
 1

Inverse Narrowing

for the Induction of

Functional Logic Programs1

J. Hernandez-Orallo & M.J. Ramirez-Quintana

DSIC, Universitat Politècnica de València

Camí de Vera s/n, 46022 València, Spain.

Email: {jorallo,mramirez}@dsic.upv.es

 APPIA-GULP-PRODE 1998 (AGP’98)

 Joint Conference on Declarative Programming

 Corunna, Spain, July 20-23

1 Work partially supported by CICYT under grant TIC 95-0433-C03-03.

 2

Wide Context

Inductive Synthesis of Declarative Programs

Induced
Program

Sample

even(0)

even(ss0)

even(ssssss0)

Induction

Learning
even(0).

even(ssX) :- even(X).

Validation

…
¬even(s0)

Deduction

Logic Programming ∩ Machine Learning
 � 

Inductive Logic Programming (ILP)

Applications:
• Established: Scientific Theory Formation, Data Mining, Specific

Industrial Applications (Traffic Control).

• Promising: NLP, Modelling, Program Synthesis.

 2

Specific Trend
LP Extensions & Combinations

 CLP, AILP, Planification (EvC, SitC), RL
Extend ILP to other Declarative Paradigms

• Functional Programming
 Based on rewriting (e.g. Haskell, ML). � Olson95

• Functional Logic Programming
 Based on residuation (e.g. Escher) � FlaGirLlo98
 Based on narrowing (e.g. Curry) � *

• Higher-Order Frameworks
 Different rewriting or unification mechanisms.

�Advantages:
• Background knowledge can be richer: schemata, biases…

• More expressive power � More compact theories

• The relation between deduction & induction can be more
deeply considered (incompleteness, information-gain…)

�Drawbacks:
• Similar efforts and techniques could be scattered among

different representation mechanisms.
• In general*, the deduction methods are less efficient or less

well-established than resolution.

 3

Language:

Inductive Functional Logic Programs:

Conditional Rewriting Systems (CRT)
 with rules of the form:

l = r ⇐ e1, …, en with n ≥ 0

+
ε-unification

Subsumes LP and Functional Programming.

Narrowing:
• Sound and complete ε-unification method.

• More expressive power in comparison to functional
languages.

• Better operational behavior in comparison to logic languages.

• Migration to HOL will be easier than directly from ILP.

 4

Narrowing

This work � unconditional case:

• unrestricted (ordinary) narrowing:

Narrowing (⊂⊂⊂⊂→→→→) pattern-matching� unification

t ‘narrows’ into t’ (t ⊂→ θ t’) using program P iff

• u ∈ Onv(t),

• l = r is a new variant of a rule from P,

• θ = mgu(tu, l), and

• t’ = θ(t[r]u).

Example: program P1={r1: X+0=X. r2: X+sY=s(X+Y) }

 ⇐ s0 + Z = ss0 u = lhsε, rule r2, θ={X/s0, Z/sY}

 ⇐ s(s0 + Y) = ss0 u = lhs1, rule r1, θ={X’/s0, Y/0}

 ⇐ ss0 = ss0 X’’ = X’’ θ={X’’/ss0}

 ⇐ true SOL: { Z/s0 }

Unrestricted narrowing is sound and complete wrt.
canonical programs.
For this work, we shall only induce canonical programs.

 5

Inductive framework

• Evidence E:
 Positive sample E+

 Negative sample E−

• Background Knowledge Theory B:

A program P is a solution to the inductive (or
learning) problem generated from E iff:

B ∪ P = E+ (posterior sufficiency or completeness)

B ∪ P ≠≠≠≠ E− (posterior satisfiability or consistency)

Additionally, it is usually supposed

B ≠≠≠≠ E+ (prior necessity)

B ≠≠≠≠ E− (prior satisfiability)
Also, to approach abduction in an ILP framework:

P ≠≠≠≠ E+ and only facts can be in P.

 6

Hypotheses Selection
For every E there are infinite many solutions

Criteria for generation and selection:

• The shortest one (the MDL principle)
 problems � Non-computable.

 � It can leave extensional parts.

• The most specific one (Plotkin’s lgg):
 problem � P = E+ is a solution.

• The least specific one:
 problem � P = T − E− is a solution.

• The most efficient one:
 problem � P = E+ is usually the most

efficient.

• The most ‘coherent’ one. No part must be left
in an extensional way, i.e., all the data must be
produced by the same ‘main set of rules’.

 problem � it must be combined with other
criteria to avoid ‘fantastic’ inductions.

 7

Example 1
• Background Knowledge Theory B:

 s(X) < s(Y) = X < Y
 0 < s(Y) = true
 X < 0 = false

• Evidence E: (E1
−) s0 + 0 = 0

(E1
+) 0 + 0 = 0 (E2

−) 0 + 0 = s0

(E2
+) s0 + s0 = ss0 ←¬ (E3

−) s0 + s0 = s0

(E3
+) 0 + s0 = s0  = (E4

−) s0 + 0 = ss0

(E4
+) s(s0 + s0) = sss0  (E5

−) s(0 + 0) = ss0

(E5
+) s(ss0 + s0) = ssss0 (E6

−) ss0 + s0 = 0

 (E7
−) s0 = 0

• Possible solutions:
P1 = E+ Very specific
P2 = {X+0 = X, 0+X = X, sX+s0 = ssX}
P3 = {X+0 = X, X+sY = s(X+Y)} Short and Coherent

P4 = {X+0 = X, X+s0 = sX} Short

P5 = {X+Y = X ⇐ Y = 0, X+sY = sX ⇐ Y = 0)}

P6 = {X+0 = X, X+Y = Y+X ⇐ X<Y, sX+sY = ss(X+Y)} Coherent
P7 = {X+0 = X, 0+X = X, sX+sY = ss(X+Y)} Efficient
P8 = {X+0 = X, 0+X = X, sX+sY = s(X+sY)}
…

 8

General heuristics
No unified criterion for all the applications.
There is no such thing as “the right hypothesis”

The stop-criteria should be parametrised.

⇓
The search is guided by an optimality factor

weighting some selected criteria.

Opt(P) = α·LenF(P) + β·CovF+(P) + γ·ConF(P) +

δ·…

�Advantages:

• The same generic algorithm can be used for
different applications.

• Any information about the supposed ‘true’
hypothesis can help to select the different criteria
and speed up the search.

�Drawbacks:

• The search cannot be fully optimised (it is difficult
to prune if the search heuristics are variable)

 9

• Hard-completeness results are difficult.

 10

Used Criteria
Opt(P) = LenF(P) + CovF+(P) + ConF(P)

LenF = syntactical length of rhs.
 Different ‘weight’: 1 : constants and functors

 0.5 : variables
 Example: Weight({ ssX + sX � s(ssX + 0) }) = 5.5

 LenF(P) = −Σe∈P log2Weight(e)

CovF+(P) = card(e∈E+ : P = e)/card(E+))
It allows approximate learning.

ConF(P) = 1 if P has only an equation, otherwise

ConF(P) = 1 − max(card(e∈E+ : Pi ⊂ P ∧ Pi = e))/card(E+)
 Example:
 P1= { r1, r2, r3} Suppose { r3 } covers e5

and { r1, r2 } covers e1, e2, e3, e4

ConF(P1)= 1/5 � e5 is clearly an exception.

Different Stop Criteria for different applications:
• If CovF+ = 1 and ConF > dc (desired consilience) � Appropiate

for program synthesis (perfect data and coherent programs)

• If dc = 0 and CovF+ = 1 the criterion ≈ MDL principle � No
information at all about the source.

• If dc = 0.5 and CovF+ = 0.8, learning a consilient theory in the
presence of errors (with known error ratio = 0.2).

 11

Main mechanisms
Inverse of matching/substitution � generalisation
Inverse of narrowing � “inverse narrowing”

Def. 1. Restricted Generalisation (RG)

Given an equation e ≡ { t = s }, the equation t’ = s’ is a
restricted generalisation of e iff it is a generalisation, i.e.

∃θ : t’θ = t ∧ s’θ = s
and it does not include fresh variables in the rhs.

∀x (x∈Var(s’) ⇒ x ∈ Var(t’))

Def. 2. Consistent Restricted Generalisation (CRG)

The equation e = { l1 = r1 } is a CRG w.r.t. E+ and E− and

the theory T = B ∪ P iff e is a RG for some equation of E+

and there does not exist a narrowing chain (s ⊂→ *T∪ e t)
such that:

 s=t ∈ E−. (consistency wrt. E−)

Example: (following Example 1)
Clause { X’ + 0 = X’ } is a CRG of E+

1
Clause { X + s0 = sX } is a CRG of E+

2, E+
3, (E+

4), E+
5

 12

NInverse Narrowing

Def.3 Inverse Narrowing (←←←←⊃⊃⊃⊃)

t ‘conversely narrows’ into t’ (t ←⊃ θ t’) iff

• u ∈ O(t),

• l = r is a new variant of a rule from P ,

• θ = mgu(tu, r), and

• t’ = θ(t[l]u).

Reversed Narrowing + CRG = Inverse Narrowing.

Example:
From the equation ea ={X + s0 = sX} select t= sX
We find a new variant {X’ + 0 = X’} from P.
Two occurrences: u1 = 1 gives t’1= s(X + 0)

u2 = ε gives t’2= sX + 0
giving two equations

ea,1 ={X + s0 = s(X+0)}
ea, 2 ={X + s0 = sX+0}

It is obvious that both narrow into ea using P.
The same holds after CRG: e’a,1={X + sY = s(X+Y)}

 13

NNon-incremental Algorithm
Two main sets:

EH: Set of equations, generated from all CRG of E+.

PH ⊂℘(EH) : set of programs constructed from EH.

Initially, PH = { {e} : e ∈ EH }

Programs are merged using inverse narrowing
followed by a CRG.

On each iteration, until all the data are ‘consiliated’:

• The two most optimal programs are selected,
provided they cover most of the examples, and they
have not been merged before.

• Inverse narrowing is made between all the possible
occurrences using one equation of each program.

• The resulting programs which are consistent and
canonical are added to PH. If not, they can be split.

Several parameters: min, step, inarcomb are
introduced to temporarily prune the search tree.

Condition for using B: some example does not have
any program which covers it with good optimality.

 14

Example (non-incremental)

• Evidence E:

(E1
+) append([1,2],[3]) = [1,2,3] (E1

−) append([3],[4])=[4,3]

(E2
+) append([c],[a])=[c,a] (E2

−) append([1,2],[])=[1]

(E3
+) append([],[4])=[4] (E3

−) append([1,2,3],[4])=[1,2,3,4,5]

(E4
+) append([a,b],[])=[a,b] (E4

−) append([],[a,b])=[b,a]
(E5

+) append([a,b,c],[d,e])=[a,b,c,d,e]

• From each example, two (min=2) CRG’s are
generated with the best optimality:

CRG(E1
+) = { e1: append(.(X,.(Y,[])), Z) = .(X,.(Y,Z)),

 e2: append(.(X, .(Y,Z)),.(W,Z)) = .(X,.(Y,.(W,Z))) }
CRG(E2

+) = { e3: append(.(X,[]),Y)=.(X,Y),
 e4: append(.(X,Y),.(Z,Y)) = .(X,.(Z,Y)) }
CRG(E3

+) = { e5: append([],X)=X,
 e6: append(X,.(Y.X)) = .(Y,X) }
CRG(E4

+) = { e7: append(X,[])=X,
 e8: append(.(X,.(Y,Z)),Z)=.(X,.(Y,Z)) }
CRG(E5

+) = { e9: append(.(Y,.(Z,.(W,V))),X)=.(Y,.(Z,.(W,X))),
 e10: append(.(Y,.(Z,.(W,[]))),X)=.(Y,.(Z,.(W,X))) }

Constructed EH and PH, the best solution is {e1, e3, e5, e9} covering
E+ (with dreadful optimality and no consilience at all).

 15

Example (cont)

• 1st Iteration. 1st Inverse Narrowing Combination.

There is no pair of programs covering 5 or 4 examples.
Thus, from those programs covering 3 examples, the most
optimal ones are:

P1 = { append(X,.(Y,[])),Z) = .(X,.(Y,Z)) } covering E1
+, E4

+
P2 = { append([],X) = X } covering E3

+

giving 3 consistent programs:

Pa = { append(.(X,.(Y,W)), Z) = .(append(W,X),.(Y,Z)),
 append([],X)=X) }
Pb = { append(.(X,.(Y,W)), Z) = .(X,.(append(W,Y),Z)),
 append([],X)=X }
Pc = { append(.(X,.(Y,W)), Z) = .(X,.(Y,append(W,Z))),
 append([],X)=X }

Added to PH. The best solution is the same as before.

 16

Example (cont)

• 2nd Iteration. 2nd Inverse Narrowing Combination.

Now, we find two programs covering 4 examples:

P’1 = Pa = { e1,1: append(.(X,.(Y,W)), Z) = .(append(W,X),.(Y,Z)),
 e1,2: append([],X)=X) } covering E1

+, E3
+, E4

+
P’2 = { e2,1: append(.(X,[]), Y) = .(X,Y) } covering E2

+

Select the two rules with the highest optimality: e1,2 and e2,1.
After inverse narrowing and CRG, most of them are
inconsistent. After ‘splitting’, only one of them results
consistent and confluent (e1,1 is removed):

Pd = {append(.(X,Z),Y) = .(X, append(Z,Y)),
 append([], X) = X }
which covers E+ and has good optimality.

Best Solution: Pd with consilience > 0.5, the stop criterion.

The example shows that if optimality is not used
heuristically, the method is not feasible in practice.

 17

IIncremental Algorithm
More interactive (the user can stop the sample).

For each new example which is being presented:

• If it is a positive example: E+
n, check for every

program Pi ∈ PH:
1. HIT (Pi = E+

n): Just recompute the optimalities.

2. NOT COVERED (Pi ≠≠≠≠ E+
n ∧ lhs(E+

n) is ↓): = HIT
3. ANOMALY: Remove all non confluent and

inconsistent Pi from PH and prune EH.

 and we generate all the CRG’s of E+
n

 in EH and
extend PH with all the new unary programs.

• If it is a negative example: E−
n, we check the

consistency for every program Pi ∈ PH and we act
as in either the HIT or as in the ANOMALY cases.

In any case, the iteration can be ‘reactivated’ until the
best solution complies with the stop-criterion (or an
iteration limit is exhausted).

The consilience criterion avoids extensional ‘patches’
for the NOT-COVERED case.

 18

Example (incremental & BK)
Induce the power function from the product function:

B = {0×X=0, sX×Y=X×Y+Y, X+0=X, X+sY=s(X+Y)}

BF = { × } // Only use × and the functors which appear in E.

Example of 9 steps of an interactive session:

1. The first example E1
+ = {ss0 ↑ ss0 = ssss0} is processed. The

first EH could be enormous and must be pruned.

2. The second example E1
− = {ss0 ↑ sss0 = ssssssss0} does not

make any program inconsistent.

3. The third example E2
+ = {sss0 ↑ ss0 = ssssssss0} is a NOT

COVERED case and generates new equations, like {X ↑ Y =

ssssssX} or {sX ↑ X = sssssssX}.
Poor optimality � inverse narrowing between { E2

+} and B.

Program Pa = { X ↑ ss0 = X × X } is generated covering all E+
and with good optimality over other solutions.
It is offered to the user. The user deems it to be too hasty.

4. Example E2
− = {sss0 ↑ sss0 = ssssssss0} prunes some

programs but Pa is still the best solution.

 19

5. Example E3
+ = {sss0 ↑ s0 = sss0} is NOT COVERED by all

programs. New CRG’s are generated like { X ↑ s0 = X } and

{ssX ↑ X = ssX }. Until some limit of iterations, the algorithm
stops because it does not find a consilient program. The

best one is P5 = { X ↑ s0 = X, X ↑ ss0 = X × X}.

6. Example E3
−= {ss0 ↑ sss0 = ssss0 } eliminates some

uninteresting programs.

7. Example E4
+ = { 0 ↑ sss0 = 0} is NOT COVERED by all

programs. New CRG’s are generated like { 0 ↑ X = 0 }.

8. Example E4
− = {sss0 ↑ ss0 = ssss0} eliminates some

uniteresting programs.

9. Example E5
+ = {ss0 ↑ 0 = s0} is NOT COVERED by all

programs. New CRG’s are generated like { X ↑ 0 = s0 } or {

ss0 ↑ 0 = s0}. The first one is combined with P5 which

contained { X ↑ ss0 = X × X }. This gives equations like {X ↑

sY = (X ↑ Y) × X}, {X ↑ sY = X × (X ↑ Y)} and {X ↑ sY = (X ↑

X) × Y}. Some new programs are constructed using them.
One has very good optimality � the algorithm offers it to
the user…

Solution guessed at step 9:
 { X ↑ sY = (X ↑ Y) × X

 X ↑ s0 = s0 }

The user now considers it’s time to stop.
Obviously, any future example can be NOT COVERED or even
can make it inconsistent.

 20

Conclusions and Future Work

General framework for the induction
of functional logic programs.

�Two basic operators are introduced:

• Consistent Restricted Generalisation

• Inverse Narrowing
�The selection criterion is parametrisable.

�Adaptation to the incremental case is immediate
due to the notion of consilience (a good solution is
sought earlier than the MDL principle suggests).

Current work:
• conditional extension: based on balanced

reinforcement to avoid exceptions as conditions.

• comparison with other ILP systems.

Future work:
• theoretical results on ‘completeness’ and complexity.

• study of different narrowing techniques (especially
needed narrowing) to possibly integrate with Curry.

• higher-order logic.

