raedt (eds) Machine Learning, Proceedings of the European
Conference on Machine Learning (ECML-94), pp. 272-286, Lecture Notes in AI 784,
Springer-Verlag 1994.

[Stahl 1994] Stahl, Irene "On the Utility of Predicate Invention in Inductive Logic Programming"
ECML94, 272-286. Begadano, F and De Radetyl 1994.

[Stahl 1995] Stahl, I. “The appropiateness of predicate invention as bias shift operation in ILP”
Machine Learning, 20:95-117, 1995.

[Sternberg 1977] Sternberg, R.J. “Intelligence, Information Processing, and Analogical Reasoning”
John Wiley & Sons 1977

[Stickel 1990] Stickel, M. E. “Rationale and Methods for Abductive Reasoning in Natural-Language
Interpretation” in R. Studer (ed.) “Natural Language and Logic” Lecture Notes in AI 459, pp.
233-252, Springer-Verlag 1990.

[Stolcke and Omohundro 1994] Stolcke, A.; Omohundro, S. "Inducing Probabilistic Grammars by
Bayesian Model Merging" in R.C. Carrasco and J. Oncina (Eds.) Grammatical Inference and
Applications, Lecture Notes in Artificial Intelligence, 862, pp. 106-118, Springer-Verlag 1994.

Appendix C. References

333

333

[Stolcke and Omohundro 1994] Stolcke, A.; Omohundro, S. “Inducing Probabilistic Grammars by
Bayesian Model Merging” in R.C. Carrasco and J. Oncina (Eds.) Grammatical Inference and
Applications, Lecture Notes in Artificial Intelligence, 862, pp. 106-118, Springer-Verlag 1994.

[Stonier 1992] Stonier, T. “Beyond Information. The Natural History of Intelligence” Springer-Verlag
1992.

[Storer 1988] Storer, J.A. “Data Compression: Methods and Theory” Computer Science Press, 1988.

[Suttner and Sutcliffe 1996] Suttner, C.B.; Sutchliffe, G. “The TPTP Problem Library”, Tech. Univ.
Munich, Germany, 1996

[Sutton 1991] R.S. Sutton, “Special issue on reinforcement learning” Machine Learning, 1991.

[Szyperski 1998] Szyperski, C.: Component Software – Beyond Object-Oriented Programming, Addison Wesley
Longman Limited, 1998.

[Takeuti 1987] Takeuti, G. "Proof Theory" Second Edition, North Holland 1987.

[Tarski 1936] Tarski, A. “On the concept of logical consequence” in Logic, semantics, metamathematics
(J.H. Woodger translator), Oxford at the Clarendon Press, Oxford, 1956.

[Tarski 1956a] Tarski, A. “The concept of truth in formalized languages” in Logic, semantics,
metamathematics (J.H. Woodger translator), Oxford at the Clarendon Press, Oxford, 1956.

[Tarski 1956b] Tarski, A. “Some methodological investigations on the definability of concepts” in
Logic, semantics, metamathematics (J.H. Woodger translator), Oxford at the Clarendon Press,
Oxford, 1956.

[Thagard and Nowak 1990] Thagard P., Nowak G. "The Conceptual Structure of the Geological
Revolution, in Shrager J., Langley P. (eds.): Computational Models of Discovery and Theory
Formation, Morgan Kaufmann, San Mateo, CA, 1990.

[Thagard 1978] Thagard, P. “The best explanation: Criteria for theory choice” Journal of Philosophy,
75, 76-92, 1978.

[Thagard 1986] Thagard, P., The emergence of meaning: An escape from Searle's Chinese Room.
Behaviorism 14:139-46, 1986.

[Thagard 1989] Thagard, P. “Explanatory coherence” The Behavioural and Brain Sciences, 12 (3), 435-502,
1989.

[Thagard 1992] Thagard, P., 1992, Conceptual Revolutions, Princeton Univ. Pr, Princeton, N.Y.

[Thagard 1998] Thagard, P. “Probabilistic networks and explanatory coherence” in P. O’Rorke & J.
Josephson (eds), Automated Abduction: Inference to the best explanation, Menlo Park,
AAAI Press 1998.

[Thagard and Shelley 1997] Thagard, P. and Shelley, C., 1997, Abductive reasoning: Logic, visual
thinking, and coherence. URL: http://cogsci.uwaterloo.ca/Articles/Pages/Coherence.html.

[Thagard and Verbeurgt 1997] Thagard, P. and Verbeurgt, K., 1997, Coherence as Constraint
Satisfaction, Cognitive Science, forthcoming, 1997.

[Tour et al. 1987] de la Tour, T. Boy; Caferra, R. ‘Proof analogy in interactive theorem proving: A method
to express and use it via second order pattern matching’ in Proceedings AAAI-87, pages 95-99,
San Mateo CA, Morgan Kaufmann, 1987.

[Tukey 1977] Tukey, J. Exploratory Data Analysis, Rading, MA, Addison Wesley, 1977.

[Turing 1936] Turing, A.M. “On computable numbers with an application to the
Entscheidungsproblem” Proc. London Math. Soc., series 2, 42:230-265, 1936. Correction, Ibid,
43:544-546, 1937.

334 José Hernández Orallo - Doctoral Dissertation

 334

[Turing 1950] Turing, A.M. “Computing Machinery and Intelligence” Mind 59: 433-460, 1950.

[Tymoczko 1986] Tymoczko, Thomas ``New Directions in the Philosophy of Mathematics. An
Antology" Birkhäuser Boston, Inc. 1986.

[Ungar 1992] Ungar, A.M "Normalization, Cut-Elimination and the Theory of Proofs", CSLI Lecture
Notes 28, 1992.

[Uspensky 1992] Uspensky "Kolmogorov and Mathematical Logic" Journal of Symbolic Logic, 57, 2,
pp. 385-412, 1992

[Valiant 1984] Valiant, L. “A theory of the learnable”. Communication of the ACM 27(11), 1134-1142,
1984.

[van Benthem 1988] van Benthem, Johan “A Manual of Intensional Logic” CSLI Lecture Notes 72,
1988, Second Edition.

[van den Bosch 1994] van den Bosch, Simplicity and Prediction, Master Thesis, Dep. of Science, Logic &
Epistemology of the Fac. of Philosophy at the Univ. of Groningen, 1994.

[Van der Laag and Nienhuys-Cheng 1998] Van der Laag, P.R.J.; Nienhuys-Cheng, S. "Completeness
and Properness of Refinement Operators in Inductive Logic Programming" J. of Logic
Programming, 201-225, March 1998.

[Varsek 1993] Varsek, A. “Genetic Inductive Logic Programming”, Doctoral Dissertation, University
of Ljubljana, Slovenia, 1993.

[Varsek 1999] Varsek, A. Personal Communication, 1999.

[Vitányi and Li 1996] Vitányi, P.; Li, M. “Minimum Description Length Induction, Bayesianism, and
Kolmogorov Complexity”

[Vitányi and Li 1997] Vitányi, P.; Li, M. “On Prediction by Data Compression”, Proc. 9th European
Conference on Machine Learning, Lecture Notes in AI, Vol. 1224, Springer-Verlag, 14-30, 1997.

[von Wright 1951] von Wright “Deontic Logic”, Mind 1951.

[Wagner 1998] Wagner, G. “Foundations of Knowledge Systems. With Applications to Databases and
Agents” Institut für Informatik, Universität Leipzig, http://www.informatik.uni-
leipzig.de/~gwagner, 1998.

[Wallace and Boulton 1968] Wallace, C.S; Boulton, D.M “An information measure for classification”
Computer Journal 11 (1968) 185-195.

[Walther 1994] Walther, C. "Mathematical Induction" in Gabbay, Hogger & Robinson (eds.)
Handbook of Logic in AI and LPI, vol 2, deduction methodologies, Clarendon Press, Oxford
1994.

[Watanabe 1972] Watanabe, S. "Pattern Recognition as Information Compression" in Watanabe (ed.)
Frontiers of Pattern Recognition New York: Academic Press, 1972.

[Watanabe 1992] Watanabe, O. (ed.) “Kolmogorov complexity and computational complexity”
Monographs on TCS, Springer 1992.

[Wegner 1996] Wegner, P.: Interactive Software Technology, Handbook of Computer Science and
Engineering., CRC Press, Dec. 1996. URL: http://www.cs.brown.edu/~pw/

[Wegner 1998] Wegner, P.: “Interactive Foundations of Computing”, Theoretical Computer Science, Feb.
1998. URL: http://www.cs.brown.edu/~pw/

[Weidenhaupt 1998] Weidenhaupt, K.; Pohl, K.; Matthias, J.; Haumer, P.: Scenarios in System
Development: Current Practice, IEEE Software, March-April, 34-45, (1998).

Appendix C. References

335

335

[Weiss and Indurkhya 1997] Weiss, S. M.; Indurkhya, N. “Predictive Data-Mining: A Practical Guide”
Morgan Kaufmann Publishers, San Franciso, 1997.

[Wexler 1992] Wexler, K. “The Subset principle is an intensional principle” in Knowledge and Language:
Issues and Representation and Acquisition (E. Reuland and W. Abrahamson, eds.), Kluwer
Academic Publishers, 1992

[Wexler 1993] Wexler, K. “The subset principle is an intensional principle” in Eric Reuland and
Werner Abraham (eds.) “Knowledge and Language”, Vol. I, From Orwell’s Problem to
Plato’s Problem, 217-239, Kluwer Academic Publishers, 1993.

[Wexler and Culicover 1980] Wexler, K. and Culicover, P. “Formal Principles of Language
Acquisition” MIT Press, Cambridge 1980.

[Weyhrauch 1980] Weyhrauch, R.W. “Prolegomena to a theory of mechanized formal reasoning”,
Artificial Intelligence 3(1), 1980, pp. 133-170. Also in Brachman, Ronald J.; Levesque, Hector
J. “Readings in Knowledge Representation” Morgan Kaufmann Publishers, Inc. 1985.

[Weyhrauch et al. 1996] Weyhrauch, Richard W.; Talcott, Carolyn L. ‘Towards a Theory of Solving
Problems’, Department of Computer Science, Stanford University, Stanford, February 1996.

[Weyuker 1988] Weyuker, E.: Evaluating software complexity measures, IEEE Trans Software Eng., vol.
14, pp. 1357-1365, Sept. (1988).

[Whewell 1847] Whewell, W. "The philosophy of the inductive sciences" New York, Johnson Reprint
Corp, 1847.

[Winograd 1986] Winograd, T. “Thinking Machines: Can There Be? Are We?” in Winograd &
Fernando Flores “Understanding Computers and Cognition: A New Foundation for Design”
Norwood, 1986.

[Winston 1980] Winston, Patrick, H. ‘Learning and reasoning by analogy’ Communications of the
ACM, 23(12):689-703, 1980.

[Winston 1982] Winston, Patrick Henry “Learning New Principles from Precedents and Exercises”
Artificial Intelligence, vol. 19, no. 3, 1982.

[Winston 1992] Winston, P.H. “Artificial Intelligence” Third edition, Addison-Wesley Pusblishing
Company 1992

[Wittgenstein 1922] Wittgenstein, L. Tractatus Logico-Philosophicus 1922

[Wolff 1991] Wolff, J.Gerard Towards a Theory of Cognition and Computing, Chichester: Ellis
Horwood, 1991.

[Wolff 1992] Wolff, "Information Compression and Logic" New Generation Computing, 13, 187-214,
1995, OHMSHA, LTD. and Springer-Verlag 1995.

[Wolff 1994] Wolff, J.G.: Towards a new concept of software, Software Engineering Journal, IEE, January
(1994).

[Wolff 1995] Wolff, J.G. "Computing as Compression: An Overview of the SP Theory and System"
New Gen. Computing 13, 187-214, 1995.

[Wolpert 1992] Wolpert, D. “On the connection between in-sample testing and generalization error”
Complex Systems, 6:47-94m 1992.

[Woods 1975] Woods, W.A. “What’s in a Link: Foundations for semantic Networks” in Representation
and Understanding: Studies in Cognitive Science, D.G Bobrow and A.M. Collins (ed), 35-82,
Academic Press, Republished in Brachman and Levesque 1985.

336 José Hernández Orallo - Doctoral Dissertation

 336

[Wooldridge and Jennings 1995] Wooldridge, M.; Jennings, N.: Intelligent Agents:Theory and Practice,
Knowledge Eng. Review 10 (2), 115-152, (1995).

[Wos 1996] Wos, Larry 'The Resonance Strategy' Mathematics and Computer Science Division,
Argonne National Laboratory. Source: http://www.mcs.anl.gov/people/wos/index.html

[Wos et al. 1992] Wos, L.; Overbeek, R.; Lusk, E.; Boyle, J. "Automated Reasoning: Introduction and
Application", 2nd. ed., McGraw-Hill, New York 1992.

[Wos et al. 1994] Wos, Larry; Veroff, Robert 'Logical Basis for the Automation of Reasoning: Case
Studies' in Gabbay, Hogger & Robinson (eds.) Handbook of Logic in AI and LP, Volume 2,
Deduction Methodologies, Clarendon Press, Oxford 1994.

[Wrobel 1995] Wrobel, S. "First Order Theory Refinement" ILP Project (ESPRIT III) Common
Deliverable for Workpackage 2, 1995.

[Yu 1994] Yu, C. H. “Abduction? Deduction? Induction? Is there a Logic of Exploratory Data
Analysis?” Annual Meeting of American Educational Research Associations, New Orleans,
1994.

[Zadeh 1965] Zadeh, L.A. "Fuzzy Sets," Information and Control, No 8, pp. 338-353, June 1965.

[Zadeh 1972] Zadeh, L.A. “A Fuzzy-Set-Theoretic Interpretation of Linguistic Hedges”. Journal of
Cybernetics, Vol.2, 1972.

[Zadeh 1983] Zadeh, L.A. “A Computational Approach to Fuzzy Quantifiers in Natural Language”.
Comp. and Maths with Appls, Vol.9, 1983.

[Zalta 1998] Zalta, Edward N. “Intentional Logic and the Metaphysics of Intentionality” 1998

[Zemel 1993] Zemel, R "A minimum description length framwork for unsupervised learning" Ph. D.
Thesis, Dept. of Computer Science, University of Toronto, Toronto, Canada, 1993.

[Zemel 1993] Zemel, R. “A minimum description length framework for unsupervised learning”, Ph.
D. Thesis, Dept. of Computer Science, University of Toronto, Toronto, Canda, 1993.

[Zeugmann and Lange 1995] Lange, S.; Zeugmann, Thomas “A Guided Tour Across the Boundaries
of Learning Recursive Languages” in Jantke, K.P.; Lange, S. (eds) Algorithmic Learning for
Knowledge-Based Systems, Lecture Notes in Artificial Intelligence, Vol. 961, Springer,
Berlin, pp. 193-262, 1995.

[Zilberstein 1995] Zilberstein, S. “Models of Bounded Rationality. A concept paper” AAAI Fall
Symposium on Rational Agency, Cambridge, Massachusetss, November 1995.

[Zilberstein 1996] Zilberstein, S. “Resource-bounded reasoning in intelligent systems” Computing
Survey 28(4), 1996.

[Zilberstein 1999] S. Zilberstein and the Resource-Bounded Reasoning Lab. “What is resource-
bounded reasoning?” http://anytime.cs.umass.edu/Home.html

[Zurek 1989a] Zurek, W.H. "Thermodynamic cost of computation, algorithmic complexity and the
information metric" Nature, 341:119-124, 1989.

[Zurek 1989b] Zurek, W.H. "Algorithmic randomness and physical entropy" Phys. Rev., A40:4731-
4751, 1989.

[Zuse 1991] Zuse, H.: Software Complexity: Measures and Metrics, Berlin, Germany: Walter de Gruyter,
1991.

[Zytkow 1993] Zytkow, J.M. “Introduction: Cognitive Autonomy in Machine Discovery” in Special
Issue on Machine Discovery, Machine Learning, 12 (1-3), 1993.

Appendix C. References

337

337

338 José Hernández Orallo - Doctoral Dissertation

 338

Appendix

D. Acronyms

Entre deux mots il faut choisir le moindre.

Paul Valéry (1871 - 1945)

Many acronyms appear in this dissertation. The intention has been to give the full
meaning the first time the acronym appears in the text but, in some cases, there can
be a long space between the first appearance and the second one. Therefore, a listing
of all them is included here with their correspondence or a brief explanation.

AC: Computational Accepter.

AI: Artificial Intelligence

AILP: Abductive Inductive Logic Programming.

ALP: Abductive Logic Programming [Kakas et al. 1993].
ANN: Artificial Neural Networks.

ATP: Automatic Theorem Proving.

B: Generally, the Background Knowledge.

CBR: Case-Based Reasoning.

CRC: Cyclic Redundancy Code.

DBMS: Database Management System.

DS: Computational Deterministic Derivational (or simply Deductive) System.

Appendix D. Acronyms

339

339

E−−−−: Generally, the Negative Evidence.

E: Generally, the Evidence.

E+: Generally, the Positive Evidence.

EBL: Explanation-Based Learning.

G(xy): Computational Information Gain from y to x.

GD: Generalisation Degree.

H: Generally, the Hypothesis.

ID3: successful machine learning algorithm [Quinlan 1986, 1990].

ILP: Inductive Logic Programming.

IQ: Intelligence Quotient.

K(xy): Relative Kolmogorov Complexity of x given y.

KDD: Knowledge Discovery in Databases.

Kt(xy): Relative Levin Complexity of x given y.
LGG: Least General Generalization.

LLL: A new field called “language, learning and logic” which combines logic, ML and NLP.

LT(�): Function weighing the length of a program with the log. of its computational cost.

MBR: Model Based Reasoning.

MC: Model Complexity.

MDL: Minimum Description Length.

ML: Machine Learning.

MLE: Maximum Likelihood Estimator. Also, Minimal Length Encoding.

MML: Minimum Message Length.

NLP: Natural Language Processing.

NP: Non Polynomial.

P: Generally, a Program. Also Polynomial (computable in polynomial time).

PAC-learning: Probably Approximate Correct learning.

PC: Proof Complexity.

RL: Reinforcement Learning.

RLGG: Relative Least General Generalization.

SAT problem: to decide whether a Boolean formula in conj. normal form is satisfiable.

SED: Shortest Explanatory Description.

SLD: Selective linear resolution for definite clauses.

SLDNF: SLD with Negation as Failure.

T: Generally, a Theory.

340 José Hernández Orallo - Doctoral Dissertation

 340

TG(xy): True Information Gain from y to x.

TP: Computational Theorem Prover.

TT: Turing Test. An Imitation Game, for ascertaining humanity.

V(xy): Absolute (Time Ignoring) Information Gain from y to x.

Appendix D. Acronyms

341

341

342 José Hernández Orallo - Doctoral Dissertation

 342

Appendix

E. Index

A

Abduction, VII; IX; 19; 21; 22; 39; 40; 51; 137;

142; 242; 303; 306; 308; 312; 313; 315; 317;

320; 322; 324; 327; 329; 331; 333; 336

Abductive Logic Programming (ALP), 40; 337

Aesthetics, VIII; 45; 76; 78; 80; 92

Analogy, VII; IX; 23; 41; 129; 145; 146; 169;

235; 313; 319; 328

Angluin, 32; 35; 94; 196; 226; 235; 306

Aristotle, 19; 21; 22; 25

Artificial Intelligence (AI), 10; 21; 27; 28; 36;

41; 78; 84; 224; 225; 233; 234; 235; 238; 240;

284; 303; 305; 306; 310; 312; 315; 317; 319;

320; 322; 324; 325; 326; 328; 329; 330; 332;

334; 336; 337

Artificial Neural Networks, 130; 169; 337

Authentic Learning, 94

Automatic Theorem Proving (ATP), 8; 12; 13;

19; 26; 27; 28; 30; 83; 117; 128; 237; 337

Axiomatic System, VIII; 113

B

Background Knowledge, 51; 146; 337

Bacon, 21; 31; 319

Bayes, 5; 31; 33; 307

Beneyto, I; XIX; XX

Boris, XX

C

Carnap, 1; 4; 5; 14; 25; 31; 43; 44; 48; 49; 50;

88; 98; 121; 122; 156; 157; 160; 170; 197;

306; 309

Case-Based Reasoning (CBR), 46; 52; 119; 121;

337

Chaitin, XX; 10; 25; 35; 114; 193; 225; 227;

290; 292; 295; 296; 297; 309; 310; 313

Coherence, 327; 333

Combination of Inference Processes, VII; 50

Comprehensibility, 11; 229; 230; 320; 332

Compression, 227; 289; 320; 322; 324; 328; 333;

334; 335

Confirmation, V; VII; IX; 47; 160

Consilience, IX; 11; 34; 129; 140; 143; 145; 159;

169; 203; 302; 303; 316

Cussens, 6; 7; 311

D

Data Quality, XI; 245; 247; 250; 317

Database, 248; 308; 311; 312; 337

Appendix E. Index

343

343

Database Managament System (DBMS), 248;

337

Deduction, V; VII; VIII; IX; 1; 10; 19; 22; 24;

26; 29; 44; 83; 87; 98; 121; 125; 127; 128;

154; 158; 169; 281; 283; 307; 309; 311; 312;

314; 320; 322; 328; 329; 330; 331; 336

Discovery, VIII; XI; 83; 91; 248; 285; 311; 312;

313; 318; 321; 322; 323; 325; 327; 328; 329;

331; 333; 336; 338

E

Eager Methods, VII; VIII; 45; 119

Effort, VII; 45; 116; 236

Entropy, 97; 289; 314; 315; 316; 331

Enumeration Algorithm, 201; 296; 298

Exception, IX; 99; 177; 179

Explanation, IX; 14; 40; 46; 119; 132; 173; 199;

310; 311; 312; 313; 316; 321; 322; 324; 327;

328; 329; 330; 331; 338

Explanation-Based Learning, 40; 119; 121; 131;

310; 338

Explicitness, VIII; 77

F

Factorisation, X; 234

Flach, XX; 21; 39; 40; 41; 44; 48; 49; 50; 303;

306; 313; 315; 317; 324

G

Genetic Programming, 201; 319; 321

Gödel, 24; 25; 43; 114; 285; 303; 309; 316; 317;

318; 323

Gold, 31; 35; 94; 127; 226; 255; 286; 315

H

Hempel, 3; 34; 48; 49; 50; 84; 160; 170; 316

Hernández, I; XVII; XX; 145; 169; 203; 220;

232; 235; 238; 240; 241; 242; 250; 286; 302;

303; 316; 317

Hintikka, VIII; XIII; XV; 1; 4; 5; 10; 11; 12; 13;

25; 44; 55; 57; 76; 83; 98; 111; 112; 113; 124;

127; 128; 159; 284; 285; 291; 318

Hofstadter, XX; 41; 42; 197; 227; 228; 318

Homo Sapiens, 226; 232; 237; 238

Hume, 5; 21; 129

I

ID3, 33; 95; 338

Induction, V; VII; VIII; X; 1; 2; 19; 22; 30; 35;

43; 83; 87; 88; 121; 125; 127; 128; 189; 192;

203; 219; 281; 303; 306; 308; 311; 312; 313;

315; 316; 317; 318; 324; 325; 326; 328; 329;

334; 336

Inductive Logic Programming (ILP), VII; 4; 12;

15; 19; 35; 36; 37; 38; 39; 40; 45; 119; 121;

125; 127; 130; 132; 201; 202; 207; 219; 221;

234; 250; 257; 274; 287; 305; 306; 309; 311;

314; 317; 319; 320; 321; 322; 325; 326; 327;

332; 334; 336; 337; 338

Inference, I; V; VII; VIII; 1; 12; 13; 19; 35; 37;

42; 45; 47; 50; 55; 56; 83; 100; 109; 119; 123;

129; 281; 289; 303; 306; 312; 315; 316; 317;

318; 319; 327; 328; 331; 333

Inference Paradox, V; 281

Information Gain, I; V; VIII; IX; X; 13; 53; 56;

59; 62; 64; 68; 70; 80; 83; 88; 90; 94; 95; 96;

98; 101; 127; 162; 173; 194; 203; 206; 218;

281; 303; 316; 338; 339

Intellectual Abilities, X; 15; 223

Intelligence, 8; 21; 123; 223; 225; 226; 227; 233;

285; 303; 305; 306; 307; 308; 309; 310; 311;

313; 314; 315; 317; 318; 319; 320; 321; 322;

323; 324; 325; 326; 327; 328; 329; 330; 331;

332; 333; 334; 335; 336; 337; 338

Intelligence Quotient, 15; 31; 223; 224; 226;

227; 228; 232; 234; 243; 274; 286; 338

Intelligibility, 11

Intensionality, V; IX; X; XI; 14; 15; 144; 173;

185; 189; 194; 196; 201; 203; 221; 250; 260;

281; 285

Interestingness, VIII; IX; 76; 78; 79; 159

Intermediate Information, 13; 83; 122; 128

K

Kant, 21; 44

Kirsh, VIII; 55; 58; 71; 76; 77; 78; 80; 92; 94;

320

Knowledge Discovery in Databases (KDD), XI;

248; 249; 250; 251; 313; 338

Knowledge Systems, 334

Kolmogorov, V; VI; XII; XIII; XV; 1; 3; 5; 7;

10; 14; 16; 18; 35; 57; 59; 68; 69; 80; 88; 97;

112; 173; 175; 186; 188; 189; 192; 199; 227;

281; 282; 284; 289; 290; 291; 292; 293; 294;

295; 297; 299; 303; 320; 322; 334; 338

Kolmogorov Complexity, V; XII; XIII; 1; 3; 5; 7;

10; 14; 16; 18; 57; 59; 69; 80; 88; 112; 173;

186; 188; 189; 192; 199; 227; 281; 284; 289;

290; 291; 293; 294; 297; 299; 303; 320; 322;

334; 338

Kuhn, 31; 32; 33; 217; 321

344 José Hernández Orallo - Doctoral Dissertation

 344

L

Lazy Methods, VII; VIII; 45; 119; 305

Least General Generalization (LGG), 338

Levin, XIII; XV; 1; 3; 8; 18; 35; 58; 64; 80; 218;

227; 298; 322; 331; 338

Levin Complexity, 18; 80; 338

Llull, 26; 201; 223

M

Machine Learning (ML), XI; 31; 35; 36; 50; 83;

131; 201; 240; 246; 254; 255; 256; 260; 262;

276; 306; 308; 309; 310; 311; 312; 313; 315;

316; 317; 320; 322; 324; 325; 326; 327; 328;

329; 330; 331; 332; 333; 334; 336; 338

Maintenance, 245; 264; 272

Mathematics, IX; 27; 159; 318; 320; 321; 323;

328; 334; 336

MDL. See Minimum Description Length

Michalski, 21; 39; 50; 324

Minimum Description Length (MDL), VII; X;

XIV; XVI; 5; 9; 13; 14; 15; 32; 33; 34; 35; 42;

45; 48; 50; 76; 83; 84; 88; 89; 90; 91; 93; 94;

98; 122; 127; 129; 130; 131; 132; 133; 145;

147; 162; 169; 173; 175; 178; 186; 189; 190;

192; 193; 195; 196; 199; 201; 202; 203; 204;

205; 212; 213; 215; 216; 217; 219; 221; 222;

260; 284; 285; 289; 290; 296; 302; 317; 328;

338

Modal Logic, 321

Model Based Reasoning (MBR), 45; 119; 121;

285; 303; 316; 317; 338

Monotonic, 312; 326; 331

Muggleton, XX; 4; 5; 35; 36; 38; 39; 43; 103;

132; 196; 202; 204; 205; 219; 274; 325; 326;

332

N

Natural Language, 274; 310; 332; 336; 338

Natural Language Processing (NLP), 274; 338

Neus, XIX; XX; 232; 235; 238; 240; 242; 285;

303; 317

Noise, IX; 143

O

Oblivion Criterion, 91; 164; 211

Occam’s razor, 5; 9; 42; 84; 132; 186; 191; 192;

308

Optimality, VIII; 13; 45; 53; 74; 114; 283

P

PAC Learning, 32; 94; 132; 226; 287; 306; 311;

320; 338

Paradoxes, V; 281

Partition, 183

Pattern, X; 186; 312; 318; 334

Philosophy of Science, XIX; 306; 318; 326; 331

Pietarinen, VIII; 76; 118; 128

Pinto, XIX; 317

Plato, 21; 34; 196; 335

Plausibility, 2; 11; 90; 193; 229

Popper, XIII; XV; 1; 4; 5; 6; 7; 11; 13; 31; 32;

34; 49; 50; 83; 84; 88; 90; 91; 118; 119; 127;

128; 162; 191; 194; 283; 287; 295; 329

Potential, XII; 299; 314; 325

Projectible Description, X; 186; 188

Psychometrics, 223; 226; 228; 240

Q

Query Learning, 226; 235

Quine, 3; 10; 44; 329

Quinlan, VIII; 33; 37; 76; 94; 95; 96; 118; 127;

128; 207; 285; 329; 338

R

Randomness, 289

Reasoning, V; VII; XII; 2; 19; 41; 45; 53; 54;

119; 124; 281; 285; 295; 303; 306; 307; 309;

310; 312; 313; 314; 315; 316; 317; 318; 319;

324; 327; 328; 329; 330; 332; 336; 337; 338

Redundancy, 184; 337

Representation Gain, VIII; 13; 53; 71; 81; 283

Rissanen, 32; 88; 132; 260; 307; 330

S

Schmidhuber, VIII; 35; 52; 76; 78; 79; 94; 133;

219; 331

Shannon, 4; 5; 95; 97; 291; 331

Simplification, VIII; 13; 53; 72

Software, XI; 245; 253; 257; 307; 308; 309; 310;

311; 313; 314; 316; 319; 322; 323; 326; 327;

329; 332; 333; 334; 335; 336

Solomonoff, 32; 35; 88; 91; 189; 290; 295; 298;

332

Stability, 191

Subpart, IX; 182

Subprogram, IX; 183; 184

Appendix E. Index

345

345

T

Thagard, XX; 9; 34; 42; 84; 140; 235; 318; 333

True Information Gain, VIII; 70; 80; 339

Turing, XIV; XVI; 18; 24; 31; 35; 66; 85; 175;

182; 187; 223; 224; 225; 235; 238; 239; 240;

241; 285; 287; 289; 290; 291; 296; 300; 302;

307; 308; 314; 316; 317; 321; 324; 325; 331;

333; 334; 339

Turing Test (TT), 223; 224; 225; 238; 239; 240;

287; 302; 308; 314; 316; 317; 321; 331; 339

U

Universitat de València, I; XIX

Universitat Politècnica de València, XIX

Unquestionability, X; 193; 223; 228; 229

V

Validation, IX; XI; 144; 256; 260

W

Whewell, 11; 34; 140; 159; 169; 284; 287; 335

