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Wide Context 
 
Inductive Synthesis of Declarative Programs 
 

Induced
Program

Sample

even(0)

even(ss0)

even(ssssss0)

Induction

Learning
even(0).

even(ssX) :- even(X).

Validation

…
¬even(s0)

Deduction
 

 

Logic Programming    ∩ Machine Learning 
                     �                                      

Inductive Logic Programming (ILP) 
 

Applications: 
• Established: Scientific Theory Formation, Data Mining, Specific 

Industrial Applications (Traffic Control). 

• Promising: NLP, Modelling, Program Synthesis. 
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Specific Trend 
LP Extensions & Combinations 

 CLP, AILP, Planification (EvC, SitC), RL 
Extend ILP to other Declarative Paradigms 

• Functional Programming 
    Based on rewriting (e.g. Haskell, ML). � Olson95 

• Functional Logic Programming 
     Based on residuation (e.g. Escher) � FlaGirLlo98 
     Based on narrowing (e.g. Curry) �  *  

• Higher-Order Frameworks 
  Different rewriting or unification mechanisms. 

�Advantages: 
• Background knowledge can be richer: schemata, biases…   

• More expressive power � More compact theories  

• The relation between deduction & induction can be more 
deeply considered (incompleteness, information-gain…) 

�Drawbacks: 
• Similar efforts and techniques could be scattered among 

different representation mechanisms. 
• In general*, the deduction methods are less efficient or less 

well-established than resolution. 
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Language: 
 

Inductive Functional Logic Programs: 
 

Conditional Rewriting Systems (CRT) 
 with rules of the form:  

l = r ⇐ e1, …, en with n ≥ 0 

+ 
ε-unification 

 
Subsumes LP and Functional Programming. 
 

Narrowing:  
• Sound and complete ε-unification method. 

• More expressive power in comparison to functional 
languages. 

• Better operational behavior in comparison to logic languages.  

• Migration to HOL will be easier than directly from ILP. 
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Narrowing 
 

This work � unconditional case: 

• unrestricted (ordinary) narrowing: 

Narrowing (⊂⊂⊂⊂→→→→             ) pattern-matching� unification 

t ‘narrows’ into t’ (t ⊂→ θ t’) using program P iff 

• u ∈ Onv(t), 

• l = r is a new variant of a rule from P, 

• θ = mgu(tu, l), and    

• t’ =  θ(t[r]u). 
 

Example: program P1={r1: X+0=X. r2: X+sY=s(X+Y) } 

    ⇐ s0 + Z = ss0  u = lhsε, rule r2, θ={X/s0, Z/sY} 

    ⇐ s(s0 + Y) = ss0  u = lhs1, rule r1, θ={X’/s0, Y/0} 

    ⇐ ss0 = ss0   X’’ = X’’ θ={X’’/ss0} 

    ⇐ true         SOL: { Z/s0 } 
 

Unrestricted narrowing is sound and complete wrt. 
canonical programs. 
For this work, we shall only induce canonical programs. 
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Inductive framework 
 

• Evidence E: 
 Positive sample E+ 

 Negative sample E− 

 

• Background Knowledge Theory B: 
 
A program P is a solution to the inductive (or 
learning) problem generated from E iff: 
 

B ∪ P = E+  (posterior sufficiency or completeness) 

B ∪ P ≠≠≠≠  E− (posterior satisfiability or consistency) 
 
Additionally, it is usually supposed 

B ≠≠≠≠  E+  (prior necessity) 

B ≠≠≠≠  E−   (prior satisfiability) 
Also, to approach abduction in an ILP framework: 

P ≠≠≠≠  E+ and only facts can be in P. 
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Hypotheses Selection 
For every E there are infinite many solutions 
 
Criteria for generation and selection: 

• The shortest one (the MDL principle) 
 problems � Non-computable. 

 � It can leave extensional parts. 

• The most specific one (Plotkin’s lgg): 
 problem � P = E+ is a solution. 

• The least specific one: 
 problem � P = T − E− is a solution. 

• The most efficient one: 
 problem  � P = E+ is usually the most 

efficient. 

• The most ‘coherent’ one. No part must be left 
in an extensional way, i.e., all the data must be 
produced by the same ‘main set of rules’. 

 problem � it must be combined with other 
criteria to avoid ‘fantastic’ inductions. 
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Example 1 
• Background Knowledge Theory B: 

 s(X) < s(Y) = X < Y 
 0 < s(Y) = true 
 X < 0 = false 

• Evidence E: (E1
−) s0 + 0 = 0 

(E1
+) 0 + 0 = 0 (E2

−) 0 + 0 = s0 

(E2
+) s0 + s0 = ss0     ←¬ (E3

−) s0 + s0 = s0 

(E3
+) 0 + s0 = s0             = (E4

−) s0 + 0 = ss0 

(E4
+) s(s0 + s0) = sss0  (E5

−) s(0 + 0) = ss0 

(E5
+) s(ss0 + s0) = ssss0 (E6

−) ss0 + s0 = 0 

  (E7
−) s0 = 0 

• Possible solutions: 
P1 = E+ Very specific 
P2 = {X+0 = X, 0+X = X, sX+s0 = ssX} 
P3 = {X+0 = X, X+sY = s(X+Y)} Short and Coherent 

P4 = {X+0 = X, X+s0 = sX} Short 

P5 = {X+Y = X ⇐ Y = 0, X+sY = sX ⇐ Y = 0)} 

P6 = {X+0 = X, X+Y = Y+X ⇐ X<Y, sX+sY = ss(X+Y)} Coherent 
P7 = {X+0 = X, 0+X = X, sX+sY = ss(X+Y)} Efficient 
P8 = {X+0 = X, 0+X = X, sX+sY = s(X+sY)} 
… 
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General heuristics 
No unified criterion for all the applications. 
There is no such thing as “the right hypothesis” 
 

The stop-criteria should be parametrised. 

⇓ 
The search is guided by an optimality factor 

weighting some selected criteria. 
 

Opt(P) = α·LenF(P) + β·CovF+(P) + γ·ConF(P) + 

δ·… 
 

�Advantages: 

• The same generic algorithm can be used for 
different applications. 

• Any information about the supposed ‘true’ 
hypothesis can help to select the different criteria 
and speed up the search. 

 

�Drawbacks: 

• The search cannot be fully optimised (it is difficult 
to prune if the search heuristics are variable) 
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• Hard-completeness results are difficult. 
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Used Criteria 
Opt(P) = LenF(P) + CovF+(P) + ConF(P) 

LenF = syntactical length of rhs. 
 Different ‘weight’: 1 : constants and functors 

   0.5 : variables 
 Example:  Weight({ ssX + sX � s(ssX + 0) } ) = 5.5 

 LenF(P) = −Σe∈P log2Weight(e) 
 

CovF+(P) = card(e∈E+ : P = e )/card(E+)) 
It allows approximate learning. 

 

ConF(P) = 1 if P has only an equation,    otherwise 

ConF(P) = 1 − max(card(e∈E+ : Pi ⊂ P ∧ Pi = e ))/card(E+) 
 Example: 
 P1= { r1, r2, r3} Suppose { r3 } covers e5 

and { r1, r2 }  covers e1, e2, e3, e4 

ConF(P1)= 1/5 � e5 is clearly an exception. 
 

Different Stop Criteria for different applications: 
• If CovF+ = 1 and ConF > dc (desired consilience) � Appropiate 

for program synthesis (perfect data and coherent programs) 

• If dc = 0 and CovF+ = 1 the criterion ≈ MDL principle � No 
information at all about the source. 

• If dc = 0.5 and CovF+ = 0.8, learning a consilient theory in the 
presence of errors (with known error ratio = 0.2). 
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Main mechanisms 
Inverse of matching/substitution � generalisation 
Inverse of narrowing � “inverse narrowing” 

 
Def. 1. Restricted Generalisation (RG) 

Given an equation e ≡ { t = s }, the equation t’ = s’ is a 
restricted generalisation of e iff it is a generalisation, i.e.  

∃θ : t’θ  = t ∧ s’θ  = s 
and it does not include fresh variables in the rhs. 

∀x (x∈Var(s’) ⇒ x ∈ Var(t’)) 
 

Def. 2. Consistent Restricted Generalisation (CRG) 

The equation e = { l1 = r1 } is a CRG w.r.t. E+ and E− and 

the theory T = B ∪ P iff e is a RG for some equation of E+ 

and there does not exist a narrowing chain (s ⊂→ *T∪ e t) 
such that: 

 s=t ∈ E−.   (consistency wrt. E−) 
 
 
 
 

Example: (following Example 1) 
Clause { X’ + 0 = X’ } is a CRG of E+

1 
Clause { X + s0 = sX } is a CRG of E+

2, E+
3, (E+

4), E+
5 



 12

NInverse Narrowing 

Def.3 Inverse Narrowing (←←←←⊃⊃⊃⊃        )  

t ‘conversely narrows’ into t’ (t ←⊃  θ  t’) iff 

• u ∈ O(t), 

• l = r is a new variant of a rule from P , 

• θ = mgu(tu, r), and    

• t’ =  θ(t[l]u). 
 

Reversed Narrowing + CRG = Inverse Narrowing. 
 

Example: 
From the equation ea ={X + s0 = sX}  select t= sX 
We find a new variant {X’ + 0 = X’} from P. 
Two occurrences:  u1 = 1  gives t’1= s(X + 0)  

u2 = ε gives t’2= sX + 0  
giving two equations 

ea,1 ={X + s0 = s(X+0)} 
ea, 2 ={X + s0 = sX+0} 

It is obvious that both narrow into ea using P. 
The same holds after CRG: e’a,1={X + sY = s(X+Y)} 
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NNon-incremental Algorithm 
Two main sets: 

EH: Set of equations, generated from all CRG of E+. 

PH ⊂℘(EH) : set of programs constructed from EH. 

Initially, PH = { {e} : e ∈ EH } 
 

Programs are merged using inverse narrowing 
followed by a CRG. 
 

On each iteration, until all the data are ‘consiliated’: 

• The two most optimal programs are selected, 
provided they cover most of the examples, and they 
have not been merged before. 

• Inverse narrowing is made between all the possible 
occurrences using one equation of each program.  

• The resulting programs which are consistent and 
canonical are added to PH. If not, they can be split. 

 

Several parameters: min, step, inarcomb are 
introduced to temporarily prune the search tree. 
 

Condition for using B: some example does not have 
any program which covers it with good optimality. 
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Example (non-incremental)  
 

• Evidence E: 
 

(E1
+) append([1,2],[3]) = [1,2,3] (E1

−) append([3],[4])=[4,3] 

(E2
+) append([c],[a])=[c,a] (E2

−) append([1,2],[])=[1] 

(E3
+) append([],[4])=[4] (E3

−) append([1,2,3],[4])=[1,2,3,4,5] 

(E4
+) append([a,b],[])=[a,b] (E4

−) append([],[a,b])=[b,a] 
(E5

+) append([a,b,c],[d,e])=[a,b,c,d,e] 
 

• From each example, two (min=2) CRG’s are 
generated with the best optimality: 

 

CRG(E1
+) = { e1: append(.(X,.(Y,[])), Z) = .(X,.(Y,Z)), 

 e2: append(.(X, .(Y,Z)),.(W,Z)) = .(X,.(Y,.(W,Z))) } 
CRG(E2

+) = { e3: append(.(X,[]),Y)=.(X,Y), 
 e4: append(.(X,Y),.(Z,Y)) = .(X,.(Z,Y)) } 
CRG(E3

+) = { e5: append([],X)=X, 
 e6: append(X,.(Y.X)) = .(Y,X) } 
CRG(E4

+) = { e7: append(X,[])=X, 
 e8: append(.(X,.(Y,Z)),Z)=.(X,.(Y,Z)) } 
CRG(E5

+) = { e9: append(.(Y,.(Z,.(W,V))),X)=.(Y,.(Z,.(W,X))), 
 e10: append(.(Y,.(Z,.(W,[]))),X)=.(Y,.(Z,.(W,X))) } 
 

Constructed EH and PH, the best solution is {e1, e3, e5, e9} covering 
E+ (with dreadful optimality and no consilience at all). 
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Example (cont)  
 

• 1st Iteration. 1st Inverse Narrowing Combination. 
 
There is no pair of programs covering 5 or 4 examples. 
Thus, from those programs covering 3 examples, the most 
optimal ones are:  
 

P1 = { append(X,.(Y,[])),Z) = .(X,.(Y,Z)) } covering E1
+, E4

+  
P2 = { append([],X) = X } covering E3

+  
 

giving 3 consistent programs: 
 

Pa = { append(.(X,.(Y,W)), Z) = .(append(W,X),.(Y,Z)), 
  append([],X)=X) } 
Pb = { append(.(X,.(Y,W)), Z) = .(X,.(append(W,Y),Z)), 
  append([],X)=X } 
Pc = { append(.(X,.(Y,W)), Z) = .(X,.(Y,append(W,Z))), 
 append([],X)=X } 
 
Added to PH. The best solution is the same as before.  
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Example (cont)  
 

• 2nd Iteration. 2nd Inverse Narrowing Combination. 
 
Now, we find two programs covering 4 examples: 
 

P’1 = Pa = { e1,1: append(.(X,.(Y,W)), Z) = .(append(W,X),.(Y,Z)), 
  e1,2: append([],X)=X) } covering E1

+, E3
+, E4

+ 
P’2 = { e2,1: append(.(X,[]), Y) = .(X,Y) } covering E2

+  
 

Select the two rules with the highest optimality: e1,2 and e2,1. 
After inverse narrowing and CRG, most of them are 
inconsistent. After ‘splitting’, only one of them results 
consistent and confluent (e1,1 is removed): 
 

Pd = {append(.(X,Z),Y) = .(X, append(Z,Y)), 
          append([], X) = X } 
which covers E+ and has good optimality. 
 
Best Solution: Pd with consilience > 0.5, the stop criterion. 
 

The example shows that if optimality is not used 
heuristically, the method is not feasible in practice. 
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IIncremental Algorithm 
More interactive (the user can stop the sample). 

For each new example which is being presented: 

• If it is a positive example: E+
n, check for every 

program Pi ∈ PH: 
1. HIT (Pi = E+

n): Just recompute the optimalities. 

2. NOT COVERED (Pi ≠≠≠≠  E+
n  ∧ lhs(E+

n) is ↓):  = HIT 
3. ANOMALY: Remove all non confluent and 

inconsistent Pi from PH and prune EH. 

 and we generate all the CRG’s of E+
n

  in EH and 
extend PH with all the new unary programs. 

• If it is a negative example: E−
n, we check the 

consistency for every program Pi ∈ PH and we act 
as in either the HIT or as in the ANOMALY cases. 

 

In any case, the iteration can be ‘reactivated’ until the 
best solution complies with the stop-criterion (or an 
iteration limit is exhausted). 
 

The consilience criterion avoids extensional ‘patches’ 
for the NOT-COVERED case.
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Example (incremental & BK)  
Induce the power function from the product function: 
 

B = {0×X=0, sX×Y=X×Y+Y, X+0=X, X+sY=s(X+Y)} 

BF = { × }  // Only use × and the functors which appear in E. 

 
Example of 9 steps of an interactive session: 
  

1. The first example E1
+ = {ss0 ↑ ss0 = ssss0} is processed. The 

first EH could be enormous and must be pruned.  

2. The second example E1
− = {ss0 ↑ sss0 = ssssssss0} does not 

make any program inconsistent.  

3. The third example E2
+ = {sss0 ↑ ss0 = ssssssss0} is a NOT 

COVERED case and generates new equations, like {X ↑ Y = 

ssssssX} or  {sX ↑ X = sssssssX}. 
Poor optimality � inverse narrowing between { E2

+} and B. 

Program Pa = { X ↑ ss0 = X × X } is generated covering all E+ 
and with good optimality over other solutions. 
It is offered to the user. The user deems it to be too hasty.  

4. Example E2
− = {sss0 ↑ sss0 = ssssssss0} prunes some 

programs but Pa is still the best solution. 



 19

5. Example E3
+ = {sss0 ↑ s0 = sss0} is NOT COVERED by all 

programs. New CRG’s are generated like { X ↑ s0 = X } and 

{ssX ↑ X = ssX }. Until some limit of iterations, the algorithm 
stops because it does not find a consilient program. The 

best one is P5 = { X ↑ s0 = X, X ↑ ss0 = X × X}. 

6. Example E3
−= {ss0 ↑ sss0 = ssss0 } eliminates some 

uninteresting programs. 

7. Example E4
+ = { 0 ↑ sss0 = 0} is NOT COVERED by all 

programs. New CRG’s are generated like { 0 ↑ X = 0 }. 

8. Example E4
− = {sss0 ↑ ss0 = ssss0} eliminates some 

uniteresting programs. 

9. Example E5
+ = {ss0 ↑ 0 = s0} is NOT COVERED by all 

programs. New CRG’s are generated like { X ↑ 0 = s0 } or { 

ss0 ↑ 0 = s0}. The first one is combined with P5 which 

contained { X ↑ ss0 = X × X }. This gives equations like {X ↑ 

sY = (X ↑ Y) × X}, {X ↑ sY = X × (X ↑ Y)} and {X ↑ sY = (X ↑ 

X) × Y}. Some new programs are constructed using them. 
One has very good optimality � the algorithm offers it to 
the user… 

 

Solution guessed at step 9: 
   { X ↑ sY = (X ↑ Y) × X 

      X ↑ s0 = s0 } 
 

The user now considers it’s time to stop.  
Obviously, any future example can be NOT COVERED or even 
can make it inconsistent. 
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Conclusions and Future Work  
 

General framework for the induction 
of functional logic programs. 

 

�Two basic operators are introduced: 

• Consistent Restricted Generalisation 

• Inverse Narrowing 
�The selection criterion is parametrisable. 
 

�Adaptation to the incremental case is immediate 
due to the notion of consilience (a good solution is 
sought earlier than the MDL principle suggests). 

 

Current work: 
• conditional extension: based on balanced 

reinforcement to avoid exceptions as conditions. 

• comparison with other ILP systems. 

Future work:  
• theoretical results on ‘completeness’ and complexity. 

• study of different narrowing techniques (especially 
needed narrowing) to possibly integrate with Curry. 

• higher-order logic. 


