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Abstract. A definition of computational information gain is presented
based on Levin descriptional complexity. The measure is applicable to
different inference processes, either deductive or inductive, and evaluates
the relative value of new inference results.

1 Introduction

Processes which are apparently so different as induction and deduction can be
explained in a computational framework as inference processes that just generate
an output from an input, which must follow some semantical restrictions and/or
selection criteria, widely studied in philosophy of science and mathematical logic,
respectively. The term information is seen as the result of a computational effort,
analogically to the way energy is seen as the result of a physical work. This
suggests many questions, especially how to measure this computational effort.

The answer was given by Levin in the seventies [10], proving that the weight-
ing LT (x) = length(x) 4+ logCost(x) between space and time was optimal in the
sense of universal search problems. In other words, given any problem, either
an amount of time is needed to obtain the answer to the problem or either an
amount of the data (space) of the solution is needed. From here, Levin’s variant
of descriptional (Kolmogorov) Complexity can be defined as follows:

Definition 1. The Levin’s Length-Time Complexity of an object x given
y on a descriptional mechanism (:

Ktg(zly) = min{LT3(ply) : ds({p.y)) = =}

This is a very practical alternative of Kolmogorov Complexity, because, as well
as avoiding intractable descriptions, it is computable. Given two objects = and
y, Kt(y|z) represents the effort from x to y.

2 Definition of Computational Information Gain

The Information Gain of an object y wrt. an object x can be then defined as
the quotient between the effort which is necessary to describe y from z and the
effort which is necessary to describe y alone. More formally,

Definition 2. The Computational Information Gain of an object y wrt. an
object y in a context [ is defined as:

Gplylz) = Ktp(ylz)/ Kts(y)



Some properties of this measure can be shown before applying it to inference
processes. The proofs of these and other properties can be found in [5].

Theorem 3. There exists a constant ¢ such that for every x and y,

log l(z)/(I(x) +log l(z) + ¢) < G(zly) < 1

This gives an interval practically between 0 and 1, which is very appropriate for
measuring a relative information gain value.

Secondly, in order to check that the meaning of ‘difficulty’ that is gathered
by G is compatible with computational complexity, it can be shown that if there
exists a polynomial time algorithm from a problem y to a solution x, and the
problem y is complex, then G(z]y) must be low.

Theorem 4. Consider a learning algorithm A* € P (i.e. polynomial), namely
Ip € N : O(nP~1) < O(A*) < O(nP), with A* being of constant size, i.e.
I(A*) = c. This algorithm deterministically transforms y into x, where x is a
program for y, with n = l(y). There is a T such that for all x and y, if n > 7
and there exists a k such that Kt > k- p-log n, then G(z|y) < 2/k.

3 Computational Information Gain and Deduction

Under Carnap Probabilistic Calculus [1], if P = @ then @ has less information
than P. This has popularised the opinion that deduction cannot be informative.
However, this view can also be originated from a supposedly omniscient view
of logic, where everything that is implicit is immediately and effortlessly made
explicit by the rules of the axiomatic systems. This view is not only practically
unfeasible but formally erroneous, as it was shown by [3], extending Godel re-
sults of incompleteness to intractability. In practice and theoretically, minimally
expressive axiomatic systems are not omniscient. Making explicit what is im-
plicit requires effort. Consequently, deduction is costly and its conclusions are
worthy, valuable, informative, and, in some cases, surprising.

By using G, we can clearly establish the difference between informative de-
duction and non-informative one. More precisely, if y represents the premises
and x the conclusion, the following two extreme situations are illustrative:

— Minimum: G(z|y) = log I(x)/(I(x) +log I(x)) ~ 0. The conclusion is evident
from the premises. It is easy to describe the conclusion from the data. Kt(z|y)
must be low.

— Maximum: G(z|y) = 1. We have that Kt(z|y) = Kt(x). The premises are
useless (in time-space terms) to describe the conclusion. A great computa-
tional effort is necessary to work on the premises y to obtain the conclusion
or there is a need for external information.

Between the two extremes, G establishes a generic measure of the gain which is
obtained from making explicit something that was implicit, provided that the
system is not omniscient and is resource limited. This establishes a clear differ-
ence between explicit or surface information, and implicit or depth information,
as it was highlighted by Hintikka for first-order logic [§].



4 Computational Information Gain and Induction

In a similar way as for deduction, if x is the theory and y is the data (the
evidence), the two extremes given by G are also illustrative:

— Minimum: G(z|y) = log l(z)/(I(x) + log I(x)) ~ 0. The theory is evident
from the data. It is very easy to describe the theory from the data. Some
examples of this situation can be the fit polynomial obtained from the data,
or a theory with a significant proportion of exceptions or extensionalities
(part of x is in y), which makes Kt(z|y) low.

— Maximum: G(z]y) = 1. We have that Kt(z|y) = Kt(z). The data is useless
(in time-space terms) to describe the theory. A great computational effort is
necessary to work on the data y to obtain the theory or there is a need for
external information.

Between the two extremes, G establishes a generic measure of how informative
the hypothesis is wrt. the evidence (in Popper’s sense [12]). It is compared with
other selection criteria, especially simplicity, in [7]. The MDL principle [13] and
the view of learning as compression [14] are useless for most cases, because the
vast majority of sequences are incompressible [11].

5 Learning and Inference

Learning has traditionally been seen as inductive inference since Gold introduced
the seminal paper on the paradigm of ‘identification in the limit’ [4].

However, by using G we can demand much more than identification, and we
can differentiate between easy inductions and hard (and surprising) inductions.
Nonetheless, this fact, as we have seen, is not restricted to induction, and de-
duction behaves in a similar way wrt. G. More precisely, we can say a concept
x (either inductively or deductively obtained) is surprising wrt. y in a context 8
iff Gg(z|y) is high. The notion of discovery is stricter though:

Definition 5. A concept or theory x is a discovery wrt. y in a context [ iff:
Gp(zly) = 1 and Ga(y|z) =0
i.e, x is surprising for y and y is explicit from x (e.g. = is an efficient theory
or explanation for y). In other words, a discovering is something that was not
known, was difficult to know, but once known, it is almost trivial in the other
sense. In the case of induction, discovering must be accompanied by confirmation.
Finally, the view of induction as identification is paradoxical for finite ev-
idence. For finite concepts, an inductive algorithm that gives the extensional
theory for the data would have formally learnt. And, the MDL principle (the
best theory is the shortest one) gives an extensional theory (the evidence itself)
for the great majority of data samples (most strings are random). As a response
to this situation, we propose a new notion of ‘authentic learning’.

Definition 6. The more one learns the greater G(K1|K0), where KO is the
knowledge before the inference step and K1 is the knowledge after it.

This dismisses the notion of learning as a phenomenon exclusively related to
non-deductive inference processes.



6 Conclusions

We have introduced a new measure of computational information gain which
can be applied to different inference processes in a unified manner. Several other
connections with related concepts (explicitness, intensionality, other definitions
of gain ratio) have been established in [5].

As a conclusion, the most important result of this work is that deduction
and induction can be conciliated in terms of information gain. Interestingness,
explicitness and even learning are concepts which are shared both by deduction
and induction. This allows more consistent combinations of deductive systems
and inductive paradigms for the construction of non-omniscient rational agents.
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