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Abstract. This paper defines in a formal and computational way the no-
tion of ‘ consili ence’ , a term introduced by Whewell i n 1847 for the
evaluation of scientific theories. Informally, as it has been used to date, a
model or theory is ‘consili ent’ if it is predictive, explanatory and unifies
the evidence. Centred in a constructive framework, where new terms can
be introduced, an initial and more classical approach based on the inverse
idea of separation soon manifests the problem of the introduction of
fantastic concepts to unify disparate sub-theories. Our second approach
is constructed by using a detailed evaluation of the relationship between
the theory and the evidence by means of reinforcement propagation.
With the use of reinforcement, fantastic concepts can be better detected
and the role of consili ence for theory construction and revision can be
specialised for different inference mechanisms li ke explanatory induc-
tion, abduction, deduction and analogy.
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1. Introduction
In 1847, Whewell coined a new term, ‘consili ence’ , to comprise the relevant
basics in scientific theories: prediction, explanation and unification of f ields.
Since all of these criteria are desirable, consili ence was informally intro-
duced as a fundamental issue for theory construction and modelli ng. How-
ever, a unified, formal and computational definition has not been presented
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to date, integrating in a consistent way prediction, explanation and unifica-
tion of fields, allowing the growth and revision of knowledge.

Throughout the paper we will deal with the process of non-deductive or
hypothetical inference, i.e., the reasoning process usually represented by
Science (or by everyday learning and explanation). Given some evidence E
composed of facts, the goal is to obtain a theory T which explains E or/and
allows the prediction of future facts. A ‘bias’ β is the expressive framework
where hypotheses can be constructed on. The complexity of learning is di-
rectly related with the specificity of the bias and the background knowledge
B, which is usually expressed under the same bias as the hypotheses.

Usually, we use the term theory to comprise the hypothesis H jointly with
the necessary auxili ary concepts from the background knowledge. We will
use the term model to designate a theory which introduces new constructed
terms or extends the vocabulary of the bias. For this to happen the bias must
be flexible enough to allow the creation of concepts (also known as predi-
cate invention) and it must perform some kind of abstraction.

Our goal is precisely to define a measure of consili ence for constructive
languages, where new terms can be introduced or created. The idea of unifi-
cation is straightforward when the hypothesis vocabulary is included in the
vocabulary of the background knowledge and the evidence because
‘f antastic’ new concepts are restricted. The same does not hold, however, for
constructive languages.

In the following, we will work with representational languages which are
composed of rules, components, chunks or whatever other recognisable
parts. Finally, we will denote that a theory T covers an example e by T = e

2. Distinguishing Consilience
Before trying to define consili ence we must distinguish it from other very
related concepts.

There are evaluation criteria which are intrinsic, i.e., the theory can be
evaluated by exclusively regarding to the hypothesis, li ke the MDL principle
(or Occam’s Razor formalised). However, consili ence is a ‘structural’ crite-
rion, because it studies how the hypothesis covers the evidence. More con-
cretely, consili ence is mainly characterised by a unified covering of the evi-
dence or, in misspelled words, the evidence is ‘consili ated’ by the theory.
There are different ways to evaluate this ‘concili ation’ . One can measure the
consili ence of a hypothesis H alone (more appropriate for induction) or one
can measure the consilience of the H + B (more appropriate for abduction).
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The first trait of consili ence is prediction. The predictions of a consili ent
theory must be plausible, so fantasies should be avoided. Moreover, it must
allow the prediction of future cases, so extensional definitions should be not
permitted. This has motivated some confusion between intensionality, seen
as an intolerance of partial extensionality or exceptions, and consili ence.
The following example clarifies the difference between intensionality and
consilience:

EXAMPLE 2.1.
Given the evidence E= { f1, f2, … f10 } and the following hypotheses: T=
{ t1, t2 }, T’= { t’’} and T’’= { t’1, t’2, t’3}

T’
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t ’’3
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Evidence

f2f1f1
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We can observe these two different (but closely related) notions:
• T’ and T’’  are intensional. They have no exceptions.
• T and T’’  are separable. They are not consilient.

The second trait of consili ence is explanation. Therefore consili ence has al-
ways been alluded in the context of scientific explanation or explanatory in-
duction (Harman 1965, Hempel 1965, Ernis 1968). Moreover, one of the
important traits of abduction, seen as the inference to the best explanation, is
that the abductive hypothesis (known as assumption) must be the most
‘compliant’ with the background knowledge. This can be identified with the
notion of ‘ coherence’ (Thagard 1978). We will discuss more deeply the re-
lationship between coherence and consilience in section 8.2.

The third and more distinguished trait in consili ence, unification, is very
close to the principle of ‘Common Cause’ (Reichenbach 1956). However,
consili ence is a criterion which does not deal with causation or time depend-
encies, just ‘uses’ dependencies, and that simply prefers ‘unifying’ theories
over separate ones.



�

3. Towards Computational Consilience
From a semantic point of view, a theory is characterised by the data it cov-
ers. Whatever the representational language, we will denote with Ext(T) the
extension, scope or covering of a theory T, i.e., Ext(T) = { f : T = f }. Some-
times, the terminology is confuse, because, for logical theories, Ext(T) corre-
sponds to the minimal Herbrand model of T.

From this elementary start point, we could investigate a purely semantic
definition of consilience, based on its contrary notion, the idea of separation.

DEFINITION 3.1. Separable Theories
A theory T is n-separable in the partition of different theories Π = { T1,
T2, ... , Tn } iff Ext(T) = ∪i =1..n Ext(Ti) and ∀i =1..n Ext(Ti) ≠ ∅.

However, from this definition, we can specialise the notion of separation in
many different ways, giving the following modes of separation:

I. non-empty: Exactly as DEFINITION 1.
II. non-subset: DEF 1 and ∀i..j = 1..n (Pi  ⊆ Pj ⇒ i=j).
III . disjoint: DEF 1 and ∀i..j = 1..n (Pi ∩ Pji= ∅).
IV. non-subset extension: DEF. 1 and ∀i..j= 1..n (Ext(Pi) ⊆ Ext(Pj) ⇒ i=j).
V. disjoint extension: DEF 1 and ∀i..j = 1..n (Ext(Pi) ∩ Ext(Pj) = ∅).

If we define a theory as consili ent iff it is not separable, the preceding five
modes give five characterisations of consilient theories.

EXAMPLE 3.2. (Using Horn Theories):
P1= { p(a). q(X) :- r(X). r(a). } is separable for all modes into Π = { {

p(a) } , { q(X) :- r(X). r(a) }}.
P2= { q(X) :- r(X). r(b). } is not separable for modes ii to v.
P3= { q(X) :- r(X). p(X) :- r(X). r(a). } is non-subset (extension) separa-

ble into Π = {{ q (X) :- r(X). r(a) }, { p (X) :- r(X). r(a). }} but it is
not disjoint (extension) separable.

P4= { q(a). p(X) :- q(X). p(a) } is non-subset (extension) and disjoint
separable into Π = { {  q(a). p(X) :- q(X). },  { p(a). } } but it is not
disjoint extension separable. But there is partition Π’ = { { q (a). } {
p(X) :- q(X). p(a). } } which it is.

P5= { s(X) :- p(X), q(b). p(X) :- q(X). t(X) :- p(X), q(a) } is non-subset
(extension) and disjoint extension separable into Π = { { s(X) :-
p(X), q(b). p(X) :- q(X) }, { p (X) :- q(X), t(X) :- p(X), q(a) } but it
is not disjoint separable.

Several problems can be detected from the previous example. Modes I, II,
and IV are so strict that they do not allow any modularity at all . On the con-
trary, modes III , IV, and V can be ‘concili ated’ in a tricky way. In example
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3.2, for instance, P1 can be ‘concili ated’ by a fantastic concept f into P’ 1= {
p(a) :- f. q(X) :- r(X), f. r(a):- f. f. } for modes iii-iv.

In our opinion, a strictly semantic approach is not suff icient for defining
consilience. Accordingly, the next section presents a structural approach.

4. Reinforcement
For our goal of defining consili ence, it is more appropriate to establish in
further detail the relation between the hypothesis and the evidence. Further-
more, it would be more accurate to talk about a degree of consili ence instead
of ‘consilient’ or ‘unconsilient’ theories.

In (Hernandez-Orallo 1999) several theory analysis and evaluation meas-
urements are presented based on the idea of reinforcement. The idea of rein-
forcement to validate a theory has been supported by many psychological
studies on ontology and epistemology. Whatever the approach to knowledge
construction, the construction or revision of knowledge must come from a
gain or loss, respectively, of reinforcement, also known as apportionment of
credit (Holland et al. 1986). From (Hernandez-Orallo 1999), we adapt in this
section the basic constructions to compute the reinforcement degree for a
given theory, depending on past observations, and the evidence from the
point of view of the evidence itself.

DEFINITION 4.1. Necessary Component
Given a theory, a rule or component r i is necessary for e iff T = e   ∧   T
− { r i } ≠ e.
DEFINITION 4.2. Reduced Theory
A theory T is reduced for e iff T = e  ∧ ¬∃ r i ∈ T such that it is not nec-
essary for e.

We will say that two sub-theories S1, S2 are alternative models of T for e iff
S1 ⊂ T, S2 ⊂ T, S1 ≠ S2 and S1, S2 are reduced for e. From here, we can define
Models(e, T) as the set of alternative models for example e with respect to T.

DEFINITION 4.3. Alternative Models
Models(e, T) = { S ⊂ T : S is reduced for e }.

We can particularise definition 4.3. by defining Modelsr(e, T) as the set of
alternative models for example e with respect to T that contain r. Formally,

DEFINITION 4.4. Alternative Models which contain r:
Modelsr(e, T) = { S ⊂ Models (e, T) ∧ r ∈ S }.

With these definitions, it is straightforward to define reinforcement.
DEFINITION 4.5. Pure Reinforcement.
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The pure reinforcement ρρ(r) of a rule r from a theory T wrt. to some
given observation E = { e1, e2, …, en } is computed as the number of
models of ei where r is used. If there are more than one model for a
given ei, all  of them are reckoned. In the same model, a rule is com-
puted once. Formally,

ρρ(r)= Σi=1..n card(Modelsr(ei, T))
DEFINITION 4.6. Normalised Reinforcement

ρ(r) = 1 − 2−ρρ(r).
The last definition is motivated by the convenience of a measure between 0
and 1.

From these definitions some properties are proven in (Hernandez-Orallo
1999). For instance, the most reinforced theory is not the shortest one in
general, but, in the limit, simplicity is a good criterion to obtain consili ence.
However it is important to remark that, somehow surprisingly, even some
kind of redundancy (investment) does not necessarily imply a loss of rein-
forcement ratio.

Nonetheless, this measure of reinforcement of the theory could unfairly
increase by the introduction of fantastic concepts. The rationale relies on the
fact that an invented rule, used in every other rule of the theory, could un-
justifiably increase the reinforcement ratio of a theory. Since it is diff icult to
detect whether these rules are invented or not, simplicity is a reasonable cri-
terion to avoid these fantastic concepts. However, there is a different way
out to measure the validation wrt. the data:

DEFINITION 4.7. Reinforcement wrt. the Data.
The course χ(f) of a given fact f wrt. a theory is computed as the prod-
uct of all the reinforcements ρ(r) of all the rules r used in the model of f.
If a rule is used more than once, it is computed once. If f has more than
one model, we select the greatest course. Formally,

χ(f) = max S ⊂ Models(f, T) { Πr ∈ S ρ(r) }
With this definition, it is proven in (Hernandez-Orallo 1999) that no fantas-
tic rule can be added in the previous way, but the good properties of the
original definition are still preserved.

5. Selection Criteria
Once the grounds of the theory are ensured by the measurement of the
course of the evidence instead of the normalised reinforcement of the theory,
we can construct different selection criteria. The first idea is to select the
theory T with the greatest mean of the courses of all the data (evidence E)
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presented so far, denoted by mχ(T,E). If the language is expressible enough
there is always a theory for every evidence (just choose every example as an
extensional rule) and this extensional theory has mχ(T,E) = 0.5. In the fol-
lowing we will say that a theory is worthy iff mχ(T,E) ≥ 0.5.

In explanatory induction, however, it is not suff icient to force a great
mean. In order to obtain a more compensated theory, a geometric mean can
be used instead,. Even more, any anomaly should be banned. Consequently,
one would discard theories where a fact has a course value less than the
mean divided by an intensionality constant.

The following example shows the use of mχ. However, other of the crite-
ria which have been commented could also be used.

EXAMPLE 5.1. (using equational theories)
Consider the following evidence e1–e10:

E = { e1: e(4) → true, e2: e(12) → true,
e3: e(3) → false, e4: e(2) → true,
e5: e(7) → false, e6: e(7) → false,
e7: e(20) → true, e8: e(0) → true,
e9: o(3) → true, e10: o(2) → false }

where natural numbers are represented as e.g. s(s(s(0))) means 3.

Ta= { ra1: e(s(s(X)) → e(X) : 7 0.992
ra2: e(0) → true : 5 0.969
ra3: e(s(0)) → false : 3 0.875
ra4: o(s(s(X)) → o(X) : 2 0.75
ra5: o(0) → false : 1 0.5
ra6: o(s(0)) → true : 1 0.5 }

The courses are χ(e1, e2, e4, e7, e8) = 0.992 · 0.969 = 0.961, χ(e3, e5, e6)
= 0.992 · 0.875 = 0.868, χ(e9) = 0.75 · 0.5 = 0.375 and χ(e10) = 0.75 ·
0.5 = 0.375. The mean course mχ is 0.8159.

Tb= { rb1: e(s(s(X)) → e(X) : 9 0.998
rb2: e(0) → true : 6 0.984
rb3: e(s(0)) → false : 4 0.938
rb4: o(X) → not(e(X)) : 2 0.75
rb5: not(true) → false : 1 0.5
rb6: not(false) → true : 1 0.5 }

The courses are χ(e1, e2, e4, e7, e8) = 0.998 · 0.984 = 0.982, χ(e3, e5, e6)
= 0.998 · 0.938 = 0.936, χ(e9) = 0.75 · 0.5 · 0.998 · 0.938 =  0.351 and
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χ(e10) = 0.75 · 0.5 · 0.998 · 0.984 = 0.368. The mean course mχ is
0.8437.

This example provides more insight in our goal of defining consili ence. Ta

can be split without loss of reinforcement because there are no shared rules
between the definition of odd and the definition of even. However Tb has
been more ‘concili ated’ by the use of a new invented term (in this case ne-
gation), which makes that it cannot be separated without loss of reinforce-
ment. The following section formalises this idea.

6. Computational Consilience
The idea of separation is still necessary for any definition of consilience:

DEFINITION 6.1.
A theory T is divisible wrt. an evidence E iff ∃T1, T2 : T1 ⊂ T, T2 ⊂ T
and T1 ≠ T2 such that ∀e ∈ E : T1 = e ∨ T2 = e .

However, it is not suff icient, as we have seen. We will use the following
notation E1 = { e ∈ E : T1 = e } , E2 = { e ∈ E : T2 = e } , E12 = E1 ∩ E2, and
finally we will use the term Sχ(T1 ⊕ T2, E) to denote mχ(T1, E1) · [card(E1)
− ½ · card(E12)] + mχ(T2, E2) · [card(E2) − ½ · card(E12)].

DEFINITION 6.2.
A theory T is consili ent wrt. an evidence E iff there does not exist a
partition T1, T2 such that: Sχ(T1 ⊕ T2, E) ≥ mχ(T, E) · card(E).

In other words, a theory T is consili ent wrt. an evidence E iff there does not
exist a bi-partition P∈℘(T), such that every example of E is still covered
separately without loss of reinforcement.

For example 5.1, Ta is divisible into T1a = { ra1, ra2, ra3 } and T2a = { ra4,
ra5, ra6 } and Sχ(T1a ⊕ T2a, E) = 0.9261 · [8 − ½ · 0] + 0.375 · [2 − ½ · 0] =
8.159 = mχ(Ta, E) · 10. In this way, Ta is not consili ent. On the contrary, it
can be shown that there is no partition of Tb to make true the disequality of
definition 6.2.

The next example shows that consilience is again a delicate notion:
EXAMPLE 6.1. (using Horn theories)
Consider the following extensional theory T= { p. q. } for the following
simple theory E= { p, q }.  As expected, mχ(T, E) = (0.5 + 0.5) / 2 = 0.5
and by using the partition T1= { p. }, T2= { q. } is easy to show that it is
not consilient.
The trick is again the addition of a new fantastic rule f in the following
way: T’=  { p:- f. q:- f. f }. As we have said, the mean course is robust
to this kind of tricks, and it is clearly lower: mχ(T’ , E) = (0.5 · 0.75 +
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0.5 · 0.75) / 2 = 0.375. However, the only partition which is now possi-
ble, T’1= { p:- f. f }, T’2= { q:-f. f. } gives that Sχ(T’1 ⊕ T’2, E)= 0.25 ·
[1 − ½ · 0] + 0.25 · [1 − ½ · 0] = 0.5 < mχ(T’ , E) · 2. The result is that T’
is consilient!

This example can be interpreted in two ways. If one has T and tries to
make it consili ent by using a fantastic concept, she would get an important
decrease in mχ(T’ , E) enough for discarding T’ . On the other hand, if one
considers T’  from scratch (without knowing T), she could be cheated by the
ill usion that T’  is a good consili ent theory if these invented concepts were
difficult to detect.

It is important to realise that definition 6.2. is reliable; independently
from whether the unifying concept would be fantastic or not, the theory is
properly consilient.

The aftermath harmonises with the classical rationale of the plausibilit y
of a theory: it depends on the intuition, intelli gence or whatever other abilit y
to unveil fantasies by comparing the current theory with other competing
theories. The advantage of our measures of mean course and consili ence
based on reinforcement is that the first one avoids fantastic concepts, so
giving an approximation to plausibilit y, which must be weighed up with
consilience.

The following example shows the use of mχ and consili ence in the con-
text of abduction and background knowledge. In this case, invented concepts
are more diff icult to introduce if the background knowledge cannot be modi-
fied by adding a fantastic rule.

EXAMPLE 6.2. (using Horn theories)
Let us suppose a “linguistically debatable” background knowledge B,
although we assume that it is completely validated, i.e. ∀r∈B ρ(r) = 1.

B= { rb1: European(X) :- Spanish(X)
rb2: European(X) :- Portuguese(X)
rb3: European(X) :- French(X)
rb4: European(X) :- Belgian(X)
rb5: French-speaking(X) :- French(X)
rb6: French-speaking(X) :- Walloon(X), Belgian(X)
rb7: English-speaking(X) :- British(X)
rb8: Portuguese-speaking(X) :- Portuguese(X)
rb9: Spanish-speaking(X) :- Spanish(X)
rb10: Spanish-speaking(X) :- Mexican(X)  }

Given the following evidences, some hypotheses can be abduced:
E1 = { e1: European(Mauro), e2: Portuguese-speaking(Mauro) }
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h1 =  E1 mχ(B+h1, E1) = 0.5
h2 = { Portuguese(Mauro). } mχ(B+h2, E1) = 0.75

Moreover h2 is consilient wrt. E1.
E2 = { e3: European(Luis), e4: Spanish-speaking(Luis) }
h3 =  E2 mχ(B+h3, E2) = 0.5
h4 = { Spanish(Luis). } mχ(B+h4, E2) = 0.75
h5 = { Mexican(Luis). European(Luis). } mχ(B+h5, E2) = 0.5

Only h4 is consilient
E3 = { e5: European(Daniel), e6: French-speaking(Daniel) }
h6 =  E4 mχ(B+h6, E3) = 0.5
h7 = { French(Daniel). } mχ(B+h7, E3) = 0.75
h8 = { Walloon(Daniel). Belgian(Daniel). } mχ(B+h8, E3) = 0.625

Both h7 and h8 are consilient.
E4 = { e6: European(Steve), e6: English-speaking(Steve) }
h9 =  E4 mχ(B+h9, E4) = 0.5
h10 = { British(Sue). European(Sue). } mχ(B+h10, E4) = 0.5
h11 = { British(Sue). European(X):-British(X). }mχ(B+h11,E4) = 0.625

In this last case, only h11 is consili ent, and it shows that an extension
can to B can be made with new rules in order to cover the evidence in a
consilient way.

However, the example shows that in many cases mχ is positively related to
consili ence, so it is a good criterion to guide knowledge creation and revi-
sion. Abduction has been naturally incorporated as a special case of ex-
planatory induction, where, in general, the hypotheses are factual (although
in the examples h11 includes non-factual ones and it can also be considered
an abduction).

Finally, definition 6.2 can be parameterised by introducing a consili ence
factor:

DEFINITION 6.3.
The degree of consili ence of a theory T wrt. an evidence E is defined as
the minimum real number k such that there exists a partition T1, T2 such
that: k · Sχ(T1 ⊕ T2, E) ≥ mχ(T, E) · card(E).

From the computational point of view, both mχ and consili ence degree
should be computed jointly, in order to reduce the number of partitions
which are to be examined.
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7. Inference Processes
Explanatory induction has been distinguished as the major process to obtain
consili ent theories. Consili ence can play an important role in induction un-
der this schema:

Explanatory Induction:
Background Knowledge: empty or used auxiliarily.
Evidence: E1 and E2.
Process: Construct a unified theory A for E1 and E2.

Where A should comply with the restrictions of consili ence and plausibilit y
(mχ).

Similarly, as we have seen in the examples of the previous section, ab-
duction fits naturally by a more important use of the background knowledge:

Abduction:
Background Knowledge: a fact b entails E1 and E2.
Evidence: E1 and E2.
Process: Assume b to ensure consilience.

Although induction and abduction are recognised as the basic processes in
scientific discovery, there is an inference process which is the fundamental
mechanism for obtaining consili ent theories, analogy. The reason is simple:
analogy extracts a common superstructure between two situations, and this
‘shared’ superstructure is reinforced by both situations.

Analogy:
Background Knowledge: b entails E1 and c entails E2.
Evidence: E1 and E2.
Process: Extract similarities between b and c into a new super-

structure a in order to obtain a consili ent theory composed of
a, b’ and c’.

We can state that analogy favours consilience.
Theorem 7.1. If b entails E1, c entails E2, b does not entail E1 and c
does not entail E2, the new theory T ={ b’ , c’ , a } such that T1= { b’ , a }
= E1 and T2={ c’ , a } = E2, and no other proper subset of T covers any
example, then T is consilient.
Proof. Since no other proper subset of T covers any example but T1 and
T2, then there is only one possible partition to study consili ence {T1,
T2}. Since E1 and E2 are non-empty, then mχ(a, E1) < mχ(a, E1 ∪ E2) >
mχ(a, E2), and then Sχ(T1 ⊕ T2, E) < mχ(T, E1 ∪ E2) · card(E1 ∪ E2).
From definition 6.2, T is consilient. �
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Once again, analogy, as it has defined, allows the introduction of fantastic
concepts. In order to talk about a ‘real’ analogy, some information must be
shared between b and c and moved into a. In other words, b’  and c’  should
be simpli fied wrt. b and c. This can be related with reinforcement and ex-
tended from simple components like b and c to sub-theories composed of
many rules or components.

DEFINITION 7.2. Non-fictitious Analogy
Consider a theory T covering E, i.e., ∀e∈E, T = e, which contains two
sub-theories T1 and T2, which cover E1 ⊂ E and E2 ⊂ E, respectively. A
non-fictitious analogy is the addition to T of a new super-theory A, and
the modification of T1 and T2 into T’1 and T’2 such that T’ = ((T / T1) /
T2) ∪ A ∪ T’1 ∪ T’2  covers E, i.e. ∀e∈E, T’ = e, with the additional
conditions that mχ(T’ , E) ≥ mχ(T, E) and T’  must be consili ent wrt. E1

and E2.
This definition is more accordant with classical computational approaches to
analogy (Kling 1971, Winston 1992).

Finally, there is another process which is important for obtaining consil -
ience. If the theory is not omniscient, i.e., everything that can be ever de-
duced is effectively deduced by the system, we have that deduction can be
also a source of consilience.

Non-omniscient Deduction:
Background Knowledge: b entails E1, c entails E2 and a. No

relation is still established among b, c and a.
Evidence: E1 and E2.

Process: Show that a entails both b and c.
It is important to highlight the difference between non-omniscient deduction
and computation (or deterministic proof systems). The first one can be in-
formative and creative and it can connect two unrelated things, so increasing
reinforcement, and, in many cases, it can unify separate theories. In this way,
induction and abduction should not be seen as inverse processes of deduc-
tion, in terms of information gain. The deductive-nomological model of ex-
planatory induction introduced in 1949 by Hempel and Oppenheim (Hempel
1965), can be better seen as a computational-nomological one, because any
inference process like induction, deduction, abduction and analogy takes
place in a computational system.
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8. Related Concepts
In the beginning we have commented on some related concepts to consil -
ience, especially intensionality and coherence. In this section we study in
further detail the differences and similarities, once consili ence has been
more concretely defined.

8.1. Intrinsic Exceptions and Consilience
It is easy to define an intrinsic exception or extensional patch as a rule r with
ρ = 0.5, i.e. a rule that just covers one example e. Nonetheless, we must dis-
tinguish between:

• completely extensional exceptions, when r does not use any rule from
the theory to cover e,

• partially extensional exceptions, when r uses other rules to describe e.
It is possible to establish clearly the relation between the former and consil -
ience. The latter, however, are also usually conflicting to consilience.

Theorem 8.1. If a worthy theory T for an evidence E has a rule r with ρ
= 0.5, and completely extensional, then T is not consilient.
Proof. Just choose the partition T1 = T − r and T2 = T. Since ρ = 0.5
then r is only used by one example er. Since it is a completely exten-
sional exception, we have that r does not use any rule from T1 to cover
er, so ρ’ (r i) = ρ(r i) for all r i ∈ T1. Let n be the number of the examples
of the evidence E. Hence, mχ(T1, E1) = [mχ(T, E) · n − χ(er,T) ] / (n−1)
= [mχ(T, E) · n − ½ ] / (n−1) = [mχ(T, E) · n + mχ(T, E) − mχ(T, E) − ½
] / (n−1) = mχ(T, E) + [mχ(T, E) − ½] / (n−1).
From definition 6.2, the inequality simplifies as follows:
Sχ(T1 ⊕ T2, E) = mχ(T1, E1) · [ card(E1) − card(E12)/2 ]+ mχ(T2, E2) · [
card(E2) − card(E12)/2 ] = { mχ(T, E) + [ mχ(T, E) − ½] / (n−1) }  · [ (n−
1) − (n−1)/2 ]+ mχ(T, E) · [ n − (n−1)/2 ] = mχ(T, E) · [ (n−1) − (n−1)/2
+ n − (n−1)/2 ] + [ mχ(T, E) − ½ ] · [ (n−1) − (n−1)/2 ] / (n−1) = mχ(T,
E) · [ n ] + [ mχ(T, E) − ½ ] / 2.
Since T is worthy, then mχ(T, E) ≥ 0.5., and finally Sχ(T1 ⊕ T2, E) ≥
mχ(T, E) · n = mχ(T, E) · card(E). �

This theorem justifies the avoidance of exceptions in order to obtain consil -
ient theories. In the process of theory construction, if a new evidence is cov-
ered extensionally, the theory necessary loses its consili ence and revision
must be done in order to ‘concili ate’ this new evidence with the previous
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theory. This means that, for explanatory induction, not only prediction errors
or anomalies (consistency) but consilience can trigger theory revision.

8.2. Consilience and Coherence
Coherence has been advocated as the key issue in scientific explanation
(Thagard 1978) and abduction (Ng. and Mooney, 1990). An explanation is
coherent with the evidence and the background knowledge if it is the most
compatible, in the way that it confirms more positive items from the back-
ground knowledge and the evidence, and it activates less negative items.
Recently, this idea has been identified with constraint satisfaction (see e.g.
Thagard and Verbeurgt, 1997 or Thagard 1998), although the term has been
generally used in a broader sense (Thagard 1989).

Despite their close relationship, we think that our definition of consil -
ience has two differentiated issues wrt. coherence. First, the idea of unifica-
tion is not explicitl y present in coherence, and, secondly, the idea of coher-
ence as constraint satisfaction is diff icult to extend to constructive lan-
guages, because new introduced or invented terms are diff icult to identify
with positive or negative constraints (in some way, the vocabulary is ex-
tended with new constraints).

In our opinion, we think that our measurement of mean course mχ
matches this notion of ‘ constructive’ coherence. To be more precise, how-
ever, our definition should be extended with negative reinforcement. Conse-
quently, coherence and consili ence would be connected in the same way as
we discussed that mean course and consilience were connected.

9. Conclusions
In this paper we have addressed formally and computationally the notion of
consili ence for constructive languages. Pure semantic approaches based on
model partition present many problems of introduction of fantastic concepts.
A second approach based on reinforcement allows further detail on the rela-
tion between hypothesis and evidence, and these fantastic concepts are much
more easier to detect.

Different inference processes have been re-understood in the context of
consili ent theory construction. Explanatory induction, abduction, analogy
and even deduction are valuable tools for obtaining consilient theories.

The most important result is that consili ence has been related to and dif-
ferentiated from many other classical notions in explanatory induction and
scientific discovery, li ke avoidance of anomalies and coherence. Moreover,
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it has been shown that, under consili ence considerations, theory revision
should also be triggered by unconsili ent parts and not only by inconsisten-
cies or anomalies.
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