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Abstract. This paper defines in aformal and computational way the no-
tion d ‘conglience, a term introduced by Whewell in 1847 for the
evaluation d scientific theories. Informally, asit has been used to dete, a
model or theory is ‘consilient’ if it is predictive, explanatory and unifies
the evidence Centred in a constructive framework, where new terms can
be introduced, an initial and more dasscd approac based ontheinverse
idea of separation soon manifests the problem of the introduction o
fantastic concepts to urify disparate sub-theories. Our second approach
is constructed by using a detail ed evaluation d the relationship between
the theory and the evidence by means of reinforcement propagation.
With the use of reinforcement, fantastic concepts can be better deteded
and the role of consilience for theory construction and revision can be
spedalised for different inference medhanisms like explanatory indic-
tion, abduction, deduction and analogy.
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1. Introduction

In 1847 Whewell coined anew term, ‘consilience, to comprise the relevant
basicsin scientific theories: prediction, explanation and unfication d fields.
Since d of these aiteria ae desirable, consilience was informally intro-
duced as a fundamental iswue for theory construction and modelli ng. How-
ever, a unified, forma and computational definition has not been presented
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to date, integrating in a mnsistent way prediction, explanation and urifica
tion of fields, allowing the growth and revision of knowledge.

Throughou the paper we will ded with the process of non-deductive or
hypotheticd inference, i.e., the reasoning process usually represented by
Science (or by everyday leaning and explanation). Given some evidence E
compaosed of fads, the goal is to oltain atheory T which explains E or/and
allows the prediction d future fads. A ‘bias’ B isthe expressve framework
where hypotheses can be constructed on. The complexity of learning is di-
redly related with the spedaficity of the bias and the badground knavledge
B, which is usually expressed under the same bias as the hypotheses.

Usually, we use the term theory to comprise the hypothesis H jointly with
the necessary auxiliary concepts from the badkground knavliedge. We will
use the term model to designate atheory which introduces new constructed
terms or extends the vocabulary of the bias. For this to happen the bias must
be flexible enough to allow the aeaion d concepts (also known as predi-
cate invention) and it must perform some kind of abstraction.

Our godl is predsely to define ameasure of consilience for constructive
languages, where new terms can be introduced or created. The ideaof unifi-
cdion is graightforward when the hypathesis vocabulary is included in the
vocabulary of the badkground knaviedge and the evidence because
‘fantastic’ new concepts are restricted. The same does nat hold, however, for
constructive languages.

In the following, we will work with representational |anguages which are
composed o rules, comporents, chunks or whatever other recognisable
parts. Finally, we will denote that a thedrgovers an exampkeby T = e

2. Distinguishing Consilience

Before trying to define consilience we must distinguish it from other very
related concepts.

There ae evaluation criteria which are intrinsic, i.e., the theory can be
evaluated by exclusively regarding to the hypathesis, like the MDL principle
(or Occan’s Razor formali sed). However, consilienceis a ‘structural’ crite-
rion, becaise it studies how the hypothesis covers the evidence More con-
cretely, consilienceis mainly charaderised by a unified covering of the evi-
dence or, in misgelled words, the esidence is ‘consiliated’ by the theory.
There ae different ways to evaluate this ‘ concili ation’. One can measure the
consili ence of a hypothesis H alone (more gpropriate for induction) or one
can measure the consilience of the B (more appropriate for abduction).



Thefirst trait of consilienceis prediction. The predictions of a ansili ent
theory must be plausible, so fantasies sioud be aroided. Moreover, it must
allow the prediction d future caes, so extensional definitions shoud be not
permitted. This has motivated some cnfusion ketween intensiondity, seen
as an intolerance of partial extensionality or exceptions, and consilience
The following example darifies the difference between intensiondity and
consilience:

ExAmMPLE 2.1.
Given the evidenceE={ f, f,, ... f1o } andthe foll owing hypotheses: T=
{ 1, 1 }, T= {t”} and T'= { 't t 3}

Evidence
T

We can observe these two different (but closely related) notions:

T andT” areintensional They have no exceptions.

e TandT” are separable. They are wonsilient
The secondtrait of consilienceis explanation. Therefore cnsili ence has a-
ways been aluded in the mntext of scientific explanation a explanatory in-
duction (Harman 1965,Hempel 1965, Ernis 1968. Moreover, ore of the
important traits of abduction, seen as the inferenceto the best explanation, is
that the aductive hypothesis (known as assumption) must be the most
‘compliant’ with the badkground knavledge. This can be identified with the
nation d ‘coherence (Thagard 1978. We will discuss more deeply the re-
lationship between coherence and consilience in section 8.2.

The third and more distinguished trait in consilience, urificdion, is very
close to the principle of ‘Common Cause’ (Reichenbach 1956. However,
consilienceis a aiterion which dees not ded with causation a time depend-
encies, just ‘uses dependencies, and that simply prefers ‘unifying’ theories
over seprate ones.



3. Towards Computational Consilience

From a semantic point of view, atheory is charaderised by the data it cov-
ers. Whatever the representational |anguage, we will denate with Ext(T) the
extension, scope or covering of atheory T, i.e, Ext(T) ={ f: T=f}. Some-
times, the terminalogy is confuse, becaise, for logicd theories, Ext(T) corre-
sponds to the minimaerbrandmodelof T.

From this elementary start point, we @uld investigate apurely semantic
definition of consilience, based on its contrary notion, the idea of separation.

DEFINITION 3.1. Separable Theories

A theory T is n-separable in the partition d different theories I = { Ty,

To, ..., To }iff EX(T) =0, 2, , EX(T;) and, _; , Ex{(T;) # O.

However, from this definition, we can spedalise the nation d separation in
many different ways, giving the followingodesof separation:
I.  non-emptyExactly as [BFINITION 1.
Il. non-subsetDEr 1 andl; j-1., (P, O P; O i5j).
lII. disjoint DEF1 andd; j= 1.0 (P; n Pj=00).
IV. non-subsegxtensionDEF. 1 andd; j=1., (Ex(P,) O Ext(P;) O i=j).
V. disjointextensionDerF 1 andl; j - 1.n (Ex(P,) n Ex{(P;) =0).
If we define atheory as consilient iff it is not separable, the precaling five
modes give five characterisations of consilient theories.

ExAMPLE 3.2. Using Horn Theorigs

Pi={ p(@). q(X) :- r(X). r(a). } is sparable for all modes into I = { {
p(@) }, {a(X) :- r(X). r(a) }}-

Po={ q(X) :- r(X). r(b). } is not separable for modes ii to v.

Ps={ q(X) :- r(X). p(X) :- r(X). r(a). } isnon-subset (extension) separa-
bleinto M ={{ g (X) :- r(X). r(@ }, { p(X) :- r(X). r(a). }} butitis
not disjoint (extension) separable.

Ps={ q(@). p(X) :- q(X). p(a } is nonsubset (extension) and dgoint
separableinto N ={{ q(a). p(X) :- q(X). }, {p(d.}} butitisnact
digoint extension separable. But thereis partition1’ ={{ q(a). } {
p(X) :- q(X). p(a). } } which it is.

Ps={ s(X) :- p(X), a(b). p(X) :- q(X). t(X) :- p(X), a(a) } is non-subset
(extension) and dgoint extension separable into N = { { s(X) :-
p(X), a(b). p(X) :- a(X) }, { p(X) - a(X), t(X) :- p(X), &) } but it
Is not disjoint separable.

Several problems can be deteded from the previous example. Modes |, I,
and IV are so strict that they do nd allow any moduarity at al. On the con
trary, modes Ill, 1V, and V can be ‘conciliated’ in a tricky way. In example



3.2, for instance, P; can be ‘conciliated’ by a fantastic concept f into P’ 1= {
p(@) :-f. q(X) :- r(X), f. r(a):-f. f. } for modes iii-iv.

In our opinion, a strictly semantic goproach is not sufficient for defining
consilience. Accordingly, the next section presents a structural approach.

4. Reinforcement

For our goa of defining consilience it is more gpropriate to establish in
further detail the relation between the hypothesis and the evidence Further-
more, it would be more acairate to talk abou a degreeof consili enceinstead
of ‘consilient’ or ‘unconsilient’ theories.

In (Hernandez-Orallo 1999 several theory analysis and evaluation meas-
urements are presented based onthe ideaof reinforcement. The ideaof rein-
forcement to validate atheory has been suppated by many psychoogicd
studies on ortology and epistemology. Whatever the gpproach to knowvledge
construction, the anstruction a revision d knowledge must come from a
gain o loss respedively, of reinforcement, also knovn as appartionment of
credit (Holland et a. 1986. From (Hernandez-Orallo 1999, we alapt in this
sedion the basic constructions to compute the reinforcement degree for a
given theory, depending on past observations, and the evidence from the
point of view of the evidence itself.

DerFINITION 4.1. Necessary Component
Given atheory, arule or comporentr; isnecessary foreiff Tz=e 0O T
-{n}#e
DEFINITION 4.2. Reduced Theory
A theory T isreduced for eiff T=e O-0r; O T such that it isnot nec
essary foe.
We will say that two sub-theories S;, S; are dternative models of T for e iff
SOT,SOT,S#SandS, S arereduced for e. From here, we can define
Modelge, T) as the set of alternative models for exangpléth respect td'.
DEFINITION 4.3. Alternative Models
Modelge, T) = { SO T : Sis reduced foe }.
We canparticularise definition 4.3. by definingodels(e, T) as the set of
alternative models for exampdavith respect ta that contairr. Famally,
DEFINITION 4.4. Alternative Models which contain
Models(e, T) = { SC Models(e, T) Or O S}.
With these definitions, it is straightforward to define reinforcement.
DEFINITION 4.5. Pure Reinforcement.



The pure reinforcement pp(r) of aruler from atheory T wrt. to some
given observation E = { ey, &, ..., &, } is computed as the number of
models of g where r is used. If there ae more than ore model for a
given g, al of them are redkoned. In the same model, a rule is com-
puted once. Formally,
PP(r)= Zi=1.n cardModels(e, T))
DEFINITION 4.6. Normalised Reinforcement
p(r) = 1- 2770,
The last definition is motivated by the convenience of a measure between 0
and 1.

From these definitions ome properties are proven in (Hernandez-Orall o
1999. For instance the most reinforced theory is not the shortest one in
general, bu, in the limit, simplicity is a good criterion to oltain consilience
However it is important to remark that, somehow surprisingly, even some
kind o redundancy (investment) does not necessarily imply a loss of rein-
forcement ratio.

Nonetheless this measure of reinforcement of the theory could urfairly
increase by the introduction o fantastic concepts. The rationale relies on the
fad that an invented rule, used in every other rule of the theory, could un-
justifiably increese the reinforcement ratio of atheory. Sinceit is difficult to
deted whether these rules are invented o not, simplicity is a reasonable ai-
terion to avoid these fantastic concepts. However, there is a different way
out to measure the validationt. the data

DEFINITION 4.7. Reinforcemenivrt. the Data.
The course x(f) of agiven fad f wrt. a theory is computed as the prod-
uct of al the reinforcements p(r) of all therulesr used in the model of f.
If aruleis used more than orce, it is computed orce If f has more than
one model, we select the greatest course. Formally,
X(f) = maxsomodeigr, n { Mrosp(r) }
With this definition, it is proven in (Hernandez-Orallo 1999 that no fantas-
tic rule can be alded in the previous way, bu the good poperties of the
original definition are still preserved.

5. Selection Criteria

Once the grounds of the theory are ensured by the measurement of the
course of the evidenceinstead of the normali sed reinforcement of the theory,
we can construct different seledion criteria. The first ideais to seled the
theory T with the greaest mean of the courses of al the data (evidence E)
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presented so far, denoted by mx(T,E). If the language is expressble enough
there is aways a theory for every evidence (just chocse every example a an
extensional rule) and this extensional theory has my(T,E) = 0.5. In the fol-
lowing we will say that a theory orthyiff my(T,E) = 0.5.

In explanatory induction, havever, it is not sufficient to force agrea
mean. In order to oltain a more mmpensated theory, a geometric mean can
be used instead,. Even more, any anomaly shoud be banned. Consequently,
one would dscad theories where afad has a ourse vaue less than the
mean divided by an intensionalitpnstant.

The foll owing example shows the use of m. However, other of the aite-
ria which have been commented could also be used.

EXAMPLE 5.1. {usingequational theorigs
Consider the following evidenal—-e10

E={ e: e(4)- true, e: e(12)- true,
es e(3) - false, ey €e(2) - true,
e e(7) - false, e e(7) - false,
e e(20) - true, es. €(0) - true,
€. 0(3) - true, e 0(2) - false }
where natural numbers are represented as e.g. s(s(s(0))) means 3.
Te={ ra:e(s(s(X))- e(X) :7 0.992
ra: €(0) - true :5 0.969
ras: €(s(0))- false :3 0.875
raa: 0(s(s(X))-» o(X) :2 0.75
ras: 0(0) - false 1 05
rs6. 0(s(0)) - true 1 05}

The murses are x(ey, &, €4, €7, €3) = 0.992 - 0.96% 0.961,x(e3, €5, €5)
=0.992 - 0.875 0.868,X(e9) = 0.75 - 0.5= 0.375and x(ey0) = 0.75 -
0.5 =0.375. The mean cournsg is 0.8159.

To={ rpw e(s(s(X))- e(X) 9 0.998
rpe: €(0) - true :6 0.984
rns. €(s(0)) - false 4 0.938
rna: 0(X) - not(e(X)) :2 0.75
rps. Not(true) - false 1 0.5
rpe. Not(false)- true :1 0.5}

The murses are (€1, €, €4, €7, €g) = 0.998 - 0.984 0.982,x(e3, €5, €5)
=0.998 - 0.938& 0.936,x(e) =0.75 - 0.5 - 0.998 - 0.938 0.351and



X(e10) = 0.75 - 0.5 - 0.998 - 0.9840.368. The mean course my is

0.8437.
This example provides more insight in our goa of defining consilience T,
can be split withou lossof reinforcement because there ae no shared rules
between the definition d odd and the definition o evan. However T, has
been more ‘conciliated’ by the use of a new invented term (in this case ne-
gation), which makes that it canna be separated withou loss of reinforce
ment. The following section formalises this idea.

6. Computational Consilience

The idea of separation is still necessary for any definition of consilience:
DEFINITION 6.1.
A theory T is divisible wrt. an evidenceE iff 0Ty, T, : T, O T, T, O T
andT; # T, suchthatleDE: Ty =elT,=e.
However, it is not sufficient, as we have seen. We will use the following
notationE; ={ elE: Ty xe}, E,={ elJE:Tox=e}, Eio=E; n E, and
finally we will use the term Sx(T; O T,, E) to denote mx(Ty, Ey) - [card(E;)
= %2 -card(Eqp)] + mx(T2, E) - [card(Ez) — ¥z -card(Eyo)].
DEFINITION 6.2.
A theory T is consilient wrt. an evidence E iff there does nat exist a
partition Ty, T, such thatSy(T, O T,, E) = mx(T, E) - card(E).
In ather words, atheory T is consili ent wrt. an evidence E iff there does not
exist a bi-partition PO (T), such that every example of E is gill covered
separately without loss of reinforcement
For example 5.1, Ty is divisible into Tia = { ra1, Faz, a3z} and Toa = { raq,
Fas, Fas } and Sx(T1a 0 Toa, E) =0.9261-[8-% -3 +0.375:[2-%-Q =
8.159= mx(T,, E) - 1Q In thisway, T, is nat consilient. On the contrary, it
can be shown that there is no partition d Ty, to make true the disequality of
definition 6.2.
The next example shows that consilience is again a delicate notion:
ExampLE 6.1. (Using Horn theorigs
Consider the following extensional theory T={ p. q. } for the foll owing
simpletheory E={ p, q }. Asexpeded, mx(T, E) =(0.5+0.5/2=0.5
and by using the partition T;={ p. }, T.={ Q. } iseasy to show that it is
not consilient.
The trick is again the addition o a new fantastic rule f in the following
way: T'= {p:-f. g-f. f }. Aswe have said, the mean course is robust
to thiskind d tricks, and it is clealy lower: mx(T’, E) = (0.5 - 0.75+



0.5 0.7%/ 2 =0.375.However, the only partition which is now poss-
ble, T1={p:-f. T}, To={q:f.f.} givesthat Sx(T'1 O T',, E)=0.25-
[1-%-Q+0.25[1-%-Q=0.5<mx(T",E) - 2.Theresult isthat T’
is consilient!

This example can be interpreted in two ways. If one has T and tries to
make it consilient by using a fantastic concept, she would get an important
deaease in my(T', E) enowgh for discarding T'. On the other hand, if one
considers T from scratch (withou knowing T), she @uld be deded by the
illusion that T" is a good consilient theory if these invented concepts were
difficult to detect.

It is important to redise that definition 6.2.is reliable; independently
from whether the unifying concept would be fantastic or nat, the theory is
properly caosilient.

The dtermath harmonises with the dasdcd rationale of the plausibility
of atheory: it depends on the intuiti on, intelli gence or whatever other ability
to unwll fantasies by comparing the airrent theory with ather competing
theories. The advantage of our measures of mean course and consili ence
based on reinforcement is that the first one avoids fantastic concepts, so
giving an approximation to plausibility, which must be weighed up with
consilience.

The following example shows the use of my and consiliencein the on-
text of abduction and badkground knavledge. In this case, invented concepts
are more difficult to introduceif the badground knavledge caana be mod-
fied by adding a fantastic rule.

EXAMPLE 6.2. (Using Horn theorigs
Let us suppcse a ‘linguisticdly debatable” badkground knavledge B,
although we assume that it is completely validatedr&B p(r) = 1.
B={ rpi: European(X) :- Spanish(X)
rnz: European(X) :- Portuguese(X)
rps: European(X) :- French(X)
rns: European(X) :- Belgian(X)
rps: French-speaking(X) :- French(X)
rpe. French-speaking(X) :- Walloon(X), Belgian(X)
ry7: English-speaking(X) :- British(X)
rps: Portuguese-speaking(X) :- Portuguese(X)
rpe: Spanish-speaking(X) :- Spanish(X)
rpio: Spanish-speaking(X) :- Mexican(X) }
Given the following evidences, some hypotheses cabbteced:
E; ={ e European(Mauro), e, Portuguese-gaking(Mauro) }



h]_ =K mX(B+h1, El) =05
h, = { Portuguese(Mauro). } myx(B+hy, E;) = 0.75
Moreoverh; is consilientwrt. E;.
E.={ es: European(Luis), e, Spanish-speaking(Luis) }
h;= E m)((B+h3, Ez) =05
h, = { Spanish(Luis). } myx(B+hy, E2) = 0.75
hs = { Mexican(Luis). European(Luis). } my(B+hs, E) = 0.5
Only hy is consilient
Es={ e: European(Daniel), e French-speaking(Daniel) }
hs = E4 my(B+hg, E3) = 0.5
h; = { French(Daniel). } myx(B+hz, E3) = 0.75
hg = { Walloon(Daniel). Belgian(Daniel). }  my(B+hg, E3) = 0.625
Both h; andhg are consilient.
E,s={ es European(Steve), e English-speaking(Steve) }
hg= Es my(B+hg, E4) = 0.5
hyo = { British(Sue). European(Sue). } myx(B+hyo, E4) = 0.5
h;; = { British(Sue). European(X):-British(X). gnx(B+h;1,E4) = 0.625
In this last case, only hy; is consilient, and it shows that an extension
can to B can be made with new rulesin order to cover the evidencein a
consilient way.
However, the example shows that in many cases my is paositively related to
consilience, so it is a good criterion to guide knowledge aedion and revi-
sion. Abduction hes been naturally incorporated as a speda case of ex-
planatory induction, where, in general, the hypatheses are factual (athough
in the examples hy; includes nonfadua ones and it can also be cnsidered
an abduction).
Finally, definition 6.2can be parameterised by introducing a @nsili ence
factor:
DEFINITION 6.3.
The degreeof consilience of atheory T wrt. an evidenceE is defined as
the minimum red number k such that there exists a partition Ty, T, such
that:k - Sx(T. O Ty, E) =2 mx(T, E) - card(E).
From the computational point of view, bah my and consilience degree
shoud be computed jointly, in order to reduce the number of partitions
which are to be examined.
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7. Inference Processes

Explanatory induction hes been distinguished as the major processto oltain
consili ent theories. Consilience can play an important role in induction wn-
der this schema:
Explanatory Induction:
Background Knowledgempty or useduxiliarily.
Evidence E; andE,.
Process Construct a unified theot for E; andE,.
Where A shoud comply with the restrictions of consilience and dausibility
(mx).
Similarly, as we have seen in the examples of the previous ®dion, ab-
duction fits natwally by a more important use of the background knowledge:
Abduction:
Background Knowledge factb entailsE; andE..
EvidenceE; andE,.
Process Assumeb to ensure consilience.
Although induction and abduction are recognised as the basic processes in
scientific discovery, there is an inference processwhich is the fundamental
mechanism for obtaining consili ent theories, analogy. The reason is smple:
analogy extrads a @mmon superstructure between two situations, and this
‘shared’ superstructure is reinforced by both situations.
Analogy:
Background Knowledgé entailskE; andc entailsEs,.
EvidenceE; andE,.
Process Extrad simil arities between b and ¢ into a new super-
structure a in order to oltain a wnsili ent theory composed of
a, b andc.
We can state that analogy favours consilience.
Theorem 7.1.If b entails E;, ¢ entalls E,, b does not entail E; and ¢
does naot entail E,, thenew theory T={ b’,c’,a} suchthat T;={ b’,a}
= E; and T,={C', a} = E, and no daher proper subset of T covers any
example, thefl is consilient.
Proaf. Sinceno aher proper subset of T covers any example but T; and
T,, then there is only one possble partition to study consilience {Tj,
T,}. Since E; and E; are non-empty, then mx(a, E;) < mx(a, E; O E) >
mx(a, E;), and then Sy(T, O T, E) < mx(T, E; O E) - card(E; 0 E).
From definition 6.2T is consilientd
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Once a@ain, analogy, as it has defined, alows the introduction o fantastic
concepts. In order to talk abou a ‘red’ analogy, some information must be
shared between b and ¢ and moved into a. In ather words, b’ and ¢’ shoud
be simplified wrt. b and c. This can be related with reinforcement and ex-
tended from simple cwmporents like b and ¢ to sub-theories composed of
many rules or congments.
DEFINITION 7.2. Non-fictitious Analogy
Consider atheory T covering E, i.e., [elJE, T = e, which contains two
sub-theories T; and T,, which cover E; O E and E; O E, respedively. A
nonfictitious analogy is the alditionto T of a new super-theory A, and
the modificaion d Ty and To into Ty and T’ such that T = ((T/ Ty) /
T)OAOT,0T, coversE, i.e UOelE, T'= e with the aditional
condtions that mx(T", E) = mx(T, E) and T" must be cnsilient wrt. E;
andE,.
This definitionis more acordant with classcd computational approades to
analogy Kling 1971, Winston 1992).

Finally, there is another processwhich is important for obtaining consil-
ience If the theory is not omniscient, i.e., everything that can be ever de-
ducdl is effedively deduced by the system, we have that deduction can be
also a source of consilience.

Non-omniscient Deduction:
Background Knowledge: b entails E;, ¢ entails E, and a. No
relation is still established amobgc anda.
Evidence E; andE,.
Process Show that entails bottb andc.
It isimportant to highlight the diff erence between norromniscient deduction
and computation (or deterministic proof systems). The first one can be in-
formative and credive andit can conred two urrelated things, so increasing
reinforcement, and, in many cases, it can urify separate theories. In this way,
induction and abduction shoud na be seen as inverse processes of deduc-
tion, in terms of information gan. The deductive-nomologica model of ex-
planatory induction introduced in 1949 ly Hempel and Oppenheim (Hempel
1965, can be better seen as a computational-nomologicd one, because avy
inference process like induction, deduction, abduction and analogy takes
place in a compational system.
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8. Related Concepts

In the beginning we have cmmented on some related concepts to consil-
ience, espedally intensionality and coherence In this ®dion we study in
further detall the differences and similarities, once ®nsilience has been
more concretely defined.

8.1. Intrinsic Exceptions and Consilience

It iseasy to define anintrinsic exception a extensional patch asaruler with
p=0.5,i.e arulethat just covers one example e. Nonetheless we must dis-
tinguish between:
» completely extensiond exceptions, when r does nat use any rule from
the theory to coveg,
« partially extensional exceptions, whenses other rules to descrike
It is posgble to establish clealy the relation between the former and consil -
ience. The latter, however, are also usually conflicting to consilience.
Theorem 8.1.1f aworthy theory T for an evidence E hasaruler with p
= 0.5, and completely extensional, thiers not consilient.
Proof. Just choase the partition T =T —rand T, = T. Sincep = 0.5
then r is only used by one example e. Sinceit is a completely exten-
sional exception, we have that r does not use ay rule from T to cover
€, S0 p'(r)) = p(r;) for al r; O T;. Let n be the number of the examples
of the evidence E. Hence mx(Ty, E1) = [mx(T, E) - n — x(&,T) ] / (n-1)
=[mx(T,E) -n-%]/(n-1) =[mx(T,E) -n+mx(T,E) —-mx(T,E) —-%
1/(n-1)=mx(T, B + [mx(T, B - %] / (n-1).
From definition 6.2the inequality simplifies as follows:
SX(T1 0 Tz, B) =mx(Ty, By) - [ cardEy) — card€an)/2 |+ mx(Tz, E) - [
card€z) - card€2)/2 ] = { mx(T, B) + [mx(T, B) =%2] /(n-1)} -[(n-
D-mn-1)/2]1+mx(T,B - [n-(M-1)/2]1=mx(T, B - [ (n-1) - (n-1)/2
+n—-(n=1)/2]+[mx(T,B -%]-[ 0©-1)- (n-21)/2]/(n-1) =mx(T,
E)-[n]+[mx(T,B -%]/2.
Since T is worthy, then my(T, E) = 0.5.,and finally Sx(T, O Ty, E) =
mx(T, E) -n=mx(T, E) - card(E)
This theorem justifies the asoidance of exceptions in aorder to oltain consil -
ient theories. In the processof theory construction, if a new evidenceis cov-
ered extensiondly, the theory necessary loses its consilience and revision
must be dore in order to ‘conciliate’ this new evidence with the previous
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theory. This means that, for explanatory induction, nd only prediction errors
or anomalies (consistency) but consilience can trigger theory revision.

8.2. Consilience and Coherence

Coherence has been advocaed as the key iswue in scientific explanation
(Thagard 197§ and abduction (Ng. and Moorey, 1990. An explanation is
coherent with the evidence and the badkground knavledge if it is the most
compatible, in the way that it confirms more positive items from the bad-
ground knavledge and the evidence, and it adivates less negative items.
Recently, this ideahas been identified with constraint satisfadion (see eg.
Thagard and Verbeurgt, 1997 @ Thagard 1998, although the term has been
generally used in a broader seriBeagard 1989).

Despite their close relationship, we think that our definition d consil-
ience has two dff erentiated isues wrt. coherence First, the ideaof unifica
tion is not explicitly present in coherence, and, seoondy, the ideaof coher-
ence & constraint satisfadion is difficult to extend to constructive lan-
guages, because new introduced o invented terms are difficult to identify
with pasitive or negative @nstraints (in some way, the vocabulary is ex-
tended with new constraints).

In our opinion, we think that our measurement of mean course my
matches this nation d ‘constructive’ coherence. To be more predse, how-
ever, ou definition shoud be extended with negative reinforcement. Conse-
guently, coherence and consilience would be @wnreded in the same way as
we discussed that mean course and consilience were connected.

9. Conclusions

In this paper we have aldressed formally and computationally the notion o
consilience for constructive languages. Pure semantic gpproades based on
model partition resent many problems of introduction d fantastic concepts.
A second approach based onreinforcement all ows further detail on the rela-
tion etween hypothesis and evidence, and these fantastic concepts are much
more easier to detect.

Different inference processs have been re-understood in the context of
consilient theory construction. Explanatory induction, abduction, analogy
and even deduction are valuable tools for obtaining consilient theories.

The most important result is that consili ence has been related to and df-
ferentiated from many other classcd nations in explanatory induction and
scientific discovery, like avoidance of anomalies and coherence Moreover,

14



it has been shown that, under consilience @nsiderations, theory revision
shoud also be triggered by unconsilient parts and nd only by inconsisten-
cies or anomalies.
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